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Abstract 

Intracellular calcium (Ca2+) signals are key regulators of multiple cellular functions: both 

healthy and physiopathological. It is therefore not surprising that several cancers present a 

strong deregulation of Ca2+ homeostasis. Among the different hallmarks of cancer disease 

particular role is played by metastasis which has a critical impact on cancer patients’ 

outcome. Importantly, Ca2+ signaling has been reported to control multiple aspects of the 

adaptive metastatic cancer cell behavior, including epithelial-mesenchymal transition, cell 

migration, local invasion and induction of angiogenesis (Fig. 1). In this context Ca2+ 

signaling is considered being a substantial intracellular tool that regulates dynamicity and 

complexity of the metastatic cascade. In the present study we review spatial and temporal 

organization of Ca2+ fluxes as well as the molecular mechanisms involved in metastasis 

analyzing the different key steps regulating initial tumor spread. 
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AA; Nitric Oxyde, NO; sulfidric acid, H2S; cyclic AMP, cAMP; two-pore channel, TPC; 

human umbilical vein endothelial cell (HUVEC); reactive oxygen species, ROS. 
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Introduction 

Calcium (Ca2+) is an ubiquitous second messenger which is involved in the tuning of multiple 

fundamental cellular functions (Berridge MJ, Lipp P, 2000). Due to its multifaceted roles, it 

is not therefore surprising that deregulated Ca2+ homeostasis has been observed in various 

disorders, including tumorigenesis (Monteith GR, McAndrew D, Faddy HM, 2007; 

Prevarskaya et al., 2011). Among the different manifestations of cancer disease particular 

role is played by metastasis which has a critical impact on cancer patients’ outcome (Hanahan 

& Weinberg, 2011). Tumor spread is highly regulated process that usually starts with loss of 

cell-cell contact and typical epithelial-mesenchymal transition (EMT) (Kalluri & Weinberg, 

2009). During metastasis, cancer cells also acquire enhanced directional movement and 

activate molecular pathways that enable proteolysis of extracellular matrix (ECM) and local 

angiogenesis. As a result, cancer cells enter the body circulation systems and disseminate to 

the distinct sites of the organism. Importantly, Ca2+ signaling has been reported to control 

multiple aspects of the adaptive metastatic cancer cell behaviors, including EMT, migration, 

local angiogenesis induction and intravasation (Chen et al., 2013). In this context is 

considered being a substantial intracellular tool that regulates dynamicity and complexity of 

the metastatic cascade. Intracellular free Ca2+ concentration is highly controlled by the fine 

regulation of “ON and OFF” mechanisms that ultimately generate Ca2+ signals with various 

amplitude as well as frequency. As regarding the “ON” mechanisms, cytosolic Ca2+ can be 

delivered from extracellular space due to the activity of Ca2+-permeable channels and 

transporters in plasma membrane or occur as a result of release from Ca2+ containing 

organelles (e.g. endoplasmic reticulum) (Berridge MJ, Lipp P, 2000). In order to maintain 

low resting Ca2+ concentration, cells remove Ca2+ using energy-dependent mechanism such 

as plasma membrane ATPases (PMCA) or Na+-Ca2+ exchanger (NCX); moreover Ca2+ is 

sequester intracellularly into Ca2+ containing organelles, primarily endoplasmic reticulum 

(ER), by meaning of mechanisms which requires either ATP hydrolysis (e.g. SERCA pump) 

or a favorable electrochemical gradient. In this review we will overview the spatial and 

temporal organization of Ca2+ fluxes as well as the molecular mechanisms involved in 

metastasis analyzing the different key steps regulating tumor spread. 
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Epithelial-mesenchymal transition and loss of cell-cell contact 

EMT is a cellular process during which epithelial cells acquire fibroblast-like morphology. 

This process involves changes in cellular shape, loss of epithelial polarized organization and 

cell-cell contacts like tight and adherens junctions. Accordingly, one of the most recognized 

features of cells undergoing EMT is suppression of multiple epithelial markers (e.g. E-

cadherin, claudins, occludins) and overexpression of mesenchymal markers (e.g. N-cadherin, 

vimentin, integrins) (Fig.2). 

Of note, EMT and disruption of cell-cell contacts is one of the key events in tumor 

progression and it can be induced by various effectors like growth factors, hypoxia, and 

inflammation (Diepenbruck & Christofori, 2016). Interestingly, remodeling of Ca2+ signals 

during EMT processes has been reported for the variety of cancer cells. For example, in 

breast cancer cells the potency of ATP-mediated cytosolic Ca2+ transients exhibited 

significant changes after epidermal growth factor (EGF) and hypoxia induced EMT (Davis et 

al., 2011; Azimi et al., 2016). Specifically, attenuation of cytosolic Ca2+ peak and the 

sustained phase of Ca2+ influx in the response to ATP, have been attributed to the activity of 

G-protein coupled purinergic receptors (P2Y family) and ligand gated Ca2+ channels (P2X 

family) (Davis et al., 2011; Azimi et al., 2016). Another study reveals that inhibition of P2X5 

reduces expression of the EMT marker vimentin and its increased expression correlates with 

breast cancer cells that are associated with a more mesenchymal phenotype (Davis et al., 

2011). Moreover, chelation of free cytosolic Ca2+ suppresses production of mesenchymal 

markers like vimentin, N-Cadherin and CD44, after exposure of breast cancer cells to EGF 

and hypoxia (Davis et al., 2013; Stewart et al., 2015). Similar findings have been reported for 

hepatic cancer cells, where chelation of intracellular Ca2+ reversed doxorubicin induced EMT 

(Wen et al., 2016). Furthermore, EMT of colon cancer cells may be regulated by KCNN4 

through Ca2+-dependent mechanisms (Lai et al., 2013). Regarding the store-operated Ca2+ 

entry (SOCE), the data is ambiguous. On one hand, SOCE and basal Ca2+ influx are 

decreased after EGF induction of EMT in breast cancer cell line MDA-MD-468 (Davis et al., 

2012). On the other hand, transforming growth factor β1 (TGF-β1) induced EMT is 

associated with enhanced SOCE in breast cancer cell line MCF-7 (Hu et al., 2011).  

 It is now clear that remodelling of Ca2+ signaling is a prominent feature of EMT in 

various cancer types. Therefore, deregulation of Ca2+-permeable channels could subserve as 

an important regulator of EMT during carcinogenesis. Indeed, silencing and pharmacological 

inhibition of transient receptor potential melastatin channels (TRPM) such as TRPM7 and 
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TRPM8 decreased expression of a variety of mesenchymal markers in breast cancer cells 

(Davis et al., 2013; Liu et al., 2014). In MCF-7 breast cancer cell line that exhibit more 

epithelial-like phenotype the overexpression of TRPM8 leads to EMT induction as indicated 

by the profile of markers expressed (Liu et al., 2014). Consistent with this data, TRPM8 has 

been found upregulated in tumor breast cancer tissues, when comparing to the adjacent 

nontumor tissues, suggesting therefore on the role of TRPM8 as a determinant of EMT 

transition (Liu et al., 2014). Moreover, in breast cancer cells EGF induced EMT significantly 

increases mRNA level of Ca2+ release-activated Ca2+ channel protein 1 (ORAI1) and  

provides altered Ca2+ signaling possibly due to involvement of transient receptor potential 

canonical channel type 1 (TRPC1) (Davis et al., 2012). In hepatic cancer cells, another 

member of transient receptor potential canonical channel TRPC6 has been shown to affect 

expression of EMT markers after doxorubicin induction (Wen et al., 2016).  

 Overall, the studies of Ca2+ signaling and Ca2+-permeable channels using various 

cancer models and EMT effectors have defined a critical role of Ca2+ signal in the process of 

EMT during tumorigenesis. 

Cell migration 

Principal component of cancer cell motility is the directional migration which is realized due 

to the front-rear end polarity (Mayor & Etienne-Manneville, 2016). Typically, the leading 

edge is represented by flat cell membrane extensions with directed actin polymerization and 

nascent attachment sites, whereas at the rear of the cell, adhesions are disassembled and the 

trailing edge is contracted (Mayor & Etienne-Manneville, 2016). Interestingly, the global 

cytosolic Ca2+ is generally higher at the rear end, whereas Ca2+ flickers are enriched near the 

front edge (Evans et al., 2007; Wei et al., 2009; Tsai & Meyer, 2012). It is suggested that 

such Ca2+ distribution is implicated in controlling the directed cellular locomotion (Brundage 

RA, Fogarty KE, Tuft RA, 1991).  

Of note, migration is complex and multistep process that involves coordination 

between cytoskeleton remodeling, cell-substrate adhesion/detachment and cellular 

protrusion/contraction (Gardel et al., 2010; Thomas Parsons et al., 2010). Importantly, 

several key molecular components and signaling events of the cellular migration machinery 

are Ca2+-sensitive (Fig. 3). For example, the myosin II-based (myo II) actomyosin contraction 

is mainly mediated through the activity of Ca2+-dependent myosin light chain kinase (MLCK) 

(Clark et al., 2007). The focal adhesion turnover is also highly dependent on Ca2+ signaling. 
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On the one hand, the disassembly of cell adhesions is achieved due to the cleavage of focal 

adhesion proteins, such as integrins, talin, vinculin and focal adhesion kinases, by the Ca2+-

sensitive protease, calpain (Franco SJ, 2005). On the other hand, Ca2+ is important for the 

modulation of nascent focal adhesion sites by activating proline-rich tyrosine kinase 2 

(Pyk2), and small GTPases like Ras and Rac (Lysechko et al., 2010; Selitrennik & Lev, 

2015). S100 proteins, a subgroup of the EF-hand Ca2+-binding protein family, regulate a 

variety of cellular processes via interaction with different target proteins (Bresnick et al., 

2015). In particular, their influence on F-actin polymerization and myo II-actin assembly has 

been proposed to govern cell migration due to the cytoskeletal structural remodeling (Gross 

et al., 2014) (Fig.3 ). Overall, it is clear now that cell migration can be considered as a Ca2+-

dependent process. Importantly, Ca2+-permeable channels are responsible for the cytosolic 

Ca2+ delivery from external and internal cellular stores. Therefore, their activity would define 

the occurrence of sustained and transient Ca2+ changes important for orchestration of the 

cellular migration. 

Interestingly, in migrating erythrocytes and human umbilical vein endothelial cells the 

low basal Ca2+ levels at the leading edge are maintained due to the activity of PMCA, and the 

inhibition of PMCA leads to the abrogated front-to-rear Ca2+ gradient and decreased 

migration (Pérez-Gordones et al., 2009; Tsai et al., 2014). Similar mechanisms could be 

utilized by the metastatic cells, since the expression of PMCA has been found to directly 

correlate with tumorigenicity of breast cancer cells (Lee et al., 2005) (Fig. 3). At the same 

time, in the front end of ER low local Ca2+ concentration provokes high sensibility to SOCE 

(Tsai et al., 2014). Indeed, ER residual Ca2+ sensor of SOCE, stromal interaction molecule 

(STIM), has been found polarly distributed in the leading edge of the migrating cell (Tsai et 

al., 2014). STIM molecule responds to the Ca2+ ER depletion and provokes ion influx 

through plasma membrane ORAI channel (Liou et al., 2005; Roos et al., 2005). Of note, 

STIM-ORAI proteins have been found significantly upregulated in various cancer types and 

SOCE-activated Ca2+ signaling implemented in the mediatiaion of actomyosin assembly and 

focal adhesions required for efficient migration (Chen et al., 2011; Fiorio Pla et al., 2016; 

Jardin I, 2016) (Fig. 3). 

Plasma membrane extensions and protrusions play role of a mechanical stress and 

thus provide Ca2+ influx through stretch-activated channels at the front end of migrating cell. 

Indeed, TRPM7 can be activated intracellularly through phospholipase C (PLC) or by 

membrane stretch (Su et al., 2006; Wei et al., 2009; Gao et al., 2011; Middelbeek et al., 

2012). Interestingly, TRPM7 is localized in close proximity with calpain and myo II (Clark et 
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al., 2007). Therefore, Ca2+ entry provided through TRPM7 modulates actomyosin 

cytoskeleton contraction and dynamics of the focal adhesion turnover required for directional 

cell migration (Clark et al., 2007). Indeed, pro-migratory role of TRPM7 has been 

demonstrated for breast, lung, pancreatic and nasopharyngeal cancers (Visser et al., 2014). 

Moreover recently the mechanosensitive TRPC1 activation, localized at the rear end of the 

cells, was shown to play a role in the formation of cell polarity of bone osteosarcoma U2OS 

cells and their directional migration (Huang et al., 2015). Similarly, several members of TRP 

channels has been implicated in cell migration in various caner types (Fiorio Pla & Gkika, 

2013). In particular most of TRP channels has been associated with increase in migration 

potential. This is the case for TRPC members such as TRPC1, TRPC6 in glioma cells 

(Chigurupati et al., 2010; Bomben et al., 2011); and vanilloid subfamily TRPV2 which has 

also been associated with increased cellular migration in prostate, bladder and breast cancer 

(Oulidi et al., 2013; Gambade et al., 2016). On contrary, another subfamily of TRP channels 

melastatin, full length TRPM8, has been reported to inhibit cell migration thus suggesting a 

protective role for TRPM8 in prostate metastatic cancer progression, whereas short TRPM8 

isoform could have pro-metastatic potential (Bidaux et al., 2016). Voltage-gated Ca2+ 

channels (VGCCs) represent another pathway for Ca2+ influx that activates downstream 

MAPK/ERK signaling pathway and increases migration (Mertens-Walker et al., 2010). In 

particular, Cav1.3 has been found overexpressed in endometrial carcinoma and its 

knockdown has been shown to reduce migration (Hao et al., 2015).  

Intracellular Ca2+ is important regulator of Ca2+ activated potassium channels (KCa). 

Interestingly, ORAI and TRPC1 channels may form complexes with small conductance KCa 

channel SK3 (Chantome et al., 2013; Guéguinou et al., 2016). Such SK3-ORAI complex is 

crucial for migratory function of breast and prostate cancer cells and has been found in bone 

metastasis (Chantome et al., 2013). Similarly colon cancer cell migration is dependent on 

SOCE trough SK3/TRPC1/Orai1 channel complex (Guéguinou et al., 2016). 

 

Invasiveness and invadopodia formation 

Invasiveness of cancer cells is their ability to degrade ECM and migrate into neighboring 

connective tissues as well as lymph- and bloodstream. There, cancer cells are spread within 

the organism and give rise to the secondary tumors outbursts, metastases. Therefore, the 

understanding and hence prevention of the process of cancer cell invasion would remarkably 

improve the survival rate of cancer patients. Cancer cell invasion is achieved due to the 
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special structures – invadopodia, which are dynamic actin-enriched cell protrusions with 

proteolytic activity. Typically, invadopodia formation process can be differentiated into 

following steps: initiation, assembly and maturation (Fig.4) (Jacob et al., 2015). The 

assembly of invadopodia is initiated in response to the focal generation of 

phosphatidylinositol-3,4-biphosphate and the activation of the nonreceptor tyrosine kinase 

Src (Mader et al., 2011; Pan et al., 2011; Yamaguchi H & Sakai R, 2011). The matured 

invadopodia recruit the proteolytic enzymes, such as membrane type 1 (MT1)–matrix 

metalloproteinase (MMP), MMP2, and MMP9, to facilitate the focal degradation of 

extracellular matrix and cell invasion (Beaty et al., 2013). 

 Interestingly, a particular pattern of Ca2+ signaling, Ca2+ oscillations, has been 

revealed to predispose the invadopodia formation and activity (Fig. 4) (Sun et al., 2014). For 

example, Ca2+ oscillations mediated through STIM1 and ORAI1 channels have been reported 

to activate Src kinase and hence facilitate the assembly of invadopodial precursors in 

melanoma cells (Sun et al., 2014). Proteolytic activity of invadopodia is predetermined by the 

incorporation of MMP-containing endocytic vesicles to the plasma membrane at the ECM 

degradation sites and can also be linked to the Ca2+ signaling machinery (Bravo-Cordero JJ et 

al., 2007). Indeed, inhibition of SOCE abrogated fusion of MMP-containing vesicles with the 

plasma membrane and as a result constrained ECM degradation (Sun et al., 2014). Moreover, 

constitutively active TRPV2 provides intracellular Ca2+ increase and has been associated with 

upregulation of MMP9 and invasive potential of prostate cancer cells (Monet et al., 2010) 

In oral squamous carcinoma, TRPM8 activity directly correlates with MMP9 activity and 

metastatic potential of the cells (Okamoto et al., 2012). The downregulation of MMP9 might 

be also achieved after inhibition of voltage-gated Ca2+ channels (Kato et al., 2007). 

Furthermore, in the highly metastatic human breast cancer cell line MDA-MB-435 the 

activity of the ATP-gated Ca2+-permeable P2X7 receptor increases invasion by the release of 

gelatinolytic cysteine cathepsins (Jelassi et al., 2011). Therefore, in invadopodia Ca2+ influx 

is required for the focal degradation of ECM, in particular through the upregulation of the 

proteolytic enzymes like MMPs and cathepsins, whereas Ca2+ oscillations are required for the 

initiation of the invadopodia formation process (Fig. 4). 
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Induction of local angiogenesis 

Vascularization is a key step required for tumor metabolic support and sustaining metastatic 

dissemination. Tumor vascularization is promoted by the same tumor cells upon secretion of 

a number of growth factors. Vessel formation is a complex multistep process during which 

'activated' endothelial cells (ECs), the first mechanical and functional interface between blood 

and tissues, proliferate, migrate, differentiate and are stabilized in a new circulatory network 

(Carmeliet, 2005; Folkman J, 2006).  

Because of its multifaceted role in the control of endothelium homeostasis, the Ca2+ 

machinery is a potential molecular target for strategies against tumor neovascularization. 

Interestingly, several studies from our laboratory depict a distinct Ca2+ machinery in tumor 

derived EC (TEC) as compared with healthy ones (Fig. 5). Importantly, proangiogenic Ca2+ 

signals and their related pathways are significantly altered in TEC compared with normal EC 

(Fiorio Pla & Munaron, 2014). As an example, Ca2+ signals mediated by specific factors like 

vascular endothelial growth factor (VEGF) and ATP and intracellular messengers such as 

arachidonic acid (AA), Nitric Oxyde (NO), or sulfidric acid (H2S) and cyclic AMP (cAMP) 

are involved in promigratory effects in TEC, but not in normal EC (Fiorio Pla et al., 2008, 

2010, 2012b; Pupo et al., 2011; Avanzato et al., 2016).  

Several studies highlighted the importance of agonist-stimulated Ca2+ signals in 

angiogenesis and the role of intracellular Ca2+ increase has been deeply investigated in 

endothelium (Fiorio Pla & Munaron, 2014). Both pro- and antiangiogenic molecules can 

induce an intracellular Ca2+ increase often leading to different biological effects. For instance, 

Ca2+ entry triggered by VEGF, as well as by other proangiogenic factors, is often associated 

to an increase of vessel permeability, EC survival/proliferation, migration and in vitro 

tubulogenesis (Dragoni et al., 2011, 2015; Li et al., 2011). These outcomes can be achieved 

by activation of distinct intracellular mechanism such as SOCE via ORAI and TRPC1 

channels (Mehta et al., 2003; Paria et al., 2004; Jho et al., 2005; Abdullaev et al., 2008; 

Dragoni et al., 2011; Li et al., 2011; Fiorio Pla & Munaron, 2014), non SOCE mechanisms 

via TRPC6 channels (Cheng et al., 2006; Hamdollah Zadeh et al., 2008), specific 

engagement of the two-pore channel TPC2 subtype on acidic intracellular Ca2+ stores, 

resulting in Ca2+ release and angiogenic responses (Favia et al., 2014) or by reverse mode 

activation of NCX (Fig. 5) (Andrikopoulos et al., 2011). Of note, in recent study VEGF-

mediated Ca2+ signaling in individual endothelial cells has been investigated and shown to 

correlate both stochastic and deterministic response characteristics to the selection of 
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phenotypes associated angiogenesis. In particular altering the amount of VEGF signaling in 

endothelial cells by stimulating them with different VEGF concentrations triggered distinct 

and mutually exclusive dynamic Ca2+ signaling responses that correlated with different 

cellular behaviors such as cell proliferation (monitored by NFAT nuclear translocation) or 

cell migration (involving MLCK) (Noren et al., 2016). In vivo role of Ca2+ signals has been 

recently studied on zebrafish during angiogenic input by means high-speed, 3-dimensional 

(3D) time-lapse imaging to describe intracellular Ca2+ dynamics in ECs at single-cell 

resolution in zebrafish (Yokota et al., 2015; Noren et al., 2016). Of note, TRP Ca2+-

permeable channels have profound effects in the control of different steps of tumor 

angiogenesis (Fiorio Pla et al., 2012a; Fiorio Pla & Gkika, 2013; Earley & Brayden, 2015). 

Besides their role in VEGF-mediated Ca2+-signals previously described, several data clearly 

show their involvement Ca2+ mediated signal transduction with prominent roles in tumor 

angiogenesis. In this context TRPV4 is an emerging player in angiogenesis, on EC it acts as a 

mechanosensor during changes in cell morphology, cell swelling and shear stress (Vriens et 

al., 2004; Hartmannsgruber et al., 2007; Thodeti et al., 2009; Everaerts et al., 2010; Fiorio 

Pla & Munaron, 2014). We described the role of TRPV4 in endothelial migration, (Fiorio Pla 

et al., 2012b) showing that TRPV4 display a significant increase in EC derived from human 

breast carcinomas (BTEC), as compared with ‘normal’ EC (HMVEC), leading to a greater 

Ca2+ entry that activates migration in TEC (Fig. 5) (Fiorio Pla et al., 2012b). Moreover, 

TRPV4 has been recently described as important player in the tumor vasculature 

normalization therefore potentially improving cancer therapies (Adapala et al., 2015; Thoppil 

et al., 2015, 2016). In addition, TRPM2 has been recently identified to mediate H2O2-

dependent increase in macrovascular pulmonary EC permeability (Fig. 5) (Hecquet et al., 

2008; Mittal et al., 2015). TRPM7 inhibits HUVEC proliferation and migration, whereas its 

functions on HMEC seem to be opposite (Fig. 5) (Inoue & Xiong, 2009; Baldoli & Maier, 

2012; Baldoli et al., 2013; Zeng et al., 2015). Recently, TRPA1 has been found to have a role 

in the vasodilatation of cerebral arteries via an increase of Ca2+ influx generating by sensing 

of ROS, process that requires the peroxidation of membrane lipids (Sullivan et al., 2015). 

Similarly TRPV2 has been shown to be expressed in aorta endothelium but not clear 

functional data have been reported (Earley, 2011). 

Finally, the emerging family of mechanosensitive Piezo channels has been recently 

described in vascular endothelial cells: Piezo2 knockdown is involved in glioma angiogenesis 

both in vitro as well as in vivo by promoting abnormal intracellular Ca2+, Wnt11/β-catenin 
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signaling reduction, leading to altered angiogenic activity of endothelial cells (Fig. 5) (Yang 

et al., 2016). 

Conclusions 

Remodeling of Ca2+ signaling plays important role during tumorigenesis advancement. 

Interestingly, there is some specific pattern of channels through which such Ca2+ signals are 

provided at the different stages of cancer progression. This could be partially explained due 

to the specificity of Ca2+ flux, its compartment localization, and proximity of the downstream 

Ca2+-dependent targets. Furthermore, some ion channels represent multimodal activity and 

are characterized as not only Ca2+-permeable pore proteins but also possess other functional 

domains. For example, C-terminal end of TRPM7 is constituted of serine/threonine protein 

kinase domain and hence due to the phosphorylation of cytoskeletal components regulates 

cellular migration (Clark et al., 2008).  

Importantly, plasma membrane Ca2+ channels are easily and directly accessible via 

the bloodstream. Therefore, they are potential targets for a variety of therapeutic strategies, 

such as their regulation on a transcriptional and translational level, their trafficking to the 

plasma membrane or their stabilization to the plasma membrane (Gkika & Prevarskaya, 

2009; Fiorio Pla et al., 2012a; Bernardini et al., 2015; Earley & Brayden, 2015). 
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Figure legends 

Fig. 1. Abstract figure. Specific patterns of Ca2+ signals that are associated with different 

steps of cancer progression.  

Fig. 2. Epitnelial-to-mesenchymal transition (EMT) and loss of cell-cell contacts are 

accompanied by the changes of Ca2+ signals after epidermal growth factor (EGF) and 

hypoxia induced EMT. Specifically, attenuation of cytosolic Ca2+ peak and the sustained 

phase of Ca2+ influx in the response to ATP. The most studied Ca2+-permeable channels, 

which are associated with EMT, are indicated. 

Fig. 3. The global cytosolic Ca2+ is generally higher at the rear end, whereas Ca2+ flickers are 

enriched near the front edge of migrating cell. The key molecular components and signaling 

events of the cellular migration machinery are Ca2+-dependent. 

Fig. 4. Ca2+ oscillations are required for the initiation of the invadopodia formation process, 

whereas Ca2+ influx activate focal degradation of the extracellular matrix (ECM), in 

particular through the upregulation of the proteolytic enzymes like matrix netalloproteinases 

(MMPs) and cathepsins. 

Fig. 5. Induction of local angiogenesis by Ca2+ signaling remodeling. Vascular endothelial 

growth factor (VEGF) and ATP mediated Ca2+ signals provide proangiogenic effects 

specifically on tumor derived endothelial cells (ECs). 
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