&%3,%; UNIVERSITA
S wcrf Ty Ei}él DEGLI STUDI
”l Aer 1O %@ﬁj‘%ﬁ% DI TORINO

AperTO - Archivio Istituzionale Open Access dell'Universita di Torino

Towards Integration of Multi-Agent Planning with Self-Organising Collective Processes

This is a pre print version of the following article:

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1823487 since 2023-06-03T07:45:43Z

Published version:
DOI:10.1109/ACS0OS-C52956.2021.00042
Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

(Article begins on next page)

02 January 2025



Towards Integration of Multi-Agent Planning with
Self-Organising Collective Processes

Giorgio Audrito
Dipartimento di Informatica
Universita di Torino
Torino, Italy
0000-0002-2319-0375

Abstract—In this paper, we investigate the relationship between
multi-agent planning and self-organisation through the combina-
tion of two representative approaches both enjoying declarativity.
We consider a functional approach to self-organising systems de-
velopment, called Aggregate Programming (AP), and propose to
exploit collective adaptive behaviour to carry out plan revisions.

Index Terms—Multi-agent systems, Robust plan execution,
Aggregate computing

I. INTRODUCTION

The task of Multi-Agent Planning (MAP) consists of co-
ordinating the actions of multiple agents in a Multi-Agent
System (MAS) towards common goals. Traditionally, planning
addresses both the assignment of tasks/actions to individual
agents, as well as the coordination among different agents
in terms of causal links and concurrent actions. For large-
scale systems of cooperating agents, however, plans can hardly
capture, fully and in advance, the behaviour and interactions of
each individual agent towards desired global state-of-affairs.
Rather, high-level plans should be specified and dynamically
refined to define both team- and individual-level behaviour in
a flexible and adaptable fashion.

Our vision is meant to integrate two approaches to MAS
implementation that have followed distinct research paths up to
now. On the one hand, there are self-organizing, swarm-based
approaches, capable of automatically adapting MAS behaviour
based on the contingent situation. Such approaches can be
very effective in dealing with small, specific uncertainties
in the operating environment, but are not usually suited to
drive complex plans made of several phases involving highly
heterogeneous behaviours. On the other hand, there are more
traditional systems that are able (in principle) to interpret
and execute any plan expressed in a suitably standardized
language, such as the Multi-Agent-Planning Domain Def-
inition Language (MA-PDDL) [1], but do not have built-
in capabilities to exhibit flexible lower-level behaviour and
coordination with other agents.

In summary, we aim at investigating the integration of MAP
and self-organisation, where the former is key to achieve
complex goals requiring possibly long sequences of agents’
actions; and the latter is key to deal with the uncertainty of
the operating environment via low-level flexibility.

Roberto Casadei
Department of Computer Science and Engineering
Universita di Bologna
Bologna, Italy
0000-0001-9149-949X

Gianluca Torta
Dipartimento di Informatica
Universita di Torino
Torino, Italy
0000-0002-4276-7213

To promote such integration, we further require and focus
on declarative approaches: the high-level plans should not be
hard-coded in the system, but represented in a suitable lan-
guage; similarly, the self-organizing logic should be expressed
through programs abstracting from low-level issues (e.g.,
inter-agent communication details). We found MA-PDDL and
Aggregate Programming (AP) [2], respectively, to be the two
main representatives satisfying these requirements.

II. MULTI-AGENT PLANNING AND SELF-ORGANISATION

MAP evolves from one of the oldest Al problems: auto-
mated planning of the actions that an agent has to execute in
order to reach a goal state from starting in an initial state. In
2012, the standard language for expressing planning domains
and problems (PDDL) has been extended to the MA-PDDL
language, which can handle multiple agents [1]. Currently,
several planners directly support MAP, both as a centralized
and as a decentralized process. As an alternative to using such
planners, it is possible to automatically convert a MA-PDDL
problem to a single-agent problem that can then be solved
with one of the many single-agent planners.

A potential issue with the execution of a MA-PDDL plan
is that, if errors occur, it is left unspecified how the agents
and the MAS as a whole should react. Some work has
been done in the Al community to address monitoring and
repair of Multi-Agent Plans (MAPs) (i.e., possibly long and
complex sequences of actions that have to be performed by the
MAS) [3], however, such approaches only address the mon-
itoring/diagnosis task, assume a centralized monitoring/repair
process, or require full/perfect communication between the
agents in the team.

The multi-agent community has also followed a somewhat
different approach, by identifying a number of problem types
that are particularly relevant in practice, such as the path-
planning problem and the pickup-and-delivery problem (i.e.,
move a set of items from sources to destinations). Such
problem types have then been investigated separately, leading
to specialized solutions that are often partially hardcoded in
the agents behaviours [4].

Self-organisation refers to the process whereby a system
autonomously (i.e., without external control) seeks and sus-
tains its order or structures [5]. It is often meant as a bottom-



up decentralised process where macro-level structures emerge
from micro-level activities and interactions. Few programming
approaches tailored to self-organising systems exist, with AP
being one of the most representative [2]. AP is a paradigm for
programming self-organizing systems declaratively by func-
tionally composing global, aggregate behaviours specifying
how a set of agents should behave and interact with neigh-
bours. AP is formalised by the Field Calculus (FC) [2], a core
language for manipulating computational fields [2] which is
implemented by full-fledged languages like the Scala-internal
ScaFi (Scala Fields) [6] and the C++-internal FCPP [7].
Our vision is that self-organisation and MAS coordination
approaches can be profitably combined. This is related to
research efforts, such as organic computing [8], promoting
ways to balance “creative self-organized bottom-up processes”
and “top-down control”. Architectural solutions leveraging
planning and self-organisation have also been proposed, e.g.
in [9] for robotic ensembles. Indeed, self-organisation can be
key to promote continual planning [10]. However, we adopt
an approach based on declarative programming languages.
Currently, we focus on supporting resilient execution of
MAPs:

« we consider the plan (together with declarative models
of the actions) as the main force used to drive the
(dynamic) structure of a self-organising MAS, by defining
workflows and actions to “steer” the self-organisation;

o we advocate that declarative representations of MAPs
should include both traditional actions (performed by an
individual) and collective actions (performed by teams of
agents), as required by PDDL extensions;

« we consider the full execution cycle (including monitor-
ing and repair of the plans), which requires both robust
and flexible plan execution, and incremental (partial-to-
full) re-planning when strictly necessary.

We stress the importance of a declarative representation of the
plan (especially the action models) as well as of the monitoring
and repair processes (c.f. Section III). We believe that declar-
ativity is essential for decoupling the system specification
from execution and deployment issues, as well as for enabling
formal analysis including static and dynamic verification.

IIT. DISCUSSION AND RESEARCH ROADMAP

Ideas about the steps and techniques that may be helpful to

achieve our research goals follow.

o A fundamental step would be the development of a lan-
guage for expressing MAPs. A first step in this direction
has been presented in [11], where the authors propose
the notion of aggregate plan to capture the kind of plans
suitable for teams performing collective actions. We still
need to formalize a language to express aggregate plans,
and the models of the actions involved (in terms, e.g., of
pre-conditions, nominal and faulty post-conditions).

o Given an aggregate plan, its execution must be flexible
enough. This will require to define a layer exploiting the
expressive power of FC to induce such flexible collective
behavior in a fully distributed, self-organizing way.

[1]
[2]

[3]

[4]

[5

=

[6]

[7]

[8]

[9

—

[10]

[11]

[12]

[13]

The properties to be monitored may require more com-
plex mechanisms than just direct observation by individ-
ual agents, such as those investigated in existing work
on Runtime Monitoring of complex spatial and temporal
properties with FC [12]. Furthermore, these properties
should be automatically derived from the plan and the
actions model, instead of manually specified.

Finally, we envision a layer for the repair of failures
that goes beyond the flexibility directly exhibited by the
execution layer. The characteristics of FC and of the
systems we address seem to suggest that also such a layer
should be an aggregate process [13]. In order to avoid
hardcoding the repair actions, the layer should exploit
knowledge of the plan and of the actions (failure) models
in order to update the plan itself. In this way, we will
probably start by diagnosing (i.e. assessing) the situation
(e.g., several observed delays are due to a congestion) and
subsequently finding the minimal plan change required to
put the execution back on track.

REFERENCES

D. L. Kovics, “A multi-agent extension of PDDL3.1,” in International
Planning Competition (IPC), 2012.

M. Viroli, J. Beal, F. Damiani, G. Audrito, R. Casadei, and D. Pianini,
“From distributed coordination to field calculus and aggregate comput-
ing,” J. Log. Algebraic Methods Program., vol. 109, 2019.

R. Micalizio and P. Torasso, “Cooperative Monitoring to Diagnose
Multiagent Plans,” Journal of Artificial Intelligence Research, vol. 51,
pp. 1-70, 2014.

O. Salzman and R. Stern, “Research challenges and opportunities in
multi-agent path finding and multi-agent pickup and delivery problems,”
in Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, 2020, pp. 1711-1715.

T. De Wolf and T. Holvoet, “Emergence versus self-organisation: Dif-
ferent concepts but promising when combined,” in Engineering Self-
Organising Systems, Methodologies and Applications (ESOA workshop,
AAMAS conference), ser. LNCS, S. Brueckner, G. D. M. Serugendo,
A. Karageorgos, and R. Nagpal, Eds., vol. 3464. Springer, 2004.

R. Casadei, M. Viroli, G. Audrito, and F. Damiani, “Fscafi : A core
calculus for collective adaptive systems programming,” in ISoLA (2),
ser. LNCS, vol. 12477. Springer, 2020, pp. 344-360.

G. Audrito, “FCPP: an efficient and extensible field calculus frame-
work,” in International Conference on Autonomic Computing and Self-
Organizing Systems (ACSOS). 1EEE, 2020, pp. 153-159.

J. Branke, M. Mnif, C. Miiller-Schloer, H. Prothmann, U. Richter,
F. Rochner, and H. Schmeck, “Organic computing - addressing com-
plexity by controlled self-organization,” in Leveraging Applications of
Formal Methods (ISoLA). IEEE Computer Society, 2006, pp. 185-191.
O. Kosak, C. Wanninger, A. Hoffmann, H. Ponsar, and W. Reif,
“Multipotent systems: Combining planning, self-organization, and re-
configuration in modular robot ensembles,” Sensors, vol. 19, no. 1, p. 17,
2019.

M. Brenner and B. Nebel, “Continual planning and acting in dynamic
multiagent environments,” Autonomous Agents and Multi Agent Systems,
vol. 19, no. 3, pp. 297-331, 2009.

M. Viroli, D. Pianini, A. Ricci, and A. Croatti, “Aggregate plans for
multiagent systems,” International Journal of Agent-Oriented Software
Engineering, vol. 5, no. 4, pp. 336-365, 2017.

G. Audrito, R. Casadei, F. Damiani, V. Stolz, and M. Viroli, “Adaptive
distributed monitors of spatial properties for cyber-physical systems,”
Journal of Systems and Software, vol. 175, 2021.

R. Casadei, M. Viroli, G. Audrito, D. Pianini, and F. Damiani, “En-
gineering collective intelligence at the edge with aggregate processes,”
Engineering Applications of Artificial Intelligence, vol. 97, p. 104081,
2021.



