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Sarcopenia is a common muscular affection among elderly individuals. More recently, it
has been recognized as the skeletal muscle (SM) expression of the metabolic syndrome.
The prevalence of sarcopenia is increasing along with visceral obesity, to which it is tightly
associated. Nonetheless, it is a still underreported entity by clinicians, despite the
worsening in disease burden and reduced patient quality of life. Recognition of
sarcopenia is clinically challenging, and variability in study populations and diagnostic
methods across the clinical studies makes it hard to reach a strong evidence. Impaired
insulin activity in SM is responsible for the altered molecular pathways and clinical
manifestations of sarcopenia, which is morphologically expressed by myosteatosis.
Lipotoxicity, oxidative stress and adipose tissue-derived inflammation lead to both
alterations in glucose disposal and protein synthesis in SM, with raising insulin
resistance (IR) and SM atrophy. In particular, hyperleptinemia and leptin resistance
interfere directly with SM activity, but also with the release of Growth Hormone from the
hypohysis, leading to a lack in its anabolic effect on SM. Moreover, sarcopenia is
independently associated to liver fibrosis in Non-Alcoholic Fatty Liver Disease (NAFLD),
which in turn worsens SM functionality through the secretion of proinflammatory
heptokines. The cross-talk between the liver and SM in the IR setting is of crucial
relevance, given the high prevalence of NAFLD and the reciprocal impact of insulin-
sensitive tissues on the overall disease burden. Along with the efforts of non-invasive
diagnostic approaches, irisin and myostatin are two myokines currently evaluated as
potential biomarkers for diagnosis and prognostication. Decreased irisin levels seem to be
potentially associated to sarcopenia, whereas increased myostatin has shown to
negatively impact on sarcopenia in pre-clinical studies. Gene variants in irisin have been
explored with regard to the impact on the liver disease phenotype, with conflicting results.
The gut-muscle axis has gain relevance with the evidence that insulin resistance-derived
gut dysbiosis is responsible for increased endotoxemia and reduction in short-chain free
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fatty acids, directly affecting and predisposing to sarcopenia. Based on the current
evidence, more efforts are needed to increase awareness and improve the
management of sarcopenic patients.
Keywords: sarcopenia, insulin resistance, obesity, NAFLD, leptin, microbiota, irisin, myostatin
INTRODUCTION

During the last years, sarcopenia has been progressively
recognized as the muscular expression of the metabolic
syndrome (Mets), with relevant implications in both the
pathophysiological field and in clinical setting. The compresence
of diverse metabolic-related affections worsens the global disease
burden, with a reciprocal impact on tissue metabolisms and
clinical outcomes. Nonetheless, sarcopenia is still underestimated
and underreported in patients withMetS. Therefore, the aim of the
present review is to elucidate the molecular pathways involved in
the crosstalk between insulin-sensitive tissues with respect to the
onset and progression of sarcopenia, and how they translate into
current clinical studies and future perceptive for clinical
management. In addition, the major controversial points in the
field will be discussed, pointing out the unmet needs that would
require further investigation (Table 1).
LINKING SARCOPENIA TO INSULIN
RESISTANCE

Insulin exerts major metabolic and anabolic effects upon the
skeletal muscle (SM). Accounting for about 40-50% of the total
lean mass, SM is responsible for the 80% of post-prandial glucose
disposal, playing a crucial role in maintaining the whole body
energy homeostasis. In addition, insulin promotes protein
synthesis and limits protein catabolism, contributing to the
trophism and physiology of myocytes. Impaired insulin action
in SM in the setting of insulin resistance (IR), affects both glucose
metabolism and the maintenance of a proper muscle mass.
Conversely, a reduced SM functionality worsens IR and
n.org 2
contributes to the metabolic abnormalities of the MetS. The
impoverishment of muscle mass, or “sarcopenia”, refers to an
unintentional weight loss, weakness and slowing in daily
activities, mostly observed among elderly individuals (1). This
process seems to start around the third decade of life and
becomes increasingly relevant with ageing. In fact, sarcopenia
is a major determinant of frailty in the elderly population,
significantly contributing to all cause morbidity and mortality
(2–4).

In recent years, the concept of a defective muscle mass has
gained greater attention for its putative role in the cross talk of
insulin sensitive tissues in subjects with MetS (5). The increasing
prevalence of obesity worldwide has led to a concomitant
increase in a phenotype currently defined as “sarcopenic
obesity” (SO), predicted to affect up to 100-200 million
subjects in the next 30 years (6), with a synergic amplification
of disease burden (7). A recent meta-analysis reported a 24%
increase in the risk of all-cause mortality among SO individuals,
regardless of geographical distribution (8). In particular, male
gender is addressed as a predictor for sarcopenia (9). Despite the
combination of sarcopenia and weight gain is most commonly
observed among the elderly (10), the additional harmful impact
of SO in younger individuals is leading to an increase in overall
mortality in the age range 50-70 (11, 12).

The obesogenic environment is promoted by sedentary
lifestyle and improper calorie intake, either quantitative or
qualitative. Notably, the hypernutrition observed among obese
individuals is essentially a form of malnutrition that can directly
affect the muscle mass because of the reduced intake of protein-
based nutrients, in favor of refined carbohydrates, high glycemic
index foods, and saturated fats. A prompt detection of sarcopenic
individuals will acquire progressive relevance in the
comprehensive management of the metabolic syndrome.
TABLE 1 | Unmet needs in the setting of sarcopenia that require further investigations.

Definition Sarcopenia among individuals with metabolic syndrome represents a separate entity from that occurring in ageing population.
Is s concomitantly found with obesity (“sarcopenic obesity”) and/or other features of metabolic syndrome. Obesity by Body Mass Index may be under-
classified in patients with sarcopenia.
A proper definition of sarcopenia and the understanding of all concomitant diseases and afflictions (e.g. depression) needs to be carefully implemented.

Diagnosis Comparative studies involving the different diagnostic tools (hand-grip strength, gait speed) and techniques (Computed Tomography, Magnetic Resonance,
Body impedance analysis, Dual-energy X-ray absorptiometry, ultrasound) are needed, in order to assess their accuracy in different populations (age,
ethnicity) and to improve non-invasive, radiation-free approaches.

Biomarkers Sarcopenia is a major determinant for the metabolic status in individuals with metabolic syndrome and insulin resistance. Many involved tissues (adipose
tissue, liver, hypothalamus) actively secrete cytokines that might be feasible as biomarkers, as emerged by pre-clinical studies and few human studies
(leptin, irisin, myostatin, adiponectin, IGF-1). Their plausibility is affected by the different source of secretion and the pleiotropic effect of the molecules. More
studies are needed to assess the accuracy of these cytokines as serum markers in specific populations (e.g. individuals with Non-Alcoholic Fatty Liver
Disease, diabetic patients) for the detection of sarcopenia and the prediction of a more severe course.

Therapy The management of sarcopenia resides on physical activity. The concomitant presence of other conditions (e.g. older age, obesity) and potential lack of
long-term compliance requires other approaches. The evaluation of multiple cross-talks between insulin sensitive tissues and different disease pathways
might bring to light optimal target for individualized therapy.
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In addition, the definition of obesity itself, as defined by Body
Mass Index (BMI), has some limitations when considering mobility
impairments. A large study conducted on 852 adult individuals (852
had reported at least one physical disability and 4724 without
impairments) showed that patients with functional mobility
impairments did not fall into the obesity definition according to
BMI (≥ 30 kg/m2), but were obese according to waist circumference
and/or percentage of body fat detected by Dual-energy X-ray
absorptiometry (DEXA). The impoverishment of muscle mass is
likely to impact on BMI, which in this population might be
misleading (13).

Skeletal Muscle Metabolism: Insulin-
Activated Pathways and Energy Sensors
In SM, insulin binds its tyrosine-kinase receptor to exert different
actions, with respect to glucose metabolism and protein
synthesis. Auto-phosphorylation of the receptor leads to
recruitment of insulin receptor substrate (IRS)-1, which guides
downstream pathways.

Activation of phosphatidylinositol 3-kinase (PI3K) promotes
phosphorylation of protein kinase B (PKB)/AKT and allows
glucose internalization by translocation of glucose transporter
(GLUT)-4 from vesicles to plasma membrane. Glycogen
synthesis is stimulated by phosphorylation of glycogen
synthase kinase 3 (GSK3). All these actions aim at glucose
disposal and storage.

In addition, PKB/AKT activates the mammalian target of
rapamycin (mTOR), 4E-binding protein 1 (4E-PB1) and
ribosomal S6 kinase 1 (S6K1), involved in the protein
synthesis, important for muscle mass anabolic metabolism
and trophism.

Another key signaling pathway is represented by the AMP-
activated kinase (AMPK), that promotes glucose and FFA
uptake/metabolism and modulates long-term responses in
mitochondria, by interacting with peroxisome proliferator
receptor gamma activator 1a (PGC-1a) (14). In the presence
of intracellular energy deficiency, AMPK inhibits protein
synthesis by suppressing mTOR signaling (15).

Sensitivity to insulin varies across different types of muscle
fibers. Muscle oxidative metabolism is prevalent in Type I fibers,
richer in mitochondria, whereas glycolytic pathways mostly
occur in type II fibers. Enhanced oxidative capacity in type I
fibers is linked to a better responsiveness to insulin and its
anabolic effect. In individuals with MetS, type I fibers are less
abundant according to the severity of IR, concurring to the
development of sarcopenia (16).

Sarcopenia: Assessment and
Clinical Implications
An appropriate evaluation of sarcopenia is of crucial relevance in
clinical studies in order to minimize heterogeneity and to address
a proper intervention.

Easy first-line assessments such as handgrip strength (17), or
short endurance performances like gait speed or the chair test,
may raise suspicion of SM impairment but are not considered
fully reliable due to lack of accuracy and standardizations (18).
Frontiers in Endocrinology | www.frontiersin.org 3
Nonetheless, they are recommended as quick and safe tests to
guide clinicians towards more accurate examinations.

Imaging parameters obtained by computed tomography (TC)
or magnetic resonance imaging (MRI) are currently considered
the gold standard, despite several limitations due to costs,
availability and radiation exposure (19).

DEXA is the most reliable method for evaluation of SM.
According to the European Working Group on Sarcopenia in
Older People (EWGSOP), identification of sarcopenia requires
the DEXA assessment of the appendicular SM mass (ASM) to
calculate the skeletal mass index (SMI) by the formula: ASM/
height2. A value below two standard deviations from reference
defines sarcopenia (5). However, this score is appropriate for lean
people, but underestimates the entity of sarcopenia among SO
individuals. Hence, the modified index ASM/weight has been
proposed to better quantify sarcopenia across metabolic
disturbances (20). Alternatively, the ASM/BMI index has been
evaluated in Korean populations, where it would be more tightly
associated to IR and visceral obesity (21). Body impedance
analysis (BIA) has been proposed as a valuable surrogate for
the favorable cost-effective profile and avoidance of radiations,
despite lack of validation in severely obese individuals and
potential interference of hydration status (5).

In addition, SM ultrasound might be a useful first-line tool for
sarcopenia assessment, in particular among special populations,
as bedside examination. In recent times, ultrasound of the
quadriceps has shown acceptable reliability in detection muscle
quantity and explore muscle quality, even when edema or fluid
retention are present (22).

In clinical setting, a comprehensive evaluation of patients
with sarcopenia would require an evaluation of quality of life.
Motility impairment is a source of both physical and
physiological affliction. In fact, depressive symptoms have been
associated to sarcopenia, in particular among elderly individuals
(23). This might be linked to the cognitive environment
in ageing populations, but can also depend on the systemic
proinflammatory status promoted by MetS that represents a
pathophysiology milieu for depression as well. In fact, depression
is also highly prevalent among individuals with hepatic steatosis,
which is the liver hallmark of MetS (24). Patients reported
outcomes represent a crucial step in the clinical evaluation
and depressive symptoms should not be overlooked in
this population.
PATHOPHYSIOLOGY OF DYSMETABOLIC
SARCOPENIA

Myosteatosis Causes Impairment in
Muscle Function
Excessive intramyocellular lipid infiltration, known as
“myosteatosis”, play a crucial role in the impairment of muscle
function in the setting of systemic IR. In IR states, the spillover of
free fatty acids (FFA) from a dysfunctional and inflamed adipose
tissue into ectopic sites, together with the persistent
hyperinsulinemia and hyperglycemia, lead to organ-specific
November 2021 | Volume 12 | Article 716533
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lipotoxicy and glucotoxicity. In the pancreas, this favors the
onset of type 2 diabetes mellitus (T2DM). In the liver, this can
lead to NAFLD, ranging from simple steatosis (Non-Alcoholic
Fatty Liver, NAFL), to a progressive inflammatory disease (Non-
Alcoholic Steatohepatitis, NASH), with deposition of fibrotic
tissue that leads to cirrhosis and end-stage disease (25). In SM, a
worsening in glucose uptake and in FFA oxidation may further
impair glucose homeostasis and protein synthesis, leading to
sarcopenia (26).

One seminal study, conducted on old mice fed with high fat
diet for 10 weeks, connected the reduced ability to store lipids
inside the adipose tissue to an increased lipid deposition in SM
and a decreased intramuscular protein synthesis (27). Fatty acid
intermediates, like ceramides or diacylglycerol, are involved in
the impairment of insulin signaling (28), as they interfere on the
nucleus-mitochondrial crosstalk (29). Both mice and humans
undergoing lipid infusion show intramuscular increase in
diacylglycerol and activation of two isoforms of protein kinase
C (PKC) (d and q), which negatively regulate insulin receptor
activity (30). The excessive lipid deposition leads to
mitochondrial activity overload, reduction of b-oxidation of
FFA and increase in both long and short-chain acylcarnitine
species; in turn this increases oxidative stress and impairs PKB/
AKT phosphorylation (31), reducing glucose utilization and
glycogen synthesis (32). Additionally, saturated fat-derived
ceramide accumulation directly impairs muscular protein
synthesis, enhancing phosphorylation of eukaryotic initiating
factor 2 a (eIF2a) (27), and protein translation by suppressing
factor 4E-BP1 phosphorylation (33).

Lipid infiltration also directly acts by progenitors of
adipocytes in myotubes, which exert a paracrine effect on SM
function, impairing insulin-mediated glycogen synthesis and
glucose uptake as shown by a reduced PKB/AKT
phosphorylation (34, 35). These evidences highlight the
putative role of lipotoxicity in driving time-dependent muscle
atrophy (36); on the other hand, the latter contributes to
worsening of peripheral IR.

Impact of Visceral Adipose Tissue and
Leptin Resistance
Visceral obesity is a pathological condition where the adipose
tissue represents an actively secreting organ, contributing to a pro-
inflammatory condition (Figure 1). In fact, rather than a simple
excessive fat accumulation, the expansion of the adipose tissue, in
terms of both hypertrophy and hyperplasia, is accompanied by an
increase in inflammatory cell types. Activated macrophages in the
adipose tissue release several pro-inflammatory cytokines
enhancing local and systemic inflammation.

In vitro studies have shown how macrophages, in an obesogenic
mimicking environment, are able to infiltrate the SM and to
interfere with muscle function, by decreasing Nuclear Factor
(NF)-kb inhibiting protein [Inhibiting kb-a (Ikb-a)] and
phosphorylated PKB/AKT (37). In particular, NF-kb has a
pleiotropic effect in the muscle, and its activation is associated with
a decrease in protein synthesis and an increase in protein degradation,
leading to reduction in muscle strength and atrophy (38).
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Moreover, murine models have shown that an obesogenic diet
leads to a significant increase in ubiquitin-proteasome pathways
and caspase synthesis in SM, related to an accelerated catabolic
activity (39).

Accordingly, human observational studies showed that
obesity represents a significant risk factor for the development
of sarcopenia (40). Leptin, secreted by adipose tissue, acts as a
pro-inflammatory hormone; serum levels of leptin are higher in
subjects with SO, rather than in those with either sarcopenia or
visceral obesity alone (41). Hyperleptinemia is also the result of
leptin resistance and defective signaling at the hypothalamic
neurons (42, 43).

In healthy individuals, leptin stimulates AMPK in SM. In
obese subjects, this pathway is suppressed, and this is thought to
be partly attributed to the increased hypothalamic expression of
the obesity-related suppressors of cytokine signaling 3 (SOCS3).
In rodents, SOSC3 inhibits leptin activation of AMPK,
contributing to the impaired fatty acid metabolism in SM (44).

Impact of Growth Hormone
and Adipokines
The detrimental impact of visceral adipose tissue in muscle
funct ion part ly res ides on its interference on the
hypothalamus-hypophysis axis of Growth Hormone (GH)/
Insulin-like Growth Factor-1(IGF-1) and Growth Hormone
Releasing Hormone (GHRH). GH exerts a trophic effect on
SM, enhancing protein synthesis and b-oxidation of FFA.
Obesity is associated with a reduced GH activity, which seems
to be a functional deficiency and potentially reversible with
weight loss (45). In particular, obesity-specific endocrine
alterations significantly contribute to the impairment in GH
activity: decreased adiponectin levels, an adipokine that exerts
anti-inflammatory and anti-fibrotic effect, and increased
somatostatin, are the main drivers of GH deficient action. In
addition, obesity-related hyperinsulinemia and elevated FFA are
key modifiers of GH release. Defective GH signaling in the
visceral adipose tissue contributes to impaired activity of the
hormone-sensitive lipase, that furtherly promotes fat
accumulation (46).

Leptin can exert a negative regulation on GH secretion in
obese humans via suppression of hypothalamus signaling (47).

Adipocyte fatty acid-binding proteins (FABP) is another
adipokine that may play a role in SO. FABP4 is expressed
mainly in adipocytes and macrophages, and has been used as
marker of adipose tissue differentiation. FABP4 binds FFA with
high affinity and is involved in the regulation of intracellular FFA
trafficking among various cellular compartments. Furthermore,
FABP4 shuttles several molecules into the nucleus enhancing
gene transcription. Knockout mice for FAPB4 are protected from
the onset of insulin resistance and obesity (48), and studies on
humans have highlighted the connection between increased
levels of FABP4 and T2DM (49). In SM, FABP4 is higher in
endurance-trained individuals compared to moderately active
subjects, and favors the trafficking of FFA towards the
mitochondria (50). However, in cross-sectional studies
conducted on SO individuals, increased levels of FABP-4 were
November 2021 | Volume 12 | Article 716533
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independently associated to DEXA-proven sarcopenia, making
this adipokine a potential marker of muscle deficiency among
obese individuals (51).

The pro-inflammatory adipokine resistin can interfere with
insulin signaling by activation of SOCS3 (52). In mouse models,
an association between increased levels of resistin and
sarcopenia has been found (53). Another adipokine, the
transporting retinol-binding protein (RBP)-4, is increased in
the setting of adipose tissue insulin resistance, where it
enhances pro-inflammatory pathways upon the macrophages
and impairs adipocyte function via paracrine signaling. In
murine models, increased RBP-4 seems to cause a direct
interference of insulin action inside the SM, potentially
contributing to sarcopenia (54).

In addition, SO is associated with higher levels of interleukin
(IL)-6 and C-reactive protein (CRP), further highlighting the link
between the adipose tissue-derived systemic inflammation and
impaired SM functionality (55, 56). Moreover, high levels of
macrophage-derived Tumor Necrosis Factor (TNF)-a directly
contributes to IR, by blocking insulin receptor upon the SM (57).

Future evaluation of the cytokines pattern in the setting of
metabolic dysfunction would provide insightful evidence on
sarcopenia and help on risk stratification.

Sarcopenia in the Cross-Talk Between
Adipokines and Hepatokines
Non-Alcoholic Fatty Liver Disease (NAFLD) may develop in IR-
states as a consequence of increased FFA delivery to the liver
from a dysfunctional adipose tissue and increased de novo
lipogenesis sustained by hyperinsulinaemia. A fatty liver
overproduces very-low density lipoproteins (VLDL), thus
further contributing to myosteatosis and sarcopenia (Figure 2).
Frontiers in Endocrinology | www.frontiersin.org 5
In turn, SM IR can worsen liver steatosis through direct
glucotoxicity, as shown by studies conducted on knockout mice
for SM-restricted GLUT4 (58), where undisposed glucose is
addressed to hepatic de novo lipogenesis, increasing
intracellular lipid load. In addition, enhanced gluconeogenesis
in the liver causes a persistent catabolic state of SM, in order to
supply the liver with the protein-derived aminoacids as substrate
for glucose synthesis, thus exacerbating sarcopenia.

The chronic inflammation of the adipose tissue has a direct
impact on liver injury, promoting the activation of Kupffer cells
(59). Reduction in adiponectin worsens hepatic insulin
sensitivity and favors fat accumulation in liver parenchyma
(60). The concomitant hyperleptinemia exerts a direct effect on
hepatic stellate cells, that promote fibrogenesis, and enhances the
synthesis of transforming growth factor (TGF)-b through a
direct effect upon Kupffer cells (61). Moreover, obesity is
associated to a reduction in hepatic synthesis of Fibroblast
Growth Factor (FGF)-21, that stimulates glucose uptake,
mitochondrial activity and thermogenesis. In liver and SM,
FGF-21 improves diacylglycerol levels and inhibits PKC
translocation (62), providing a mechanistic link between its
reduced activity and the onset of IR.

Proinflammatory hepatokines can exert a direct action on the
SM. Leucocyte cell-derived chemotaxin 2 (LECT2) is a cytokine
that positively correlates to SM IR and obesity. LECT2 induces
Jun N-terminal kinase (JNK) phosphorylation in myocytes,
leading to impairment of insulin sensitivity in mice (63).
Observational studies conducted on humans have shown that
significantly higher levels of LECT2 are found in patients with
NAFLD and MetS (64).

Fetuin A is another hepatokine that affects insulin sensitivity
by inhibition of insulin receptor autophosphorylation (65); in
FIGURE 1 | Impact of visceral obesity on sarcopenia. FFA, free fatty acids; GH, growth hormone; IRS, insulin receptor substrates; NF-kB, Nuclear Factor – kB;
PKB/AKT, Protein kinase B/AKT; TNF-a, Tumor Necrosis Factor – a.
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addition, it has shown a good association with NAFLD in a
recent systematic review and meta-analysis of 1755 patients and
2010 healthy controls (66). Fetuin A seems to impact on body
composition among older individuals, favoring accumulation of
visceral adipose tissue (67), and a positive association with
sarcopenia has also been reported (68). Finally, Selenoprotein
P, an hepatokine that has been associated to a deranged
metabolic profile and to the worsening of liver disease in
NAFLD patients (69), inhibits AMPK inside the liver, favoring
IR. Interestingly, one recent study has proposed a new model for
prediction of sarcopenia in mice based on four molecules,
including Seleoprotein P. This model resulted significantly
associated to a high risk of developing sarcopenia, linking liver
pathophysiology to defective muscle regeneration (70).

Sarcopenia and NAFLD:
Two Entangled Entities
NAFLD affects one quarter of individuals worldwide,
representing a significant burden on health systems. In this
context, SO is clinically relevant for patient’s management and
prognostication. One Italian study conducted by Petta et al. on
225 patients with biopsy-proven NAFLD showed that prevalence
of sarcopenia, identified by BIA-derived SMI, increased linearly
with the severity of liver fibrosis and resulted independently
associated with severe fibrosis (OR 2.36, p = 0.01) and steatosis
(OR 2.02, p = 0.03) (71). In one Asian study, sarcopenia,
identified by CT-derived categorical indices of both low SM
mass and evidence of myosteatosis, resulted an independent
prediction of significant liver fibrosis (OR 2.17, p < 0.05) (72).
In another study in Korean population, the lowest quartile
of DEXA-derived SMI was independently associated with
the risk of NAFLD, albeit with less strong significance
(OR 5.16, p = 0.041) (73).

Shared metabolic abnormalities can partially explain the link
between NAFLD and SM. However, the independent association
Frontiers in Endocrinology | www.frontiersin.org 6
between the liver and the SM highlights the reciprocal
interference on the overall disease burden. One cross-sectional
population-based study from Korea showed that DEXA-based
evidence of sarcopenia was associated to an increased risk of
NAFLD regardless of obesity (OR 3.02, p < 0.001) or MetS (OR
4.00, p < 0.001), which are the strongest drivers of dysmetabolic
diseases both in SM and in liver (74). Subsequent studies
conducted on biopsy-proven NAFLD patients confirmed the
association of sarcopenia with significant liver fibrosis (OR 2.05,
p < 0.05) (75). Accordingly, one 7-year longitudinal study
showed that the increase in BIA-based SM mass was associated
with a reduced incidence of NAFLD (HR 0.44, p < 0.001) and
with resolution of baseline NAFLD (HR 4.17, p < 0.001) (76).

Genetic predisposition could play a role both in NAFLD and
sarcopenia. Variants in gene encoding for patatin-like
phospholipase domain-containing 3 (PNPLA3) have been
associated with an increased incidence of fat accumulation,
liver inflammation and fibrosis, and hepatocellular carcinoma
(HCC). One study explored the potential risk of sarcopenia
among carriers of PNPLA3 variants; DEXA-derived ASM
independently decreased in NAFLD patients carrying the wild
type gene, but no association was found among PNPLA3 subjects
who carried the risk allele (77).

Additional genetic, investigations have been carried out on
polymorphisms in fibronectin type II domain-containing protein
5 (FNDC5), a myocyte membrane protein that is cleaved and
released in the bloodstream as irisin. Irisin is an exercise-induced
myokine, involved in the thermogenesis and browning of
adipose tissue by stimulation of uncoupling protein (UCP)-1,
able to reduce fat accumulation (78). Irisin can also improve IR
by enhancing GLUT4 translocation and b-oxidation of FFA via
energy sensor AMPK (79). Irisin serum levels are associated with
SM mass, increasing along with exercise training (80).
Accordingly, a cross-sectional study has shown a mild, but
significant association between low levels of irisin and
FIGURE 2 | Cross-talk between Non-Alcoholic Fatty Liver Disease and sarcopenia. FGF-21, Fibroblast Growth Factor – 21; LECT2, Leucocyte cell-derived
chemotaxin 2; NAFLD, Non-Alcoholic Fatty Liver Disease; NASH, Nonalcoholic Steatohepatitis.
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sarcopenia (OR 0.2, p < 0.01); interestingly, a cutoff of < 1 µg/ml
predicted sarcopenia with an acceptable area under the receiver
operating characteristic curve (AUROC) of 0.87 (81).
Nonetheless, other evidences from literature failed to attribute
a significant role to irisin in discriminating between sarcopenic
and non-sarcopenic individuals (82) and a clear role of irisin in
sarcopenia is still under debate.

One study described that rs3480 polymprohism in FNDC5
gene was associated with severe steatosis in NAFLD population,
through microRNA epigenetic control of irisin stability, and
conversely increased levels of irisin among wild type carriers
were associated to reduced steatosis and a better metabolic
profile (83). Another study reported a protective effect of the
gene variant on advanced liver fibrosis (84), but the prevalence of
sarcopenia and liver histologic features is not different across the
different genotypes of FNDC5 polymorphism (85).

These differences may be partly explained by the
heterogeneity of the study populations and the different
methods used for sarcopenia assessment. However, the
multifactorial genesis of sarcopenia can be also responsible for
the protean phenotype (86).

The pathophysiology of NAFLD is still under investigation
around the preeminent role of insulin resistance, and this aspect
is translated into the current management of this liver disease,
which lacks pharmacological therapies and resides on lifestyle
modifications (87). Physical exercise is considered part of the
cornerstone for NAFLD improvement, and this aspect would
give major benefits on SM metabolism accordingly.

Myostatin and Myokines Between
Sarcopenia and Insulin Resistance
Myostatin, a myokine belonging to TGF-b superfamily, regulates
SM metabolism both in an autocrine and paracrine way, and
exerts endocrine activity upon peripheral tissues. Myostatin is
stimulated by physical inactivity and favors fat deposition by
decreasing adiponectin levels, with subsequent reduction in fat
oxidation and increase in liver steatosis (88). Animal studies
conducted on myostatin-deficient mice have shown that the
impairment of insulin signaling is exerted through suppression
of AMPK and PKB/AKT pathways (89). Moreover, myostatin is
a negative key regulator of lipolysis and thermogenesis (90).
Consistently, old mice treated with anti-myostatin antibodies
displayed an increase in SM mass and strength, and a better
glucose uptake measured by hyperinsulinemic-euglicemic clamp
(91). Human studies have shown an enhanced transcription of
myostatin in sarcopenic individuals, interfering with the anabolic
GH/IGF-1 pathway (92). It can be speculated that leptin-derived
impairment of GH activity may lead to a reduced suppressive
action of GH on myostatin, favoring its increased activity.

Interestingly, myostatin receptor (activing-receptor-2B) is
upregulated in mouse fibrotic livers, and detected on human
hepatic stellate cells. Myostatin modulates JNK pathway,
enhancing cell migration and expression of procollagen type 1
and TGF-b1, thus favoring a profibrogenic phenotype (93). This
finding may represent a further evidence of interplay between
different tissue alterations and physiopathological pathways.
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These evidences also highlight a potential role of myostatin
inhibition as therapeutic target to treat sarcopenia. Moreover, in
the last years multiple pre-clinical studies have reported a large
number of myokines involved in onset of sarcopenia, elucidating
an increasing complexity in the cross talk between insulin-
sensitive tissues. Myokines, and more generally cytokines, are
expressed by diverse tissues, with different roles and biological
plausibility. Leukemia inhibitory factor (LIF), for instance, is an
exercise-induced myokine, involved in the SM biogenesis, that
acts in a autocrine way and is mostly undetectable in serum.
Nonetheless, LIF is also majorly synthetized by cancer cells to
induce cachexia and potentially a target to treat SM atrophy in
this population (94). Angiopoietin-like 4 (ANGPTL4) is another
example of the pleiotropy of these molecules: it is synthesized by
adipose tissue and SM in response to fasting or hypoxia, aiming
at maintaining body weight and inhibiting lipoprotein lipase.
Gene variants of ANGPLT4 causing a reduce cytokine function
have shown to improve glucose tolerance, suggesting a
potential role as therapeutic target in T2DM individuals (95).
Therefore, more studies are needed to investigate therapeutic
targets to bring the mechanistic pre-clinical evidence into
human applications.

The Gut-Muscle Axis: Implications of
Aminoacids and Short-Chain Fatty Acids
Multiple environmental agents may be responsible for SM
vulnerability. Malnutrition and physical inactivity are the most
important factors that favor sarcopenia in the context of
metabolic syndrome. More recently, the existence of a gut-
muscle axis has been hypothesized, following the increasing
evidence of a role of gut microbiota in the setting of both SM
alterations and in IR (Figure 3). Gut microbiota metabolizes
exogenous proteins and synthesizes essential aminoacids, like
tryptophan, which is relevant for SM anabolism (96). Mice
undergoing tryptophan supplementation show significant
increase in IGF-1 and in the myostatin antagonist follistatin. A
parallel improvement in protein synthesis via upregulation of
mTOR pathway is observed (97).

Short-chain fatty acids (SCFA) are the end-products of gut
microbiota anaerobic fermentation, produced mainly by
Firmicutes species. SCFA provide multiple effects on energy
metabolism (98), by binding of different receptors in peripheral
tissues. In particular, G protein-coupled receptor 43 (GPR43)
acts as a sensor of excessive dietary energy, regulating metabolic
homeostasis (99). Knockout mice for GPR43 are obese under
normal diet, whereas overexpression of the receptor leads to
inhibition of fat accumulation. In a mouse model of T2DM,
exercise training reversed the reduction in intestinal and plasma
SCFA and improved SM IR by inducing muscle cell autophagy
(100). Moreover, SCFA are key modulators of IGF-1 synthesis
(101), which may provide a further link between SM metabolism
and gut microbiota.

In particular, butyrate is a SCFA that is actively involved in SM
metabolism. It limits protein degradation by inhibition of ubiquitin-
proteasome catabolic pathway, enhances protein synthesis via
mTOR pathway, and stimulates muscle stem cell differentiation
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via PI3K/AKT signaling (102), hence being one potential tool for
detection and management of sarcopenic individuals.

Dietary intake and physical activity continuously shape gut
microbiota, promoting different patterns of microbial species
and modulating its heterogeneity. Obese people are characterized
by low microbial richness, which favors inner imbalance among
the species and the raise of pathogenic bacteria. Lipopolysaccharide
(LPS), the main bacterial product of this disequilibrium, promotes
a chronic systemic low-grade inflammatory activity (the so-called
endotoxemia). By binding Toll-like receptor 4 (TLR4), LPS
promotes IR by disrupting PI3K/AKT and NF-kb pathways
(103). One study conducted on old individuals showed an
increased expression of TLR4 in SM, along with serum increase
in LPS, associated to IR and to decreased quadriceps volume mass
and muscle strength (104).

Therefore, SM functionality seems to be tightly dependent
from lifestyle shaping of gut microbiota. Lifestyle interventions
aiming at improving insulin sensitivity might result in a parallel
improvement in SM through the gut-muscle axis.
CONCLUSIONS

Despite the multifactorial origin of sarcopenia, ranging from
ageing to chronic systemic inflammation, the onset of SM
alterations in the setting of MetS requires unique considerations.
Obesity as a result of unhealthy lifestyle, drives the systemic
expressions of IR. In turn, metabolic imbalance in insulin
sensitive tissues, mainly liver, SM and hypothalamus-hypophysis
axis, contributes to the energetic homeostasis disruption and
worsens systemic insulin sensitivity.

SM alterations that occur in IR states lead to a specific
phenotype of sarcopenia, strongly linked to muscle IR.
Reduction in glucose disposal and a reduced protein synthesis
are the main consequences of sarcopenia, that furtherly impair
Frontiers in Endocrinology | www.frontiersin.org 8
IR and lead to a loss in muscle strength, frequently observed in
obese individuals. Malnutrition associated withWestern lifestyle,
i.e. a reduction in proteins in favor of refined carbohydrates and
saturated fats, impacts on SM health. Additionally, dysfunctional
shaping in gut microbiota by unhealthy lifestyle actively
contributes to SM impairment, while improving systemic IR
and obesity through lifestyle interventions may be beneficial for
SM as well.

Given the clinical implications, a comprehensive evaluation
in patients with metabolic comorbidities should be advised, to
allow a better risk stratification. Unfortunately, the high
heterogeneity across study populations together with the
different strategies used to diagnose sarcopenia, affects the
quality of the results. DEXA is the most reliable and cost-
effective tool to detect sarcopenia, and some efforts have been
carried out to identify imaging-derived indexes which would be
better applied across the different populations.

The need for non-invasive diagnosis of sarcopenia and for
long-term implications have led to the evaluation of potential
serum biomarkers, along with a diverse genetic susceptibility
given by gene variants. Irisin and myostatin, for instance, have
been studied with regard to diagnostic accuracy in discriminating
sarcopenic patients, and to possible connections between
sarcopenia and liver disease. NAFLD and sarcopenia share
common pathophysiology pathways and have shown a strong
association, regardless of other metabolic comorbidities. The
impaired endocrine activity of both liver and SM has
reciprocal implications and should not be overlooked in
clinical setting.

Understanding the effective burden of insulin sensitive tissues
in the complex picture of MetS has proved to be crucial in cross-
sectional studies. However, longitudinal evaluations, with careful
detection of study populations and designs, involving the
potential role of non-invasive biomarkers, are still an unmet,
yet urgent need.
FIGURE 3 | Impact of environmental factors and gut insulin-resistance derived gut dysbiosis on sarcopenia. IFG-1, Insulin-like Growth Factor-1; LPS,
lipopolysaccharide; SCFA, short chain fatty acids.
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