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Highlights 

 

 Mycotoxins are toxic metabolites of fungi that contaminate several basic foods 

 LC-MS/MS allow simplify analytical strategies  and develop multiresidue methods    

 Emerging and masked mycotoxins are identified and detected by LC-MS/MS and LC-HRMS  

 Immunochromatographic tests provide rapid, cheap, portable, and multiplex analyses  

 Exposure to mycotoxins should be assessed by measuring suitable biomarkers 
 

 

mailto:laura.anfossi@unito.it


 

 

Mycotoxin detection for assuring food safety: (i) rapid, portable, ready-to-use devices; (ii) ELISA-based 

assays for routinely and extensive controls; (iii) chromatographic-based techniques for accurate 

determination of known mycotoxins; (iv) liquid chromatography coupled to tandem mass spectrometric 

detectors for multiresidue analysis and identification of new or modified compounds 

  



Abstract 

 

Mycotoxins are toxic metabolites of certain fungi that growth on a variety of crops, pre-, during and post-

harvest. Due to their toxicity, maximum admissible levels of mycotoxins are regulated worldwide and 

monitoring of their occurrence in several commodities is mandatory for assuring food safety and 

consumers’ health protection. 

Analytical methods for mycotoxins include immunochemical-based techniques that principally apply for 

routinely controls and rapid, on-site detection, and chromatographic-based techniques that provide 

sensitive, accurate and selective determination of known mycotoxins, besides identification of new or 

modified compounds through tandem mass spectrometric detectors. 

 

Introduction 

 

Mycotoxins are toxic compounds produced by the metabolism of certain fungi that affect a variety of 

crops, including commodities largely consumed by humans and animals. Although fungal growth depends 

on favorable environmental conditions and, therefore, the occurrence of mycotoxins varies among 

geographical areas, exposure to mycotoxins is a worldwide concern due to the globalization of food 

trade.  

The most prominent mycotoxins are produced by Aspergillus, Fusarium, Penicillium, and Alternaria fungi 

and belong to the classes of: aflatoxins (AFs), ochratoxins (OTA), patulin (PAT), and fusarium toxins. 

Fusarium toxins include: tricothecenes (deoxynivalenol, DON, nivalenol, 3-acetyl-DON, 15-acetyl-DON, T-

2 toxin, HT-2 toxin and chemically related compounds), fumonisins (FMs), and zearalenone (ZON) and 

zearalenone derivative (ZONs) s.   

The consumption of food contaminated by mycotoxins rarely determines acute toxicity; however severe 

chronic effects have been demonstrated for several of them, including mutagenicity, induction of 

hormonal, gastrointestinal or kidney disorders, and immunosuppression. Most mycotoxins are suspected 

human carcinogenic agents, such as FMs, OTA , and AFs and their tumor-inducing activity has been 

confirmed in experimental animals. Instead, aflatoxin B1 (AFB1)has proven to be a potent  human 

carcinogen, and has been classified as the strongest hepatocarcinogenic agent known [1].  

Mycotoxins can be produced during the growth and storage of crops and are chemically and thermally 

stable, thus they are carried over into processed foods. Furthermore, they can enter the food chain 

through animals fed by contaminated feed, as, for example, is the case of AFB1 and its metabolite 

(aflatoxin M1), which are transferred into milk by dairy cattle exposed to AFB1.    

Despite the risk poses for human health by mycotoxins, it is impossible to impose a total ban for these 

contaminants because mycotoxins occur naturally; however, maximum admissible levels have been 

established worldwide for most prevalent and toxic members of the group in certain commodities, which 



are more prone to fungal proliferation and represent a source of repeated exposure (Table 1). Consumers 

protection is also pursued through keeping mycotoxin levels as low as reasonably achieved following 

good agricultural, storage and processing practices. Regulated mycotoxins and commodities, and 

maximum admissible levels vary significantly in different countries (Table 1, European Mycotoxin 

Awareness network; URL: http://services.leatherheadfood.com/eman/FactSheet.aspx?ID=79). However, 

the request for analytical methods to assess compliance to regulations and to monitor the occurrence of 

such contaminants in food and feed is a worldwide priority.  

A sketch on the geographical provenience of the literature concerning both the development of new 

analytical strategies and the conduction of survey studies testifies a worldwide interest in mycotoxin 

detection topic. Likewise, the timely distribution of devoted papers attests a constantly growing scientific 

production in the last decade. Interestingly, though, also profiting from technical advance and availability 

of new analytical platforms, the scenario of mycotoxin detection is right now changing: in the last few 

years, the gold standard has been the availability of sensitive, rapid, cheap and easy-to-operate analytical 

tools to permit diffuse and continuous monitoring of these hazardous substances to assure safety of food 

and feed; therefore the development of so-defined screening methods was predominant. However, 

recent findings highlighted new concerns to be addressed. Primarily, co-occurrence of several toxins has 

been assessed because different metabolites are produced by the same fungus or because different fungi 

can affect the same crop [2], and possible additional risks for consumers’ health have been suggested 

due to synergistic effects. The number of newly identified mycotoxins is growing day by day [3-4]; the so-

called “emerging mycotoxins” have unknown toxicity and demand for dedicated analytical methods to be 

developed.  Plant metabolism can intrude and produce modified compounds (masked or hidden 

mycotoxins) whose fate over human or animal metabolism has so far not been investigated. Masked 

mycotoxin determination requires rethinking the whole analytical procedure, because modified 

compounds are often not-extractable by the extraction media employed for their parent compounds [5-

9]). Food and feed matrices potentially involved in mycotoxin contamination are exponentially increasing, 

each bringing its specific interference in the analytical protocols.  

The combination of the above mentioned issues is shifting the objective of mycotoxin detection towards 

multi-target methods, which prevalently exploit advanced instrumental techniques for assuring 

selectivity, sensitivity and also permit the identification of non-target compounds. 

 

Traditionally analytical approaches for determining mycotoxins have been divided into two categories: 

reference methods for quantitative analysis and rapid methods for first-level screening of numerous 

samples. Although convenient, this classification is outdated and a more general classification based on 

the analytical technique would be adopted in this review.  

Independently from the detection technique employed, the analytical workflow implies 5-7 common 

steps; however the time consumed for each step varies significantly (Figure 1).  

 

Methods based on chromatographic techniques 



  

Methods belonging to this group are aimed at quantitatively determine mycotoxins and involve liquid 

chromatography (LC) or gas chromatography (GC) coupled to ultraviolet (UV), fluorescence (FLD) or mass 

spectrometric (MS) detection. The use of sophisticated instrumental configuration combined to extensive 

sample preparation allows the largest range of mycotoxins to be determined with the highest sensitivity.  

Chromatographic techniques coupled to UV and FLD detection are mainly devoted to confirmatory 

analyses, i.e.:  confirm or not the non-compliancy to regulations previously assessed by a screening test. 

Methods are developed for a single compound or for few related chemicals usually belonging to the 

same class of mycotoxins. Occasionally, they serve as the reference method to validate immunochemical-

based tests. Typically, covering all regulated mycotoxins for all regulated commodities require tens of 

protocols. Otherwise, instruments equipped with tandem mass spectrometry (MS/MS) detectors allow 

modifying the analytical strategy in mycotoxin determination and to respond to most analytical 

challenges above discussed (Figure 2).  Mass spectrometry indisputable advantages (including high 

sensitivity, selectivity, accuracy, and throughput) make it the technique of choice for multiresidue 

analysis [10-13]. Furthermore, thanks to the inherent selectivity achieved by MS/MS detectors, extraction 

protocols with limited or no sample clean-up could be successfully developed. The QuEChERS (quick, 

easy, cheap, effective, rugged and safe) sample preparation approach applied in this context strongly 

simplified analytical procedures and, mostly, allowed the simultaneous extraction of impressive numbers 

of mycotoxins, even belonging to very different classes [4,9, 14-16]. However, usual QuEChERS protocols, 

being based on compromises between optimal extraction conditions for very different chemicals are 

inherently inefficient and reduce the sensitivity of the analytical method. Therefore, dedicated 

procedures including pre-concentration steps were employed, when ultrahigh sensitivity is mandatory 

(such as, for example, in the determination of AFs and OTA at levels required by EU regulations on baby 

food) [17]. Alternatively, the ultrahigh sensitivity achieved by the isotope dilution quantification method 

permitted compensating for low extraction rates and directly measuring without pre-concentration 

[14,16,18]. High-resolution MS (HRMS) and tandem MS detectors provide structure information and 

possible identification of unknown compounds.  Coupling non selective extraction protocols and mass 

screening through HRMS or MS/MS allowed identification of new masked mycotoxins and of new 

members of the group [9,19]. Rapid and multiresidue LC-MS/MS methods have been applied to assess 

mycotoxin occurrence in food and feed [4,9,11,15,20-23]. Most authors confirmed that regulated 

mycotoxins are  frequently recovered at levels suggesting health implications and emphasized the needs 

for further surveys. GC- MS(/MS) applications are almost exclusively confined to Fusarium toxins and 

patulin detection [13-14, 23]. 

 

Immunochemical-based methods  

 

Due to simplicity and cheapness coupled to sensitivity and selectivity, immunoassays are preferably 

employed for the first level screening and survey studies on mycotoxin contamination. ELISA-based kits 

are commercially available for all regulated mycotoxins and provide the most used analytical tool for 



assuring food safety through the food chain [24].  Besides, immunochemical-based tests in diverse 

formats are continuously developed with the aim of providing rapid, portable and easy to operate 

systems [25-27]. Among these, the immunochromatographic test (ICT) technology plays the lead role and 

has been widely applied for the visual yes/no detection of mycotoxins and for their semi-quantification 

[28-31].  Strategies aimed at dealing with the intrinsic lack of sensitivity of this tests compared to 

traditional immunoassays have been reported, based on signal enhancement or combining the use of 

highly luminescent probes (quantum dots) [32-34]. Several biosensors that exploit the selectivity and 

affinity of antibodies coupled to disparate sensing devices have been described for most prevalent 

mycotoxins, which interest is currently limited to the research field [33-35]. In addition, biosensors based 

on synthetic ligands aimed at mimicking the binding capability of natural antibodies have been described 

[36-39].  

Nonetheless, the immunochemical-based methods seems to suffer a potential limitation in the new 

scenario of mycotoxin investigation due to the extreme selectivity of the molecular recognition 

mechanism, which hamper the simultaneous determination of different compounds and the detection of 

unknown toxins as well of modified  structures produced by plant metabolism (Figure 2).  Strategies to 

face these emerging threats include designing analytical platform in the array format, in which several 

targets are separately detected in spatially defined zones [40-41]. The ICT approach is particularly suited 

for the purpose, because it is exactly conceived as a strip along which the sample flows and encounters 

diverse bio-reagents in different spatially confined zones. Indeed, multiplex ICT strips have been 

reported, in which up to 10 different mycotoxins could be detected simultaneously [344-45]. 

Alternatively, multi-target analysis could be achieved by using encoded signal reporters that responded 

differently to the presence of the target (i.e.: emitted fluorescence at different wavelengths) thus 

allowing the selective detection of each target based on the observed response [46-48]. 

 

Notwithstanding, immunochemical methods in the standard ELISA-based formats allow conducting large 

and frequent surveys, thus apply for monitoring mycotoxin occurrence and for assuring food safety also 

in developing countries. Furthermore, fungal and mycotoxin contaminations are expected to rise in the 

next years due to global changes of environment and climate [49]; therefore management of risks 

demands for routinely and efficient control programs to be carried out,  which at the state-of-the art are 

assured by immunoassays.   

 

Conclusions 

 

Advances in mycotoxin analysis are highlighting current limitations in the comprehension of the effective 

impact on animal and human health due to their occurrence in foods. Especially, the demonstration of 

the co-occurrence of several toxic compounds in the same commodity and the identification of new 

compounds in the family of mycotoxins require new and dedicated toxicological investigations.  



Moreover, international regulations are very variables (Table 1) and the connection between maximum 

tolerable limits and risk associated to the consumption of contaminated food is sometimes vague or 

based on precautionary estimations (such as for example, European limits for baby and infant foods).   

Therefore, the availability of effective exposure data could support  in deciding more realistic maximum 

admissible levels for those contaminants In this context, analytical protocols aimed at the identification 

and measurement of specific biomarkers in biological fluids are increasingly made available [50-54]. 

A further hint that should deserve greater attention regards the exploration of mycotoxin diffusion in 

foods and beverage not included in the list of regulated commodities. Indeed, some authors investigated 

mycotoxin occurrence in medicinal plants and found alarming levels for principal mycotoxins [55]. The 

high-level of contamination found could be reasonably expected for commodities that undergo long 

storage in non-controlled conditions, even though these results should be brought more to the attention 

of consumers and authorities.  

Likewise, foods derived from crops liable to fungal growth and from animals fed with contaminated feed 

have been clearly demonstrated to convey mycotoxins. Several regulations, primarily the one established 

by the European Union, partially recognized the risk of spreading mycotoxin contamination through the 

food chain. Nevertheless, recently, the occurrence of these hazardous substances has been reported for 

further derived foods [56-58] and, likely, the list of suspect food and beverage would be lengthening as a 

function of the availability of devoted analytical protocols.  

Finally, the number of emerging mycotoxins and modified compounds in the family (not only produced 

by plant but also by microbial metabolism) is destined to increase together with the analytical advances.  
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Figure 1. Most common sequence of analytical steps and estimated time of accomplishment for 

chromatographic-based and immunochemical-based methods in mycotoxin detection. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. SWOT analysis for comparing chromatographic-based and immunochemical-based methods for 

mycotoxin detection 

 



 

 

 

 

  



Tables 

 

Table 1. Overview of the worldwide legislation on mycotoxins 

 

 

 

Mycotoxin Commodity Country 
Maximum Tolerable 

Levelsa (μg/kg) 

AFs 

Oil seeds, nuts, dried 

fruits, cereals, spices 

EU 4-15a (2-12a for AFB1) 

Australia, Canada, GCC, Nigeria, 

New Zeland, South Africa 
(15 for AFB1) 

USA, Brazil, MERCOSUL 20 

India 30 

AFM1 

Milk and infant 

formula 

EU, Turkey, South Africa 0.25-0.05a 

Argentina, China, GCC, India, 

Kenya, Mexico, Uruguay, USA 

0.5 

 

Brazil, MERCOSUL 0.5-5a 

DON 

Cereals, bakery 

products 

EU 500-1750a 

Brazil 750-3000a 

Russia 700-1000 

Canada, China, India, Japan, USAb 1000 

FMs 

Maize EU, Turkey, Norway, Switzerland 800-4000a 

USAb 2000-4000a 

Brazil 2000-5000a 

OTA 
Cereals, dried fruits, 

coffee, cocoa, wine, 

beer, grape juice, 

EU, Egypt 2-10a 

China, GCC, Kenya, Nigeria, Russia 5 



spices, liquorice, blood 

products 

India 20 

Brazil 2-30a 

Uruguay 50 

Patulin 

Fruit juice, apple 

products 

Brazil, China, EU, GCC, India, Japan, 

Kenya, Nigeria, Russia, South 

Africa, USA 

50 

T-2 and HT-2 
cereals EU Not permitted 

Russia 50-100a 

ZON 

Cereals, bakery 

products, maize oil 

EU 75-400a 

Brazil 200-1000a 

China, Russia, Chile 200,000 

a depends on the commodity (lowest-highest MRL) 

b advisory level 

 

 


