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Abstract

This paper evaluates the solvency of a portfolio of assets and li-
abilities of an insurer subject to both longevity and financial risks.
Liabilities are evaluated at fair-value and, as a consequence, interest-
rate risk can affect both the assets and the liabilities. Longevity risk is
described via a continuous-time cohort model. We evaluate the effects
of natural hedging strategies on the risk profile of an insurance port-
folio in run-off. Numerical simulations, calibrated to UK historical
data, show that systematic longevity risk is of particular importance
and needs to be hedged. Natural hedging can improve the solvency of
the insurer, if interest-rate risk is appropriately managed. We stress
that asset allocation choices should not be independent of the compo-
sition of the liability portfolio of the insurer.
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1 Introduction

The assets and liabilities owned by insurance companies and pension funds
are subject to various sources of uncertainty, making the assessment of their
risk profile and solvency a challenging task. Regulators — for example,
through the Solvency II Directive — are aiming at steering insurance com-
panies towards a comprehensive accounting of the risks affecting their portfo-
lios. This increasing attention to the soundness of risk management practices
is enhancing the level of complexity of required valuation models, particularly
in the context of the Own Risk Solvency Assessment (ORSA) process.

A proper assessment of the solvency of a portfolio requires the modelling
of many risk sources. As companies invest in bonds and in the stock mar-
ket, equity risk, together with interest-rate risk, affect the asset side. On
the liabilities side, regulation in the Solvency II framework and the recent
International Accounting Standards (IAS) have boosted the importance of
market fair-valuation. From a risk management perspective, this entails both
longevity risk and interest-rate risk assessment. The recent population age-
ing phenomenon has clearly highlighted the exposure of annuity providers
and life insurers to the uncertainty in mortality rates themselves (systematic
longevity risk), coupled with the well-known randomness in the deaths of the
policyholders in the portfolio (idiosyncratic longevity risk). Longevity risk,
in both these dimensions, needs to be taken into account. It represents a
relevant threat to the solvency of annuity providers and the hedging of its
undiversifiable component has recently been investigated in the literature.
Interest-rate risk impacts the value of liabilities, as they need to be dis-
counted using the current term structure. As a consequence, the overall risk
profile of the company is influenced by both the asset allocation strategy and
the liability portfolio composition, and the choices regarding these two di-
mensions are deeply interconnected. However, in practice, quite surprisingly,
liability hedging is still widely neglected. A recent Mercer (2013)’s survey
highlights that only 26% of pension fund managers in the sample perform
LDI (Liability Driven Investment) strategies of any kind, and that longevity
risk is rarely managed.

This paper highlights the importance of managing longevity risk by as-
sessing its relevance in an annuity portfolio. We explore the effectiveness of
so-called natural hedging strategies, which mitigate systematic longevity risk
by mixing annuities and life insurance policies. We focus on natural hedg-
ing as it could constitute a readily available and feasible alternative to the
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use of mortality derivatives, whose market, albeit slowly expanding (Blake
et al. (2014)), is still lacking in volume and standardization. While hedg-
ing strategies using derivative products are very effective in theory (see Ngai
and Sherris (2011), for instance), the lack of liquidity that their market ex-
periences may cause adverse selection problems (Biffis and Blake (2013)) or
inefficiencies (Luciano and Regis (2014)).

Natural hedging strategies of longevity risk have recently been studied.
Cox and Lin (2007) first documented that insurance companies that mixed
annuities and life insurance policies experience a comparative advantage with
respect to annuity-only providers. On these grounds, and given that natural
hedging is easy to implement and cheap to insurance companies, the aca-
demic literature has recently explored the implementation and effectiveness
of such strategies. Wang et al. (2010) and Wang et al. (2013) developed im-
munization strategies, where mortality is described by means of discrete-time
models. Gatzert and Wesker (2012) numerically analyzed the potential risk
mitigation provided by the liability mix, under different investment strate-
gies, finding that the overall risk of a company can be reduced considerably.
These works, however, do not evaluate liabilities at fair-value. Stevens et al.
(2011) highlighted the importance of considering the interactions between
longevity risk and financial risks, as such an omission might lead to overes-
timation of the natural hedging potential. Luciano et al. (2012) proposed a
Delta-Gamma hedging strategy, accounting for the effects of natural hedging
on the interest-rate risk exposure of the company.

This paper is the first to propose an analysis of the effectiveness of nat-
ural hedging strategies in the context of an ALM model of the insurance
company in which liabilities are evaluated at market values and affected by
interest-rate and longevity risks alike. We couple a standard description of
the financial market by means of the well-known Vasicek (1977) model with
a parsimonious description of mortality risk via a continuous-time cohort
based stochastic model, following Luciano and Vigna (2008). This choice, in
addition to being reasonably accurate in describing the evolution of mortal-
ity and interest rates, allows us to obtain the fair-value reserves of liabilities
and their sensitivities (Greeks) to relevant risk factors in closed form (Lu-
ciano et al. (2012)). This permits us to account for multiple risk sources,
while considerably reducing the computational effort. Our analysis extends
Hari et al. (2008), who focused — as we do — on the characteristics of the
funding ratio of annuity providers. Apart from selecting a different mortality
modelling strategy, we complement their analysis by introducing interest-
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rate risk uncertainty in our simulations and accounting for the presence of
life insurance policies on the side of the liabilities.

Our numerical analysis, calibrated on UK-data, allows us to assess the
impact of the liability mix, together with the asset mix, on the solvency and
bankruptcy likelihood of a portfolio of insurance policies in run-off. First, it
documents the relevant impact of systematic longevity risk on annuity portfo-
lios. While interest-rate risk is the most relevant risk source at short horizons,
systematic longevity risk largely affects the variability of portfolio value in
the medium-long run and needs to be managed for solvency purposes. Sec-
ond, we analyze the effects of natural Delta-hedging strategies as proposed
by Luciano et al. (2012). They are effective in reducing longevity risk and
in improving the solvency of an annuity portfolio, especially when it is well-
diversified (i.e. large enough). When the additional interest-rate risk due
to the introduction of the portfolio of life insurance policies is not hedged,
the company can worsen its risk profile and experience higher bankruptcy
likelihood in the long run. We thus highlight the importance of jointly de-
termining asset allocation and liability mix choices.

The paper is organized as follows: in Section 2, we present our framework
and describe our modelling of the risk sources. In Section 3, we present
numerical results from our simulations, based on a calibrated example given
the relevant UK data. Finally, in Section 4 we make conclusions and propose
further research.

2 Setup

In order to properly provide an assessment of the risk profile of an insurance
portfolio, it is necessary to provide a comprehensive view of the risks sur-
rounding its assets and liabilities, both concerning demographic and financial
aspects. In this section, we describe an asset-liability model of a company,
including

1. interest-rate risk, due to the stochastic fluctuations of the short rate;

2. idiosyncratic longevity risk, due to the uncertainty in the death
arrival times of the individuals;

3. systematic longevity risk, due to the unexpected changes in the
mortality intensity of the pool of policyholders, and
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4. equity risk, due to the investment in the stock market.

While equity risk affects the asset side of the portfolio only – assuming that
no participating policies are issued – the first three risk sources affect both
the assets and liabilities, when the latter are evaluated on a market-consistent
basis. Each of these risk sources is described by continuous-time stochastic
processes, which we appropriately discretize when simulating. Discretization
is done at intervals of time-length ∆, such that ti = t0 + i∆, i ∈ I =
{1, 2, . . . , N0 ∈ N}.

While, in principle, we can have dependence between financial risks and
longevity risk (see Jalen and Mamon (2009))1, we follow the most common
approach in the literature and assume their independence. This assumption
is reasonable, at least in the short run, as Cairns et al. (2006) point out. In
addition, given our modelling choices, independence under historical measure
translates to independence under the pricing measure, a result which need
not hold in general (see Dhaene et al. (2013)).

2.1 Liabilities

The liability portfolio of the insurer is composed of standard insurance poli-
cies: whole-life annuities (A) and temporary death contracts (D). We focus
on a portfolio made by an homogeneous group NA of annuities A(x,R), where
x is the cohort to which policyholders belong and R is the level payment.
This annuity portfolio may be complemented by an homogeneous group ND

of death insurance contracts D(x,Q,C), where Q is the maturity and C the
insured amount. For simplicity, we consider that single premiums are paid
at t0 and we analyze the evolution of the portfolio in run-off, having thus no
new policies issued after t0. We denote by

TOA (x,R) = {tj | j ∈ JOA ⊂ I}

the set of known payment dates for the annuity A(x,R) and, likewise,

TOD (x,Q,C) = {tj | j ∈ JOD ⊂ I}

the set of known (yearly) payment dates for the death contract D(x,Q,C).
We now provide a description of the two risk sources affecting the liabil-

ities’ side, namely longevity risk and interest-rate risk.

1Although the assumption of independence does prove to be convenient from a com-
putational point of view, our framework can easily accommodate dependence as well.
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2.1.1 Longevity risk

We model longevity risk following a well-established stream of literature (ini-
tiated by Milevsky and Promislow (2001)) and provide a continuous-time
cohort-based description of mortality. The event of death of an individual is
modelled through a Cox process, as the first jump time of a Poisson process
with stochastic intensity. This intensity is generation dependent and belongs
to the affine class (see Biffis (2005)). The mortality intensity of generation
x follows a purely-diffusive Ornstein-Uhlenbeck (OU) process introduced by
Luciano and Vigna (2008)

dλx(t) = axλx(t)dt+ σxdW
P
x (t), (1)

where ax > 0 and σx ≥ 0 andW P
x is a Brownian Motion under the historical or

physical measure P. Indeed, the intensity can theoretically become negative,
but in practical applications we make sure that the probability of that event is
negligible. Our modelling choice is motivated by the many attractive features
of this process

• it is parsimonious, since it requires the estimation of two parameters
per generation only,

• it fits observed mortality data well, especially for older ages,

• it is a stochastic generalization of the Gompertz law, since its expected
value is exponentially increasing with time,

• not only it permits to compute survival probabilities in closed form but
it allows to derive sensitivities to mortality forecast error in closed and
simple form.

In order to price insurance products following standard risk-neutral val-
uation, we introduce an equivalent martingale measure Q. We assume its
existence and rule out arbitrages. We refer the reader to Dahl and Møller
(2006) for details about the properties of the involved change of measure.
Here, when changing the measure, we keep the intensity process affine. We
accomplish this by selecting the appropriate mortality risk premium form,
i.e. qλx(t)

σx
. For the sake of simplicity, and given the difficulties in calibrat-

ing the risk premium in the absence of a well-developed mortality derivatives
market, we follow the (standard) assumption of absence of a risk premium for
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mortality and impose q = 0. Consequently, not only the historical and risk
neutral dynamics of survival probabilities follow the same type of process,
but their parameters are identical as well. Having selected an affine process
for mortality intensity, we obtain the expression for survival probabilities in
closed-form

Sx(t, T ) = EQ[e−
∫ T
t λ(u)du|Ft] = eα(T−t)+β(T−t)λx(t).

Ft denotes the filtration generated by WQ
x (t). The functions α(·) and β(·)

solve a system of Riccati differential equations (see f.i. Duffie et al. (2000)),
such that

β(t) =
1

ax
(1− eaxt),

α(t) =
σ2
x

a2
x

(
t

2
− eaxt

ax
+
e2axt

4ax
+

3

4ax

)
.

2.1.2 Interest-rate risk

We describe the uncertainty surrounding the short rate and affecting the
market valuation of liabilities using the standard and well-known Vasicek
(1977) process. Under the usual risk-neutral measure Q, equivalent to P,
short-rate dynamics are

dr(t) = k(θ − r(t))dt+ σrdW
Q
F (t), (2)

where r(0) = r0 > 0 and k, θ, σr > 0. As previously mentioned, we assume
independence between mortality and interest-rate risk, being the Brownian
motions WF and Wx independent for any x. It is well known that, since the
process described by equation (2) is affine, a closed-form expression for bond
prices is readily available:

B(t, T ) = X(t, T )e−Y (t,T )r(t) (3)

where

Y (t, T ) =
1

k

(
1− e−k(T−t)), and

X(t, T ) = exp

[(
θ − σ2

r

2k2

)
(Y (t, T )− T + t)− σ2

r

4k
Y (t, T )2

]
.
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We simulate the process under the physical measure. We assume a con-
stant risk premium per unit of risk γ. The short rate under the historical
measure thus takes the form

dr(t) = k
[
θ − γσr

k
− r(t)

]
dt+ σrdW

P
F (t),

where dW P
F = dWQ

F + γdt is a Brownian motion under the physical measure.
When we discretize the process for simulation purposes at each ti ∈ I, we

have

r(ti) = k
[
θ − γσr

k
− r(ti−1)

]
∆ + σr[W

P
F (ti)−W P

F (ti−1)].

2.1.3 Idiosyncratic risk

Let us define with τA = {τAi }
NA
i=1 and τB = {τBi }

NB
i=1 the sets of lifetimes of

the NA annuitants and ND death contracts policyholders which we assume
are i.i.d. random variables. The counting processes DA(t) and DD(t), which
count the number of deaths in the two portfolios can be defined as

DA(t) =

NA∑
i=1

1{τAi <t} and DD(t) =

ND∑
i=1

1{τBi <t}.

We assume that no premium is given to idiosyncratic risk, since it is
diversified away in large portfolios.

2.1.4 Fair-value reserving and liability portfolio value

Given our choices for the stochastic mortality and interest-rate models, we
now provide the fair-value reserves of death contracts and annuities written
on a cohort x. Since we showed that closed-form expressions for bond prices
and survival probabilities are available, and given the independence assump-
tion between longevity and financial risks, we obtain the present value of
annuities and death contracts in closed form. This feature entails a compu-
tational advantage with respect to discrete-time mortality models, for which
annuity values have to be computed through numerical procedures. Fair-
value reserves are computed under the hypothesis that idiosyncratic risk is
absent, i.e. it is diversified away.2 Given the results in Luciano et al. (2012),

2This assumption is harmless for large portfolios. In simulations, we include this source
of randomness and evaluate its impact, by computing the solvency probability for different
portfolio sizes.
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the fair-value of a whole-life annuity A(x,R), (ZA
x ), is the expected present

value of the future payments to the annuitant, discounted appropriately given
the term structure of interest rates and survivorship

ZA
x (ti) = R

∑
tj∈TO

A (x,R),
tj>ti,tj≤tω

B(ti, tj)S(ti, tj), (4)

where tω ∈ I is the time at which the individual reaches its terminal age,
after which the survival probability is zero.

On the other hand, we assume that the payments associated with the
death contract D(x,Q,C) are due at the end of the year in which the death
event occurred. It follows that the outflow associated to a death between
two successive payment dates tj−1 and tj occurs at tj.

The market value of the obligation originated from the contract, i.e. its
prospective reserve, (ZD

x ), at ti is thus

ZD
x (ti) = C

∑
tj∈TO

D (x,Q,C),
tj>ti,tj≤t0+Q

B(ti, tj)[S(ti, tj−1)− S(ti, tj)]. (5)

Luciano et al. (2012) defined the longevity risk factor as the difference
between actual mortality at some future point in time and its model forecast
at the time of evaluation, i.e. the forward mortality rate. They show that the
first and second order sensitivities (Greeks) of death assurances with respect
to this risk factor have opposite signs with respect to those of annuities. This
consideration, well known in the actuarial practice, opens up the possibility of
mitigating systematic longevity risk by appropriately mixing annuities and
life insurance policies. However, the Greeks of these two types of policies
with respect to the interest-rate risk factor – analogously defined as the dif-
ference between the future actual short-rate and the forward interest rate –
have the same sign. It is important not to neglect this aspect when hedg-
ing the fair-value of liabilities. The longevity risk present in a portfolio of
annuities can be instantaneously neutralized by issuing death contracts, but
additional interest-rate risk enters the portfolio in the process. Two options
are available: managing interest-rate risk on the bond market after having
neutralized mortality risk or handling them simultaneously. In this last case,
by combining insurance contracts and mortality derivatives or reinsurance
appropriately, it is – at least in theory, if such products are available in the
market – possible to avoid using bonds.
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The value of the liabilities portfolio (L) is simply, at each point in time,
the sum of the value of all the obligations the company has outstanding. For
each ti ∈ I, this value is equal to the expected discounted value of future
benefits due to policyholders, thus

L(ti) = (NA −DA(ti))ZA(ti) + (ND −DD(ti))ZD(ti)

and can be computed in closed-form as discussed in the previous section.

2.2 Assets

The insurance company has an initial capital available A(t0), which we as-
sume, without loss of generality, to be equal to the (single) premiums received
at t0 when the policies are issued.

The investment opportunity set includes the money market account, which
grows at the prevailing short interest rate, the bond market, which we al-
ready described, and the stock market, in which equity risk is present. At
each ti, the fund invests a fraction δM(ti) of its assets A(ti) in the stock mar-
ket, δB(ti) in the bond market and the remaining part in the money market
account. Also at each ti, the company pays out the benefits associated with
the liabilities portfolio to policyholders and rebalances the investment strat-
egy. Disinvestments from the asset side cover these outflows, creating a direct
link between the asset side and the liability side. Being dependent on the net
flows of the liability portfolio, assets become subject to both idiosyncratic
and systematic longevity risk.

2.2.1 Equity risk: investment in the stock market

Investment in the stock market is risky. We assume that the insurance com-
pany can invest in one risky stock, whose dynamics, under the historical
measure P, follow a Geometric Brownian Motion

dM(t)

M(t)
= µdt+ σMdW

P
M(t), (6)

where µ > 0 is the drift and σM > 0 is the diffusion coefficient of the
process and W P

M is a Brownian Motion under the P measure, independent
by assumption of both W P

x and W P
F . At the time of policy inception, t0, a

fraction δM(t0) of the inital asset value A(t0) is invested in the stock market,
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hence M(t0) = δM(t0)A(t0). When we introduce portfolio rebalancing, the
value invested in the stock market follows the dynamics (6) between any two
time points ti−1 and t−i , where t−i denotes the instant right before rebalancing
occurs. Hence, we have

M(t−i ) = M(ti−1) exp

{(
µ− σ2

M

2

)
∆ + σM [W P

M(t−i )−W P
M(ti−1)]

}
,

where M(ti−1) is the value invested in the stock market after rebalancing the
portfolio at ti−1. By continuity of the Brownian motion, W P

M(t−i ) = W P
M(ti).

Stock investment is not hedged and is considered to represent the different
asset allocation strategies of the fund. It is outside the scope of the present
paper to account for this aspect. We leave to further extensions the inter-
esting case in which equity risk affects the liabilities’ side also, for instance
when guaranteed or participating contracts are issued.

2.2.2 Investment in the bond portfolio and in the money market
account

Apart from investing in the stock market, the insurance company can hold a
portfolio of zero coupon bonds with maturity TB. The initial investment in
the bond portfolio is a fraction δB(t0) of initial capital available, i.e. P (t0) =
δB(t0)A(t0). From now on, we define our investment strategy at time ti as
the pair (δM(ti), δB(ti)). The number of bonds entering the bond portfolio
at time t0 is

nB(t0) = P (t0)/B(t0, TB),

where the value of the bond at time t0, and in general at any point in time
ti, B(ti, TB), can be computed according to formula (3), given the current
value of the short-rate process r(ti).

The total value of the bond portfolio, immediately prior to any rebalanc-
ing time ti > t0, is

P (t−i ) = nB(ti−1)B(t−i , TB)

where nB(ti−1) represents the number of bonds in the portfolio at time ti−1,
after portfolio rebalancing at that time according to the chosen strategy
(δM(ti−1), δB(ti−1)). At any time ti the number of bonds in the portfolio is

nB(ti) = P (ti)/B(ti, TB), (7)
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with P (ti) = δB(ti)A(ti). The remaining fraction of the assets, (1 −
δM(ti) − δB(ti)) is invested in the money market account, so that, at each
time ti its value V (ti) is equal to

V (ti) = (1− δM(ti)− δB(ti))A(ti).

The value of the money market account grows at the prevailing short
interest rate. Hence, immediately prior to rebalancing, when the returns
from investment in period ∆ are computed, we have

V (t−i ) = V (ti−1)erti−1∆.

In the numerical section, we also explore the case in which, instead of
implementing a portfolio allocation strategy of the type (δM(ti), δB(ti)), we
Delta-hedge the portfolio according to Luciano et al. (2012). The Appendix
summarizes the theory behind the strategy. At each ti, we compute the
number of bonds to hold in the portfolio nB(ti) such that the exposure of
the asset-liability portfolio with respect to the interest-rate risk factor is
instantaneously nullified. As a consequence, the optimal amount invested in
bonds at ti is P (ti) = nB(ti)B(ti, TB). If P (ti) < A(ti) the strategy can be
implemented properly, and the remaining amount A(ti) − P (ti) is invested
in the money market account. If P (ti) ≥ A(ti), the company does not have
enough funds to buy the required number of bonds. It then implements a
sub-optimal strategy, by setting P (ti) = A(ti) and computing the number of
bonds in the portfolio according to equation (7).

2.2.3 Asset Value

Finally, we are ready to include the outflows of the liability portfolio and to
compute the value of assets at each point in time. Let us define the payments
to policyholders (O) at ti as

O(ti) = R (NA −DA(ti))1{ti∈TO
A (x,R)} +

C (DD(ti)−DD(tj−1))1{ti=tj∈TO
D (x,Q,C)}.

Here, O(ti) is the sum of the installments paid to annuitants which are still
alive at ti and of the insured capital paid to death contract policyholders
who died between the previous payment date and ti, if ti is itself a payment
date. If ti is not a payment date for any of the two contracts then O(ti) = 0.
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In order to implement the selected investment strategy (δM(ti), δB(ti)),
we value the asset portfolio at t−i , sell it, and buy the assets again so as to
implement our portfolio strategy at ti.

3

The value of assets at time ti is the sum of the values of the stock mar-
ket, the bond market and the money market accounts, net of payments to
policyholders

A(ti) = M(t−i ) + P (t−i ) + V (t−i )−O(ti).

Given this value, we rebalance the asset portfolio in order to implement the
asset allocation strategy at ti

M(ti) = δM(ti)A(ti),

P (ti) = δB(ti)A(ti), and

V (ti) = (1− δM(ti)− δB(ti))A(ti).

3 Numerical assessment of solvency -

A calibrated application

In this section we present a calibrated application which allows us to appraise
the importance of systematic longevity risk in annuity portfolios and to assess
the performance of natural hedging strategies. Natural hedging strategies can
be readily implemented by insurance companies and, in the absence of a well-
developed mortality derivatives market, constitute a cheap and effective way
of reducing longevity risk.

First, we discuss the quantities we evaluate in order to assess solvency,
in the light of previous literature and insurance practice. Then, we describe
data and calibration and analyze our results.

3.1 Solvency assessment

The main goal behind assessing the solvency of an insurance company is to
ascertain whether the company, at some future time horizon, will be able to
meet its financial obligations. Having this in mind, we focus our analysis on
the funding ratio (F ) of a portfolio, i.e. the ratio between asset and liability

3For simplicity, we assume that no transaction costs affect our rebalancing.
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market values at a certain point in time ti ∈ I. We define

F (ti) :=
A(ti)

L(ti)
.

Here, we assume that the portfolio is set up at time t0, when the policies
are sold at a single premium. Their premium is equal at least to their fair
value or increased by a proportional safety loading η. For simplicity, no initial
funds owned by the insurance company are assumed. Hence, at time t0, the
funding ratio is above or equal to one. The entire amount of assets at time
t0, A(t0), is invested according to the fixed proportion strategy (δM , δB), in
which δM(ti) = δM , δB(ti) = δB for every ti or to the hedging strategy, as
described in the previous section. The risk sources previously described affect
both assets and liabilities, turning the funding ratio into a stochastic variable,
whose key distributional characteristics we wish to capture at any relevant
future point in time t0 +T . The quantity we want to assess is the probability
that the insurer is solvent at maturity T , defined as the probability that the
funding ratio is greater than or equal to one at the selected maturity, i.e.
P[F (T ) ≥ 1].4 However, evaluating this probability alone is not sufficient to
describe the risk profile of the insurance company. Relevant information is
provided by the variability of funding ratio and by the characteristics of its
distributions, such as its relevant percentiles. In our numerical section we
thus focus on the coefficient of variation (CV) of funding ratio, defined as

CV[F (ti)] :=

√
Var[F (ti)]

E[F (ti)]
.

Regulation as well as insurance practice (see Olivieri and Pitacco (2002)
and Pitacco et al. (2009), for instance) place so-called solvency requirements
on insurance portfolios. These requirements are constructed in terms of risk
measures, which are based on the properties of the funding ratio distribution.
The most popular requirement, which we consider, is of the type P[F (T ) ≥
1] = ε, where ε is some prescribed probability level.

In our numerical analysis, we compute the smallest safety margin η neces-
sary to reach the required solvency target at the prescribed level of ε = 99.5%

4Analogously, actuarial literature focuses on multi-period solvency, i.e. at the proba-
bility that the funding ratio is above one from any future point in time t∗, or at discrete
dates, up to time t∗ + T , P[∧t

∗+T
t∗ F (t) ≥ 1]. In particular, this view is consistent with

the prevailing guidelines to Own Risk Solvency Assessment (ORSA), which focus on a
medium (3-5 years) rather than a short time horizon.
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for a given maturity T . Additionally, since tail-risk measures are very impor-
tant, as they assess the expected losses in the worst-case scenario, we evaluate
the conditional tail expectation E[F (T )|F (T ) < Q(ε)] having ε = 0.5% and
2.5% where, by Q, the quantile function of the funding ratio is denoted.

3.2 Setup and calibration

We calibrate the mortality intensity and interest-rate processes to UK data
at the end of year 2010. In particular, we consider contracts written on the
generation of individuals born in 1945, having turned 65 within 2010. Table 1
reports our calibrated parameters. We calibrate the OU model by maximum
likelihood, using observed mortality rates from age 45 to age 65.5 The initial
value λ(0) is selected so that λ(0) = − ln p65, where p65 denotes – as usual –
the survival rate for the cohort at age 65, which represents the last observa-
tion available. Given the calibrated parameters, the probability of having a
negative mortality intensity at any maturity up to T = 45 is calculated and
found negligible (at most in the order of magnitude of 10−200, cf. Luciano and
Vigna (2008)). Forecasted average mortality rates are in line with projected
tables published by national (e.g. ONS (2013)) and international institutions
(UN, World Population Prospects UN (2014)). The diffusion parameter σr of
the Vasicek process is estimated using maximum likelihood from a monthly
time series of short rates (source: OECD) from January 1978 to December
2010. The other parameters (k, θ and the risk premium γ) are derived by
fitting the observed term structure given UK government bonds at 31st of
December 2010, minimizing the rooted mean square error between observed
and fitted prices. Stock market parameters are calibrated from a 20-year
monthly time series of FTSE 100 returns from 1990 to 2010.

We consider two portfolios in run-off: a small portfolio, composed of
NA = 1000 annuitants and a second one, large and thus well-diversified
portfolio, composed of NA = 50000 annuitants. Each annuitant holds an
A(1945, 1) policy, whose single premium, 16.08, is paid at t0 = 2011. For
each experiment, we run 10000 simulations of the whole life of the insurance
portfolio, until time tω = t0+45 = 2056. Diffusions are discretized at monthly
intervals. Summarizing, at each time ti,

1. we determine the value of the short rate r(ti), mortality intensity λx(ti)

5Data were downloaded on 3rd of November 2010 from Human Mortality Database
(2010).
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Base-case parameters

GBM Stochastic mortality Interest-rate
model model model

Parameter Value Parameter Value Parameter Value

µ 0.053467 ax 0.072517 k 0.233821
σM 0.148889 σx 0.000147 θ 0.030637

λ(0) 0.011891 σr 0.009400
r(0) 0.007600
γ −0.573509

Table 1: The table reports calibrated parameters for mortality, interest-rate and GBM
models.

and stock M(ti) by incrementally simulating the respective processes;

2. given the current r(ti), we obtain the term structure of interest rates;

3. given the actual mortality intensity, λx(ti), in order to obtain the num-
ber of annuitants still alive (NA(ti)−DA(ti)), we simulate the number
of deaths occurred in the portfolio in the appropriate time interval6

and we find the survival probability curve;

4. we assess the current value of assets and the present value of liabilities;

5. we rebalance the value invested in stock market and the number of
bonds in the portfolio and implement the selected asset allocation strat-
egy.

3.3 Importance of systematic longevity risk and its
hedging

Traditional actuarial practice used deterministic methods to project the evo-
lution of mortality. As a consequence, when insurance liabilities are evaluated
at fair-value – as current regulation imposes in some countries – this approach
would suggest that interest-rate risk is the main source of uncertainty to man-
age. However, the unexpectedly high longevity improvements experienced in
the last decades have threatened the solvency of annuity providers, pointing

6When the life insurance portfolio is introduced, we simulate the number of deaths
occurred in it, (DD(ti)−DD(ti−1)), analogously to what we do for the annuity portfolio.
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(a) NA = 1000, (I) (b) NA = 50000, (I)

(c) NA = 1000, (I)+(S) (d) NA = 50000, (I)+(S)

Figure 1: The figure shows, at 5 percent intervals, 5 to 95 percentiles of simulated 10000
paths of annuitant survival rates for the 1000 annuity contracts portfolio on the left hand
side and, for the 50000 annuity contracts portfolio on the right hand side, in the presence
of one or several risk sources, such as idiosyncratic risk (I), interest-rate risk (IR) and
systematic longevity risk (S).

out clearly that assessing longevity risk should not be neglected. Our numeri-
cal analysis strongly supports this need, by analyzing the relative importance
of the risk sources which affect an insurance portfolio.

Figure 1 shows the percentiles of the simulated annuitant survival rates.
The upper panel reports the figures in case only idiosyncratic risk (I) is
present. This case is obtained by using the deterministic counterpart of the
OU model (Equation (1)), where σx is null and the calibrated parameter ax
equals 0.075941. Interest-rate variability is nullified by considering the same
simulated short rate path for all the simulations. Idiosyncratic risk is almost
entirely diversified away in the large portfolio, as the percentiles in the sub-
figure (b) are very close to each other. The distribution of policyholders’
survivorship is instead much more volatile in the small portfolio as seen in
subfigure (a). When, having canceled out the variability due to interest-rates
as above, in addition to idiosyncratic risk, the systematic longevity risk (S)
is accounted for, both portfolios are substantially affected. The coefficient of
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CV[NA(T )]

1 000 50 000
Annuity Annuity

T contracts contracts

1 0.003540 0.000668
5 0.010619 0.006184
10 0.024422 0.019911
20 0.083257 0.078452
30 0.218971 0.210472
40 0.535583 0.513117

Table 2: This table reports the simulated value of the CV of the number of annuitants
alive at different horizons T=1,5,10,20,30,40.

variation of the distribution of the number of policyholders alive belonging
to the initial portfolio is remarkable and growing with time (see Table 2),
reflecting the higher level of uncertainty which surrounds predictions more
distant in time. The small portfolio experiences larger variability in survivor-
ship at all horizons. It is clear that taking into account the stochasticity in
mortality rates due to unexpected changes in survivorship of individuals, i.e.
accounting for systematic longevity risk, is crucial to assess the risk profile
of an annuity provider.

Figure 2 shows, for both portfolios, the simulated market value of lia-
bilities given the interactions of the different risk sources. The comparison
of subfigure (c) and (e) (or, analogously, of (d) and (f)) in the panel allows
us to identify interest-rate risk (IR) as the major culprit for the variability
in earlier years, while systematic longevity risk (S) becomes more and more
relevant as the time horizon lengthens.

Table 3 reports the coefficient of variation of the funding ratio and asset
and liability values at different maturities T (T = 1, 5, 10 and 20 years).
Assets are entirely invested in the money market account, which grows at
the realized short rate. Idiosyncratic risk is negligible in the large portfolio,
as the (I) row of the table highlights. While variability due to interest rates
is the most important risk source for the uncertainty in the funding ratio,
because it affects both the asset and the liabilities’ sides, systematic longevity
risk has a substantial impact, almost independent of portfolio size. This is
due to the mean-reverting property of the Vasicek process used to simulate
interest rates and to the non-mean reverting behaviour of the longevity risk
model. The CV of liabilities, as the time horizon lengthens, becomes higher
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(a) NA = 1000, (I) (b) NA = 50000, (I)

(c) NA = 1000, (I)+(IR) (d) NA = 50000, (I)+(IR)

(e) NA = 1000, (I)+(S) (f) NA = 50000, (I)+(S)

(g) NA = 1000, (I)+(IR)+(S) (h) NA = 50000, (I)+(IR)+(S)

Figure 2: The figure shows, at 5 percent intervals, 5 to 95 percentiles of 10000 simulated
paths of market value of liabilities for the 1000 annuity contracts portfolio on the left hand
side and, for the 50000 annuity contracts portfolio on the right hand side, in the presence
of one or several risk sources, such as idiosyncratic risk (I), interest-rate risk (IR) and
systematic longevity risk (S).
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CV of Funding Ratio, Assets, and Liabilities, given different risk sources

CV[F (T )] CV[A(T )] CV[L(T )]

1000 50000 1000 50000 1000 50000

T=1

(I) 0.003784 0.000531 0.000228 0.000032 0.003551 0.000499
(I) + (IR) 0.032710 0.032624 0.004979 0.005012 0.028526 0.028441
(I) + (S) 0.022843 0.022466 0.000230 0.000043 0.022828 0.022502
(I) + (IR) + (S) 0.040062 0.039845 0.004972 0.004976 0.036787 0.036522

T=5

(I) 0.010295 0.001488 0.001913 0.000274 0.008558 0.001240
(I) + (IR) 0.085521 0.083208 0.048780 0.047922 0.043739 0.042476
(I) + (S) 0.054923 0.053993 0.002146 0.001002 0.054310 0.053697
(I) + (IR) + (S) 0.100478 0.100297 0.047859 0.048275 0.069836 0.069103

T=10

(I) 0.018978 0.002726 0.005758 0.000828 0.013931 0.002005
(I) + (IR) 0.148878 0.145462 0.120786 0.118226 0.045109 0.042747
(I) + (S) 0.091976 0.090828 0.008103 0.005738 0.087223 0.086984
(I) + (IR) + (S) 0.172718 0.171610 0.118136 0.118459 0.098405 0.096691

T=20

(I) 0.043246 0.006086 0.018891 0.002693 0.027530 0.003872
(I) + (IR) 0.313644 0.306349 0.298028 0.294146 0.047287 0.038747
(I) + (S) 0.211739 0.207118 0.041760 0.037465 0.176827 0.175453
(I) + (IR) + (S) 0.383859 0.380109 0.301916 0.300119 0.182345 0.178407

Table 3: The table reports the coefficient of variation of funding ratio given 10000
simulated paths of funding ratio for the 1000 annuity contracts and 50000 annuity contracts
portfolios, at different time horizons T (T = 1, 5, 10 and 20) and in the presence of one
or several risk sources, such as idiosyncratic risk (I), interest-rate risk (IR) and systematic
longevity risk (S).

when (I)+(S) are present, with respect to the (I)+(IR). For instance, when
T = 10 years, for the well-diversified portfolio it is 0.086984 in the (I)+(S)
case and 0.042747 in the (I)+(IR) case. As payments to annuitants deplete
asset value, the CV of assets in the long run is affected by systematic longevity
risk as well, but to a lesser extent. In fact, the CV of the assets is higher in
the (I)+(S) case than in the (I) only case, even in the large portfolio.

The importance of considering demographic systematic uncertainty, to-
gether with usual financial risks, is crucial for the solvency analysis of annuity
portfolios: neglecting to cover against unexpected longevity improvements,
together with interest-rate changes, can be detrimental. This considera-
tion supports the growing attention towards the development of a mortality
derivatives’ market and to reinsurance deals. In the next sections we explore,
through our numerical analysis, the effectiveness of natural hedging strategies
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of longevity risk, when different asset allocation strategies are implemented
by the fund.

3.4 Asset allocation strategies and solvency
under systematic longevity risk

We identify four fixed proportion portfolio strategies, which represent differ-
ent risk profiles of annuity providers:

1. Dynamic financial Delta-hedging strategy (’DFDH’),

2. δB = 80%, δM = 20% (‘80%− 20%’),

3. δB = 50%, δM = 50% (‘50%− 50%’),

4. δB = 20%, δM = 80% (‘20%− 80%’).

Strategy ’DFDH’ represents a dynamic financial Delta-hedging strategy
accomplished using bonds. The bond portfolio is entirely invested in a 12-
year bond, whose maturity matches the initial (standard) duration of the
annuity portfolio. The strategy, whose implementation – which we describe
in details in the Appendix – follows Jarrow and Turnbull (1994) and Luciano
et al. (2012), is rebalanced at monthly intervals.7 The other three strategies
mix investment in the equity and in the bond market. Strategy ‘50%−50%’ is
close to the average asset allocation choices of a pension fund (see for instance
Tower-Watson’s report, 2013), while strategies ‘80%−20%’ and ‘20%−80%’
constitute a less and more risky alternative, respectively. Longevity risk is
not hedged in these strategies.

Following the analysis in Hari et al. (2008), Table 4 compares the sim-
ulated coefficient of variation, the 0.5 and 2.5 percentiles and the expected
shortfall at T = 1 and T = 5 of the funding ratio, obtained by implementing
the four different strategies. All risk sources (idiosyncratic and systematic
longevity risk, interest-rate risk and equity risk) are taken into account in
our simulations.

The solvency probability reported in the table seems to have a counterin-
tuitive behaviour: the less risky strategy is associated to the lowest solvency
probability. However, this measure does not allow us to appreciate the cost

7If current available funds are insufficient to buy the number of bonds required by the
strategy, the fund invests its entire asset portfolio in bonds. The resources left after bond
purchase are invested in the money market account.
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Funding ratio distribution characteristics without longevity risk hedging

E[F (T )|F (T ) E[F (T )|F (T )
Strategy CV[F (T )] P[F (T ) > 1] Q(0.5%) Q(2.5%) < Q(0.5%)] < Q(2.5%)]

1000 Annuity contracts

T=1

DFDH 0.023552 0.495100 0.938682 0.953727 0.930039 0.944391
80%− 20% 0.038811 0.586100 0.911820 0.933889 0.898730 0.919767
50%− 50% 0.082333 0.615600 0.827869 0.873971 0.807362 0.847376
20%− 80% 0.129290 0.617500 0.743512 0.807546 0.713805 0.770778

T=5

DFDH 0.059841 0.495300 0.846834 0.881623 0.827441 0.859243
80%− 20% 0.100332 0.616900 0.794073 0.846932 0.770391 0.814338
50%− 50% 0.213177 0.694500 0.631737 0.731899 0.589994 0.670200
20%− 80% 0.333861 0.698500 0.475560 0.603505 0.420159 0.525711

50000 Annuity contracts

T=1

DFDH 0.023110 0.496000 0.938614 0.953876 0.930262 0.944197
80%− 20% 0.038636 0.590000 0.909322 0.935646 0.899860 0.920804
50%− 50% 0.082384 0.626700 0.830746 0.872709 0.812330 0.846292
20%− 80% 0.129487 0.628000 0.747969 0.807902 0.721785 0.769273

T=5

DFDH 0.058462 0.495200 0.847617 0.884900 0.825277 0.860014
80%− 20% 0.100502 0.624300 0.787175 0.847805 0.763071 0.810992
50%− 50% 0.214939 0.698200 0.619312 0.727778 0.578519 0.664196
20%− 80% 0.336763 0.699400 0.470402 0.598981 0.411566 0.519145

Table 4: The table reports the coefficient of variation of funding ratio, solvency proba-
bility, the 0.5%-quantile, the 2.5%-quantile, and the expected shortfall for these quantiles
given 10000 simulated paths of the funding ratio for the 1000 annuity contracts and 50000
annuity contracts portfolio, at different time horizons T (T = 1, 5).

of underfunding when this happens or to take into account the dispersion
around the distribution of the funding ratio. Looking more closely at the
CV and percentiles of the funding ratio is more informative. For instance,
despite having the lowest underfunding probability (62.8% 1-year solvency
probability), there is 0.5% probability that a 50 000 annuitants fund which
implements strategy ‘20% − 80%’ experiences around 25.2% underfunding
at a 1-year horizon. The dispersion of the funding ratio distribution, mea-
sured by the CV, indeed increases with the riskiness of the strategy. The
percentiles of the distribution of the funding ratio are lower the riskier the
strategy. Interest-rate risk hedging is effective in improving the risk profile
of the fund, as the percentiles and expected shortfalls are remarkably lower
for the Delta-hedging Strategy ‘DFDH’.
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Safety loading required to reach
1-year 99.5% solvency probability
(Systemic longevity risk not hedged)

1000 50000
Strategy Annuitants Annuitants

contracts contracts

DFDH 6.00% 6.10%
80%− 20% 8.80% 8.80%
50%− 50% 19.30% 18.90%
20%− 80% 31.80% 31.00%

Table 5: The table shows the safety loading required to reach 1-year 99.5% solvency
probability given 10000 simulated paths of the market values of assets and liabilities for
the 1000 annuity contracts and 50000 annuity contracts portfolio.

In order to quantify in a more appropriate way the risk profile of the
fund, we report in Table 5 the initial safety loading η required to reach a
1-year solvency probability of 99.5%.8 The table allows to appreciate, for
each strategy, the “risk premium” that the fund has to charge to its poli-
cyholders at policy inception in order to reach the 1-year solvency target.
strategy ‘DFDH’, which hedges interest-rate risk, allows the fund to charge
the lowest premium, 6%. The presence of idiosyncratic risk generates differ-
ences between the small and the large portfolios only when implementing the
riskier strategies ‘50%− 50%’ and ‘20%− 80%’, in which the 50000 (10000)
annuitants fund can reach the solvency target with a 18.9% (19.3%) and 31%
(31.8%) safety loading respectively.

3.5 Hedging strategies and effectiveness

As a market for mortality derivatives is still in the making, we investigate
the systematic longevity risk hedging potential of the liability portfolio mix.
We analyze the effect of natural systematic longevity risk immunization tech-
niques, whose design and performance on an insurance liability portfolio have
been addressed in Luciano et al. (2012). Here, we extend the analysis of the
effectiveness of such strategies in a context in which the asset side and the
liabilities’ side interact. Indeed, evaluating the effects of natural hedging on
the funding ratio and on solvency probability is not an easy task, since the
liability composition affects the asset through the payments made to policy-

8The choice of this threshold is in line with current Solvency II standard prescriptions.
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holders. We then explore, via simulations, how the mitigation of systematic
longevity risk, obtained by introducing life insurance policies in the portfolio
of the insurer, along with the annuities, affects the solvency profile of the
fund. We determine the size of the life insurance portfolio by applying the
Delta-hedging technique in Luciano et al. (2012), using 10-year death con-
tracts written on the same generation of the annuitants9 D(1945, 10, 100) to
cover the annuity. The initial value of the policy is 14.34. The number ND of
policies in the portfolio is 40.3% of the initial number of annuities sold by the
company, i.e. 403 for the small portfolio, 20 150 for the large portfolio. The
hedging is static, as the size of the life insurance portfolio is not rebalanced
in time, but it simply evolves according to its death occurrences until all
policies expire.

Table 6 reports the simulated coefficient of variation, the 0.5 and 2.5
percentiles and the expected shortfall at T = 1 and T = 5 of the funding
ratio, obtained implementing the four different asset allocation strategies,
when natural hedging is in place. It is evident that the Delta-hedging strat-
egy, which provides coverage against both interest-rate risk and systematic
longevity risk, largely outperforms the others in terms of CV reduction and
tail risk mitigation. In the large portfolio, the funding ratio CV at T = 1 is
as small as 0.0016, while the less risky of the other strategies (2) presents a
CV which is 20 times bigger. In the worst-case scenario (0.5% percentile) the
expected underfunding at one-year (measured by the conditional expectation
below the 0.5 percentile) is 0.6% only.

The presence of life insurance policies makes the impact of idiosyncratic
risk more relevant. Comparing the results in Table 4 and Table 6 allows us to
appreciate the impact of natural hedging on the funding ratio distribution.
Contrary to Table 4, the difference in risk profiles between the small and
large portfolio can be appreciated for all strategies and time horizons.

When systematic longevity risk is hedged, strategy ‘DFDH’ improves all
figures remarkably, for both portfolio sizes and time horizons. The only
exception is the solvency probability, to which the previous considerations
apply. For the other strategies, in which interest-rate risk is not hedged, nat-
ural hedge can worsen the risk position of the insurer. This happens because

9It is indeed possible to consider life insurance policies written on different generations,
introducing basis risk in the analysis. Given the high correlation between mortality in-
tensities of different generations, considering basis risk is expected to have a very small
impact in the effectiveness of the natural hedging strategy, and we thus leave this aspect
aside.
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Funding ratio distribution characteristics, with natural hedging of longevity risk

E[F (T )|F (T ) E[F (T )|F (T )
Strategy CV[F (T )] P[F (T ) > 1] Q(0.5%) Q(0.5%) < Q(0.5%)] < Q(2.5%)]

1000 Annuity contracts

T=1

DFDH 0.009884 0.507300 0.969943 0.978360 0.965182 0.973382
80%− 20% 0.033741 0.586400 0.922008 0.941991 0.913133 0.930752
50%− 50% 0.081582 0.617600 0.826905 0.874834 0.807724 0.847895
20%− 80% 0.130576 0.618500 0.739491 0.807169 0.708354 0.767070

T=5

DFDH 0.034794 0.479300 0.904830 0.927861 0.891492 0.913854
80%− 20% 0.095655 0.598500 0.791644 0.843617 0.765211 0.813314
50%− 50% 0.220350 0.687500 0.599198 0.712232 0.555568 0.645423
20%− 80% 0.349063 0.688000 0.427155 0.577514 0.373565 0.489791

50000 Annuity contracts

T=1

DFDH 0.001579 0.398500 0.994812 0.996226 0.993762 0.995320
80%− 20% 0.032462 0.593600 0.928435 0.945782 0.918365 0.935375
50%− 50% 0.081455 0.627600 0.835064 0.876366 0.813334 0.850222
20%− 80% 0.131007 0.628700 0.747245 0.807752 0.715980 0.769236

T=5

DFDH 0.008224 0.398500 0.968491 0.978490 0.962982 0.972409
80%− 20% 0.089565 0.610400 0.808106 0.857959 0.784719 0.827303
50%− 50% 0.217784 0.684100 0.608442 0.709971 0.566042 0.650565
20%− 80% 0.347254 0.688300 0.437319 0.571582 0.382462 0.492290

Table 6: The table reports, in case of natural hedging, the coefficient of variation of
funding ratio, solvency probability, the 0.5%-quantile, the 2.5%-quantile, and the expected
shortfall for these quantiles given 10000 simulated paths of funding ratio for the 1000
annuity contracts and 50000 annuity contracts portfolio, at different time horizons T
(T = 1, 5).

the introduction of the life insurance portfolio mitigates longevity risk on one
side, but introduces additional financial risk on the other, when liabilities are
evaluated at market value. Hence, when natural hedge is in place, quantiles
and tail conditional expectations are higher for strategy ‘80%− 20%’ (whose
initial asset allocation is closest to that of strategy ‘DFDH’), while these
quantities lower for strategies ‘50%−50%’ and ‘20%−80%’. However, Table
7 shows that, even in these cases, the safety loading required to reach the
1-year 99.5% solvency target is lower with natural hedging than in the no
hedging case for all strategies and sizes. The reduction in the required loading
with respect to the no longevity risk hedging case is striking in particular for
strategy ‘DFDH’: 2.7% and 0.5% in the small and large portfolio respectively
in Table 7 compared to 6% and 6.1% of in Table 5. In conclusion, having
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Safety loading required to reach
1-year 99.5% solvency probability
(Systemic longevity risk hedged)

1000 50000
Strategy Annuity Annuity

contracts contracts

DFDH 2.70% 0.50%
80%− 20% 7.70% 7.20%
50%− 50% 19.10% 18.10%
20%− 80% 31.80% 30.80%

Table 7: The table shows, in case of natural hedging, the safety loading required to reach
1-year 99.5% solvency probability given 10000 simulated paths of the market values of
assets and liabilities for the 1000 annuity contracts and 50000 annuity contracts portfolio.

Bankruptcy probability

No Natural Hedging Natural Hedging

1000 50000 1000 50000
Strategy Annuity Annuity Annuity Annuity

contracts contracts contracts contracts

T=10

DFDH 0.0000 0.0000 0.0000 0.0000
80%− 20% 0.0000 0.0000 0.0000 0.0000
50%− 50% 0.0000 0.0000 0.0013 0.0009
20%− 80% 0.0008 0.0006 0.0145 0.0135

T=20

DFDH 0.0000 0.0000 0.0035 0.0000
80%− 20% 0.0075 0.0082 0.0466 0.0334
50%− 50% 0.0694 0.0701 0.1172 0.1101
20%− 80% 0.1335 0.1276 0.1717 0.1648

T=30

DFDH 0.3119 0.3072 0.3228 0.0785
80%− 20% 0.3033 0.2927 0.3533 0.3405
50%− 50% 0.2517 0.2436 0.2704 0.2672
20%− 80% 0.2692 0.2662 0.2819 0.2796

Table 8: The table reports, in absence and presence of natural hedging, bankruptcy
probability given 10000 simulated bankruptcy paths for the 1000 annuity contracts and
50000 annuity contracts portfolio, at different time horizons T (T = 10, 20, 30), and in
the presence of idiosyncratic risk, interest-rate risk and systematic longevity risk.

fixed the 99.5% 1-year solvency target, natural hedging of the portfolio allows
the policyholder to charge its annuitants with a lower premium.

We conclude with a further indication of the importance of accounting
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Average Loss Given Default
(as a fraction of the initial annuity portfolio value)

No Natural Hedging Natural Hedging

Strategy 1000 50000 1000 50000
Annuitants Annuitants Annuitants Annuitants

DFDH 12.14% 11.83% 15.10% 6.07%
80%− 20% 12.82% 12.62% 20.07% 13.60%
50%− 50% 18.89% 18.52% 30.43% 21.41%
20%− 80% 24.36% 24.07% 39.35% 27.85%

Table 9: The table shows, given 10000 simulated paths of the market values
of assets and liabilities for the 1000 annuity contracts and 50000 annuity
contracts portfolio, the average loss in case of default as a percentage of the
initial portfolio value with and without natural hedging.

properly for risk sources when assessing solvency and the effectiveness of
hedging strategies. Table 8 and Table 9 help us understand the long term
risks of insolvency of the portfolios and their related costs. First, we ana-
lyze bankruptcy probabilities up to 30 years. Insolvency likelihood is always
higher in the small portfolio, due to the effect of idiosyncratic risk. Natural
hedging reduces the probability of insolvency in the large portfolio when the
‘DFDH’ strategy is implemented. Our analysis shows that natural hedging
(which is implemented statically and not rebalanced) can raise slightly the
bankruptcy probability of the portfolio when interest-rate risk is not man-
aged properly, especially at longer horizon and in small portfolios. This last
effect is due to the additional idiosyncratic risk introduced along with the life
insurance portfolio. The expected loss given default, reported in Table 9 as a
percentage of the initial annuity portfolio value, which is the value of the po-
sition to hedge, confirms our results: the average loss in case of bankruptcy
is higher for small portfolios and riskier strategies and it is worsened by
the natural hedging strategy, unless idiosyncratic risk is well-diversified and
interest-rate risk is properly accounted for.

4 Concluding comments

Our paper studies the effectiveness of natural hedging in an insurance port-
folio in run-off. We take an asset-liability management perspective and ac-
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count for the impact of equity risk, interest-rate risk and both systematic and
idiosyncratic longevity risk on the solvency of the portfolio. Our continuous-
time cohort-based modelling of longevity risk allows us to obtain the values
of standard insurance contracts in closed form, reducing computational effort
despite our comprehensive description of the risk processes.

Our analysis documents first of all the relevant contribution of systematic
longevity risk to the variability of the value of an annuity portfolio, suggesting
that managing it is of utmost importance for insurance companies and pen-
sion funds. The market-consistent valuation of liabilities requires considering
both the asset mix and the liability mix decisions as interconnected. We find,
consistently with the empirical findings in Cox and Lin (2007), that compa-
nies implementing natural hedging strategies can charge a lower premium
to their annuitants, when they have to meet a solvency requirement. This
happens in particular for well-diversified portfolios and when managers im-
plement less risky investment strategies. Moreover, we stress the importance
of implementing LDI strategies, and the need to manage simultaneously the
interest-rate risk and the longevity risk profile of the insurer.
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Appendix - Delta-hedging strategies

In this Appendix we briefly describe the implementation of Delta-hedging
strategies of longevity and interest-rate risk, as proposed by Luciano et al.
(2012). Let us first define, following Jarrow and Turnbull (1994) the interest-
rate risk factor K(t)

K(t) = r(t)− F (0, t),

where F (0, t) denotes the forward interest rate applying at t, as agreed at
time 0. Analogously, we define the mortality risk factor I(t)

I(t) = λx(t)− fx(0, t),

where f(0, t) denotes the instantaneous forward mortality intensity.
Having identified these risk factors, it is possible to express the dynamics

of the prospective reserves (fair-values) of annuities and life insurance poli-
cies in terms of the first and second order sensitivities (Greeks) of survival
probabilities and bond prices with respect to such factors K and I. We define
the following sensitivities

∆M(t, T ) =
∂S

∂I
= −S(t, T )X(t, T ) < 0,

ΓM(t, T ) =
∂2S

∂I2
= S(t, T )X2(t, T ) > 0,

∆F (t, T ) =
∂B

∂K
= −B(t, T )X̄(t, T ) < 0,

ΓF (t, T ) =
∂2B

∂K2
= B(t, T )X̄2(t, T ) > 0.

The superscript M denotes Greeks with respect to the mortality risk fac-
tor, while F denotes the financial ones. The dynamics of a pure endowment
policy E, having fair value E(t, TE) = S(t, TE)B(t, TE) which is the building
block of annuities and life insurance policies, can be expressed, for fixed t, as

dZE = ∆M
E ∆I +

1

2
ΓME ∆I2 + ∆F

E∆K +
1

2
ΓFE∆K2,

where

∆M
E (t, T ) = B(t, T )∆M(t, T ) < 0,

ΓME (t, T ) = B(t, T )ΓM(t, T ) > 0,

∆F
E(t, T ) = S(t, T )∆F (t, T ) < 0,

ΓFE(t, T ) = S(t, T )ΓF (t, T ) > 0.
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It follows that the change in the reserve of a whole-life annuity, ZA, can
be expressed as

dZA = R

[
∆M
A ∆I +

1

2
ΓMA ∆I2 + ∆F

A∆K +
1

2
ΓFA∆K2

]
,

∆M
A (t, T ) = −

T−t∑
u=1

Bt,uSt,uXt,u =
T−t∑
u=1

∆M
E (t, t+ u) < 0,

ΓMA (t, T ) =
T−t∑
u=1

Bt,uSt,u[Xt,u]
2 =

T−t∑
u=1

ΓME (t, t+ u) > 0,

∆F
A(t, T ) = −

T−t∑
u=1

Bt,uSt,uX̄t,u =
T−t∑
u=1

∆F
E(t, t+ u) < 0,

ΓFA(t, T ) =
T−t∑
u=1

Bt,uSt,u[X̄t,u]
2 =

T−t∑
u=1

ΓFE(t, t+ u) > 0.

Analogously, the change in the reserve ZD of a life insurance policy at
time t is

dZD = C

[
∆M
D ∆I +

1

2
ΓMD ∆I2 + ∆F

D∆K +
1

2
ΓFD∆K2

]
,

∆M
D (t, T ) =

T−t∑
u=1

Bt,u(∆
M
t,u−1 −∆M

t,u) > 0,

ΓMD (t, T ) =
T−t∑
u=1

Bt,u(Γ
M
t,u−1 − ΓMt,u) < 0,

∆F
D(t, T ) =

T−t∑
u=1

(St,u−1 − St,u) ∆F
t,u < 0,

ΓFD(t, T ) =
T−t∑
u=1

(St,u−1 − St,u) ΓFt,u > 0.

The signs of the Greeks with respect to mortality of the two types of
policies are opposite. This opens up the possibility of natural hedging. How-
ever, since financial Greeks have the same signs, it is necessary to have in
mind that additional interest-rate risk might be originated when trying to
neutralize systematic longevity.
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Delta-Gamma hedging strategies can be implemented by neutralizing the to-
tal sensitivity of the insurance portfolio with respect to the risk factors. It is
sufficient to solve a system of linear equations to neutralize the instantaneous
exposure of the portfolio. Given N types of instruments in the portfolio
(being either bonds, annuities or life insurance policies), it is necessary to
compute the quantities ni,for i = 1, ...N of N products with maturities Ti,for
i = 1, ..., N that solve the following system

∑N
i=1 ni∆

M,j
i (t, Ti) = 0, (8a)∑N

i=1 ni∆
F
i (t, Ti) = 0, (8b)∑N

i=1 niΓ
M,j
i (t, Ti) = 0, (8c)∑N

i=1 niΓ
F
i (t, Ti) = 0. (8d)

An additional requirement is needed to construct self-financing strategies.
In the paper, we implement Delta-hedging strategies, which solve either equa-
tions (8a) and/or (8b), in the case in which we have one annuity and one life
insurance contract. The following sections describe the strategies we consider
in our numerical analysis.

Natural Longevity Delta-hedging strategy

We implement the natural Delta-hedging strategy for longevity risk at t0,
requiring

−NAR∆M
A (t0, t0 + Tω)−NDC∆M

D (t0, TD) = 0,

ND = −NA
∆M
A (t0, t0 + Tω)

C∆M
D (t0, TD)

> 0,

where TD denotes the maturity of the life insurance contract, Tω(ti) = tω− ti
the time distance to the terminal age ω of the annuitant. The negative signs
in front of NA and ND mean that the insurance company has issued the
policies and owns their obligations.

ND is the number of life insurance policies that an insurance company
has to issue in order to implement the Delta-hedging strategy and it is posi-
tive, as soon as NA > 0, since the ratio of ∆M

A (·) and ∆M
D (·) is negative. In

Section 3, we consider a static hedging strategy for longevity, constructing
the instaneously hedged liability portfolio at zero. The strategy is not rebal-
anced further. Notice that the presence of bonds does not affect the portfolio
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sensitivities with respect to the longevity risk factors, as their prices are not
affected by mortality rates.

DFDH strategy

The dynamic financial Delta-hedging strategy we implement, neutralizes the
exposure with respect to interest-rate risk at each time ti by neutralizing
the exposure of the liability portfolio through bond purchase. At each ti, we
select the number of bonds NB(ti) such that

−NA(ti)R∆F
A(ti, ti+Tω(ti))−ND(ti)C∆F

D(ti, TD−ti)+NB(ti)∆
F (ti, TB) = 0.

The negative signs in front of NA and ND mean that the insurance company
has sold the policies, while the positive sign in front of NB means that the
company has to purchase bonds. It follows that

NB(ti) =
NA(ti)R∆F

A(ti, ti + Tω(ti)) +ND(ti)C∆F
D(ti, TD − ti)

∆F (ti, TB)
> 0,

which is positive since both the numerator and the denominator are negative.
When the number of bonds NB(ti) can not be purchased because the insur-
ance company lacks the necessary amount of funds, the company buys as
many bonds as possible, investing all the available funds in the bond market.
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