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Abstract

In this paper we show the existence of weak solutions w ∶ M → ℝ of the inverse
mean curvature flow starting from a relatively compact set (possibly, a point) on a large
class of manifolds satisfying Ricci lower bounds. Under natural assumptions, we obtain
sharp estimates for the growth of w and for the mean curvature of its level sets, which are
well behaved with respect to Gromov-Hausdorff convergence. The construction follows
R. Moser’s approximation procedure via the p-Laplace equation, and relies on new gradi-
ent and decay estimates for p-harmonic capacity potentials, notably for the kernel p ofΔp.
These bounds, stable as p→ 1, are achieved by studying fake distances associated to capac-
ity potentials and Green kernels. We conclude by investigating some basic isoperimetric
properties of the level sets of w.
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1 Introduction
Notational agreements. We set ℝ+ ≐ (0,∞), ℝ+0 ≐ [0,∞). Given two positive functions
f, g ∶ U → ℝ, we say that f ≍ g on U if C−1f ≤ g ≤ Cf on U for some constant C > 0,
while we use ∼ to denote the usual asymptotic relation. Given sets U,Ω, we write U ⋐ Ω to
denote that U has compact closure in Ω.

The inverse mean curvature flow (IMCF) is an effective tool to study the geometry of man-
ifoldsM whose behaviour at infinity is controlled in a precise way. This is the case, remark-
ably, of asymptotically flat and hyperbolic manifolds in general relativity. The purpose of the
present paper is to show the existence of weak solutions of the IMCF, with sharp estimates,
on complete manifolds (Mm, ⟨ , ⟩) only satisfying mild conditions at infinity, making the tool
amenable to study the geometry in the large of manifolds with a Ricci lower bound. In fact,
we only impose a lower bound on the Ricci curvature, together with the validity of (weighted)
Sobolev inequalities or some lower bound on the volume of balls centered at a fixed origin.
In particular, no control on the sectional curvature is needed, a feature that makes our tech-
niques robust enough, for instance, to pass to limits with respect to pointed Gromov-Hausdorff
convergence and produce an IMCF on Ricci limit spaces.

Classically, a family of two sided hypersurfaces F ∶ [0, T ] × Σm−1 → Mm evolves by
IMCF provided that

)F
)t

=
�t
t
, (1.1)

where �t is a choice of unit normal to Σt = F (t,Σ) and t = trΣt (∇�t) is the mean curvature
in the direction −�t, which is assumed to be positive at the initial time. The possible formation
of singularities when infΣt t → 0 prompted G. Huisken and T. Ilmanen [35] to introduce the
notion of weak solutions to (1.1). The strategy is to look for a proper function w ∶ M → ℝ
solving

Δ1w ≐ div
(

∇w
|∇w|

)

= |∇w| (1.2)

in a suitable weak sense, and to consider the sets Σt = ){w < t}. We recall that w ∶M → ℝ
is said to be proper if its sublevel sets {w ≤ t} are compact for each t ∈ ℝ. In particular, Σt
is also compact. If w is smooth and |∇w| ≠ 0 on Σt0 , then locally around t0 the family Σt is
the unique smooth solution of (1.1), and the mean curvaturet = |∇w| points in the direction
of −∇w (hence, every Σt has positive mean curvature). In [35], the authors defined a weak
solution of the IMCF starting from a given relatively compact open subset Ω to be a function
w ∶M → ℝ satisfying

- w ∈ Liploc(M), Ω = {w < 0};

- for each � ∈ Liploc(M∖Ω) with �−w ⋐M∖Ω, and for each compactK containing the
support of � −w,

∫K
|∇w| +w|∇w| ≤ ∫K

|∇�| + �|∇w|. (1.3)

Subsolutions and supersolutions for (1.2) are defined accordingly, by requiring that (1.3) holds
only for competitors � satisfying � ≤ w, respectively � ≥ w. They correspond to weak
solutions of Δ1w ≥ |∇w|, respectively Δ1w ≤ |∇w|. The following important existence
result holds.

Theorem 1.1 ([35], Thm. 3.1). LetMm be a complete manifold and letΩ ⋐M be a relatively
compact, open set with )Ω ∈ C1. If there exists a proper, Liploc weak subsolution w̄ of (1.2)
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defined outside of a relatively compact set, then there exists a proper solution w of the IMCF
with initial condition Ω. This solution is unique inM∖Ω.

The higher regularity of the flow was studied in [36]. As explained in [35, Thm 2.2], the
properness ofw guarantees its uniqueness. Theorem 1.1 was applied with remarkable success
to study the Riemann Penrose inequality in the setting of asymptotically flat manifolds [35].
In this case, as well as for asymptotically conical or hyperbolic manifolds, the existence of a
proper subsolution w̄ is easy to establish. However, on more general manifolds, barriers like
w̄ are much harder to find: for instance, to produce a function w̄ of the form w̄(r), with r the
distance from a smooth compact set K , the properness requirement forces the set W = {x ∶
w̄′(r(x)) > 0} to be non-empty. On W , the inequality Δ1w̄ ≥ |∇w̄| becomes Δr ≥ w̄′(r)
which entails a bound for Δr from below. Comparison theorems then call for an upper bound
for the sectional curvature, together with the fact that the normal exponential map from K be
a diffeomorphism. Conditions of this type are available, for suitable K , in the above relevant
classes of manifolds, while they are definitely too restrictive in the setting that we are going to
consider.

A further reason that makes their result hard to use in our setting regards the convergence
procedure to construct w, that is based on local C1 estimates, independent of " > 0, for solu-
tions w" of the approximating problems

⎧

⎪

⎨

⎪

⎩

div

(

∇w"
√

"2 + |∇w"|2

)

=
√

"2 + |∇w"|2 on {w̄ < L}

w" = 0 on )Ω, w" = L − 2 on ){w̄ < L},

(1.4)

where L ∈ ℝ+ and " is suitably small. The gradient estimate proved by the authors, that is,

|∇w(x)| ≤ sup
)Ω∩Br(x)

+ +
C(m)
r

for a.e. x ∈M∖Ω, (1.5)

is restricted to radii r for which there exists � ∈ C2(Br(x)) touching from above, at x, the
squared distance function r2x from x and satisfying ∇2� ≤ 3⟨ , ⟩ on Br(x). To guarantee the
existence of � and the validity of the above Hessian bound, assumptions stronger than a control
on Ricci from below seem unavoidable. For instance, if � = r2x, the Hessian Comparison
Theorem would require a sectional curvature lower bound. On the other hand, the arguments
in [69, Prop. 1.3] and [37] could be used to construct � on manifolds with positive injectivity
radius and satisfying a two-sided control on Ricci. To the best of our knowledge, local gradient
estimates for mean curvature type equations like (1.4) assuming only a Ricci lower bound are
still unknown, and the problem seems challenging.

For these reasons, we adopt a different strategy and follow the beautiful idea described by
R. Moser in [56, 57, 58] to approximate the solution to (1.2) via solutions to the p-Laplace
equation. Namely, given Ω ⋐M and p > 1, let up be the p-capacity potential of Ω, that is, the
minimal positive solution to

⎧

⎪

⎨

⎪

⎩

Δpup ≐ div
(

|∇up|p−2∇up
)

= 0 on M∖Ω

up = 1 on )Ω.
(1.6)

Under suitable conditions at infinity onM , up ≢ 1 and therefore 0 < up < 1 onM∖Ω by the
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maximum principle. Changing variables according to wp = (1 − p) log up, we obtain

⎧

⎪

⎨

⎪

⎩

Δpwp = |∇wp|p on M∖Ω,

wp = 0 on )Ω, wp > 0 on M∖Ω.
(1.7)

The analogy between (1.2) and (1.7) suggests to construct w as a locally uniform limit of wp
as p → 1. In this case, passing to the limit in the weak formulation of (1.7) one easily deduces
thatw is a weak solution of the IMCF, provided that it never vanishes. In [56], set in Euclidean
space, the properness of w is achieved by means of suitable barriers. Moser’s approach to ex-
istence was later extended by B. Kotschwar and L. Ni [46] on manifolds with a lower sectional
curvature bound, notably on manifolds with asymptotically non-negative sectional curvature.
Since here no barrier is available, the properness of w becomes a subtle issue, addressed via
deep results by P. Li and L.F. Tam [50] and I. Holopainen [33]. The convergence to the so-
lution as p → 1 is based on a sharp local estimate for |∇wp|, obtained in [46] by refining the
Cheng-Yau’s technique (see [15, 82, 52]) to apply to p-harmonic functions. However, if p ≠ 2,
it seems difficult to modify their argument, as well as those in [56], to avoid the requirement
of a lower bound on the sectional curvature. Although some progress was recently made by
different approaches, see [80, 74], this is still not enough for our purposes.

Our setting, the fake distance, and gradient estimates
In the present work, we investigate the existence of the IMCF on completemanifolds (Mm, ⟨ , ⟩)
of dimension m ≥ 2 satisfying the Ricci lower bound

Ric ≥ −(m − 1)H(r)⟨ , ⟩ on M, (1.8)

where r is the distance from some fixed origin o ∈M andH ∈ C(ℝ+0 ) is such that

H ≥ 0 and is non-increasing on ℝ+. (1.9)

We study the IMCF starting from a relatively compact, open set Ω with C2 boundary, as well
as the one starting from the origin o. The latter reveals to be particularly delicate in view of the
singular nature of the initial data. A main technical tool is a new, sharp estimate for |∇ log u|,
where u is a positive p-harmonic function defined on an open subset of M , with special at-
tention to the the case where the domain is the complement of o. To describe our results,
we consider the model manifold Mℎ, which is diffeomorphic to ℝm with polar coordinates
(t, �) ∈ ℝ+ × Sm−1 outside of the origin and with the radially symmetric metric

dt2 + ℎ(t)2d�2,

where d�2 is the round metric on Sm−1 and ℎ solves
{

ℎ′′ = Hℎ on ℝ+,

ℎ(0) = 0, ℎ′(0) = 1.

For instance, ifH(t) = 0 then ℎ(t) = t andMℎ is Euclidean space ℝm, while ifH(t) = �2 for
a positive constant �, thenMℎ is Hyperbolic space of curvature −�2. Denote by

vℎ(t) = !m−1ℎ(t)m−1
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the volume of the sphere of radius t centered at the origin ofMℎ, !m−1 being the volume of
Sm−1. Condition (1.8) allows us to relateM toMℎ by means of standard comparison results,
which will be extensively used in this paper.

Focusing on the singular case Ω = {o} for ease of presentation, the role of the p-capacity
potential in (1.6) is played by the minimal positive Green kernel  of Δp with pole at o, which
solves Δp = −�o on M , where �o is the Dirac-delta measure at o. The existence of  is
one of the equivalent characterizations of the fact that Δp is non-parabolic onM , a property
customarily introduced in terms of the p-capacity of compact sets and recalled in Section 2
below. By (1.8) and comparison (see Proposition 2.9 below), Δp is non-parabolic on Mℎ as
well, equivalently

G ℎ(t) ≐ ∫

∞

t
vℎ(s)

− 1
p−1 ds <∞.

Indeed, G ℎ(t) is the minimal positive Green kernel of Δp on Mℎ with pole at the origin. To
bound |∇ log|, inspired by [18], we reparametrize the level sets of  in terms of a function
that mimics the distance from o: since we restrict to p ≤ m, by classical work of Serrin [72, 73],
(x) ≍ G ℎ(r(x)) in a neighbourhood of o. In particular, both  and G ℎ(r) diverge as r(x)→ 0,
and therefore we can define implicitly % ∶M∖{o}→ ℝ+ by the formula

(x) = G ℎ(%(x)
)

. (1.10)

Note that % is proper if and only if (x) → 0 as x diverges. Clearly, % = r when M = Mℎ,
and for this reason we call % a fake distance (from the point o). When needed, we will write
p, %p to emphasize their dependence on p. Since wp in (1.7) corresponds to (1 − p) logp,
and %p is a reparametrization of p, the estimates required to produce a solution of the IMCF
are equivalent to a local C1 bound and a local lower bound on %p, both uniform for p close to
1. The latter serves to guarantee that %p does not vanish identically in the limit p→ 1.

In the literature, when p = 2 fake distances have been used very successfully to study
the geometry in the large of manifolds with non-negative Ricci curvature, see for instance
[14, 19, 18] and references therein. Also, they have been independently considered in [8] to
study the Yamabe problem on noncompact manifolds with nontrivial topology. Indeed, a key
observation is the following identity, valid for each ∈ C1(ℝ)with never vanishing derivative:

Δp (%) =

[

(p − 1) ′′ +
v′ℎ(%)
vℎ(%)

 ′
]

|∇%|p. (1.11)

Since the expression in square brackets is the p-Laplacian of  (t) on the model Mℎ, (1.11)
allows to radialize with respect to % in cases where an analogous procedure with respect to the
distance r would require the use of comparison theorems from below, hence binding topologi-
cal assumptions. This is effective, for instance, when studying Yamabe type equations (cf. [8],
for p = 2) or the validity of the compact support principle (cf. [4, Sec. 7]). We refer to [4,
Sect. 2] for further information.

Finding global gradient estimates for % is needed both to produce the IMCF and to be able
to exploit (1.11). One of the main achievements of the present paper is the following sharp
gradient estimate, see Theorem 2.19 below.

Theorem 1.2. Assume that Mm satisfies (1.8) and (1.9), that p ≤ m and that Δp is non-
parabolic onM . Then, having defined % as in (1.10),

(i) |∇%| ≤ 1 onM∖{o};

5



(ii) equality |∇%(x)| = 1 holds for some x ∈ M∖{o} if and only if % = r and M is the
radially symmetric modelMℎ.

The estimate is inspired by [18, Thm. 3.1], which deals with the case p = 2 and Ric ≥ 0,
see also [20] for improvements. The proof in [18] exploits the linearity ofΔ and the properness
of %, so it is not extendable to our setting. Nevertheless, as in [18], our theorem relies on a new
(and, somehow, surprising) Bochner formula for some singular operator associated to %, see
Proposition 2.15. The key maximum principle used to conclude that |∇%| ≤ 1 is Lemma 2.17
below. It is related to [63, Chapter 4], and it is quite flexible: for instance, it directly implies
a sharp estimate for |∇ log u| when u is any positive p-harmonic function defined on an open,
possibly unbounded, set Ω, see Theorem 2.22 below. This improves on [74].

Main existence results
Suppose that Δp is non-parabolic on M for every p sufficiently close to 1, and let %p be the
fake distance associated to Δp with pole at o. In Section 4, we study a sequential limit %1 =
limp→1 %p, searching for conditions that guarantee the positivity and properness of %1. In view
of (1.10), this is achieved by finding decay estimates and Harnack inequalities for the kernel
p of Δp that are well behaved as p → 1. The problem is addressed in Section 3, whose main
results are sharp estimates for p (Theorems 3.6 and 3.23), suited to guarantee the properness
of %1, and a sharp Harnack inequality (Theorem 3.4), robust enough to ensure that %1 > 0 on
M∖{o}. These results are of independent interest.

We now describe our main existence theorems for the IMCF. The first one, Theorem 4.4,
holds on manifolds supporting an isoperimetric inequality, a family that encompasses the rel-
evant Examples 3.10 to 3.13 below.

Theorem 1.3. Let Mm be connected, complete, non-compact and satisfying (1.8), (1.9) to-
gether with the L1 Sobolev inequality

(

∫ | |
m
m−1

)
m−1
m

≤ S1 ∫ |∇ | ∀ ∈ Lipc(M). (1.12)

Then, the function %1 is positive, 1-Lipschitz and proper onM , and for each x ∈M∖{o}

v−1ℎ

(

r(x)m−1

Sm1 2
m2−1

)

≤ %1(x) ≤ r(x).

Moreover, w(x) = (m − 1) logℎ(%1) is a weak solution of the IMCF onM∖{o} satisfying the
mean curvature estimate

|∇w| ≤ (m − 1)e−
w
m−1ℎ′

(

ℎ−1
(

e
w
m−1

))

a.e. on M∖{o}. (1.13)

In fact, (1.13) is equivalent to |∇%1| ≤ 1, and if Ric ≥ −(m− 1)�2⟨ , ⟩ for some � ∈ ℝ+0 it
takes the simple form

|∇w| ≤ (m − 1)e−
w
m−1

√

�2e
2w
m−1 + 1 a.e. on M∖{o}. (1.14)

The bound is sharp, and attained with equality by the flow of concentric spheres starting from
a point in Euclidean and Hyperbolic space. If the IMCF is smooth, one can deduce (1.14), but
only for a nonsingular initial condition, as a consequence of the parabolic maximum principle
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applied to the equation for Δ. However, we found no such estimates available for weak
solutions. Theorem 1.3 can also be applied to manifolds with asymptotically nonnegative Ricci
curvature, namely, those satisfying (1.8) and (1.9) with

∫

∞

0
tH(t)dt <∞.

In this case, under the validity of (1.12) the fake distance %1 is of the order of r, see Remark
4.5.

Our second result focuses onmanifolds with non-negative Ricci curvature and, more gener-
ally, manifolds supporting global doubling and weak (1, 1)-Poincaré inequalities, see Theorem
4.6 below.

Theorem 1.4. LetMm be a connected, complete non-compact manifold with Ric ≥ 0. Assume
that there exist Cℛ and b ∈ (1, m] such that

∀t ≥ s > 0,
|Bt|
|Bs|

≥ Cℛ
( t
s

)b
, (1.15)

where balls are centered at a fixed origin o. Then the fake distance %1 is positive and proper on
M∖{o}. Moreover, there exist constants C, C̄ depending on Cℛ , b, m, with C̄ also depending
on a lower bound for the volume |B1|, such that

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

C
[

inf
t∈(1,r(x))

|Bt|
tm

]
1

m−1
r(x) ≤ %1(x) ≤ r(x) on M∖B1,

C̄r(x) ≤ %1(x) ≤ r(x) on B1,

|∇%1| ≤ 1 a.e. on M.

Furthermore, w = (m − 1) log %1 is a solution of the IMCF issuing from o and satisfying

|∇w| ≤ (m − 1)e−
w
m−1 a.e. on M∖{o}.

Remark 1.5. The estimates in Theorem 1.4 pass to limits with respect to pointed Gromov-
Hausdorff convergence (Mm

k , ⟨ , ⟩k, ok)→ (X, dX , o)whenever (1.15) holds uniformly in k and
the sequence satisfies the noncollapsing condition |B1(ok)| ≥ � for each k, for some constant
� > 0.

Remark 1.6. Condition (1.15) is implied by the inequality

C̄−1tb ≤ |Bt| ≤ C̄tb ∀ t ≥ 1,

for some constant C̄ > 1. Indeed, Cℛ turns out to depend only on C̄, m and on a lower bound
on Ricci on B6, see Remark 3.20 below.

Our last result considers the IMCF starting from a relatively compact domain.

Theorem 1.7. Let the assumptions of either Theorem 1.3 or Theorem 1.4 be satisfied. Fix
Ω ⋐ M with C2 boundary and containing the origin o, and define the fake inner and outer
radii

Ri = sup
{

t ∶ {%1 < t} ⊂ Ω
}

, Ro = inf
{

t ∶ Ω ⊂ {%1 < t}
}

,
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with %1 = limp→1 %p the fake distance issuing from o. Then, there exists a unique, proper
solution w ∶M → ℝ of the IMCF starting from Ω, satisfying

⎧

⎪

⎨

⎪

⎩

(i) log vℎ
(

%1(x)
)

− log vℎ
(

Ro
)

≤ w(x) ≤ log vℎ
(

%1(x)
)

− log vℎ
(

Ri
)

(ii) |∇w| ≤ max
{

(m − 1)
√

H(Ri), max)Ω
+

}

,

with +(x) = max{(x), 0} the positive part of the mean curvature of )Ω in the inward
direction.

We stress that the bounds in (i) above are explicit, because Theorems 1.3 or 1.4 allow to
effectively estimate %1, henceRo andRi, in terms of the distance from o. The inequality in (ii)
should be compared with (1.5), and in fact it could be strengthened to include a decay of |∇w|
in terms of %1. The interested reader is referred to Remark 4.9 below, where computations for
a quadratically decaying lower bound on the Ricci tensor are worked out in detail.

In the final Section 5, we study some basic properties of the foliation by {%1 < t}. In
particular, we prove that the isoperimetric profile of {%1 < t} is, as one might expect, below
that of geodesic balls centered at the origin in the modelMℎ, see Theorem 5.4.

The present paper is meant to be the first step of a broader project. The original motivation
for this work was our desire to understand possible links between the recent monotonicity
formulas found by Colding and Colding-Minicozzi in [18, 20], for manifolds with non-negative
Ricci curvature, and the monotonicity of Hawking-type masses in General Relativity. It is
tempting to ask whether one could, somehow, “bridge" the two via the use of the p-Laplace
equation, and see whether the new formulas could provide further insight into the geometry of
manifolds with Ricci lower bounds or of spacelike slices in General Relativity. In this respect,
foliations by level sets of solutions of p-Laplace equations had already been considered by
J. Jeziersky and J. Kijovski to prove special cases of the Riemannian Penrose inequality on
asymptotically flat spaces, see [38, 39, 40] and the works of P. Chruściel [16, 17]. Furthermore,
quite recently, monotonicity formulas similar to those in [18, 20], obtained with a different
approach, have been used to find new geometric inequalities on Euclidean space ([2, 24], using
the p-Laplacian), on static manifolds [3, 11], and on manifolds with Ric ≥ 0 (see [1]).
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2 Preliminaries: capacitors and the Green kernel
Let (Mm, ⟨ , ⟩) be complete, fix an origin o ∈M and let r be the distance from o. Hereafter, a
geodesic ball Br will always be considered to be centered at o, unless otherwise specified. Let
p ∈ (1,∞), and consider the p-Laplace operator Δp on an open set Ω, possibly the entireM .

It is convenient to briefly recall some terminology and basic results (we refer the reader
to [28, 31, 32, 78, 77, 65] for a thorough discussion). Given a pair of open sets K ⋐ Ω, the
p-capacity of the capacitor (K,Ω) is by definition

capp(K,Ω) = inf
{

∫Ω
|∇ |p ∶  ∈ Lipc(Ω),  ≥ 1 on K

}

.

If K and Ω have smooth enough boundary (locally Lipschitz suffices) and are relatively com-
pact, the infimum coincides with the energy ‖∇u‖pp, where u is the unique solution of

{

Δpu = 0 on Ω∖K,

u = 0 on )Ω, u = 1 on )K,

extended with u ≡ 1 on K , called the p-capacity potential of (K,Ω). If Ω has noncompact
closure, or if it has irregular boundary, by exhausting Ω with a family of smooth open sets Ωj
satisfying

K ⋐ Ωj ⋐ Ωj+1 ⋐ Ω for each j ≥ 1,
∞
⋃

j=1
Ωj = Ω, (2.1)

the sequence {uj} of the p-capacity potentials of (K,Ωj) converges to a limit u ∶ Ω → (0, 1]
which is independent of the chosen exhaustion, is equal to 1 on K , satisfies Δpv = 0 on Ω∖K ,
and is still called the p-capacity potential of (K,Ω). Furthermore, capp(K,Ω) = ‖∇u‖pp (cf.
[65]). We say that Δp is non-parabolic on Ω if capp(K,Ω) > 0 for some (equivalently, every)
K ⋐ Ω, that is, the p-capacity potential u of (K,Ω) is not identically 1. From [31, 32, 78, 77],
this is equivalent to the existence, for each fixed o ∈ Ω, of a positive Green kernel  with pole
at o, namely, of a positive distributional solution of Δp = −�o on Ω:

∫Ω
|∇|p−2⟨∇,∇ ⟩ =  (o) ∀ ∈ Lipc(Ω). (2.2)

A kernel  was constructed in [31, 32] starting with an increasing exhaustion {Ωj} of smooth
domains of Ω and related Green kernels j with pole at o and Dirichlet boundary conditions
on )Ωj . The existence of each j was shown in [31, Thm. 3.19] for p ∈ (1, m], and in [32]
for p > m. The convergence of j to a finite limit and its equivalence to the non-parabolicity
of Δp on Ω can be found in [31, Thm. 3.27]. We shall prove that a comparison theorem holds
for Green kernels (cf. Corollary 2.6 below), and therefore that the kernel of each open set Ω,
constructed by exhaustion as above, is unique and minimal among positive solutions to (2.2).

Remark 2.1. Interestingly, the construction in [31, Thm. 3.25] in fact produces an increasing
sequence {j} even without appealing to a comparison result.

Convention. Hereafter, we will say for short that  is the Green kernel of Δp on Ω if it is
the one constructed with the above procedure (the indication of the pole is omitted when no
confusion arises).

Assume that )Ω is locally Lipschitz, let  ∈ C1(Ω), l > 0 and consider (2.2) with test
function  �(), where

� ≡ 0 on [0,l − "], � ≡ 1 on [l,∞), �(s) = "−1(s − l + ") on (l − ",l).
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The regularity of )Ω guarantees that  = 0 there, thus  �() ∈ Lipc(Ω) is admissible as a test
function. Letting "→ 0 and using the coarea’s formula we deduce that

 (o) = ∫{>l}
|∇|p−2⟨∇,∇ ⟩ + ∫{=l}

|∇|p−1 (2.3)

holds for almost every l ∈ ℝ+. Similarly, the identity

0 = ∫{<l}
|∇|p−2⟨∇,∇ ⟩ − ∫{=l}

|∇|p−1 (2.4)

holds for every  ∈ C1(Ω∖{o}) and a.e. l.
Hereafter, we set

�(r) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

!
− 1
p−1

m−1

(

p − 1
m − p

)

r−
m−p
p−1 if p < m

!
− 1
m−1

m−1 (− log r) if p = m.

(2.5)

When p < m, note that �(|x|) is the kernel of Δp on ℝm.

Basic comparison theory for Green kernels
Let o ∈M be a fixed point, let r be the distance from o and denote byDo the maximal domain
of normal coordinates centered at o. We define the radial sectional curvature of M as the
function

Secrad ∶ Do∖{o} → ℝ,

Secrad(x) = max
{

Sec(X ∧ ∇r) ∶ X ∈ ∇r(x)⟂, |X| = 1
}

.

For R∞ ∈ (0,∞], let

ℎ ∈ C2([0, R∞)), ℎ > 0 on (0, R∞), ℎ(0) = 0, ℎ′(0) = 1.

The model manifold Mℎ is, by definition, BR∞ (0) ⊂ ℝm endowed with the metric which in
polar coordinates (t, �) ∈ ℝ+ × Sm−1 centered at the origin is given by

⟨ , ⟩ℎ = dt2 + ℎ(t)2d�2,

where d�2 is the round metric on the unit sphere. The radial sectional curvature ofMℎ is given
by H(t) ≐ −ℎ′′(t)∕ℎ(t). Alternatively, a model can be equivalently described by specifying
H ∈ C(ℝ+0 ), recovering ℎ as the unique solution of

{

ℎ′′ −Hℎ = 0 on ℝ+

ℎ(0) = 0, ℎ′(0) = 1,
(2.6)

and letting
R∞ = sup{t ∶ ℎ > 0 on (0, t)} ≤ ∞.

The model is (metrically) complete if and only if R∞ = ∞. GivenMℎ, we denote by

vℎ(t) = !m−1ℎ(t)m−1, and Vℎ(t) = ∫

t

0
vℎ(s)ds, for t ∈ [0, R∞, )
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the volume of the geodesic spheres )Bℎt and balls Bℎt of radius t centered at the origin, re-
spectively. In the particular case where H is a constant, the corresponding solution of (2.6)
is

ℎ(s) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

sin(�t)
�

if H = −�2 < 0, with R∞ = �∕�

t if H = 0, with R∞ = ∞

sinh(�t)
�

if H = �2 > 0, with R∞ = ∞.

We shall always be concerned with models with H ≥ 0, and, if H = �2, with a slight abuse
of notation, we simply denote the volume of geodesic spheres, respectively balls, by v�(t) and
V�(t).

Definition 2.2. Let M be a complete Riemannian manifold of dimension m ≥ 2, fix o ∈ M
and let B∗R(o) = BR(o)∖{o}.

- We say that BℎR ⊂ Mℎ is a model from below forM if

Ric(∇r,∇r) ≥ −(m − 1)H(r) on Do ∩ B∗R(o), (2.7)

- We say that BℎR ⊂ Mℎ is a model from above forM if

B∗R(o) ⊂ Do, Secrad ≤ −H(r) on B∗R(o). (2.8)

The positive Green kernel of −Δp on BℎR ⊂ Mℎ with singularity at the origin and Dirichlet
boundary conditions is

G ℎ
R(t) = ∫

R

t
vℎ(s)

− 1
p−1 ds (2.9)

and, if R = R∞ = ∞, we simply write

G ℎ(t) = ∫

∞

t
vℎ(s)

− 1
p−1 ds. (2.10)

The finiteness of G ℎ(t) is equivalent to the non-parabolicity of Δp on Mℎ. Note also that
G ℎ(0+) is finite if and only if p > m. As a consequence of the comparison theory for the
distance function (cf. [64, Chapter 2]), one obtains the following result whichwill be repeatedly
used:

Proposition 2.3. LetM be a complete manifold, o ∈M and r(x) = dist(x, o).

(i) If BℎR ⊂ Mℎ is a model from below forM , then the transplanted function

ℎR(x) = G
ℎ
R
(

r(x)
)

(2.11)

satisfies ΔpℎR ≥ −�o on BR(o).

(ii) If BℎR ⊂ Mℎ is a model from above forM , then ℎR in (2.11) satisfies ΔpℎR ≤ −�o on
BR(o).
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To compare  with G ℎ
R(r), we need a precise description of the behaviour of  near its

singularity. For p ≤ m, in our needed generality J. Serrin in [72, Thm 12] showed that

(x, o) ≍ �
(

r(x)
)

(2.12)

as r(x) = dist(x, o) → 0, with � as in (2.5). However, for our purposes we need to know both
the asymptotic behaviour of  and ∇ near the singularity. In Euclidean setting, the problem
was considered by S. Kichenassamy and L. Veron in [44] and in [79, pp. 243-251], and their
technique, based on a blow-up procedure, can be adapted to manifolds. A complete proof of
the following result can be found in [53].

Theorem 2.4. For p ≤ m, let  be a Green kernel for Δp on an open set Ω ⊂ Mm containing
o. Then,  is smooth in a punctured neighbourhood of o and, as x→ o,

(1)  ∼ �(r),

(2) |∇ − �′(r)∇r| = o
(

�′(r)
)

,

(3) if p < m, |

|

|

∇2 − �′′(r)dr ⊗ dr − �′(r)
r

(

⟨ , ⟩ − dr ⊗ dr
)

|

|

|

= o
(

�′′(r)
)

.

(2.13)

Remark 2.5. The above theorem does not contain the full strength of Kichenassamy-Veron’s
result, in particular we do not claim that  − �(r) ∈ L∞ near the origin. Indeed, even for the
kernel G ℎ of a model with curvatureH(0) ≠ 0, a direct computation shows that G ℎ−� ∉ L∞
when 3p ≤ m + 2.

As a direct consequence, we obtain the next comparison theorem which can be found in
[44, Thm. 2.1]) whenM = ℝm.

Corollary 2.6. Fix p ∈ (1,∞), let Ω1 ⊂ Ω2 ⋐ M be open domains containing o, and let j
be a Green kernel for Δp on Ωj , j ∈ {1, 2}. Then, 1 ≤ 2. In particular, the Green kernel of
an open set, if it exists, is unique.

Proof. We prove that the kernel ′ of a smooth domain Ω′ ⋐ Ω1 satisfies ′ ≤ 2, and the
thesis follows by letting ′ ↑ 1. If p > m, it is enough to apply standard comparison (cf.
[67, Thm. 3.4.1]), since it is known that both ′,2 ∈ W 1,p(Ω′) (cf. [53] for a quick proof).
If p ≤ m, for every " > 0 we compare ′ with (1 + ")2 on the supposedly non-empty set
Ω′" = Ω

′ ∩ {′ > (1 + ")2}. Theorem 2.4 guarantees that o ∉ Ω′", so ′,2 ∈ W 1,p(Ω′") and
′ ≤ (1 + ")2 by comparison, contradicting the definition of Ω′". Hence, Ω

′
" = ∅, and we let

"→ 0 to conclude.

Remark 2.7. The result admits a generalization to p-Laplace operators with a potential: in
Euclidean setting, see (cf. [61, Thm. 5.4] for p ≤ m and [62, Cor. 1.1] for p > m.

With the same technique, we can also compare  to kernels of models from above and
below, improving on [47].

Corollary 2.8 (Comparison). Let (M, ⟨ , ⟩) be a complete manifold, fix p > 1 and let  be the
Green kernel for Δp on an open domain Ω containing o.

(i) Suppose that BℎR ⊂ Mℎ is a model from below forM and BR(o) ⊂ Ω. Then,

(x) ≥ G ℎ
R
(

r(x)
)

∀ x ∈ BR(o).
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(ii) Suppose that BℎR ⊂ Mℎ is a model from above forM and BR(o) ⊂ Ω. Then,

(x) ≤ G ℎ
R
(

r(x)
)

+ ‖‖L∞()BR(o)) ∀ x ∈ BR(o).

We conclude with

Proposition 2.9. Let (M, ⟨ , ⟩) be a complete, non-compact manifold, and fix p > 1.

(i) If Δp is non-parabolic onM , then every model from belowMℎ satisfies R∞ = ∞ and
Δp is non-parabolic onMℎ, namely,

vℎ(s)
− 1
p−1 ∈ L1(∞). (2.14)

(ii) IfM admits a model from aboveMℎ satisfying R∞ = ∞ and whose p-Laplacian Δp is
non-parabolic, then Δp is non-parabolic onM .

Proof. (i). If R∞ <∞, the Laplacian comparison theorem ([64, Thm. 2.4]) would imply that
M is compact with Do ⊂ BR∞ (o), a contradiction. By (i) in Corollary 2.8, for each R it holds
G ℎ
R(r(x)) ≤ (x), and letting R → ∞ we get (2.14). Item (ii) similarly follows from (ii) in

Corollary 2.8.

2.1 The fake distance
We shall assume the following:

(ℋp) (Mm, ⟨ , ⟩) is complete, non-compact and, fixed o ∈M and writing r(x) = dist(x, o),

Ric ≥ −(m − 1)H(r)⟨ , ⟩ on M, (2.15)

for some 0 ≤ H ∈ C(ℝ+0 ). Moreover, Δp is non-parabolic onM .

IfM satisfies (ℋp), then by Proposition 2.9 the solution ℎ ∈ C2(ℝ+0 ) of (2.6) is positive
on ℝ+ and Δp is non-parabolic onMℎ, that is,

v
− 1
p−1

ℎ ∈ L1(∞). (2.16)

Also, note that ℎ, and therefore vℎ, are monotone increasing and diverging as t → ∞. In what
follows, we shall be interested in non-increasing H , in which case the following two useful
properties hold:

Lemma 2.10. Let 0 ≤ H ∈ C(ℝ+0 ) be non-increasing. Then, v′ℎ∕vℎ and |(logG ℎ)′| have
negative derivatives on ℝ+ (the latter, for each p > 1).

Proof. The behaviour of vℎ, hence of G ℎ, at zero guarantees that
{

t ∶ (v′ℎ∕vℎ)
′(t) < 0

}

≠ ∅,
{

t ∶ |(logG ℎ)′|′(t) < 0
}

≠ ∅.

Assume by contradiction that (v′ℎ∕vℎ)
′(t0) = 0 for some t0 ∈ ℝ+. Then, the Riccati equation

(

ℎ′

ℎ

)′
+
(

ℎ′

ℎ

)2
= H (2.17)
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implies the equality (v′ℎ∕vℎ)(t0) = (m − 1)�, where we have set � ≐
√

H(t0). Because H is
non-increasing, by Sturm comparison on (0, t0)with themodel of curvature−�2 and volume v�
we deduce that v′ℎ∕vℎ ≥ v′�∕v� on (0, t0]. However, (v

′
�∕v�)(t) = (m−1)� coth(�t) > (m−1)�

for each t ∈ ℝ+, contradiction. To show the second part of the statement, set for convenience
�(t) = |(logG ℎ)′(t)|, and note that � > 0 on ℝ+. Differentiating,

� ′ = �

[

� − 1
p − 1

v′ℎ
vℎ

]

. (2.18)

Suppose that � ′(t0) = 0 for some t0 ∈ ℝ+; since v′ℎ∕vℎ has negative derivative on ℝ+, in-
spection of the ODE shows that � ′ > 0 on (t0,∞). Therefore, having fixed t1 > t0 there
exists " > 0 such that the term in brackets in (2.18) is greater than "� on [t1,∞). By compar-
ison, � lies above the solution �̄ to �̄ ′ = "�̄2 on [t1,∞). However, �̄ explodes in finite time,
contradiction.

We are ready to define the fake distance.

Definition 2.11. Let M satisfy (ℋp) for some p ∈ (1, m] and origin o ∈ M , and let  be
the Green kernel with pole at o. The fake distance % ∶ M∖{o} → ℝ+0 is implicitly defined as
(x) = G ℎ(%(x)

)

, that is,

(x) = ∫

∞

%(x)
vℎ(s)

− 1
p−1 ds on M∖{o}. (2.19)

Observe that, because of (2.12) and G ℎ(0+) = +∞, % is well defined and positive on
M∖{o}, and can be extended by continuity with %(o) = 0. Furthermore, by [76], % is locally
in C1,� onM∖{o}. Corollary 2.8 easily implies the following

Proposition 2.12. LetM satisfy (ℋp) for some p ∈ (1, m] and origin o, and let % be the fake
distance associated to the kernel  of Δp. Then, % ≤ r onM .

Proof. Corollary 2.8 and the definition of % imply

G ℎ(%(x)
)

= (x) ≥ G ℎ(r(x)
)

on M∖{o},

and the conclusion follows since G ℎ is decreasing.

Differentiating shows that % satisfies the following identities:

∇% = −vℎ(%)
1
p−1∇ on M∖{o},

Δp% =
v′ℎ(%)
v(%)

|∇%|p weakly on M∖{o}
(2.20)

and, therefore, for each  ∈ C2(ℝ) with  ′ ≠ 0,

Δp
[

 (%)
]

=
[

v−1ℎ
(

vℎ| 
′
|

p−2 ′
)′] (%)|∇%|p. (2.21)

As remarked in the Introduction, v−1ℎ
(

vℎ| ′|p−2 ′
)′ is the expression of the p-Laplacian

of the radial function  in the modelMℎ, making it possible to radialize with respect to %.
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2.2 Gradient estimates
Proposition 2.13 (Near the singularity). Assume (ℋp) for some p ∈ (1, m), and define % as
in (2.19). Then, % is smooth in a punctured neighbourhood of o and

%(x) ∼ r(x), |∇%(x) − ∇r(x)| → 0 as x→ o,

%∇2% − ⟨ , ⟩ + dr ⊗ dr→ 0 as a quadratic form, as x→ o.
(2.22)

Proof. By (2) in Theorem 2.4, |∇| > 0 in a punctured neighbourhood of o, so  (hence %) is
smooth there. Using (1) in Theorem 2.4 we deduce that %(x) ∼ r(x) as x → o. According to
the first identity in (2.20),

∇% = −vℎ(%)
1
p−1∇(x). (2.23)

By (2) in Theorem 2.4

o
(

|�′(r)|
)

= |

|

|

∇ − �′(r)∇r||
|

=
|

|

|

|

|

vℎ(%)
− 1
p−1 (∇r − ∇%) −

(

vℎ(%)
− 1
p−1 + �′(r)

)

∇r
|

|

|

|

|

≥ vℎ(%)
− 1
p−1

|∇% − ∇r| − |�′(r)|
|

|

|

|

vℎ(%)
− 1
p−1�′(r)−1 + 1

|

|

|

|

,

so, dividing through by |�′(r)| and rearranging we deduce that

vℎ(%)
− 1
p−1

|�′(r)|
|∇% − ∇r| ≤ o(|�′(r)|)

|�′(r)|
+
|

|

|

|

vℎ(%)
− 1
p−1�′(r)−1 + 1

|

|

|

|

and, using �′(r) ∼ −vℎ(r)
− 1
p−1 ∼ −vℎ(%)

− 1
p−1 , we conclude that |∇% − ∇r| → 0.

To show the Hessian estimates, we differentiate (2.23) to deduce

∇2% =

[

1
p − 1

v′ℎ(%)
vℎ(%)

d% ⊗ d% − vℎ(%)
1
p−1∇2

]

,

which, together with 3) in Theorem 2.4, gives

1
|�′(r)|

[

�′′(r)dr ⊗ dr +
�′(r)
r

(

⟨ , ⟩ − dr ⊗ dr
)

]

= ∇2
|�′(r)|

+ o
(

|

|

|

|

�′′(r)
�′(r)

|

|

|

|

)

=
(

1 + o(1)
)

[

1
p − 1

v′ℎ(%)
vℎ(%)

d% ⊗ d% − ∇2%

]

+ o
(1
r

)

.

The third formula in (2.22) follows multiplying by % and using that v′ℎ(t)∕vℎ(t) ∼ (m− 1)∕t as
t → 0.

As a consequence of the above proposition, the singularity of % at the origin is mild enough
to guarantee that the second identity in (2.20) holds weakly on the entireM :

Δp% =
v′ℎ(%)
vℎ(%)

|∇%|p weakly on M.

We next search for global gradient estimates for %. For X ∈ TM , X ≠ 0 define the
linearization of the p-Laplacian A(X) ∶ TM → TM as

A(X) = |X|

p−2
(

Id + (p − 2)
⟨

⋅, X
|X|

⟩

X
|X|

)

.
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The eigenvalues of A(X) are (p−1)|X|

p−2 in the direction ofX, and |X|

p−2 in the orthogonal
complement. Define also ⟨ , ⟩B as the (2, 0)-version of A(X)−1∕2, and note that ⟨ , ⟩B is a
metric for eachX ≠ 0. Norms and traces with respect to ⟨ , ⟩B will be denoted with | ⋅ |B ,TrB .
Setting � = X∕|X| and considering an orthonormal frame {ei, �}, 1 ≤ i ≤ m− 1 for ⟨ , ⟩ with
dual coframe {�j , ��}, for every covariant 2-tensor C we can write

⟨ , ⟩B = |X|

− p−2
2

{

(p − 1)−1∕2�� ⊗ �� +
∑

j
�j ⊗ �j

}

TrBC = |X|

p−2
2

{

√

p − 1C�� +
∑

j
Cjj

}

|C|2B = |X|

p−2
{

(p − 1)C2�� + p
∑

j
C2�j +

∑

i,j
C2ij

}

.

(2.24)

The following Bochner formula is basically a rewriting, in a form more suitable for our
application, of [46, Lem. 2.1], see also [59, Prop. 7]. We provide a quick proof for the sake of
completeness.

Proposition 2.14. Let p ∈ (1,∞), U ⊂ M be an open set and let F ∈ C3(U ) with |∇F | > 0
on U . Then,

1
2
div

(

A(∇F )∇|∇F |2
)

=

= |

|

|

∇2F ||
|

2

B
+ Ric(∇F ,∇F )|∇F |p−2 + ⟨∇ΔpF ,∇F ⟩

(2.25)

on U , where B = B(∇F ).

Proof. Let {ei, �} be an adapted orthonormal frame with � = ∇F∕|∇F |. We first compute

⟨∇ΔpF ,∇F ⟩ = (p − 2)2|∇F |p−2⟨∇|∇F |, �⟩2 + (p − 2)|∇F |p−2⟨∇⟨∇|∇F |, �⟩,∇F ⟩

+(p − 2)⟨∇|∇F |, �⟩|∇F |p−2ΔF + |∇F |p−2⟨∇ΔF ,∇F ⟩

= (p − 2)⟨∇|∇F |, �⟩ΔpF + (p − 2)|∇F |p−2⟨∇⟨∇|∇F |, �⟩,∇F ⟩

+|∇F |p−2⟨∇ΔF ,∇F ⟩.
(2.26)

On the other hand

1
2
div

(

A(∇F )∇|∇F |2
)

= 1
2
div

(

|∇F |p−2∇|∇F |2 + 2(p − 2)|∇F |p−2⟨∇|∇F |, �⟩∇F
)

= (p − 2)|∇F |p−2||
|

∇|∇F |||
|

2
+ 1
2
|∇F |p−2Δ|∇F |2 + (p − 2)|∇F |p−2⟨∇⟨∇|∇F |, �⟩,∇F ⟩

+(p − 2)⟨∇|∇F |, �⟩ΔpF .

Replacing the last two terms by means of (2.26), using the standard Bochner formula for the

16



Laplacian, the identity ∇|∇F | = F�jej + F���, and (2.24) we infer

1
2
div

(

A(∇F )∇|∇F |2
)

= (p − 2)|∇F |p−2||
|

∇|∇F |||
|

2
+ |∇F |p−2

[Δ|∇F |2

2
− ⟨∇ΔF ,∇F ⟩

]

+ ⟨∇ΔpF ,∇F ⟩

= (p − 2)|∇F |p−2||
|

∇|∇F |||
|

2
+ |∇F |p−2

[

|∇2F |2 + Ric(∇F ,∇F )
]

+ ⟨∇ΔpF ,∇F ⟩

= |∇F |p−2
[

m−1
∑

i,j=1
F 2ij + p

m−1
∑

j=1
F 2�j + (p − 1)F

2
��

]

+ |∇F |p−2Ric(∇F ,∇F ) + ⟨∇ΔpF ,∇F ⟩

= |

|

|

∇2F ||
|

2

B
+ |∇F |p−2Ric(∇F ,∇F ) + ⟨∇ΔpF ,∇F ⟩,

as claimed.

The next is the main, new Bochner formula.

Proposition 2.15. For p ∈ (1,∞), let u be a positive solution of Δpu = 0 in an open set
Ω ⊂ Mm. Fix a modelMℎ with radial curvature −H(r) and such that Δp is non-parabolic on
Mℎ, and define % according to

u(x) = G ℎ(%(x)
)

= ∫

∞

%(x)
vℎ(s)

− 1
p−1 ds.

If p > m, also assume that u < G ℎ(0) on Ω. Set

� = −
mp − 3p + 2

p − 1
, F (t) = ∫

t

0
ℎ(s)

1
√

p−1 ds. (2.27)

Then, on
{

|∇%| > 0
}

and denoting with � = ∇%∕|∇%|,

1
2
ℎ−�div

(

ℎ�A(∇%)∇|∇%|2
)

≥

(F ′)−p
|

|

|

|

|

∇2F −
TrB∇2F

m
⟨ , ⟩B

|

|

|

|

|

2

B

+ 1
m
[

(p − 1)1∕2 − (p − 1)
]2
|∇%|p−2

[

∇2%(�, �)2
]

+|∇%|p
[

Ric(�, �) + (m − 1)H|∇%|2
]

(2.28)

where, with a slight abuse of notation, F = F (%), B = B(∇F ) andH,ℎ are evaluated at %.

Remark 2.16. It is interesting to compare our formula with the integral identities in [2] and in
[24, Thm. 3.4] in Euclidean setting: the latter follows from a different viewpoint, nevertheless
still inspired by the use of "fake distance" type functions. In the linear case, similar identities
were obtained in [20] and in [1, 11].

Proof. Let {ei, �} be an orthonormal frame with � = ∇%∕|∇%|. Let {F�� , F�j , Fij} be the
components of ∇2F in the basis {ei, �}. From

∇F = F ′∇%, ∇2F = F ′′d% ⊗ d% + F ′∇2%

17



We get
F�� = F ′′|∇%|2 + F ′%�� , Fij = F ′%ij , F�j = F ′%�j .

Moreover, the definition of F implies

|∇F |−
p−2
2 TrB(∇2F ) =

√

p − 1F�� +
∑

j
Fjj

=
√

p − 1F ′′|∇%|2 + F ′
[

√

p − 1%�� +
∑

j
%jj

]

= F ′
{

ℎ′

ℎ
|∇%|2 +

[

(p − 1)%�� +
∑

j
%jj

]

+
[

√

p − 1 − (p − 1)
]

%��

}

.

(2.29)

Expanding the expression for Δp% and using (2.20), we get

(p − 1)%�� +
∑

j
%jj = |∇%|2−pΔp% =

v′ℎ
vℎ

|∇%|2 = (m − 1)ℎ
′

ℎ
|∇%|2

and from (2.29) we deduce

TrB(∇2F ) = (F ′)
p
2
|∇%|

p−2
2

{

mℎ
′

ℎ
|∇%|2 +

[

√

p − 1 − (p − 1)
]

%��

}

. (2.30)

We next examine |∇2F |2B . By Bochner’s formula (2.14),

|∇2F |2B =
1
2
div

(

A(∇F )∇|∇F |2
)

− (F ′)pRic(∇%,∇%)|∇%|p−2 − ⟨∇ΔpF ,∇F ⟩,

hence using the identities

A(∇F )∇|∇F |2 = (F ′)pA(∇%)∇|∇%|2 + 2(p − 1)(F ′)p−1F ′′|∇%|p∇%

= (F ′)p
{

A(∇%)∇|∇%|2 + 2
√

p − 1ℎ
′

ℎ
|∇%|2

(

|∇%|p−2∇%
)

}

⟨A(∇%)∇|∇%|2,∇%⟩ = 2(p − 1)|∇%|p%��
(2.31)

we get

|∇2F |2B = 1
2
div

(

(F ′)p
{

A(∇%)∇|∇%|2 + 2
√

p − 1ℎ
′

ℎ
|∇%|2

(

|∇%|p−2∇%
)

})

−(F ′)pRic(∇%,∇%)|∇%|p−2 − ⟨∇ΔpF ,∇F ⟩

= 1
2
(F ′)pdiv

(

A(∇%)∇|∇%|2
)

+
p
2
(F ′)p−1F ′′⟨A(∇%)∇|∇%|2,∇%⟩ +

√

p − 1(F ′)pℎ
′

ℎ
|∇%|2Δp%

+
√

p − 1(F ′)pℎ
′

ℎ
|∇%|p−2⟨∇|∇%|2,∇%⟩ +

√

p − 1(F ′)p
(

ℎ′

ℎ

)′
|∇%|p+2

+
√

p − 1p(F ′)p−1F ′′|∇%|p+2ℎ
′

ℎ

−(F ′)pRic(�, �)|∇%|p − ⟨∇ΔpF ,∇F ⟩,

18



that is,

|∇2F |2B = 1
2
(F ′)pdiv

(

A(∇%)∇|∇%|2
)

+p(F ′)p
√

p − 1ℎ
′

ℎ
|∇%|p%�� +

√

p − 1(m − 1)(F ′)p
(

ℎ′

ℎ

)2
|∇%|p+2

+2
√

p − 1(F ′)pℎ
′

ℎ
|∇%|p%�� +

√

p − 1(F ′)p
(

ℎ′

ℎ

)′
|∇%|p+2

+p(F ′)p
(

ℎ′

ℎ

)2
|∇%|p+2 − (F ′)pRic(�, �)|∇%|p − ⟨∇ΔpF ,∇F ⟩.

(2.32)

Next, we compute

ΔpF =
[

(m − 1) +
√

p − 1
]

(F ′)p−1ℎ
′

ℎ
|∇%|p, (2.33)

hence differentiating and using ⟨∇|∇%|,∇%⟩ = |∇%|%�� we get

⟨∇ΔpF ,∇F ⟩ =
[

(m − 1) +
√

p − 1
]

{

(F ′)pℎ
′

ℎ
⟨∇|∇%|p,∇%⟩

+(F ′)p
(

ℎ′

ℎ

)′
|∇%|p+2 + (p − 1)(F ′)p−1F ′′ℎ

′

ℎ
|∇%|p+2

}

=
[

(m − 1) +
√

p − 1
]

(F ′)p
{

ℎ′

ℎ
p|∇%|p%��

+

[

(

ℎ′

ℎ

)′
+
√

p − 1
(

ℎ′

ℎ

)2
]

|∇%|p+2
}

.

(2.34)

Putting together (2.34), (2.30) and (2.32), we obtain

(F ′)−p
|

|

|

|

|

∇2F −
TrB(∇2F )

m
⟨ , ⟩B

|

|

|

|

|

2

B

= (F ′)−p
{

|∇2F |2B −
[TrB(∇2F )]2

m

}

= 1
2
div

(

A(∇%)∇|∇%|2
)

+ p
√

p − 1ℎ
′

ℎ
|∇%|p%�� +

√

p − 1(m − 1)
(

ℎ′

ℎ

)2
|∇%|p+2

+2
√

p − 1ℎ
′

ℎ
|∇%|p%�� +

√

p − 1
(

ℎ′

ℎ

)′
|∇%|p+2 + p

(

ℎ′

ℎ

)2
|∇%|p+2 − Ric(�, �)|∇%|p

−
[

(m − 1) +
√

p − 1
]

[

ℎ′

ℎ
p|∇%|p%�� +

(

ℎ′

ℎ

)′
+
√

p − 1
(

ℎ′

ℎ

)2
]

|∇%|p+2

− 1
m
|∇%|p−2

{

mℎ
′

ℎ
|∇%|2 +

[

√

p − 1 − (p − 1)
]

%��

}2
.

(2.35)
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Simplifying, we deduce

(F ′)−p
|

|

|

|

|

∇2F −
TrB(∇2F )

m
⟨ , ⟩B

|

|

|

|

|

2

B

= 1
2
div

(

A(∇%)∇|∇%|2
)

+ (−mp + 3p − 2)ℎ
′

ℎ
|∇%|p%�� − Ric(�, �)|∇%|p

−|∇%|p+2(m − 1)

[

(

ℎ′

ℎ

)′
+
(

ℎ′

ℎ

)2
]

− 1
m

[

√

p − 1 − (p − 1)
]2
%2�� .

(2.36)

Inserting the Riccati equation (2.17) and the identity

ℎ−�div
(

ℎ�A(∇%)∇|∇%|2
)

= div
(

A(∇%)∇|∇%|2
)

+ �ℎ
′

ℎ
⟨A(∇%)∇|∇%|2,∇%⟩

= div
(

A(∇%)∇|∇%|2
)

+ 2�(p − 1)ℎ
′

ℎ
|∇%|p%��

(2.37)

into (2.36), and recalling the definition of � in (2.27), we obtain the desired (2.28).

Lemma 2.17 (Key Lemma). Let p ∈ (1,∞), and let 0 ≤ H ∈ C(ℝ+0 ) be non-increasing.
Consider a modelMℎ with radial curvature −H(r), and assume that Δp is non-parabolic on
Mℎ. Let u be a positive solution of Δpu = 0 in an open set Ω ⊂ M , possibly the entireM , and
define % according to

u(x) = G ℎ(%(x)
)

= ∫

∞

%(x)
vℎ(s)

− 1
p−1 ds.

When p > m, also suppose that u < G ℎ(0) on Ω. If

Ric ≥ −(m − 1)H(%) on Ω, (2.38)

then
sup
Ω

|∇%| ≤ max
{

1, lim sup
x→)Ω

|∇%(x)|
}

, (2.39)

where we set

lim sup
x→)Ω

|∇%(x)| ≐ inf
{

sup
Ω∖V

|∇%| ∶ V open whose closure inM satisfies V ⊂ Ω
}

.

In particular, if )Ω = ∅ then |∇%| ≤ 1.

Remark 2.18. Bound (2.38) automatically holds in the following relevant cases:

1) Ric ≥ −(m − 1)�2 on Ω, for some constant � ≥ 0, choosing H(t) = �2. If � = 0, we
further assume that p < m in order for Δp to be non-parabolic onMℎ;

2) M satisfies (ℋp) for some p ∈ (1, m] and non-increasing H , Ω ⊂ M∖{o} and u is the
restriction to Ω of the Green kernel of M with pole at o. Indeed, by Proposition 2.12,
the fake distance % associated to u satisfies % ≤ r and therefore

Ric ≥ −(m − 1)H(r) ≥ −(m − 1)H(%) on M.
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Proof. Suppose (2.39) fails. Then, lim supx∈)Ω |∇%(x)|2 < ∞ and we can pick �0 > 0 such
that, for each � ∈ [�0, supM |∇%|2 − 1), the set

U� =
{

|∇%|2 > 1 + �
}

(2.40)

is non-empty and U � ∩ )Ω = ∅. We remark that |∇%| ∈ C∞(U �), by the regularity of u on the
complementary of its stationary points. Suppose first that H∗ ≐ inf H > 0. Inserting (2.38)
into (2.28) shows that the following inequality holds on U�:

1
2
ℎ−�div

(

ℎ�A(∇%)∇|∇%|2
)

≥ |∇%|p(m − 1)H(%)
[

|∇%|2 − 1
]

≥ (m − 1)H∗|∇%|p+2
[

�
�+1

]

≥ c0|∇%|p+2,

(2.41)

where c0 = (m−1)�0∕(1 + �0)H∗. For R ≥ 1 pick  ∈ C2c (B2R(o)) and � ∈ C
1(ℝ) satisfying

0 ≤  ≤ 1 on M,  ≡ 1 on BR(o), |∇ | ≤ 8
R
 1∕2

0 ≤ � ≤ 1 on ℝ, supp(�) = [1 + 2�,∞), �′ ≥ 0 on ℝ.

For �, � ≥ 1 to be chosen later, we use the test function

' = �(|∇%|2) (x)�|∇%|� ∈ C1c (U�).

in the weak definition of (2.41). Writing A = A(∇%), � = �(|∇%|2) we get

�
2 ∫ ⟨A∇|∇%|2, �|∇%|�−1 �∇|∇%|⟩ℎ(%)� + c0 ∫ � �|∇%|�+p+2ℎ(%)�

≤ −
�
2 ∫

 �−1�|∇%|�⟨A∇|∇%|2,∇ ⟩ℎ(%)� − 1
2 ∫

�′ �⟨A∇|∇%|2,∇|∇%|2⟩ℎ(%)�

≤ −
�
2 ∫

 �−1�|∇%|�⟨A∇|∇%|2,∇ ⟩ℎ(%)�,

(2.42)
where, in the last inequality, we used �′ ≥ 0 and the non-negativity of A. From the expression
of the eigenvalues of A,

⟨A∇|∇%|2,∇|∇%|⟩ =
⟨A∇|∇%|2,∇|∇%|2⟩

2|∇%|
≥ min{1, p − 1}

2
|∇%|p−3||

|

∇|∇%|2||
|

2

while, by Cauchy-Schwarz inequality,

⟨A∇|∇%|2,∇ ⟩ ≤
{

⟨A∇|∇%|2,∇|∇%|2⟩
}1∕2{

⟨A∇ ,∇ ⟩
}1∕2

≤ max{1, p − 1}|∇%|p−2||
|

∇|∇%|2||
|

|∇ |

≤ 8max{1, p − 1}
R

|∇%|p−2||
|

∇|∇%|2||
|

 1∕2
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Substituting into (2.42) we obtain

�
4
min{1, p − 1}∫  ��|∇%|p+�−4||

|

∇|∇%|2||
|

2
ℎ(%)� + c0 ∫ � �|∇%|�+p+2ℎ(%)�

≤ 4�max{1, p − 1}
R ∫  �−

1
2 �|∇%|�+p−2||

|

∇|∇%|2||
|

ℎ(%)�
(2.43)

By Young’s inequality,

2 �−
1
2 �|∇%|�+p−2||

|

∇|∇%|2||
|

≤ � ��|∇%|�+p−4||
|

∇|∇%|2||
|

2
+ 1
�
 �−1�|∇%|�+p,

whence, choosing
� =

�Rmin{1, p − 1}
8�max{1, p − 1}

and inserting into (2.43), we deduce the existence of a constant cp which depends only on p
such that

c0 ∫ � �|∇%|�+p+2ℎ(%)� ≤ cp
�2

�R2 ∫
� �−1|∇%|�+pℎ(%)�. (2.44)

We next apply Young’s inequality again with exponents

q =
p + � + 2
p + �

, q′ =
p + � + 2

2

and a free parameter �̄ to obtain

 �−1|∇%|p+� ≤ �̄q

q
 �|∇%|p+�+2 + 1

q′�̄q′
 �−q

′
.

We choose � = 2q′ = p + � + 2 and �̄ such that

cp
�2

�R2
�̄q

q
=
c0
2
,

so that, inserting into (2.44) and rearranging, we deduce that there exists a constant c1 =
c1(c0, cp) such that

∫ � �|∇%|�+p+2ℎ(%)� ≤
c0

p + �

[2cp
c0

�2

�R2
p + �

p + � + 2

]

p+�+2
2

∫ � �∕2ℎ(%)�

≤
[

c1(p + � + 2)
R2

]
p+�+2
2

∫ � �∕2ℎ(%)�.

(2.45)

Set
I(R) = ∫BR

�ℎ(%)�.

Taking into account the definition of  and the fact that |∇%|2 ≥ 1 + 2� on the support of � ,
(2.45) yields

I(R) ≤
[

c1(p + � + 2)
R2(1 + 2�)

]
p+�+2
2

I(2R).
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Choosing � to satisfy

c1(p + � + 2)
R2(1 + 2�)

= 1
e
, so that p + � + 2

2
=
R2(1 + 2�)
2c1e

,

we get

I(R) ≤ e−
p+�+2
2 I(2R) = e

−R2(1+2�)
2c1e I(2R).

Iterating and taking logarithms as in [63, Lem. 4.7] shows that there exists S > 0 independent
of R, � such that for each R > 2R0,

log I(R)
R2

≥
log I(R0)

R2
+ S

(1 + 2�)
c1

(2.46)

To conclude, we estimate I(R). Since H ∈ L∞(ℝ+) and inf H > 0, we pick �, �̄ > 0 such
that �2 ≤ H ≤ �̄2. By Sturm comparison,

sinh(�t)
�

≤ ℎ(t) ≤ sinh(�̄t)
�̄

on ℝ+.

Consequently, both for positive and negative �, by the Bishop-Gromov volume comparison
theorem and since � ≤ 1 there exist constants bj = bj(�,m, �, �̄) such that

I(R) ≤ eb1Rvol(BR) ≤ eb2R.

Taking limits in (2.46) for R →∞ we then deduce 0 ≥ S (1+2�)
c1

, contradiction.
We are left to examine the case H∗ = 0. Fix c > 0, consider a model from below of

curvature −H(t) − c, let vℎ,c be the volume of its geodesic spheres and let G ℎ
c be its Green

kernel. Note that
G ℎ
c ↑ G ℎ in C1loc(ℝ

+) as c ↓ 0.

Define %c as the fake distance associated to u and G ℎ
c , the definition being meaningful on

Ωc ≐
{

x ∈ Ω ∶ u(x) < G ℎ
c (0)

}

⊂ Ω.

Note that Ωc ≡ Ω if p ≤ m, since G ℎ
c (0) = ∞, while Ωc ↑ Ω if p > m. Moreover, %c → %

locally uniformly in C1(Ω) and monotonically from below as c ↓ 0, which implies

|∇%(x)| = lim
c→0

|∇%c(x)| ∀ x ∈ Ω.

We claim that
vℎ,c(%c) ≤ vℎ(%) on Ωc . (2.47)

We postpone for a moment its proof, and conclude the argument. Applying the first part of the
proof to %c and using that Ωc ↑ Ω we deduce, for each x ∈ Ω,

|∇%(x)| = lim
c→0

|∇%c(x)| ≤ lim infc→0
max

{

1, lim sup
Ωc∋y→)Ωc

|∇%c(y)|
}

. (2.48)

Next, (2.47) implies

|∇%c| = |∇u|vℎ,c(%c)
1
p−1 ≤ |∇u|vℎ(%)

1
p−1 = |∇%| on Ωc .
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If p ≤ m, Ωc ≡ Ω and thus

lim sup
Ωc∋y→)Ωc

|∇%c(y)| = lim sup
y→)Ω

|∇%c(y)| ≤ lim sup
y→)Ω

|∇%(y)|,

which, together with (2.48), implies (2.39). If p > m, %c vanishes on )Ωc ∩ Ω and therefore

|∇%c(x)| = |∇u(x)|vℎ,c(%c(x))
1
p−1 → 0 as x→ )Ωc ∩ Ω,

hence
lim sup
Ωc∋y→)Ωc

|∇%c(y)| = lim sup
Ωc∋y→)Ω

|∇%c(y)| ≤ lim sup
y→)Ω

|∇%(y)|,

again proving (2.39).
To show (2.47), by Sturm comparison vℎ,c∕vℎ is increasing on ℝ+, thus [5, Prop. 4.12]

implies the inequality |(logG ℎ
c )
′
| ≥ |(logG ℎ)′| on ℝ+, that is,

v
− 1
p−1

ℎ,c

G ℎ
c
(t) ≥

v
− 1
p−1

ℎ

G ℎ (t) ∀ t ∈ ℝ+.

We evaluate at t = %c and use %c ≤ % together with the monotonicity of |(logG ℎ)′(t)| that
follows from Lemma 2.10, to deduce

vℎ,c(%c)
− 1
p−1

G ℎ
c (%c)

≥
vℎ(%c)

− 1
p−1

G ℎ(%c)
≥
vℎ(%)

− 1
p−1

G ℎ(%)
.

Inequality (2.47) follows since G ℎ
c (%c) = G

ℎ(%) = u, concluding the proof.

Theorem 2.19. Suppose thatMm satisfies (ℋp) for some p ∈ (1, m] and

H(t) ≥ 0, H(t) non-increasing on ℝ+.

Then, having defined % as in Definition 2.11,

(i) |∇%| ≤ 1 onM∖{o}.

(ii) Equality |∇%(x)| = 1 holds for some x ∈ M∖{o} if and only if % = r and M is the
radially symmetric modelMℎ.

Proof. (i). Inequality % ≤ r holds because of Proposition 2.12, hence (2) in Theorem 2.4
guarantees

|∇%(x)| = vℎ(%(x))
1
p−1

|∇(x)| ≤ vℎ(r(x))
1
p−1

|∇(x)| → 1

as x → o. Thus, lim supx→o |∇%(x)| ≤ 1. In view of Remark 2.18, we are in the position to
apply Lemma 2.17 with the choice Ω = M∖{o} and conclude (i). To show (ii), we observe
that because of (2.28) and the monotonicity ofH , the function u = 1 − |∇%|2 ≥ 0 solves

1
2ℎ

−�div
(

ℎ�A(∇%)∇u
)

≤ −|∇%|p
[

Ric(�, �) + (m − 1)H(%)|∇%|2
]

≤ −(m − 1)|∇%|p
[

−H(r) +H(%)|∇%|2
]

≤ (m − 1)H(r)|∇%|pu.
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If u vanishes at some point, by the strong minimum principle u ≡ 0 onM , that is, |∇%| ≡ 1.
In this case, again by (2.28) we deduce

∇2F = 1
m
TrB(∇2F )⟨ , ⟩B on M, (2.49)

with F as in (2.27). Since |∇%| = 1, the integral curves of the flow Φt of ∇% are unit speed
geodesics. For x ∈ M∖{o}, because of the completeness ofM the geodesic Φt(x) is defined
on the maximal interval (−%(x),∞), and limt→−%(x)Φt(x) = o, being o the unique zero of %.
Hence, Φt is a unit speed geodesic issuing from o to x. If x ∈ M∖cut(o), it therefore holds
%(x) = r(x), and by continuity % = r onM . The function r is thus C1 outside of o, and this
implies cut(o) = ∅, that is, o is a pole ofM . Indeed, the distance function r is not differentiable
at any point y ∈ cut(o) joined to o by at least two minimizing geodesics. The set of such points
is dense in cut(o) by [9, 81], so cut(o) = ∅ whenever r is everywhere differentiable outside of
o. Rewriting (2.49) in terms of ∇2% = ∇2r we get

∇2r =
ℎ′(r)
ℎ(r)

(

⟨ , ⟩ − dr ⊗ dr
)

on M∖{o}. (2.50)

Integrating along geodesics we deduce thatM is isometric toMℎ.

Remark 2.20 (Hardy weights). When rephrased in terms of , the bound |∇%| ≤ 1 becomes

|∇ log| ≤ |(logG ℎ)′|
(

%(x)
)

. (2.51)

We mention that the function |∇ log| naturally appears as a weight in the Hardy inequality
(

p − 1
p

)p

∫ |∇ log|p| |p ≤ ∫ |∇ |p ∀ ∈ Lipc(M),

which holds on every manifold where Δp is non-parabolic (see [8, Prop. 4.4]). Hence, (2.51)
can be somehow seen as a comparison theorem for Hardy weights. In this respect, it is worth
to notice that the weight ofMℎ transplanted toM , that is, the function

(

p − 1
p

)p
|(logG ℎ)′|

(

r(x)
)

,

is a Hardy weight onM provided thatMℎ is a model from above forM , see Section 5 in [8].
For a systematic study of Hardy weights and their role in geometric problems in the linear case
p = 2 we refer the reader to [5, 6, 7].

2.3 The sharp gradient estimate for p-harmonics: another proof
To illustrate the versatility of the key Lemma 2.17, we consider the case where p ∈ (1,∞) and
u > 0 solves Δpu = 0 on the entireM , and we suppose that

Ric ≥ −(m − 1)�2⟨ , ⟩ on M,

for some constant � ≥ 0. By a recent result in [74],

|∇ log u| ≤ (m − 1)�
p − 1

on M. (2.52)
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The upper bound is sharp in view of warped product manifoldM = ℝ×Nm−1, for a compact
(N, ds2N ) with non-negative Ricci curvature, endowed with the metric ⟨ , ⟩ = dt2 + e−2tds2N .
A direct computation shows that Ric ≥ −(m − 1)⟨ , ⟩ and

u(x) = exp
{

m − 1
p − 1

t
}

is p-harmonic onM with |∇ log u| = m − 1
p − 1

.

To obtain their sharp global estimate, in [74] the authors rely on the next local gradient bound
for p-harmonic functions in [80], which was proved via a subtle Moser iteration procedure:

|∇ log u| ≤ Cm,p
1 + �R
R

on BR(x), (2.53)

whenever u is defined on B4R(x).

Remark 2.21. We underline that the constant Cm,p in (2.53) satisfies (p − 1)Cm,p → ∞ as
p→ 1, which makes (2.53) unsuitable for the limit procedures described in the next sections.

As a consequence of Lemma 2.17, we can give a direct proof of a more general version
of (2.52), valid for sets Ω ⊂ M with possibly non-empty boundary. It should be stressed that
adapting the proof of [74] to sets with boundary seems to be nontrivial since the upper bound
in (2.53) blows up as R → 0, while the global boundedness of |∇ log u| which follows from
(2.53) for entire solutions plays a crucial role in the derivation of (2.52).

Theorem 2.22. LetMm be a complete manifold, letΩ ⊂ M be an open set (possibly the entire
M) and suppose that

Ric ≥ −(m − 1)�2⟨ , ⟩ on Ω, (2.54)

for some constant � ∈ ℝ+0 . Let u > 0 solve Δpu = 0 on Ω for some p ∈ (1,∞). Then,

|∇ log u| ≤ max
{

m − 1
p − 1

�, lim sup
x→)Ω

|∇ log u|
}

.

Proof. The case � = 0 can be handled by choosing a sequence �j ↓ 0 and letting j → ∞ in
the resulting estimate, so we can suppose without loss of generality that � > 0. Assume first
that p ≤ m. For c > 0, we define %c by the formula

cu(x) = G �(%c(x)
)

= ∫

∞

%c (x)
v�(s)

− 1
p−1 ds. (2.55)

Then, %c > 0 on Ω. Since we assume a constant lower bound on Ric, by Remark 2.18, setting
H(t) = �2 assumption (2.38) holds. Therefore, we can apply the key Lemma 2.17 to infer

sup
Ω

|∇%c| ≤ max
{

1, lim sup
x→)Ω

|∇%c(x)|
}

. (2.56)

Rephrasing in terms of u, we deduce from (2.56) that for each x ∈ Ω

|∇ log u(x)| ≤ |(logG �)′|(%c(x)) ⋅max

{

1, lim sup
y→)Ω

|∇ log u(y)|
|(logG �)′|(%c(y))

}

≤ |(logG �)′|(%c(x)) ⋅max

{

1,
p − 1

(m − 1)�
lim sup
y→)Ω

|∇ log u(y)|

}

,
(2.57)
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where the last inequality follows since |(logG �)′| is decreasing onℝ+ because of Lemma 2.10,
and since

|(logG �)′|(t) ↓ m − 1
p − 1

� as t→ ∞.

By (2.55), for each fixed x ∈ M , %c(x) → ∞ as c → 0. Taking limits in (2.57) as c → 0 we
obtain

|∇ log u(x)| ≤ m − 1
p − 1

� ⋅max

{

1,
p − 1

(m − 1)�
lim sup
y→)Ω

|∇ log u(y)|

}

, (2.58)

as claimed. If p > m, the argument shall be modified as follows: for fixed c > 0, let %c be
defined as in (2.55), where now the definition makes sense on the open set Ωc = {x ∈ Ω ∶
cu(x) < G �(0)}. Since %c = 0 on )Ωc ∩ Ω, (2.55) yields |∇%c(x)| → 0 as x → )Ωc ∩ Ω.
Hence, applying Lemma 2.17, we deduce

|∇%c| ≤ max
{

1, lim sup
Ωc∋y→)Ω

|∇%c(y)|
}

on Ωc .

The required conclusion then follows as in the case p ≤ m, once we observe that %c(x) → ∞
and Ωc ↑ Ω as c → 0.

2.4 Capacitors and exterior domains
Let K be a C1, relatively compact open set, and let u be the p-capacity potential of (K,M).
Assuming the Ricci curvature bound (2.54), by Theorem 2.22 a global estimate for |∇ log u|
reduces to an estimate on

sup
)K

|∇ log u|.

Barriers for log u on )Ω are described in [46, Sect. 3] for 1 < p < m. Here, we extend the
argument to every p and slightly shorten the proof. We recall that the Dirichlet kernel for Δp
on the ball BR in the model of curvature −�2 is given by

G �
R(t) ≐ ∫

R

t
v�(s)

− 1
p−1 ds.

Proposition 2.23. Let u be the p-capacity potential of (K,M). Fix x ∈ )K and define

Rx = sup
{

r ∶ Br ⊂ K is a ball of radius r with x ∈ )Br
}

.

Suppose that Rx > 0. Fix � ∈ (0,∞] and let � ∈ ℝ+0 such that

Ric ≥ −(m − 1)�2 on B� (K) = {y ∶ d(y,K) < �}.

Then,
|∇ log u(x)| ≤ |

|

|

(logG �
R+� )

′(Rx)
|

|

|

. (2.59)

Proof. By continuity, for R = Rx there is a ball BR(y) ⊂ K that is tangent to )K at x. Let
r = dist(y, ⋅) and on BR+� (y) ⊂ B� (K) we use as barrier the rescaled kernel

w(x) =
G �
R+� (r(x))
G �
R+� (R)

.
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Then, w is radially decreasing and w(x) = 1, w ≤ 1 on BR+� (y)∖K , w = 0 on )BR+� (y).
By the Laplacian comparison theorem from above, Δpw ≥ 0 weakly on the punctured ball
BR+� (y)∗, and extending w with zero outside of BR+� we still obtain a subsolution. By com-
parison, w ≤ u ≤ 1 onM∖K , thus logw ≤ log u ≤ 0 in a neighbourhood of x. Since equality
holds at x, evaluating along curves lying inM∖K issuing from x and taking derivatives yields

|∇ log u(x)| ≤ |∇ logw(x)| = |

|

|

(logG �
R+� )

′(R)||
|

,

as claimed.

Combining Theorem 2.22 and Proposition 2.23, we deduce

Theorem 2.24. LetMm be a complete manifold satisfying

Ric ≥ −(m − 1)�2⟨ , ⟩,

for some constant � ≥ 0. For p ∈ (1,∞), Let u > 0 be the p-capacity potential of a capac-
itor (K,M), where K is a relatively compact C1 open set such that the following quantity is
positive:

R = inf
x∈)K

sup
{

r ∶ Br ⊂ K is a ball with x ∈ )Br
}

.

Then,

|∇ log u| ≤ max
{

m − 1
p − 1

�, ||
|

(logG �)′(R)||
|

}

on M.

Remark 2.25. It is not hard to estimate the right hand side of (2.59) with simpler functions.
If Ric ≥ 0 onM (thus, necessarily p < m), computing (logG �

R)
′ for � = 0 yields

|∇ log u| ≤ m − p
p − 1

1
R

on M,

which mildly improves the bound in [46]. On the other hand, when � > 0, the integral in G �

is not explicitly computable except when (m− 1)∕(p− 1) is an integer, see Example 5.3 in [8].
Indeed, setting � = (m − 1)∕(p − 1) and rescaling the metric so as to have � = 1, computing
G � amounts to integrating sinh−� t. Using parameric hyperbolic coordinates x = tanh(t∕2),
this leads to a binomial integral of the type

∫
(1 − x2)�−1

x�

which is computable in terms of elementary functions if and only if � ∈ ℤ. However, to obtain
an explicit upper estimate for |(logG �)′| one can use the following comparison result observed
in [5, Prop. 4.12]:

if g∕ℎ is non-decreasing on (a, b), then (logG g)′ ≥ (logG ℎ)′ on (a, b).

If p < m, a simpler extimate was already given in [46].

3 Properness of %
The properness of %, that is, the property that (x) → 0 as r(x) → ∞, is a nontrivial fact
intimately related to the geometry ofM at infinity. Conditions for its validity will be given in
terms of global Sobolev type inequalities or in terms of volume doubling coupled with weak
Poincaré inequalities. Since local Sobolev and Poincaré constants will often appear in the next
sections when taking limits as p→ 1, it is convenient to briefly recall their dependence on the
geometry of relatively compact balls ofM .
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Remark 3.1. Let B6R ⋐Mm be a relatively compact geodesic ball, and suppose that

Ric ≥ −(m − 1)�2⟨ , ⟩ on B6R, (3.1)

for some constant � ≥ 0. As before, we denote with V�(t) the volume of a ball of radius t in the
space form of curvature −�2. By the Bishop-Gromov volume comparison and the convexity
of V� ,

|B2r(x)|
|Br(x)|

≤
V�(2r)
V�(r)

≤
V�(2R)
V�(R)

≐ CD ∀Br(x) ⋐ BR. (3.2)

Furthermore, by [71, Thm. 5.6.6], see also [45, Thm. 1.4.1], there exists a constant cm such
that, for each p ∈ [1,∞), the following weak (p, p)-Poincaré inequality holds for ballsB2r(x) ⊂
B2R:

{

⨏Br(x)
| −  ̄Br(x)|

p
}

1
p
≤ rPp,p

{

⨏B2r(x)
|∇ |p

}
1
p

∀ ∈ Lip(B2R), (3.3)

where  ̄Br(x) is the mean value of  on Br(x) and where we set

Pp,p = exp
{

cm(1 + �R)
p

}

. (3.4)

Note that the result in [71] is proved for p = 1, and a minor modification using Jensen’s inequal-
ity yields (3.3) with the stated constant for every p. As a consequence of (3.3) with p = 1 and
of Theorem 3.3.5 in [71], there exists Cm > 0 such that the following L1 Sobolev inequality
with potential holds:

(

∫ | |
m
m−1

)
m−1
m

≤
[

Cm
Υ

](

P1,1 ∫ |∇ | + 1
R ∫ | |

)

∀ ∈ C∞c (BR), (3.5)

where
Υ = inf

{

|Bt(x)|
V0(t)

∶ t ∈ (0, R), x ∈ BR

}

.

Observe that Υ can be estimated from below in terms of |BR| by using (3.1) and volume
comparison:

∀ x ∈ BR, t ∈ (0, R),
|Bt(x)|
V0(t)

≥
|B2R(x)|
V�(2R)

V�(t)
V0(t)

≥
|BR|
V�(2R)

. (3.6)

We next remove the potential part in (3.5) with a slight variation of an argument in [49, Cor.
1.1]: pick y ∈ )B2R and, setting ry = dist(y, ⋅), consider the function

� (x) = ∫

3R

ry(x)

V�(3R) − V�(t)
v�(t)

dt,

with v�(t), V�(t) the volume of geodesic spheres and balls, respectively, in the model of curva-
ture −�2. A computation that uses the Laplacian comparison theorem and (3.1) gives Δ� ≥ 1
weakly on BR, thus for every  ∈ Lipc(BR) we obtain

∫ | | ≤ ∫ | |Δ� = ∫ ⟨∇�,∇| |⟩ ≤ sup
BR

|∇� |∫ |∇ | ≤
V�(3R)
v�(R) ∫ |∇ |.
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Inserting into (3.5) and using (3.6) we infer the local L1 Sobolev inequality

(

∫ | |
m
m−1

)
m−1
m

≤
CmV�(2R)

|BR|

(

P1,1 +
V�(3R)
Rv�(R)

)

∫ |∇ |

= S1,m(R)∫ |∇ | ∀ ∈ Lipc(BR)

(3.7)

For each p ∈ (1, m), inserting as a test function | |p
m−1
m−p and using Hölder inequality one readily

deduces the Lp Sobolev inequality

(

∫ | |
mp
m−p

)
m−p
m

≤ Sp,m(R)∫ |∇ |p ∀ ∈ Lipc(BR) (3.8)

where

Sp,m(R) =
[S1,m(R)p(m − 1)

m − p

]p

converges to S1,m(R) as p→ 1.

3.1 Properness under a Sobolev inequality
We first examine the vanishing of  at infinity under the validity of a global Sobolev inequality
of the type

(

∫ | |
�p
�−p

)
�−p
�

≤ Sp,� ∫ |∇ |p ∀ ∈ Lipc(M).

To do so, we shall employ the De Giorgi-Nash-Moser iteration technique to obtain a uni-
form upper bound for  on the entire M . For applications to the IMCF, it is important to
keep track of the dependence on p of the half-Harnack inequalities for positive subsolutions-
supersolutions of Δpu = 0. This is done in [58], and we present here a slightly different
approach that yields a more explicit dependence of the constants on the geometry. As in [58],
we need to tweak the iteration to achieve bounds that behave nicely as p → 1. We begin with
the following standard Caccioppoli Lemma, which can be found in [68].

Lemma 3.2. Let A0 ⊂ M be an open set, fix p ∈ (1,∞) and let u ∈ C(A0) ∩W
1,p
loc (A0) be

non-negative on A0. Fix q̄ ∈ ℝ. If either

(i) Δpu ≥ 0 on A0 and q̄ > p − 1, or

(ii) Δpu ≤ 0 on A0 and q̄ < p − 1,

then, for every 0 ≤ � ∈ C(A0) ∩W
1,p
0 (A0),

∫ �puq̄−p|∇u|p ≤
|

|

|

|

p
q̄ − p + 1

|

|

|

|

p

∫ uq̄|∇�|p. (3.9)

We next consider the half-Harnack inequalities. We point out that Claim 1 below is what
allows to obtain constants which are controlled as p→ 1.

30



Lemma 3.3. Let A∞ ⋐ M and fix T > 0 in such a way that A0 = BT (A∞) ⋐ M . Suppose
that the following Sobolev inequality holds:

(

∫ | |
�p
�−p

)
�−p
�

≤ Sp,� ∫ |∇ |p ∀ ∈ Lipc(A0), (3.10)

for some p ∈ (1,∞), � > p and Sp,� > 0.

(i) Subsolutions. Fix q > 0. Then, there exists a constant q0 with

0 < q0 ≤ q <
�q0
� − p

(3.11)

such that the following holds: if 0 ≤ u ∈ C(A0) ∩W
1,p
loc (A0) solves Δpu ≥ 0, then

sup
A∞

u ≤ (Sp,�C̄p,�)
�
pq0 T

− �
q0
|A0|

1
q0

(

⨏A0
uq
)

1
q

, (3.12)

with

C̄p,� =

⎧

⎪

⎨

⎪

⎩

2�3p ��

pp(�−p)�−p if q ∈ (0, p),

2� [1 + p]p if q ≥ p.
(3.13)

If q ≥ p, then we can choose q0 = q.

(ii) Supersolutions. Fix q < 0 and set q0 = q. If 0 < u ∈ C(A0)∩W
1,p
loc (A0) solvesΔpu ≤ 0,

then

inf
A∞

u ≥ (Sp,�C̄p,�)
�
pq0 T

− �
q0
|A0|

1
q0

(

⨏A0
uq
)

1
q

, (3.14)

with
C̄p,� = 2p+� . (3.15)

Proof. Set for convenience
k = �

� − p
.

Let 0 ≤ � ∈ Lipc(A0). For a given q̄, using (3.10) with  = �u
q̄
p and (3.9), we compute

S
− 1p
p,�

‖

‖

‖

�u
q̄
p ‖
‖

‖kp
≤ ‖

‖

‖

∇
(

�u
q̄
p
)

‖

‖

‖p
≤ ‖

‖

‖

u
q̄
p
|∇�| + |q̄∕p|�u

q̄−p
p
|∇u|‖‖

‖p

≤ ‖

‖

‖

u
q̄
p
|∇�|‖‖

‖p
+
|

|

|

|

q̄
p
|

|

|

|

‖

‖

‖

�u
q̄−p
p
|∇u|‖‖

‖p

≤
[

1 +
|

|

|

|

q̄
q̄ − p + 1

|

|

|

|

]

‖

‖

‖

u
q̄
p
|∇�|‖‖

‖p
.

(3.16)

This inequality holds in both cases (i) and (ii).

Claim 1: the following holds:
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(i) If q > 0, there exists q0 ∈
(

q
k , q

]

such that

|

|

|

q0k
i − p + 1||

|

≥ (k − 1)q
2k

for each i = 0, 1, 2,…

Moreover, we can choose q0 = q in case p − 1 ≤ q∕k.

(ii) If q < 0, choosing q0 = q we have
|

|

|

q0ki − p + 1
|

|

|

≥ |q| for each i = 0, 1, 2,….

Proof of Claim 1. Case (ii) is obvious, so we focus on case (i). Set for convenience a = q∕k.
Suppose first that p − 1 ≤ a. Choosing q0 = ka we deduce

|q0k
i − p + 1| ≥ q0 − p + 1 ≥ ka − a ≥ (k − 1)a

2
for each i = 0, 1, 2,…

and the required conclusion is proved. Otherwise, let j ∈ {1, 2,…} be such that p − 1 ∈
Ij = (kj−1a, kja]. We choose q0 ∈ (a, ka] in such a way that q0kj−1 is the point in Ij whose
distance to p − 1 is half of the length of Ij , so

|q0k
j−1 − p + 1| = kja − kj−1a

2
≥ (k − 1)a

2
. (3.17)

If p−1 is strictly bigger that themiddle point of Ij , then q0kj−1 = (p−1)−(kj−kj−1)a∕2 < p−1
and thus, for each i < j − 1, |q0ki − p + 1| ≥ |q0kj−1 − p + 1| ≥ (k − 1)a∕2. On the other
hand, q0kj > p − 1 and for each i ≥ j

q0ki − p + 1 ≥ q0k
j − p + 1 = q0kj − [q0kj−1 + (kj − kj−1)a∕2]

= (kj − kj−1)
[

q0 −
a
2

]

≥ (kj − kj−1)a
2
≥ (k − 1)a

2
.

Similarly, if p−1 is not bigger than the middle point of Ij , then q0kj−1+(kj−kj−1)a∕2 > p−1
and thus |q0ki − p + 1| ≥ |q0kj−1 − p + 1| ≥ (k − 1)a∕2 for each i > j − 1. If j = 1 we are
done, otherwise q0kj−2 < p − 1 and therefore, taking into account that

kj−1q0 ≥ (kj + kj−1)a∕2 and kj−1(q0 − ka∕2) ≥ kj−1a∕2,

for each i ≤ j − 2 we obtain

p − 1 − q0ki ≥ p − 1 − q0kj−2 = [kj−1q0 − (kj− − kj−1)a∕2] − kj−2

= (kj−1 − kj−2)
[

q0 −
ka
2

]

≥ (kj−1 − kj−2)a
2
≥ (k − 1)a

2
.

This concludes the proof of the claim.

Define

ri = T

(

2 −
i

∑

j=0
2−j

)

, Ai = Bri (A∞), �i(t) =

⎧

⎪

⎨

⎪

⎩

1 if t ∈ [0, ri+1)

1 − 2i+1
T (t − ri+1) if t ∈ [ri+1, ri)

0 if t ≥ ri
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Set �i = �i(r), with r(x) = dist(A∞, x). Using � = �i, q̄ = qi = q0ki and |∇�i| ≤ T −12i+1 in
(3.16) we deduce

(

∫Ai+1
uq0k

i+1

)
1
k

≤ Sp,�

[

1 +
|

|

|

|

|

q0ki

q0ki − p + 1

|

|

|

|

|

]p

2p(i+1)T −p ∫Ai
uq0k

i (3.18)

We first consider the case where 0 < q ≤ p. Claim 1 and |q0| ≤ |q| imply that

1 +
|

|

|

|

|

q0ki

q0ki − p + 1

|

|

|

|

|

≤ 1 +
2q0ki+1

(k − 1)q
≤ 3ki+1
(k − 1)

, (3.19)

which inserted into (3.18) yields

(

∫Ai+1
uq0k

i+1

)
1
k

≤ Sp,�C̃p,�[2k]p(i+1)T −p ∫Ai
uq0k

i
, (3.20)

with
C̃p,� =

[ 3
k − 1

]p
.

On the other hand, if either q ≥ p or q < 0, choosing q0 = q and noting that t → t∕(t − p + 1)
is increasing for t > p we get

|

|

|

|

|

q0ki

q0ki − p + 1

|

|

|

|

|

≤
⎧

⎪

⎨

⎪

⎩

p if q ≥ p,

1 if q < 0,

whence (3.18) gives

(

∫Ai+1
uq0k

i+1

)
1
k

≤ Sp,�C̃p2p(i+1)T −p ∫Ai
uq0k

i (3.21)

with

C̃p =

{

[1 + p]p if q ≥ p

2p if q < 0.

If q ∈ (0, p), taking the ki-th root in (3.20), iterating and explicitly computing the sums, we
infer

supA∞ u
q0 = lim

i→∞

(

∫Ai
uq0k

i+1

)
1

ki+1

≤ (Sp,�C̃p)
∑∞
j=0 k

−j
[2k]p

∑∞
j=0(j+1)k

−j
T −p

∑∞
j=0 k

−j

∫A0
uq0

= (Sp,�C̃p,�)
k
k−1 [2k]

pk2

(k−1)2 T −
kp
k−1

|A0|⨏A0
uq0

(3.22)
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Taking the q0-th root and applying Hölder inequality with exponents q
q0
> 1 and q

q−q0
when

q0 < q, we obtain

supA∞ u ≤ (Sp,�C̃p,�)
k

(k−1)q0 [2k]
pk2

(k−1)2q0 T
− kp
(k−1)q0

|A0|
1
q0

(

⨏A0
uq
)

1
q

. (3.23)

It is enough to set C̄p,� = C̃p,�[2k]
pk
k−1 and use the definition of k to deduce (3.12). The case

q ≥ p is analogous by using (3.20), while, for q < 0, iterating (3.21) we get

(

infA∞ u
)−|q0|

= sup
A∞

uq0 ≤ (Sp,�C̄p)
k
k−1 2

pk2

(k−1)2 T −
kp
k−1

|A0|⨏A0
uq0

≤ (Sp,�C̃p)
k
k−1 2

pk2

(k−1)2 T −
kp
k−1

|A0|

(

⨏A0
uq
)

q0
q

,

(3.24)

that implies (3.14) because of our definition of k and C̄p,� .

The above proposition allows to deduce a Harnack inequality with a sharp rate of growth
as p→ 1.

Theorem 3.4. Fix p ∈ (1,∞). Let u be a positive solution ofΔpu = 0 on a ballB6R = B6R(x0),
and suppose that the following weak (1, p)-Poincaré inequality holds onB4R, for some constant
P1,p:

⨏Br(y)
| −  ̄Br(y)| ≤ P1,pr

{

⨏B2r(y)
|∇ |p

}
1
p

∀ ∈ Lipc(B4R), (3.25)

for every ball Br(y) ⋐ B2R. Assume the validity of the Sobolev inequality

(

∫ | |
�p
�−p

)
�−p
�

≤ Sp,� ∫ |∇ |p ∀ ∈ Lipc(B4R),

for some � > p and Sp,� > 0. Then, having fixed p0 ∈ (p, �), the following Harnack inequality
holds:

sup
BR

u ≤ ℋ
1
p−1
p,� inf

BR
u,

with constant

ℋp,� = exp

⎧

⎪

⎨

⎪

⎩

c2P1,p

[

|B6R|
|B2R|

]
1
p
Q−2p

⎫

⎪

⎬

⎪

⎭

, (3.26)

where c2 > 0 is a constant depending only on � and p0,

Q = inf
�∈[1, �

�−p ]

(

Sp,�Cp,�
)− ��

p R�� |B2R|
−�

and
Cp,� = 2� max

{

[1 + p]p, 3p��
pp(� − p)�−p

}

. (3.27)
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Remark 3.5. By means of Hölder inequality, the weak (1, 1)-Poincaré inequality (3.3) implies
(3.25) with P1,p = P1,1. Therefore, having fixed � > 0 such that Ric ≥ −(m − 1)�2 on B6R,
Remark 3.1 guarantees that Sp,� remains bounded as p→ 1, so the Harnack constant in (3.26)
blows up just like exp{c∕(p − 1)} as p→ 1, which is sharp.

Proof. Weuse the abstract version of the John-Nirenberg inequality due to Bombieri andGiusti
[10, Thm. 4]. To this aim, we shall estimate from above

Λ ≐ sup
r∈[R,2R]

inf
�>0

{

⨏Br

|

|

|

|

log u
�
|

|

|

|

}

≤ sup
r∈[R,2R]

{

⨏Br
| log u − log uBr |

}

≤ sup
r∈[R,2R]

P1,pr
[

⨏B2r
|∇ log u|p

]
1
p
,

with log uBr the mean value of log u on Br. Applying the Caccioppoli inequality (3.9) with
q̄ = 0 we deduce that for every � ∈ C(B6R) ∩W

1,p
0 (B6R)

∫ �p|∇ log u|p ≤
(

p
p − 1

)p

∫ |∇�|p,

and in particular, if � is a piecewise linear cut-off of B2r inside B3r,

∫B2r
|∇ log u|p ≤

(

p
(p − 1)r

)p
|B3r|,

which implies

Λ ≤ sup
r∈[R,2R]

P1,pr
p

(p − 1)r

(

|B3r|
|B2r|

)
1
p
≤ P1,p

p
p − 1

(

|B6R|
|B2R|

)
1
p
. (3.28)

To agree with the notation in [10], for t ∈ [0, 1] and k ∈ ℝ∖{0} we define

ℬt = B(t+1)R, |u|k,t =

{

⨏ℬt

uk
}

1
k

, |u|+∞,t = sup
ℬt

u, |u|−∞,t = infℬt
u.

For q > 0 and q0, � as in Lemma 3.3, set �̄ = �q∕q0. Inequalities (3.12) and (3.14) imply that,
for each 0 ≤ s < r ≤ 1,

|u|∞,s ≤
{

Q̄(r − s)�̄
}−1∕q

|u|q,r, |u|−∞,s ≥
{

Q̄(r − s)�̄
}1∕q

|u|−q,r

where
Q̄ =

(

Sp,�C̄p,�
)− �q

pq0R
�q
q0
|ℬr|

− q
q0

and C̄p,� is, according to the value of q, any of the constants in (3.13), (3.15). Taking into
account that Cp,� in (3.27) is the maximum of the those constants, minimizing Q̄ over all
choices of q0 ∈

(

�−p
� q, q

]

we obtain

Q̄ ≥ inf
�∈[1, �

�−p ]

(

Sp,�Cp,�
)− ��

p R�� |ℬ1|
−� ≡ Q.
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Furthermore, since (r − s) ≤ 1, we can replace �̄ with the larger � = �2∕(� − p0). Hence, for
every q > 0,

|u|∞,s ≤ {Q(r − s)�}−1∕q |u|q,r

|u|−∞,s ≥ {Q(r − s)�}1∕q |u|−q,r.

We are now in the position to apply Theorem 4 in [10] to deduce the existence of a constant c2
just depending on � (hence, on �, p0) such that

sup
ℬ0

u ≤ exp
{

c2Λ
Q2

}

inf
ℬ0
u.

In view of (3.28), this concludes the proof.

We first apply the half-Harnack inequality to give a sharp upper bound for the Green kernel
 on an open set Ω ⊂ M , provided that a weighted Sobolev inequality holds on the entire Ω.
Let � be a function satisfying

� ∈ C(ℝ+0 ), � > 0, �(t) non decreasing on ℝ+0 , (3.29)

Let o ∈M and set r(x) = dist(x, o). We will be interested in weighted Sobolev inequalities of
the type

(

∫ �(r)−
p
�−p

| |
�p
�−p

)
�−p
�

≤ Sp,� ∫ |∇ |p ∀ ∈ Lipc(Ω), (3.30)

for sets Ω ⊂ M . Various classical examples of manifolds satisfying (3.30) in the unweighted
case � = 1 will be discussed below. To our knowledge, Sobolev inequalities with a nontrivial
weight were first investigated on manifolds with non-negative Ricci curvature by V. Minerbe
[54], see also generalizations in [27, 75]. We will focus on them in Section 3.2.

Theorem 3.6. Let Ω ⊂ M be a connected open set, and denote with r is the distance from a
fixed origin o ∈ Ω. Assume that Ω supports the weighted Sobolev inequality (3.30) for some
p ∈ (1, �), constant Sp,� > 0 and weight � satisfying (3.29). Then, Δp is non-parabolic on Ω
and, letting (x) be the Green kernel of Δp on Ω with pole at o,

(x) ≤ C
1
p−1
p,� �

(

2r(x)
)

1
p−1 r(x)−

�−p
p−1 , ∀ x ∈ Ω∖{o}, (3.31)

where

Cp,� = S
�
p
p,�

[

2�p(1 + p)p
(

p
p − 1

)p−1
]
�−p
p

is bounded as p→ 1 if so is Sp,� . In particular, if

�(t) = o (t�−p) as t → ∞. (3.32)

then (x)→ 0 as r(x)→∞ in Ω.

Remark 3.7. For p = 2 and � ≡ 1, Theorem 3.6 was obtained in [60] by integrating the
corresponding decay estimate for the heat kernel.
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Proof. The non-parabolicity of Δp on Ω is a standard consequence of (3.30). Indeed, by con-
tradiction, assume that there exists a relatively compact open set K ⋐ Ω with capp(K,Ω) = 0.
Evaluating (3.30) along a sequence { j} ⊂ Lipc(Ω) with  j = 1 on K and ‖∇ j‖Lp(Ω) → 0,
and letting j → ∞, we contradict the positivity of � on K . To show (3.31), without loss of
generality we can assume that  is the Green kernel of a smooth, relatively compact domain
Ω′ ⋐ Ω, the thesis then follows by taking an exhaustion {Ωj} ↑ Ω and the limit of the cor-
responding kernels. Let x ∈ Ω and let � ∈ (0, 1) be a constant to be chosen later. Choose l
satisfying

sup
Ω′∩)B(1−�)r(x)

 < l (3.33)

and such that (2.3), (2.4) hold with, respectively,  ≡ 1 and  = . In particular,

∫{≤l}
|∇|p = l ∫{=l}

|∇|p−1 = l. (3.34)

Since  is p-harmonic on Ω′ ⧵ {o} and it diverges at the pole o by Theorem 2.4, the maximum
principle implies that its super-level sets are connected, thus

{ > l} ⊂ B(1−�)r(x).

Again by the maximum principle, sup)Br∩Ω′  is a non-increasing function of r. Extend 
with zero on M∖Ω′, and observe that Δp ≥ −�o on M . To apply Lemma 3.3 to  with
t = r(x) and the choices A∞ = Bt(2−�)∖Bt, T = �t, q = �p∕(� − p), notice that (3.30)
restricted to B2t∖B(1−�)t together with our assumptions (3.29) on � implies the unweighted
Sobolev inequality

(

∫ | |
�p
�−p

)
�−p
�

≤ Sp,��(2t)
p
�
∫ |∇ |p ∀ ∈ Lipc

(

Ω ∩ B2t∖B(1−�)t
)

. (3.35)

Although B2t∖B(1−�)t may not entirely lie in the set where (3.35) holds, we can still apply
Lemma 3.3 since , and therefore the test functions in the Moser iteration, vanish outside of
Ω; hence, we obtain

‖‖L∞()Bt) ≤
(

Sp,�C̄p,�
)

�−p
p2 �(2t)

�−p
�p (�t)−

�−p
p

(

∫B2t∖B(1−�)t


�p
�−p

)
�−p
�p

≤
(

Sp,�C̄p,�
)

�−p
p2 �(2t)

1
p (�t)−

�−p
p

(

∫B2t∖B(1−�)t
�(r)−

p
�−p

�p
�−p

)
�−p
�p

,

(3.36)

where in the last inequality we used the monotonicity of � in (3.29), and where

C̄p,� = 2�[1 + p]p.

Plugging in the Sobolev inequality (3.35) the test function  = min{,l} ∈ Lipc(Ω), and
using the fact that  =  on Ω∖B(1−�)t ⊂ { ≤ l} together with (3.34), we get

(

∫B2t∖B(1−�)t
�(r)−

p
�−p

�p
�−p

)
�−p
�

≤
(

∫ �(r)−
p
�−p 

�p
�−p

)
�−p
�

≤ Sp,� ∫ |∇ |p

= Sp,� ∫{≤l}
|∇|p = Sp,�l.

(3.37)
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If we denote with ‖ ⋅ ‖s the L∞ norm on )Bs, inserting into (3.36) we infer

‖‖t ≤ S
�
p2
p,� C̄

�−p
p2
p,� �

(

2r(x)
)
1
p t−

�−p
p �−

�−p
p
‖‖

1
p
(1−�)t. (3.38)

Fix � ∈ (0, 1) and consider a sequence {�k}k≥0 ⊂ [1,∞) with the property that

�k+1 > �k for k ≥ 0, (3.39)

to be specified later, and construct inductively sequences {tk}, {�k} for k ≥ 0 as follows:

t0 = t, �0 = 1 − ��1 , �k = 1 − ��k+1−�k for k ≥ 1,

tk+1 = (1 − �k)tk = t��k+1 .

Set for convenience

Ĉ = S
�
p2
p,� C̄

�−p
p2
p,� �

(

2r(x)
)
1
p . (3.40)

We iterate (3.38) i-times for the chosen �k, tk and use that � is increasing (so we can use Ĉ at
every step of the iteration) to deduce

‖‖t0 ≤ Ĉt
− �−p

p
0 �

− �−p
p

0 ‖‖
1
p
t1

≤ Ĉ1+p
−1[
t0t

p−1
1

]− �−p
p
[

�0�
p−1
1

]− �−p
p
‖‖

1
p2
t2

≤ … ≤ Ĉ
∑i
k=0 p

−k

[ i
∏

k=0
(tk�k)p

−k

]− �−p
p

‖‖
1

pi+1
ti+1

.

(3.41)

We shall find a suitable sequence {�k} such that

P1 ≐
∞
∏

k=0
(tk�k)p

−k
= t

p
p−1 (1 − ��1 )

∞
∏

k=1

[

��k − ��k+1
]

1
pk

converges with nice estimates as p→ 1. Taking the logarithm, this amounts to estimating from
below the sum

∞
∑

k=1

1
pk
log

[

��k − ��k+1
]

by ( 1
p−1 ). For fixed � > 1, we choose �k inductively by taking

�1 = 1, �k+1 =
log (��k − �� )

log �
,

so in particular,

��k − ��k+1 = �� , hence �k+1 > �k >… > �1 = 1.

Note also that �k ∈ (1, �) for every k, since �� < ��k and therefore tk = t��k ≥ t�� . With such
a choice,

∞
∑

k=1

1
pk
log

[

��k − ��k+1
]

= � log �
∞
∑

k=1

1
pk
=
� log �
p − 1
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and thus
P1 = t

p
p−1 (1 − ��1 ) exp

{

� log �
p − 1

}

= t
p
p−1 (1 − �)�

�
p−1 .

Recalling that ‖‖r, is a non-increasing function of r, ‖‖ti+1 ≤ ‖‖t�� and therefore

lim
i→∞

‖‖
1

pi+1
ti+1

≤ lim
i→∞

‖‖
1

pi+1

t�� = 1.

Thus, letting i → ∞ and computing the sum at the exponent of Ĉ , we deduce from (3.42) the
upper bound

‖‖t ≤ Ĉ
p
p−1

[ ∞
∏

k=0
(tk�k)p

−k

]− �−p
p

= Ĉ
p
p−1 t−

�−p
p−1

[

(1 − �)�
�
p−1

]− �−p
p .

Finally, letting � → 1, maximizing in � ∈ (0, 1) to estimate

max
�∈(0,1)

(1 − �)�
1
p−1 =

p − 1
p

p−
1
p−1

and recalling the definition of Ĉ we eventually obtain

‖‖t ≤
(

p
p − 1

)
�−p
p
S

�
p(p−1)
p,� C̄

�−p
p(p−1)
p,� �(2r(x))

1
p−1 t−

�−p
p−1 p

�−p
p(p−1) . (3.42)

Estimate (3.31) then follows from the definition of C̄p,� .

Remark 3.8. It should be pointed out that the non-standard iteration carried out in the above
proof allowed to obtain a constant Cp,� which remains bounded as p → 1. Standard dyadic
iterations, or variants thereof, would produce constants which diverge as p→ 1.

We conclude this section by describing a few relevant examples where (3.30) holds on the
entireM with � = m and no weight:

(

∫ | |
mp
m−p

)
m−p
m

≤ Sp,m ∫ |∇ |p ∀ ∈ Lipc(M), (3.43)

and consequently

(x) ≤ C
1
p−1
p,m r(x)

−m−p
p−1 for x ∈M∖{o}. (3.44)

We stress that, by [13, Prop. 2.5] and [65], (3.43) holds onM possibly with a different constant
Sp,m if and only if M has infinite volume and (3.43) holds outside some compact set of M .
However, from the proof in [65] it is unclear whether the boundedness of the Sobolev constant
outside of a compact set as p→ 1 implies that of the global Sobolev constant.

Remark 3.9. As in the end of Remark 3.1, if the L1 Sobolev inequality

(

∫ | |
m
m−1

)
m−1
m

≤ S1,m ∫ |∇ | ∀ ∈ Lipc(M) (3.45)

holds for some S1,m > 0, then (3.43) holds for every p ∈ (1, m) with � = m and constant

Sp,m =
[S1,mp(m − 1)

m − p

]p

→ S1,m as p→ 1.
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Example 3.10. We recall that a Cartan-Hadamard space is a complete, simply-connected man-
ifold with non-positive sectional curvature. LetMm → Nn be a complete, minimal immersion
into a Cartan-Hadamard space. By [30], the L1 Sobolev inequality (3.45) holds on M , and
consequently, for each p ∈ (1, m) the kernel  of Δp satisfies (3.44).

Example 3.11. If Ric ≥ 0 onM and m ≥ 3, then

M enjoys (3.45) ⟺ lim
t→∞

|Bt|
V0(t)

≐ Θ > 0,

that is, M has maximal volume growth. Indeed, referring to Remark 3.1, one observes that
the constant in (3.7) is uniform in R provided that Θ > 0 (this result can also be found in [71,
Thm. 3.3.8]), so implication ⇐ holds. On the other hand, ⇒ holds irrespectively of a bound
on the Ricci tensor, see [13] and [64, Lem. 7.15].

Example 3.12. LetMm be a complete manifold satisfying

(i) Ric ≥ −(m − 1)�2⟨ , ⟩ for some � > 0, and

inf
x∈M

|B1(x)| = � > 0; (3.46)

(ii) for some p ∈ (1, m) and Pp > 0, the Poincaré inequality

∫ | |p ≤ Pp ∫ |∇ |p ∀ ∈ Lipc(M). (3.47)

By work of N. Varopoulos (see [26], Thm. 3.2), because of (i) M enjoys the L1 Sobolev
inequality with potential

(

∫ | |
m
m−1

)
m−1
m

≤ S1,m ∫
[

|∇ | + | |
]

∀ ∈ Lipc(M), (3.48)

for some S1,m depending on (m, �, �). Using again as a test function | |
p(m−1)
m−p , by Hölder

inequality and rearranging we get (see [26, Lem. 2.1])

(

∫ | |
mp
m−p

)
m−p
m

≤ Sp,m ∫
[

|∇ |p + | |p
]

∀ ∈ Lipc(M), (3.49)

for some Sp,m depending on (m, �, �, p). Assumption (ii) then guarantees (3.43) with � = m.

Example 3.13. Two metric spaces (M, dM ) and (N, dN ) are said to be roughly isometric if
there exist ' ∶M → N and constants " > 0, C1 ≥ 1, C2 ≥ 0 such that B"('(M)) = N and

C−11 dM (x, y) − C2 ≤ dN
(

'(x), '(y)
)

≤ C1dM (x, y) + C2 ∀ x, y ∈M.

The notion was introduced by M. Kanai, who proved in [42, Thm. 4.1] that ifM and N are
roughly isometric manifolds of the same dimension, both satisfying the condition

(iii) Ric ≥ −(m − 1)�2⟨ , ⟩, inj(M) > 0
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for some constant � > 0, where inj(M) denotes the injectivity radius ofM , then

(3.45) holds onM ⟺ (3.45) holds onN.

In particular, a manifold Mm satisfying (iii) and roughly isometric to ℝm enjoys (3.45), and
therefore (3.43) with � = m. Under the same assumptions, Δp is parabolic for each p ≥ m,
see [32, Thm. 3.16], and thus (3.43) is false for any m ≤ p < �. We remark in passing that
inj(M) > 0 implies a lower bound for the volume as in (3.46), see [22, Prop. 14].

Question. If Ric ≥ −(m − 1)�2⟨ , ⟩ one may wonder under which additional conditions the
Green’s kernel has an exponential decay of the type

(x) ≤ Cp,mmin
{

r(x)−
m−p
p−1 , e−�r(x)

}

for some constants Cp,m, � > 0 depending on (�, m, p). Work of P. Li and J. Wang, [51],
suggests that this could be the case provided conditions (i) and (ii) in Example 3.12 hold.

3.2 Properness under volume doubling and Poincaré inequalities
In this section we investigate in detail the class of manifolds supporting global doubling and
weak (Neumann) Poincaré inequalities.

Definition 3.14. LetMm be a complete Riemannian manifold.

(VD) we say thatM has the global doubling property if there exists a constant CD > 1 such
that

|B2r(x)| ≤ CD |Br(x)| for each x ∈M, r > 0.

(NPq,p) given 1 ≤ q ≤ p < ∞, we say that the weak (q, p)-Poincaré inequality holds on M if
there exists a constant Pq,p, depending on (q, p, m), such that

{

⨏Br(x)
| −  ̄Br(x)|

q
}

1
q
≤ Pq,pr

{

⨏B2r(x)
|∇ |p

}
1
p

(3.50)

for each x ∈M , r > 0 and  ∈ Lipc(M).

Remark 3.15. In view of Bishop-Gromov volume comparison and (3.3), both (VD) and (NPp,p)
(for every p ≥ 1) hold if Ric ≥ 0 onM . Furthermore, by [21, Thm. 7.1 and Prop. 2.3], if two
manifolds M1,M2 have Ricci curvature bounded from below and are roughly isometric (see
Example 3.13) via a map ' which also satisfies

C−1|B1(x)| ≤ |B1('(x))| ≤ C|B1(x)| ∀ x ∈M1

for some constant C > 1, then (VD), (NPp,p) hold onM1 if and only if they hold onM2.

Remark 3.16. An application ofHölder inequality shows that (NP1,1)⇒ (NP1,p) and (NPp,p)⇒
(NPq,p)⇒ (NP1,p) for each 1 ≤ q ≤ p.

A standard iteration, see [29, Lem. 8.1.13], shows that (VD) implies:

∀B′s ⊂ Bt balls,
|B′s|
|Bt|

≥ C
(s
t

)�
with � = log2 CD and C = C(CD ). (3.51)

The constant � is called the doubling dimension ofM .
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Remark 3.17. From the asymptotic behavior of |Br| as r→ 0, it follows that � ≥ m.

Under an additional condition first introduced by V. Minerbe, [54], which is in some sense
the reverse of (3.51), manifolds supporting (VD) and (NPp,p) satisfy a weighted Sobolev in-
equality. The next theorem was obtained for p = 2 in [54] and recently extended by D.
Tewodrose in [75]. We quote the following simplified version of [75, Thm 1.1].

Theorem 3.18. Let Mm be a complete manifold satisfying (VD) and (NPp,p) for some p ∈
[1, �), with doubling dimension � = log2 CD . Assume that there exist constants Cℛ > 0,
b ∈ (p, �] and a point o ∈M such that

∀ t ≥ s > 0,
|Bt(o)|
|Bs(o)|

≥ Cℛ
( t
s

)b
. (3.52)

Then, there exists Sp,� depending only on CD , p, Pp,p, b and Cℛ such that

(

∫M

[

r�

|Br(o)|

]− p
�−p

| |
�p
�−p

)

�−p
�

≤ Sp,� ∫M
|∇ |p, ∀ ∈ Lipc(M). (3.53)

Remark 3.19. If Ric ≥ −C(1 + r)−2⟨ , ⟩ and satisfies a few further conditions, a weighted
Sobolev inequality with polynomial weights can be found in [27].

Remark 3.20. Condition (3.52) holds, for instance, provided that there exist C̄ > 1 and b ∈
(p, m] such that the balls Bt centered at a fixed origin o satisfy

C̄−1tb ≤ |Bt| ≤ C̄tb ∀ t ≥ 1.

The constant Cℛ then only depends on C̄, m and on the lower boundH for the Ricci curvature
on, say, B6. Indeed, if 1 ≤ s ≤ t then

|Bt|
|Bs|

≥ 1
C̄2

( t
s

)b
= C1

( t
s

)b
. (3.54)

On the other hand, if 0 < s ≤ t ≤ 1, Remark 3.1 guarantees a bound for the L1-Sobolev
(isoperimetric) constantS onB1 in terms ofmax[0,6]H and of |B1|, hence ofH, C̄ . Integrating

the inequality |)B�| ≥ S−1|B�|
m−1
m from s to t and using volume comparison we get

(

|Bt|
|Bs|

)
1
m
≥ 1 + t − s

mS |Bs|1∕m
≥ 1 + t − s

mSVℎ(s)1∕m
≥ 1 + C2

( t
s
− 1

)

≥ min{C2, 1}
t
s
,

thus raising to the m-th power and using b ≤ m,

|Bt|
|Bs|

≥ C3
( t
s

)m
≥ C3

( t
s

)b
. (3.55)

The case t > 1 > s > 0 follows by combining (3.54) and (3.55), respectively with s = 1 and
t = 1.

If we define
�(t) = sup

s∈(0,t]

s�

|Bs(o)|
, (3.56)
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and observe that � is finite since � ≥ m, a direct application of Theorems 3.18 and 3.6 yields
a pointwise decay for . However, in applications to the IMCF we need to guarantee that the
constant Cp,� in (3.31), hence Sp,� , remains bounded on sets (1, p0] ⊂ (1, �). We shall prove it
whenM supports (VD) and (NP1,1). Note that, although Theorem 3.18 guarantees the validity
of (3.53) for p = 1, it seems not immediate to deduce from it a weighted Sobolev inequality for
p ∈ (1, �). We therefore have to keep track of the constants in [75], a procedure that requires
some comments. First, by [29, Thm. 9.1.15] and in view of (3.51), on a complete manifold
satisfying (VD), (NP1,1) there exists a constant S (CD ,P1,1) such that

(

⨏Br(y)
| −  ̄Br(y)|

1∗
)

1
1∗

≤ S r⨏Br(y)
|∇ | ∀ y ∈M, ∈ Lip(Br(y)), (3.57)

In the next Lemma, we examine the behavior of the Lp Sobolev constant for p ∈ (1, �).

Lemma 3.21. LetM be a complete manifold satisfying (VD) and (NP1,1), with doubling di-
mension � = log2 CD . Then, for each p0 ∈ (1, �), there exists a constant S̄ depending on
CD ,P1,1, p0 such that, for each p ∈ [1, p0],

(

⨏Br(y)
| −  ̄Br(y)|

�p
�−p

)
�−p
�

≤ S̄ r
(

⨏Br(y)
|∇ |p

)
1
p

∀ y ∈M, ∈ Lip(Br(y)), (3.58)

Proof. Set for convenience B = Br(y) and q∗ =
�q
�−q . Define g = | −  ̄B|p

∗∕1∗ . Then,
applying (3.57) we deduce

(

⨏B
| −  ̄B|p

∗
)

1
1∗

=
(

⨏B
g1

∗
)

1
1∗

≤
(

⨏B
|g − ḡB|1

∗
)

1
1∗

+
(

⨏B
ḡ1

∗

B

)
1
1∗

≤ S r⨏B
|∇g| + ⨏B

g.

(3.59)

However, by Hölder inequality

⨏B
|∇g| =

p∗

1∗ ⨏B
| −  ̄B|

p∗
1∗ −1

|∇ | ≤ p∗

1∗

(

⨏B
g1

∗
)

p−1
p
(

⨏B
|∇ |p

)
1
p
.

We apply Young inequality ab ≤ ("a)q′

q′ + (b∕")q

q with the conjugate exponents

q =
p∗

1∗
, q′ =

p(� − 1)
�(p − 1)

To obtain

S r⨏B
|∇g| ≤ S r"

p(�−1)
�(p−1) �(p − 1)
� − p

(

⨏B
g1

∗
)

1
1∗

+ S r"−
p∗
1∗

(

⨏B
|∇ |p

)
p∗
1∗p

We choose " such that
"
p(�−1)
�(p−1) = 1

S rp∗

and plug into (3.59) to deduce

(

⨏B
g1

∗
)

1
1∗

≤ p
⎡

⎢

⎢

⎣

S r
(

S rp∗
)
�(p−1)
�−p

(

⨏B
|∇ |p

)
p∗
1∗p
+ ⨏B

g
⎤

⎥

⎥

⎦

. (3.60)
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If p∗∕1∗ ≤ 1∗, then we can apply Hölder inequality and (3.57) to get

⨏B
g = ⨏B

| −  ̄B|
p∗
1∗ ≤

(

⨏B
| −  ̄B|1

∗
)

p∗

(1∗)2

≤ (S r)
p∗
1∗

(

⨏B
|∇ |

)
p∗
1∗

≤ (S r)
p∗
1∗

(

⨏B
|∇ |p

)
p∗
1∗p
.

Inserting into (3.60) and taking power 1∗∕p∗ we deduce (3.58) with constant

S̄ = Sp
1∗
p∗

[

(p∗)
�(p−1)
�−p + 1

]
1∗
p∗

,

which is uniformly bounded for p ∈ [1, p0]. If p∗∕1∗ > 1∗ it is enough to iterate defining
p1 in such a way that p∗∕1∗ = p∗1 and applying the above procedure with p = p1 to estimate
the last term in brackets in (3.60) by the integral of g1∕1∗ . The iteration stops at step k where
p∗∕(1∗)k ≤ 1∗.

Remark 3.22. In particular, the above proposition and Hölder inequality guarantee that a man-
ifold satisfying (VD) and (NP1,1) also supports (NPp,p) for each p ∈ (1, �), with a constantPp,p
that is uniformly bounded above on compact intervals [1, p0] ⊂ [1, �).

Next, by [54, Prop. 2.8], (VD), (NPp,p) and property (3.52) guarantee the following rela-
tively connected annuli property:

there exists � > 1 depending on p, CD ,Pp,p, Cℛ , b such that for each R > 0, any two
points in )BR(o) can be joined by a path that lies in BR(o)∖B�−1R(o).

The constant �, explicitly computed in [54], remains bounded as p → 1 if so does Pp,p, and
diverges as p → b. As a consequence, see [75, Prop. 2.7], from the decomposition of M
into annuli Aj = B�j+1 (o)∖B�j (o) one obtains a good covering {Ui,a, U∗i,a, U

♯
i,a}(i,a)∈Λ whose

constants Q1, Q2 can be chosen to be independent of p ∈ (1, p0] ⊂ (1, b) for each pair of
measures dx, d�p,p∗ , with dx the Riemannian volume and

d�p,p∗ =
[

r�

|Br(o)|

]− p∗
�
dx.

Thus, by Proposition 4.3 and Lemmas 4.1, 4.8 in [75], discrete p-Poincaré inequalities hold
with constants which are independent of p ∈ (1, p0]. These, together with Lemma 3.21 above,
ensure the validity of local Sobolev inequalities onUi,a andU∗i,a, with Sobolev constants which
are uniformly bounded for p ∈ (1, p0]. The patching Theorem 2.3 in [75] yields the weighted
Sobolev inequality (3.53) with constant Sp0,� only depending on p0, CD ,P1,1, as claimed. De-
fine � as in (3.56). As mentioned above, � is finite since � ≥ m, and then Theorems 3.18 and
3.6 imply the following

Theorem 3.23. Let Mm be a complete manifold satisfying (VD) and (NP1,1), with doubling
dimension � = log2 CD . Assume that there exist constants Cℛ > 0, b ∈ (1, �] and a point
o ∈M such that

∀ t ≥ s > 0,
|Bt(o)|
|Bs(o)|

≥ Cℛ
( t
s

)b
.
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Then, for each p0 ∈ (1, b), there exists Sp0,� depending only on CD , P1,1, p0, b and Cℛ such
that, for each p ∈ (1, p0], the Green kernel of Δp on an open set Ω ⊂ M with pole at o ∈ Ω
satisfies

(x) ≤ C
1
p−1
p,�

[

sup
t∈(0,2r(x))

t�

|Bt(o)|

]
1
p−1

r(x)−
�−p
p−1 , ∀ x ∈ Ω∖{o}, (3.61)

where

Cp,� = S
�
p
p0,�

[

2�p(1 + p)p
(

p
p − 1

)p−1
]
�−p
p

.

4 Convergence as p→ 1
We hereafter require the following

Assumption: there exists p0 ∈ (1, m) such that (ℋp) holds for every p ∈ (1, p0) with

H(t) ≥ 0, H(t) non-increasing on ℝ+.

where (ℋp) is defined in Subsection 2.1.

Thus, we can define % = %p as in (2.19) for each p ∈ (1, p0), and by the gradient estimates
in Theorem 2.19, |∇%p| ≤ 1. Up to passing to a subsequence, %p → %1 in the C0,�loc topology
onM , for some %1 that is 1-Lipschitz. Here we investigate conditions to guarantee that %1 is
positive onM∖{o} and proper onM . The following observation will be repeatedly used.

Lemma 4.1. Let ℎ ∈ C(ℝ+0 ) be positive and increasing on ℝ+, fix R ∈ (0,∞] and let {tj} ⊂
(0, R) converging to some t ∈ (0, R). Fix p0 > 1 and let {pj} ⊂ (1, p0) with pj → 1. IfR = ∞,
assume further that

v
− 1
p0−1

ℎ ∈ L1(∞). (4.1)

Then,

1
vℎ(t)

= lim
j→∞

[

∫

R

tj
vℎ(s)

− 1
pj−1 ds

]pj−1

. (4.2)

Proof. Note first that (4.1) and the monotonicity of vℎ implies that v
− 1
p−1

ℎ ∈ L1(∞) for each
p ∈ (1, p0), in particular, the integrals in the RHS of (4.2) are finite. Let c ∈ (0, t), and choose
j be large enough such that tj > c. Then,

lim sup
j→∞

[

∫

R

tj
vℎ(s)

− 1
pj−1 ds

]pj−1

≤ lim sup
j→∞

‖

‖

‖

‖

1
vℎ

‖

‖

‖

‖L
1

pj−1 ([c,R))
=
‖

‖

‖

‖

1
vℎ

‖

‖

‖

‖L∞([c,R))
= 1
vℎ(c)

,

where, in the last step, we used the monotonicity of vℎ. Letting c ↑ t proves an inequality in
(4.2). The reverse inequality follows similarly.

We first relate %1 to the solution of the IMCF produced by R. Moser in [56], and then
comment about the inequality |∇%1| ≤ 1: setting

wp(x) = (1 − p) logp(x) = (1 − p) logG ℎ
p
(

%p(x)
)

,
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then
Δpwp = |∇wp|p (4.3)

pointwise onM ⧵ {o} and, because of Theorem 2.4, weakly onM . Suppose that %1 > 0 on
M∖{o}. Then, passing to a subsequence and using (4.2),

wp → log vℎ(%1) ≐ w1 locally uniformly onM∖{o} as p→ 1,

and by [56]w1 is a weak solution of the IMCF in the sense of Huisken-Ilmanen [35] onM∖{o}.
It is convenient to consider the translated solutionw = w1−log!m−1 = logℎ(%1)m−1, in terms
of which the inequality |∇%1| ≤ 1 can be rephrased as

|∇w| ≤ (m − 1)e−
w
m−1ℎ′

(

ℎ−1(e
w
m−1 )

)

.

In particular, if Ric ≥ −(m − 1)�2 onM , an explicit computation gives

|∇w| ≤ (m − 1)e−
w
m−1

√

�2e
2w
m−1 + 1. (4.4)

These are the bounds described in Theorems 1.3 and 1.4 in the Introduction. We can interpret
the following in terms of smooth IMCF. The term |∇w| represents the unnormalized mean
curvature  of the level set ){w < t}, which, along a smooth IMCF, is positive and varies
according to

)t = −Δ
( 1


)

−
|∇�|2


−
Ric(�, �)


, (4.5)

with∇� the second fundamental form of ){w < t}. Newton’s inequality andRic ≥ −(m−1)�2
imply

1
2
)t2 ≤ −Δ

( 1


)

− 2

m − 1
+ (m − 1)�2.

thus we obtain, in the sense of barriers,

)tmax{2∕2} ≤ − 2
m − 1

max{2∕2} + (m − 1)�2.

Integrating the ODE and taking square roots we get

max{}(t) ≤ (m − 1)e−
t

m−1

√

�2e
2t
m−1 +

[

max{2}(0)
(m − 1)2

− �2
]

. (4.6)

This agrees with (4.4) for a suitable translate ofw. Estimate (4.4) is therefore a version of (4.6)
when the flow is not regular and the level set ){w < t} is allowed to be non-compact.

To establish the positivity of %1, we shall prove the following strong maximum principle which
is a consequence of the sharp control on the constants in the Harnack inequality:

Theorem 4.2 (Strong maximum principle). Assume that Δp is non-parabolic onM for p ∈
(1, p0), letMℎ be a model from below and define %p onM∖{o} according to (2.11). Assume
that %p → %1 locally uniformly, for some sequence pj → 1. Then, either %1 ≡ 0 on M or
%1 > 0 onM∖{o}.
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Proof. Suppose that %1 ≢ 0 onM∖{o}, and pick x ∈ M∖{o} satisfying %1(x) > 0. By (4.2),
this is equivalent to

lim
j→∞

(pj − 1) logpj (x) <∞.

Let y ∈M∖{o}, and chooseR1 in such away that x, y belong to the same connected component
of M∖BR1 . Set also R2 = max{r(x), r(y)} and r = R1∕15. Let {Br(xi)}Ni=1,be a maximal
collection of disjoint balls contained in the annulus A(R1, R2) ≐ BR2 (o)∖BR1 (o). Choosing
a constant � ≥ 0 such that Ric ≥ −(m − 1)�2⟨ , ⟩ on B4R2 (o), Bishop-Gromov comparison
ensures that

|A(R1, R2)| ≥
∑

i
|Br(xi)| ≥ N|B2R2 (xi)|

V�(r)
V�(2R2)

≥ N|A(R1, R2)|
V�(r)
V�(2R2)

,

Thus
N ≤

V�(2R2)
V�(r)

.

Since the family {B2r(xi)} covers A(R1, R2) and B6r(xi) ⋐ M∖{o}, we can cover a path
 ⊂ A(R1, R2) joining y to x via a chain of at mostN balls {Bl} chosen in the family {B2r(xi)}
and with Bl ∩ Bl+1 ≠ ∅. In view of Remark 3.1, both the L1 Poincaré and the L1 Sobolev
holds on each Bi, with uniform constants depending on a lower bound on the Ricci curvature
on B6R2 (o) and a lower bound for |BR2 (o)|. Therefore, by Theorem 3.4 there exists a constant
C1 > 1 depending on m, �,R2, |BR2 (o)| but independent of

pj ∈
(

1,min
{

p0,
2m − 1
2m − 2

})

,

such that

sup
Bl

pj ≤ C
1

pj−1

1 inf
Bl

pj for each Bl.

Iterating and taking logarithms,

(pj − 1) logpj (y) ≤ (pj − 1) logpj (x) + (pj − 1)N
logC1
pj − 1

,

and therefore (pj − 1) logpj (y) tends to a finite limit. Consequently, %1(y) > 0.

The next important Nondegeneracy Lemma ensures a control from below for %1 on balls
containing the origin.

Proposition 4.3 (Nondegeneracy). Let Ω ⊆ M be an open set, and let Mℎ be a model.
Assume that Δp is non-parabolic both on Ω and onMℎ for every p ∈ (1, p0). For every such
p let %p be the fake distance associated by (2.19) to the Green kernel of Δp on Ω with pole at
o ∈ Ω. Suppose that %p → %1 locally uniformly along some sequence pj → 1, and that

%1 > 0 on Ω∖{o}.

Then,
∀K ⋐ Ω∖{o}, inf

K
%1(x) > 0 (4.7)

and

%1(x) ≥ min

{

v−1ℎ

(

r(x)m−1

Sm1,m,R2
m2−1

)

, lim inf
x→Ω∩)BR

%1(x)

}

on BR ∩ Ω, (4.8)
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where, for R > 0, S1,m,R is the L1 Sobolev constant on BR = BR(o) for which
(

∫ | |
m
m−1

)
m−1
m

≤ S1,m,R ∫ |∇ | ∀ ∈ Lipc(BR).

Proof. To prove (4.7), note that for every " such that B" = B"(o) ⋐ Ω does not intersect K ,
the construction of the kernel p on Ω guarantees that sup)B" p = supΩ∖B" p. Rephrasing in
terms of %p and letting p→ 1, this implies

inf
Ω∖B"

%1 ≥ inf)B"
%1 > 0,

and leads to (4.7) and to the positivity of the lower bound in (4.8). To prove (4.8), consider the
kernels {′p} of a relatively compact domain Ω′ ⋐ Ω. Set

� = lim inf
x→Ω∩)BR

%1(x),

fix 0 < �′′ < �′ < � and let

Θ′p ≐ G
ℎ
p
(

�′
)

= ∫

∞

�′
vℎ(s)

− 1
p−1 ds.

By local uniform convergence, for p ∈ {pj} close enough to 1, %p > �′ on Ω ∩ )BR, that is,
p < Θ′p there, and since 

′
p ≤ p we have

{′p > Θ
′
p} ⋐ Ω ∩ BR. (4.9)

By Remark 3.9, for each p ∈ (1, m) there exists Sp,m,R such that
(

∫ | |
mp
m−p

)
m−p
m

≤ Sp,m,R ∫ |∇ |p ∀ ∈ Lipc
(

BR
)

, (4.10)

and Sp,m,R → S1,m,R as p → 1. To obtain the desired inequality in the limit p → 1, we apply
Theorem 3.6 to the function (′p − Θ

′
p)+, that is the Green kernel of the set {′p > Θ

′
p} where

(4.10) holds, to obtain

′p(x) ≤ Θ
′
p + C

1
p−1
p,m,Rr(x)

−m−p
p−1 on {′p > Θ

′
p}∖{o},

with
Cp,m,R → C1,m,R = Sm1,m,R2

m2−1. (4.11)

Letting Ω′ ↑ Ω we deduce

p(x) ≤ Θ′p + C
1
p−1
p,m,Rr(x)

−m−p
p−1 on {p > Θ′p}∖{o} = {%p < �

′}∖{o}. (4.12)

A computation that uses (4.2) shows that

lim inf
p→1

[

Θ′p + C
1
p−1
p,m,Rr(x)

−m−p
p−1

]p−1

= max
{

C1,m,Rr(x)1−m,
1

vℎ(�′)

}

and thus, from {%1 < �′′} ⊂ {%p < �′} for p small enough, raising (4.12) to power p − 1,
letting p → 1 and applying Lemma 4.1 we infer

1
vℎ(%1(x))

≤ max
{

C1,m,Rr(x)1−m,
1

vℎ(�′)

}

= C1,m,Rr(x)1−m ∀ x ∈ {%1 < �′′},

where the last equality follows since otherwise %1(x) ≥ �′, contradicting x ∈ {%1 < �′′}. We
therefore obtain (4.8) by letting �′′ ↑ �.
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We are now ready to prove ourmain theorems concerning proper solutions of the IMCF.We
first consider the case of a flow issuing from a point. The next two results prove, respectively,
Theorems 1.3 and 1.4 in the Introduction.

Theorem 4.4. Let (Mm, ⟨ , ⟩) be a complete Riemannian manifold supporting the L1 Sobolev
inequality (3.45) and satisfying, for some origin o ∈ M and some 0 ≤ H ∈ C(ℝ+0 ) non-
increasing,

Ric ≥ −(m − 1)H(r)⟨ , ⟩,

with r(x) = dist(x, o). Then, the fake distance %1 is positive, proper on M∖{o} and there it
satisfies

⎧

⎪

⎨

⎪

⎩

v−1ℎ

(

r(x)m−1

Sm1,m2
m2−1

)

≤ %1(x) ≤ r(x) on M,

|∇%1| ≤ 1 a.e. on M.

(4.13)

Furthermore, w = log vℎ(%1) is a solution of the IMCF issuing from o.

Proof. By Remark 3.9, the L1 Sobolev inequality implies the non-parabolicity of Δp for each
p ∈ (1, m). Hence, also Mℎ is non-parabolic and %p is well defined. Proposition 2.12 and
Theorem 2.19 guarantee that %p → %1 up to a subsequence, for some %1 ≤ r that is 1-Lipschitz.
Next, by Theorem 3.6 the bound (3.31) holds for each p and no weight. Therefore, the sequence
%p is locally bounded away from zero and %1 > 0 onM∖{o}. The lower bound in (4.13) follows
as in the proof of Proposition 4.3, applied with Ω = M : in this case, the global Sobolev
inequality guarantees that we can verbatim follow the proof by setting R = ∞, � = �′ = �′′ =
∞ and Θ′p = 0.

Remark 4.5 (Asymptotically nonnegative Ricci curvature). Particularly interesting is the
case where Ric ≥ −(m − 1)H(r)⟨ , ⟩ with

0 ≤ H(t) non-increasing on ℝ+, iH ≐ ∫

∞

0
tH(t)dt <∞. (4.14)

In this case, under the assumptions of Theorem 4.4 the fake distance is of the same order of r:
indeed, by work of Greene-Wu [25, Lem. 4.5], the volume vℎ ofMℎ satisfies

vℎ(t) ≤ e(m−1)iH v0(t) on ℝ+,

and thus, taking into account the value of the L1 Sobolev constant Sℝm = m
−m−1

m !
− 1
m

m−1 of ℝ
m,

the first in (4.13) implies
[

e−iH
(

Sℝm

S1,m

)
m
m−1 m

2m+1

]

r(x) ≤ %1(x) ≤ r(x) on M.

We conjecture that the constant m∕2m+1 should be replaced by 1. Observe that if this were
the case, one would be able to recover a rigidity result of M. Ledoux [48], who showed that
ℝm is the only manifold with Ric ≥ 0 for which a Sobolev inequality holds with constant
S1,m = Sℝm . See also [66] and the references therein for improvements.

Our secondmain result is for manifolds satisfying the assumptions in Theorem 3.23. Recall
that a smooth manifold has doubling dimension � ≥ m.
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Theorem 4.6. LetMm be a connected, complete non-compact manifold satisfying

Ric ≥ −(m − 1)H(r)⟨ , ⟩,

for some origin o ∈ M and some 0 ≤ H ∈ C(ℝ+0 ) non-increasing. Assume further the
global doubling and weak (1, 1)-Poincaré properties (VD), (NP1,1) with constants CD ,P1,1
and doubling dimension � = log2 CD , and that there exist Cℛ and b ∈ (1, �] such that

∀t ≥ s > 0,
|Bt|
|Bs|

≥ Cℛ
( t
s

)b
, (4.15)

where balls are centered at o. Then, the fake distance %1 is positive and proper on M∖{o}.
Moreover, there exist constants C, C̄ depending on H(0), Cℛ , CD ,P1,1, b, m, with C̄ also de-
pending on a lower bound for the volume |B1|, such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

v−1ℎ

(

Cr(x)�−1 inf
t∈(1,r(x))

|Bt|
t�

)

≤ %1(x) ≤ r(x) on M∖B1,

C̄r(x) ≤ %1(x) ≤ r(x) on B1,

|∇%1| ≤ 1 a.e. on M.

(4.16)

Finally, w = log vℎ(%1) is a solution of the IMCF issuing from o.

Proof. Theorem 3.23 guarantees that Δp is non-parabolic for each p ∈ (1, p0], and that

(1 − p) log(x) ≥ − log

{

Cp,�

[

sup
t∈(0,2r(x))

t�

|Bt|

]

r(x)p−�
}

, ∀ x ∈M∖{o}, (4.17)

with Cp,� uniformly bounded for p ∈ (1, p0]. Proceeding as in Theorem 4.4 shows that %1
exists and is 1-Lipschitz. Letting p→ 1 in (4.17) we therefore obtain

vℎ
(

%1(x)
)

≥ C−11,�

[

inf
t∈(0,2r(x))

|Bt|
t�

]

r(x)�−1 on M.

By volume comparison on B1, we deduce |Bt|∕tm ≥ C1|B1| for t ∈ [0, 1], where the constant
C1 depends on H(0), and thus |Bt|∕t� ≥ C1|B1|tm−� ≥ C1|B1|. Therefore, by the doubling
condition, for r(x) ≥ 1

inf
t∈(0,2r(x))

|Bt|
t�

≥ C2 inf
t∈(0,r(x))

|Bt|
t�

≥ C2min
{

C1|B1|, inf
t∈(1,r(x))

|Bt|
t�

}

≥ C3 inf
t∈(1,r(x))

|Bt|
t�
.

Thus, the first inequality in (4.16) holds. Next, (4.15) implies |Bt|∕t� ≥ Cℛ|B1|tb−� for t ≥ 1,
hence

vℎ
(

%1(x)
)

≥ C4|B1|r(x)b−1 on M∖B1. (4.18)
In particular, %1 is proper and thus strictly positive onM∖{o} by Theorem 4.2. To prove the
lower bound in B1, we use the Nondegeneracy Lemma with R = 1 taking into account (4.18)
to deduce

%1(x) ≥ min
{

v−1ℎ

(

r(x)m−1

Sm2m2−1

)

, v−1ℎ (C4|B1|)
}

on B1, (4.19)

where S is the Sobolev constant of B1. By Remark 3.1, S can be estimated in terms of a lower
bound for |B1| and a lower bound for Ric on B6 (that is, onH(0)). Hence, the right hand side
of (4.19) can be estimated from below by C̄r(x), for some constant C̄ depending on the same
parameters as C and also on a lower bound for |B1|. This concludes the proof.
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Remark 4.7. IfM has asymptotically non-negative Ricci curvature, see Remark 4.5, taking
into account (4.18), the first in (4.16) can be rewritten as

C ′r(x)
b−1
m−1 ≤ %1(x) ≤ r(x) on M∖B1,

where C ′ depends on the same parameters as C , on a lower bound for |B1| and also on iH in
(4.14).

Proof of Theorem 1.4. It is enough to apply Theorem 4.6 with the choicesH = 0, ℎ(t) = t. By
Bishop-Gromov comparison, the doubling constant can be chosen to be CD = 2m, so � = m.
Note that the translated function w = (m − 1) log %1 satisfies (4.4) with � = 0.

We next consider the flow starting from a relatively compact set Ω and we give the

Proof of Theorem 1.7. We recall that given the p-capacity potential up of (Ω,M), the (proper)
solution of the IMCF is obtained as the limit

w(x) = lim
p→1

(1 − p) log up(x).

For p ∈ [1, p0), define the fake inner and outer p-radii:

R(p)i = sup
{

t ∶ {%p < t} ⊂ Ω
}

, R(p)o = inf
{

t ∶ Ω ⊂ {%p < t}
}

.

Note that, by the uniform convergence of %p,

Ri = lim infp→1
R(p)i , Ro = lim sup

p→1
R(p)o .

By comparison, up satisfies
[

G ℎ
p
(

R(p)i
)

]−1
p(x) ≤ up(x) ≤

[

G ℎ
p
(

R(p)o
)

]−1
p(x), (4.20)

hence taking logarithms, multiplying by 1 − p, letting p→ 1 and using Lemma 4.1 we infer

log vℎ
(

%1(x)
)

− log vℎ
(

Ro
)

≤ w(x) ≤ log vℎ
(

%1(x)
)

− log vℎ
(

Ri
)

. (4.21)

Also, since %p ≤ r, the definition of R(p)i and the monotonicity ofH yield

Ric ≥ −(m − 1)H(r)⟨ , ⟩ ≥ −(m − 1)H
(

R(p)i
)

⟨ , ⟩ on M∖Ω,

and we can use Theorem 2.22 to deduce the bound

(p − 1)|∇ log up| ≤ max
{

(m − 1)
√

H
(

R(p)i
)

, (p − 1)max
)Ω

|∇ log up|
}

. (4.22)

Next, by the boundary gradient estimate in [46, Prop. 3.1] (cf. also [35]), for fixed " > 0 there
exists p" ∈ (1, p0) depending on " and on the geometry of a neighbourhood of )Ω such that

(p − 1)max
)Ω

|∇ log up| ≤ max)Ω
+ + " ∀ p ∈ (1, p"), (4.23)

with+(x) = max{(x), 0}. Taking limits in (4.22) in p and eventually letting "→ 0 we get

|∇w| ≤ max
{

(m − 1)
√

H(Ri), max)Ω
+

}

, (4.24)

which concludes the proof.
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Remark 4.8. If Ric ≥ 0, (4.24) gives the estimate

|∇w| ≤ max
)Ω

+,

which forces max)Ω+ > 0. This is consistent with a result of A. Kasue (see [43, Thm. C
(2)], cf. also [1, Thm. 1.6]), stating that if a complete, noncompact manifold with Ric ≥ 0
contains a relatively compact subsetΩwith ≤ 0, thenM∖Ω splits isometrically as )Ω×ℝ+0 .
Clearly, none of these manifolds satisfy the volume growth condition (4.15).

Remark 4.9. The gradient estimate in (4.24) can be improved, under the same assumptions,
to include a decay in terms of %1. The procedure goes as follows: define a fake distance %̄p via
the identity

G ℎ
p
(

R(p)i
)

up(x) = G ℎ
p
(

%̄p(x)
)

.

Because of (4.20), we deduce

%̂p ≐ (G ℎ
p )
−1

⎛

⎜

⎜

⎝

G ℎ
p (%p)

G ℎ
p
(

R(p)i
)

G ℎ
p
(

R(p)o
)

⎞

⎟

⎟

⎠

≤ %̄p ≤ %p. (4.25)

Hence, the inequality %p ≤ r that follows by Proposition 2.12 implies Ric ≥ −H(%̄p)⟨ , ⟩, thus
we can apply Lemma 2.17 to get

|∇%̄p| ≤ max
{

1, max
)Ω

|∇%̄p|
}

.

Rephrasing in terms of up and recalling that up = 1 on )Ω implies %̄p = R
(p)
i on )Ω,

|∇ log up| ≤
|

|

|

(logG ℎ
p )
′(%̄p)

|

|

|

⋅max

⎧

⎪

⎨

⎪

⎩

1,
max)Ω |∇ log up|
|

|

|

(logG ℎ
p )′(R

(p)
i )

|

|

|

⎫

⎪

⎬

⎪

⎭

.

Because of themonotonicity of (logG ℎ
p )
′ in Lemma 2.10, and because of the boundary gradient

estimate (4.23), if p is close enough to 1 then

(p − 1)|∇ log up| ≤
|

|

|

(logG ℎ
p )
′(%̂p)

|

|

|

⋅max

⎧

⎪

⎨

⎪

⎩

p − 1,
" + max)Ω+
|

|

|

(logG ℎ
p )′(R

(p)
i )

|

|

|

⎫

⎪

⎬

⎪

⎭

. (4.26)

Explicit computations can be performed in relevant cases, notably when H(r) = �2∕r2 for
some constant � ≥ 0. A solution of ℎ′′ = Hℎ is

ℎ(t) = t�
′ with �′ = 1 +

√

1 + 4�2
2

≥ 1

(technically, ℎ does not solve the initial condition for the derivative in (2.6) when � > 0, nor
H is continuous in zero, but this can be handled via Sturm comparison, cf. Remark 2.25 and
[64, 5, 8]). Computing G ℎ

p we deduce that %̂p = %pR
(p)
i ∕R

(p)
o in (4.25), so we can rewrite (4.26)

as follows:

(p − 1)|∇ log up| ≤
�′(m − 1) − p + 1

%p

R(p)o
R(p)i

⋅max

{

1,
R(p)i

(

" + max)Ω+
)

�′(m − 1) − p + 1

}

, (4.27)
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Letting p→ 1 and then "→ 0 we eventually infer

|∇w| ≤
Ro
%1
max

{

�′(m − 1)
Ri

, max
)Ω

+

}

, (4.28)

to be compared to (1.5).

5 Basic isoperimetric properties of the sets {%1 < t}
Let %1 be the fake distance constructed in either Theorem 4.4 or Theorem 4.6, and let w =
log vℎ(%1) be the associated solution of the IMCF. The purpose of this section is to estimate
the isoperimetric profile of the sets {%1 < t}. We recall that, if �M denotes the family of subsets
ofM with finite perimeter, the isoperimetric profile ofM is the function

IM ∶ (0, vol(M)), IM (�) = inf
{

ℋm−1()∗Ω) ∶ Ω ∈ �M , vol(Ω) = �
}

,

whereℋm−1 is the (m − 1)-dimensional Hausdorff measure and )∗Ω is the reduced boundary
of Ω. A subset realizing IM (�) is called an isoperimetric subset. By an application of Bishop-
Gromov comparison theorem, it is known (cf. [41, Thms. 3.4-3.5] and [55, Prop. 3.2]) that
under the condition

Ric ≥ −(m − 1)H(r)⟨ , ⟩ on M (5.1)

for some 0 ≤ H ∈ C(ℝ+0 ) non-increasing, then the area of )Br(o) is no bigger than the
surface area of the ball Br ⊂ Mℎ centered at the origin and having the same volume as Br(o).
Moreover, rigidity holds in case of equality, namely, Br(o) and Br are isometric. The theorem,
stated in [41, 55] for constant H , also holds for each H ≥ 0 non-increasing and is, in fact, a
consequence of the concavity of the area of )Br as a function of the volume:

s↦ vℎ
(

V −1ℎ (s)
)

is strictly concave on ℝ+. (5.2)

Property (5.2) follows from Lemma 2.10, since a first differentiation shows that it is equiv-
alent to the decreasing monotonicity of v′ℎ∕vℎ. As a consequence, IM does not exceed the
isoperimetric profile of geodesic balls centered at the origin inMℎ.

Remark 5.1. If H ≥ 0 is non-increasing, then Br is never an isoperimetric set inMℎ unless
H is constant on [0, r]. Indeed, )Br is even unstable: to see this we use the Riccati equation
(2.17) to write its stability operator J as

J = −Δ)Br −
(

Ricℎ(∇r,∇r) + | II)Br |
2
)

= −
ΔS

ℎ2(r)
+ (m − 1)

(

ℎ′(r)
ℎ(r)

)′
,

with ΔS the Laplacian on the unit sphere Sm−1 ⊂ ℝm. Since the first nonzero eigenvalue of
Sm−1 is m − 1, J is non-negative for variations � with ∫Mℎ

� = 0 if and only if

1
ℎ2(r)

≥ −
(

ℎ′(r)
ℎ(r)

)′
, that is,

(

ℎ′(r)
)2 − ℎ(r)ℎ′′(r) ≤ 1. (5.3)

However, ((ℎ′)2 − ℎℎ′′)(0+) = 1 and ((ℎ′)2 − ℎℎ′′)′ = −ℎ2H ′. Therefore, if H is non-
increasing then (5.3) holds if and only ifH is constant on [0, r]. To our knowledge, the problem
of deciding which conditions onH guarantee that balls Br ⊂ Mℎ are isoperimetric sets is still
partly open, and in this respect see [12]. However, more can be said for surfaces, see Theorems
2.8 and 2.16 in [70] as well as Theorem 3.1 in [34].
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Our purpose is to show that, similarly, the perimeter of the subsets {%1 < t} is smaller
than the one of balls inMℎ centered at the origin and having the same volume. We shall first
describe in more detail the behavior of %1 near the origin.

Proposition 5.2. Let %1 be the fake distance with origin at o constructed in either Theorem 4.4
or Theorem 4.6. Then,

(i) %1(x) ∼ r(x) as x→ o,

(ii)
ℋm−1(){%1 < t})

vℎ(t)
→ 1 as t → 0.

(5.4)

Proof. Let BR0 (o) ⊂ Do and choose �̄ to satisfy Secrad ≤ �̄2 on BR0 (o). By reducing R0 we
may assume that R0 < min{1, �∕(2�̄)}. For p ∈ (1, 3∕2), let v�̄ and G �̄

R0
be the volume of

spheres and the kernel of Δp for the model of curvature �̄2. By Corollary 2.8,

G ℎ
R0

(

r(x)
)

≤ (x) ≤ G �̄
R0

(

r(x)
)

+ sup
)BR0

. (5.5)

Using Theorem 3.6, there exists a constant Cp bounded as p→ 1 such that

(x) ≤ C
1
p−1
p R

−m−p
p−1

0 on )BR0 .

Plugging into (5.5), raising to power (p−1), letting p→ 1, taking logarithms and using Lemma
4.1, we get

− log vℎ
(

r(x)
)

≤ − log vℎ
(

%1(x)
)

≤ log lim sup
p→1

[

G �̄
R0

(

r(x)
)

+ C
1
p−1
p R

−m−p
p−1

0

]p−1

≤ logmax
{

C1R
1−m
0 , 1

v�̄(r(x))

}

≤ − log v�̄
(

r(x)
)

,

(5.6)

where the last inequality follows provided that we choose x ∈ BR with v�̄(R) ≤ Rm−10 ∕C1,
and (i) follows immediately. We next use (i) to show (ii) via blow-up: consider the exponential
chart BR0 ⊂ ℝm → BR0 (o) with polar coordinates (s, �), and let ⟨ , ⟩ be the pull-back metric.
For � > 0 we define the dilation

T� ∶ B∗R0
�

→ B∗R0 , T�(s, �) = (�s, �),

and set g� = �−2T ∗� ⟨ , ⟩. Then, g� converges locally smoothly on ℝm to the Euclidean metric
g0 as � → 0, and by rescaling w� = w◦T� is a solution of the IMCF on (B∗R0∕�, g�). To pass
to limits in � we shall normalize w�, so for fixed (s0, �0) and for � < R0∕s0 define

w̄�(s, �) = w�(s, �) −w�(s0, �0) on B∗R0
�

.

In the next computation, crucial for us are the gradient bound |∇%1| ≤ 1 and (5.6), that guar-
antees %1 ≥ Cr on B∗R0 . Indeed, if ∇

�, | ⋅ |� are the gradient and norm in the metric g�,

|∇�w̄�(s, �)|2� = �
2
|∇w(�s, �)|2 = �2

[

v′ℎ
vℎ
(%1)

]2
|∇%1|2 ≤ �2 C1

%21(�s,�)
≤ C2

s2
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for uniform constants C1 and C2. This and w̄�(s0, �0) = 0 guarantee that w̄� → w̄0 locally in
C� on ℝm∖{0}, with w̄0(s0, �0) = 0, and by the compactness Theorem 2.1 in [35] (tweaked to
include the case of variable metrics) w̄0 is a solution of the IMCF on ℝm∖{0}. By [35, Prop.
7.1], w̄0 is necessarily a flow of spheres, thus w̄0(s, �) = (m − 1) log(s∕s0). The regularity
result in [35, Thm. 1.3] ensures that for fixed � the sets ){w̄� < �} possess uniform C1,�
bounds in �, outside of a set of Hausdorff dimension m − 8. Therefore,

∀ � ∈ ℝ, ℋm−1
g�

(

){w̄� < �}
)

→ ℋm−1
g0

(

){w̄0 < �}
)

= !m−1sm−10 e� (5.7)

and by rescaling

ℋm−1
g�

(

){(s, �) ∶ w̄�(s, �) < �}
)

= �1−mℋm−1
⟨ , ⟩

(

){(r, �) ∶ w(r, �) < � +w(�s0, �0)}
)

. (5.8)

Rephrasing (5.6) in terms of w, for fixed " > 0 there exists R" such that

w(x) = (m − 1) log r(x) + log!m−1 + o"(1) on B∗R" (o), (5.9)

where o"(1) is a function that vanishes as " → 0, uniformly on BR" (o). Having defined t
according to

log vℎ(t) = � +w(�s0, �0), so that, by (5.9), tm−1 = e�(�s0)m−1(1 + o"(1)),

from (5.7) and (5.8) we deduce

1 = lim
�→0

ℋm−1(){%1 < t})
!m−1�m−1sm−10 e�

= (1 + o"(1)) limt→0
ℋm−1(){%1 < t})

!m−1tm−1
,

and the conclusion follows by letting "→ 0.

With the above preparation, we are ready to investigate the sets {%1 < t}. Let p0 > 1 be
close enough to 1 in such a way that Δp is non-parabolic on M for p ∈ (1, p0) (p0 = m for
Theorem 4.4, p0 = b for Theorem 4.6). For t > 0 and u ∈ C(M) define

Au(t) =
1

vℎ(t) ∫{%p=t}
u|∇%p|p−1, Vu(t) =

1
Vℎ(t) ∫{%p≤t}

u|∇%p|p.

Lemma 5.3. Suppose that % = %p is proper onM . If u ∈ C(M) ∩W 1,1
loc (M∖{o}) then Vu is

absolutely continuous on ℝ+ and Au is a.e. equivalent to an absolutely continuous function.
Moreover Vu,Au are differentiable on an open dense subset of ℝ+ and

(i) V ′
u (t) =

vℎ(t)
Vℎ(t)

[

Au(t) −Vu(t)
]

(ii) A ′
u(t) =

1
vℎ(t) ∫{%=t}

|∇%|p−2⟨∇u, �⟩.
(5.10)

with � = ∇%∕|∇%|.

Proof. Identity (i) and the absolute continuity of V is a simple consequence of the coarea’s
formula:

Vu(t)′ =
(

1
Vℎ

)′

∫{%<t}
u|∇%|p + 1

Vℎ ∫{%=t}
u|∇%|p−1 = 1

V 2ℎ

[

−vℎ ⋅ (VℎVu) + Vℎ(vℎAu)
]
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To prove (ii), let t be a regular value for %. Applying (2.3) with  = u and a suitable l = l(t)
we get

u(o) = ∫{%<t}
|∇|p−2⟨∇,∇u⟩ − ∫{%=t}

|∇|p−2u⟨∇, ∇%
|∇%|

⟩

= ∫{%<t}
|∇%|p−2

vℎ(%)
⟨∇%,∇u⟩ −Au(t).

(5.11)

Hence, Au(t) coincides a.e with an absolutely continuous function, and (ii) follows by differ-
entiating (5.11) in t and using the coarea’s formula.

If p < m, we note from (5.11) and Proposition 2.13 that

u(o) = lim
t→0

Au(t) ∀ u ∈ C1(M).

Thus, if u ≡ 1, from Lemma 5.3 we obtain

A1(t) ≡ 1, V1(t) =
1

Vℎ(t) ∫

t

0
vℎ(s)A1(s)ds ≡ 1. (5.12)

Theorem 5.4. Let %1 be the fake distance constructed in either Theorem 4.4 or Theorem 4.6,
with pole at o. Then,

(i) ℋm−1(){%1 < t}
)

= ℋm−1()int{%1 ≤ t}
)

= vℎ(t) ∀ t ∈ ℝ+,

(ii) |{%1 < t}| ≥ Vℎ(t) ∀ t ∈ ℝ+.
(5.13)

Proof. Letw = log vℎ(%1) be the associated solution of the IMCF. Because of the Minimizing
Hull Property 1.4 and Lemma 1.6 in [35],

e−sℋm−1(){w < s}
)

= e−sℋm−1()int({w ≤ s})
)

is constant for s ∈ ℝ.

Changing variables according to s = log vℎ(t), and taking into account (ii) in Proposition 5.2,
we immediately deduce (i). To prove (ii), for t ∈ [0,∞), let pj ↓ 1 and fix a sequence ti ↑ t
such that, for each i, ti is a regular value of each %pj . Using |∇%pj | ≤ 1 and the uniform
convergence of %pj we get, for each i,

|{%1 < t}| ≥ lim
j→∞

|

|

|

|

|

|

∞
⋃

l=j
{%pl ≤ ti}

|

|

|

|

|

|

≥ lim inf
j→∞

|{%pj ≤ ti}| ≥ lim infj→∞ ∫{%pj≤ti}
|∇%pj |

pj . (5.14)

Using

∫{%pj≤ti}
|∇%pj |

pj = Vℎ(ti)V1(ti) = Vℎ(ti)

and letting i → ∞ we infer |{%1 < t}| ≥ Vℎ(t) for every t.

Remark 5.5. Adifferent way of using p-Laplace type equations to investigate the isoperimetric
properties of Riemannian manifolds can also be found in [23].
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