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Abstract

We study the most general supersymmetric warped M-theory backgrounds with

non-trivial G-flux of the type R

1,2 × M8 and AdS3 × M8. We give a set of

necessary and sufficient conditions for preservation of supersymmetry which are

phrased in terms of G-structures and their intrinsic torsion. These equations may

be interpreted as calibration conditions for a static “dyonic” M-brane, that is, an

M5-brane with self-dual three-form turned on. When the electric flux is turned

off we obtain the supersymmetry conditions and non-linear PDEs describing M5-

branes wrapped on associative and special Lagrangian three-cycles in manifolds

with G2 and SU(3) structures, respectively. As an illustration of our formalism,

we recover the 1/2-BPS dyonic M-brane, and also construct some new examples.
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1 Introduction

Recently there has been considerable interest in trying to understand the types of geometries

that arise in supersymmetric solutions of supergravity theories. When all fields are turned off,

apart from the metric, it has long been known that supersymmetric solutions are described

by special holonomy manifolds – for example, Calabi-Yau manifolds or manifolds of G2

holonomy. However, for many applications one is interested in solutions where the fluxes are

turned on. These include important areas of research, such as the AdS/CFT correspondence,

or phenomenological models based on string/M-theory compactifications.

Until recently, the study of supersymmetric solutions with non-vanishing fluxes has been

based mostly on physically motivated ansatze for the supergravity Killing spinor equations.

While this method has led to many interesting results, a more systematic approach is clearly

desirable. In [1] it was advocated that the G-structures defined by the Killing spinors pro-

vide such a formalism. Subsequent works have used this approach to analyse and classify

supersymmetric backgrounds in various supergravity theories [2, 3, 4, 5, 6, 7, 8, 9, 10]. Using

the language of G-structures and their “intrinsic torsion” one can rewrite the supersymmetry

equations of interest in terms of an equivalent set of first-order equations for a particular set

of forms.

Another point, emphasized in [1] (and based on [11]), is the fact that some of the result-

ing conditions have an interpretation in terms of “generalised calibrations” [12, 13]. This

was further elaborated on in [5] and [7]. Generalised calibrations extend to backgrounds

with fluxes the original notion of calibrations in special holonomy manifolds [14], and their

physical significance is then that supersymmetric probe branes have minimal energy. On

a more practical level, the formalism based on G-structures can often be very useful for

actually finding new solutions in a given supergravity theory. For instance, in [1, 5, 7] new

examples were found this way, while in lower dimensions [2, 9, 10] the general form for all

supersymmetric solutions was given.

In this paper we study M-theory on eight-manifolds – that is, supersymmetric warped

M-theory backgrounds of the type M3 × M8, with M3 either Minkowski3 or AdS3 space.

Supersymmetric compactifications of M-theory to three dimensions have been considered

before in [15, 16, 17, 18, 19, 20]. The types of geometries described in these papers may

be thought of as M2-brane solutions where the transverse space is a manifold of special

holonomy. Alternatively, one may think of them as compactifications on a special holonomy

manifold where one includes some number of space-filling M2-branes in the vacuum.

One of our motivations was to investigate more general types of supersymmetric solutions
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to M-theory on eight-manifolds. In particular, there should clearly be another way to obtain

an N = 1 Minkowski vacuum from M-theory – namely, one may wrap M5-branes over a

supersymmetric three-cycle in a G2-holonomy manifold (times an S1). After including the

backreaction of the M5-brane on the geometry, one no longer expects the eight-manifold

to have special holonomy, but rather a more general G2-structure with intrinsic torsion

related to the G-flux. Similarly, M5-branes wrapped on special Lagrangian three-cycles in

a Calabi-Yau three-fold yield N = 2 in three dimensions. We will show how these various

geometries may be obtained by relaxing the assumptions of [15, 18]; in particular we relax

the assumption that the internal spinor is chiral. Furthermore, this generalisation yields

supersymmetric AdS3 compactifications, which were excluded before. The method we use

relies on local equations, and thus also covers non-compact geometries; examples of typical

interest are solutions describing wrapped branes or brane intersections.

The M-theory five-brane has a self-dual three-form gauge field that propagates on its

world-volume. Turning on this field induces an electric coupling to the C-field, and therefore

also an M2-brane charge. Thus the backreaction of such a “dyonic” M5-brane should cor-

respond to some more general supersymmetric solution with electric and magnetic G-flux.

In fact, we will see how such solutions arise in our formalism. One can argue that the most

general supersymmetric solution of the form M3 ×M8 is of this type, with the M2-brane

solutions being a limit in which the M5-brane disappears completely.

The plan of the paper is as follows. In section 2 we give a brief summary of what is known

about M-theory on eight-manifolds. This will also allow us to introduce our notations and

conventions. We then describe how one extends the analysis to allow for more general

supersymmetric solutions with fluxes. The key point is to allow for a generic spinor on the

internal space – in particular, we do not impose that it be chiral. Thus, in addition to the

M2-brane-type of solutions, one also expects M5-brane-type solutions, including “dyonic” or

“interpolating” solutions which have both charges present, and also AdS3 solutions.

In section 3 we show how the conditions for supersymmetry may be recast into the

language of G-structures and intrinsic torsion. In particular, we argue that there is a G2 ⊂
SO(8) structure and obtain a simple set of differential conditions on the forms that comprise

it. By examining the intrinsic torsion one can show that these conditions are necessary and

sufficient for supersymmetry. We also give the Bianchi identity and equations of motion in

this formalism and briefly discuss the issue of compact eight-manifolds. When the external

manifold is R1,2, a simple inspection of the Einstein equations shows that one cannot have

compact manifolds with flux, unless higher order corrections are included.
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In section 4 we turn our attention to the physical interpretation of the differential cond-

tions on the G2-structure. We show how these may be interpreted as generalised calibration

conditions for the M5-brane. We argue that the geometries that these equations describe

correspond to “dyonic” M5-branes wrapped over associative three-cycles in a G2-holonomy

manifold. Moreover, we show that supersymmetric probe M5-branes saturate a calibration

bound on their energy. We find that the M5-brane world-volume theory gives rise not only

to an M5-brane type of calibration, but also one gets the M2-brane calibration “for free”.

In section 5 we specialise our discussion to the case of “pure” M5-branes (that is, with

no electric flux) wrapped on associative and special Lagrangian (SLAG) three-cycles. We

recover the results for wrapped NS5-branes in type IIA theory [1] in the special case that the

vector constructed as a spinor bilinear is Killing so that one can dimensionally reduce along

this direction. We also comment on the relationship of our approach with the work of [21]. In

particular, we give the supersymmetry constraints and the non-linear PDEs (following from

the Bianchi identity) that one must solve to find solutions describing M5-branes wrapped

over associative and SLAG three-cycles. Furthermore, we discuss how our approach may be

extended straightforwardly to obtain a similar description of five-branes wrapped on other

calibrated cycles.

In section 6 we discuss the case in which the internal (magnetic) G-flux is swithed off. In

this case our equations simplify drastically and we are able to give the most general solution.

In particular, we show that all AdS3 solutions may be viewed as AdS4 solutions, foliated

by copies of AdS3, with a weak G2-holonomy manifold as internal space. We show how the

compactifications of [15, 18, 20] are recovered in a degenerate limit in which the internal

spinor becomes chiral and, therefore, the G2-structure becomes a Spin(7)-structure.

As illustration of our formalism in section 7 we give some explicit examples. We easily

recover the dyonic M-brane solution of [22]. This solution describes a 1/2-BPSM5/M2 bound

state and serves as a simple example of the essential features of our geometries. We discuss

also the relevance of our work to the recent “dielectric flow” solutions of [23, 24, 25]. These in

fact also lie within our class of geometries. We present a class of singular solutions based on

G2-holonomy manifolds, where the M5-brane is completely smeared over the G2-manifold.

Appendix A gives a discussion of G2-structures. Appendix B includes a brief discussion

of the Hamiltonian formulation of the M5-brane theory. Appendix C contains some relations

useful in the main text.
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2 M-theory on eight-manifolds

In this section we begin the analysis of eight-dimensional warped compactifications of M-

theory. After summarising the status quo regarding the M2-brane-like solutions of [15, 18,

20], we then go on to describe how one extends the analysis to allow for more general

supersymmetric solutions with fluxes.

The fields of eleven-dimensional supergravity consist of a metric ĝMN , a three-form po-

tential C with field strength G = dC, and a gravitino ψM . Supersymmetric backgrounds are

those for which the gravitino vanishes and there is at least one solution to the equation

δψM = ∇̂Mη −
1

288

(

GNPQRΓ̂
NPQR

M − 8GMNPQΓ̂
NPQ

)

η = 0 . (2.1)

Here η is a spinor of Spin(1, 10), and Γ̂M form a representation of the eleven-dimensional

Clifford algebra, {Γ̂M , Γ̂N} = 2ĝMN . We take the spacetime signature to be (−,+, . . . ,+),

so that one may take Γ̂M to be hermitian for M 6= 0 and anti-hermitian for M = 0.

Geometrically, (2.1) is a parallel transport equation for a generalised connection, taking

values in the full Clifford algebra, whose holonomy lies in SL(32,R) [26]. In our conventions

the equations of motion are

R̂MN − 1

12
(GMPQRĜN

PQR − 1

12
ĝMNGPQRSĜ

PQRS) = 0 (2.2)

d ∗̂G+
1

2
G ∧G = 0 . (2.3)

One also has the Bianchi identity dG = 0. Generically the field equations (2.2) and (2.3)

receive higher order corrections. In particular, the latter equation has a contribution X8 on

the right hand side, where

X8 = −(2π)2

192

(

p21 − 4p2
)

. (2.4)

Here pi is the i
th Pontryagin form, and we have set the M2-brane tension equal to one.

We will consider supersymmetric geometries with Poincaré or AdS invariance in three

external dimensions. Thus a general such ansatz for the metric is of the form

dŝ211 = e2∆(ds23 + gmndx
mdxn) (2.5)

and for the G-field we take the maximally symmetric ansatz

Gµνρm = ǫµνρgm

Gmnpq arbitrary , (2.6)
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where here, and henceforth, Greek indices run over 0, 1, 2 and Latin indices run over 3, . . . 10

– that is, over the internal manifold. We adopt the standard realisation of the eleven-

dimensional Clifford algebra Cliffeven(R1,10) ≃ Mat(32,R) ≃ Cliff (R1,2)⊗Cliff (R0,8), namely

Γ̂µ = e∆(γµ ⊗ γ9)

Γ̂m = e∆(1⊗ γm) (2.7)

A convenient explicit representation of the three-dimensional Clifford algebra is given by

γ0 = iσ1, γ1 = σ2, γ2 = σ3, where {σk | k = 1, 2, 3} are the Pauli matrices. The eight-

dimensional gamma-matrices are 16×16 real, symmetric matrices. We have also γ29 = 1. An

eleven-dimensional spinor η is likewise decomposed into three and eight-dimensional spinors

as

η = ψ ⊗ ξ . (2.8)

The Majorana condition in eleven dimensions then imposes the following reality constraints:

ψ∗ = γ2ψ , ξ∗ = ξ . (2.9)

Thus ψ has two real components, and ξ has sixteen real components. The supersymmetry

equation of interest (2.1) may now be decomposed into two parts

δψµ = ∇µη +
1

6
e−3∆(γµ ⊗ gmγ

m)η − 1

2
(γµ ⊗ ∂m∆γ

mγ9)η

− 1

288
e−3∆(γµ ⊗Gnpqrγ

npqrγ9)η = 0 (2.10)

δψm = ∇mη +
1

2
(1⊗ γm

n∂n∆)η +
1

12
e−3∆(1⊗ γm

ngnγ9)η −
1

6
e−3∆(1⊗ γ9)gmη

− 1

288
e−3∆

[

(1⊗Gpqrsγ
pqrs

m)− 8(1⊗Gmpqrγ
pqr)

]

η = 0 (2.11)

which we refer to as the external and internal equations, respectively.

In the rest of this section we will assume, as in [15, 18], that the internal spinor is chiral.

We will briefly review the consequences of this restriction, before lifting it in the rest of

the paper. If ξ is chiral, without loss of generality, one may take γ9ξ = ξ. Requiring that

∇µψ = 0 in (2.11) then implies
[

− 1

288
∆

3/2
B Gmpqrγ

mpqr +
1

6
∆

3/2
B gmγ

m +
1

4
γm∂m log∆B

]

ξ = 0 (2.12)

where, for easier comparison with [15, 18], we have defined the warp factor ∆ = −1
2
log∆B.

Projecting this equation onto its positive and negative chirality parts1 we obtain

gm = ∂m∆
−3/2
B , Gmpqrγ

mpqrξ = 0 . (2.13)
1Notice that this projection simplifies somewhat the analysis in the original papers [15, 18].
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Upon rescaling the spinor and the internal metric as ξ = ∆
−1/4
B ξ̃ and gmn = ∆

3/2
B g̃mn respec-

tively, the relations (2.13) allow one to simplify the internal part of the gravitino equation,

yielding

∇̃mξ̃ +
1

24
∆

−3/4
B Gmpqrγ̃

pqrξ̃ = 0 . (2.14)

One again notes that the two terms in (2.14) have opposite chirality, and must therefore

vanish separately. In particular it follows that the metric g̃mn has Spin(7) holonomy and the

internal flux satisfies

Gmnpqγ
npqξ = 0 , (2.15)

implying that some, but not all, of the Spin(7) irreducible components of the flux must

vanish. Recall that on manifolds with Spin(7) structure four-forms may be decomposed into

four irreducible components 70 → 35 + 27+ 7 + 1 under SO(8) 7→ Spin(7) (see e.g. [27]).

A convenient way to understand the condition (2.15) is to recast it into a tensorial equation

[20]. Multiplying (2.15) on the left with ξTγr one obtains

Tmn ≡ 1

3!
GmpqrΨ

pqr
n = 0 (2.16)

where Ψ is the Cayley four-form, characterising the Spin(7) structure. A general two-index

tensor decomposes into the SO(8) irreducible representations 35 + 28 + 1, which, under

SO(8) 7→ Spin(7), further reduces to 35 + 21 + 7 + 1. However, given the representation

content of the four-form G, Tmn must contain only the irreducible representations 35 + 7

+ 1. One therefore concludes that only the 27 component of the internal flux is allowed. A

characterisation of this representation may also be given as follows

G27mnpq =
3

2
G27 rs[mnΨpq]

rs . (2.17)

In conclusion, the general solution takes the form

dŝ211 = H−2/3ηµνdx
µdxν +H1/3g̃mndx

mdxn

G = dx0 ∧ dx1 ∧ dx2 ∧ d(H−1) +G27 (2.18)

with the warp factor satisfying the equation

�̃H +
1

2
G27 ∧G27 = X8 (2.19)

where G27 is harmonic, and we have not included any explicit space-filling M2-brane sources.

Integrating (2.19) over a compact X gives

1

2

∫

X

G27

2π
∧ G27

2π
= − 1

192

∫

X

p21 − 4p4 =
χ(X)

24
. (2.20)
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In general, existence of a nowhere vanishing section of a vector bundle requires that the

Euler class of that bundle is zero. Thus existence of a nowhere vanishing positive/negative

chirality spinor requires that χ(S±) = 0, and it is this condition which gives the relation

between the topological invariants in the last equality in (2.20) (see, for example, [28]). One

then has compact solutions with flux provided the flux is quantised appropriately.

Note that these solutions describe M2-branes where the transverse space is a Spin(7)

holonomy manifold. Non-compact examples of such solutions may be found in [29] and [30].

Notice that G27 decouples from the supersymmetry conditions, but it does play a role in the

equations of motion, providing the “transgressive” terms [29].

The present analysis is readily extended to cases with more supersymmetry. For example

when ξ is a complex chiral spinor [15] we have two Spin(7) structures of the same chirality

or, equivalently, an SU(4)-structure. Repeating the same steps, one shows that the general

solution is now of the form (2.18), (2.19) with g̃mn having SU(4) holonomy. The magnetic flux

which drops out of the supersymmetry equations is given by G(2,2) (that is, the four-form

has two holomorphic and two anti-holomorphic indices with respect to the corresponding

complex structure) where G(2,2) is also primitive, so that taking the wedge-product with the

Kähler form gives zero. Again, these solutions are akin to M2-branes transverse to Calabi-

Yau four-folds, and the role of the internal flux is to provide an additional source term in

the equation for the warp-factor.

Generalisation

As we have summarised, imposing that the internal spinor be chiral leads to M2-brane-

type solutions. However, there clearly should be another way to obtain a supersymmetric

Minkowski3 vacuum from M-theory: one may wrap space-filling M5-branes over a supersym-

metric three-cycle in a special holonomy manifold. Such cycles are calibrated. In particular,

one may wrap the M5-branes over an associative three-cycle in a G2-holonomy manifold

(times a circle) to obtain an N = 1 vacuum, or a special Lagrangian cycle in a Calabi-

Yau three-fold (times a two-torus) to obtain an N = 2 vacuum. When one includes the

back-reaction of the brane on the initial geometry, one no longer has a manifold of special

holonomy, but rather some more general geometry with flux. However, the G2 or SU(3)

structures still remain, respectively. Such manifolds admit two (respectively four) invari-

ant Majorana-Weyl spinors, one (respectively two) of each chirality. Thus to describe more

general supersymmetric solutions with fluxes one has to generalise the form of the inter-

nal spinor. We will also find that when one lifts the chirality assumption, one can find
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supersymmetric AdS3 solutions, and we will present a simple class of examples in this paper.

From a more mathematical viewpoint, there is no reason to restrict the spinor to be chiral.

The M-theory Killing spinor equation is geometrically a parallel transport equation for a

supercovariant connection taking values in the Clifford algebra Cliffeven(R1,10) ≃ Mat(32,R).

Indeed, in the three/eight split of the eleven-dimensional spinor η, the internal spinor ξ turns

out to have 16 real components, i.e. it belongs to Spin(8)+⊕Spin(8)−. We are therefore led

to consider an internal 16-dimensional spinor of indefinite chirality2, which in general can be

written in the following form

η = e−
∆
2 ψ ⊗ (ξ+ ⊕ ξ−) (2.21)

where γ9ξ± = ±ξ± are real chiral spinors in eight dimensions, and ψ is a Majorana spinor in

three dimensions. The factor e−∆/2 has been inserted for later convenience. For calculational

convenience it is useful to introduce the non-chiral 16-dimensional spinors

ǫ+ =
1√
2
(ξ+ + ξ−) (2.22)

and ǫ− ≡ γ9ǫ
+ = (ξ+−ξ−)/

√
2. The advantage of working with ǫ±, as opposed to ξ±, is that

the former will turn out to have constant norms, which, without loss of generality, we take

to be unity, whereas the chiral spinors do not have this desirable property.

Since we wish to allow for AdS3 compactifications in our analysis, we impose the following

condition on the external spinor:

∇µψ +mγµψ = 0 . (2.23)

Writing the G-flux as

G = e3∆(F + vol3 ∧ f) (2.24)

with F and f parameterising the magnetic and electric components, respectively, the super-

symmetry conditions may be written in terms of ǫ± as follows:

∇mǫ
± ± 1

24
Fmpqrγ

pqrǫ± − 1

4
fnγ

n
mǫ

∓ ±mγmǫ
∓ = 0 (2.25)

1

2
∂m∆γ

mǫ± ∓ 1

288
Fmpqrγ

mpqrǫ± − 1

6
fmγ

mǫ∓ ∓mǫ∓ = 0 . (2.26)

These equations are the starting point for our analysis.

2For a four-seven decomposition, it was noticed in [31], and more recently also in [32, 33], that in order

to have non-trivial G-flux a generic spinor ansatz must be allowed.
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3 Supersymmetry and the G2-structure

In [1] it has been recognised that the notion of G-structures and their intrinsic torsion

provides a powerful technique for studying Killing spinor equations in the presence of fluxes.

A rigorous account of the mathematics may be found, for example, in [27]. For our purposes,

a G-structure in d dimensions is a collection of locally defined G-invariant objects, each in

some irreducible representation of the (spin cover of the) tangent space group Spin(d) ⊃ G.

Notice that, a priori, our equations need only be defined in some open set, which is why we

use the term G-structure in this local sense. When the objects in question extend globally

over the whole manifold one has a G-structure in the stricter mathematical sense that the

principal frame bundle admits a sub-bundle with fibre G. Of course, there may be topological

obstructions, and indeed the structure may break down, for example at horizons.

The way that intrinsic torsion enters into the Killing spinor equations is via the fluxes.

Exploiting this, one can study a supersymmetric geometry by extracting from the supersym-

metry conditions the differential constraints on a set of forms that comprise the structure.

These forms may be constructed as spinorial bilinears. The intrinsic torsion is an element

of Λ1 ⊗ g⊥ (see, for example, [7] or [5] for a brief review), which may be decomposed into

irreducible G-modultes, denoted Wi in this paper. The manifold will have G-holonomy only

when all the components vanish.

In the following we apply these methods to the case at hand, showing that one in general

has a G2-structure on the internal eight-manifold. It is also important to establish what

other conditions must be imposed on the structure for it to correspond to a solution of the

supergravity theory. We address this issue towards the end of the section.

We can construct explicitly a one-form, a three-form, and two four-forms as bilinears in

the spinors

K̄m = ξT+γmξ−

φ̄mnp = ξT+γmnpξ−

Ψ̄±
mnpr = ξT±γmnprξ± . (3.1)

In the calculations it is useful to re-express these in terms of the ǫ± spinors, and it is also

useful to define the following auxiliary bilinear

Ymnpr = ǫ±Tγmnprǫ
± . (3.2)

Notice that, for a generic Clifford connection, the corresponding Killing spinors are not in

general orthonormal, in contrast to the case of a connection on the Spin(d) bundle [7]. In
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particular, we have that, using (2.25), ∇(ǫ+Tǫ+) = ∇(ǫ−Tǫ−) = 0. Thus we can normalise

the spinors so as to obey

||ǫ+||2 = ||ǫ−||2 = 1

2

(

||ξ+||2 + ||ξ−||2
)

= 1 . (3.3)

On the other hand ∇(ǫ+Tǫ−) 6= 0, and we parameterise this non-trivial function, which takes

values in the interval [−1, 1], as

ǫ+Tǫ− =
1

2

(

||ξ+||2 − ||ξ−||2
)

≡ sin ζ . (3.4)

It follows that the chiral spinors have norms ||ξ±||2 = 1± sin ζ , and in the limit sin ζ → ±1

one of the two vanishes.

The stabiliser of each chiral spinor ξ± is Spin(7)±, and their common subgroup is G2. In

order to discuss the supersymmetry conditions in terms of the G-structure it is convenient

to introduce rescaled forms, defined as φ = (cos ζ)−1φ̄ and K = (cos ζ)−1K̄. These are

canonically normalised, namely ||K||2 = 1, ||φ||2 = 7, and define a G2 ⊂ SO(8) structure in

eight dimensions. One can give an explicit expression for Y in terms of the other bilinears

Y = −iK ∗ φ+ φ ∧K sin ζ , (3.5)

where here, and henceforth, ∗ denotes the Hodge dual on the internal eight-manifold. The

forms are also subject to the constraint

iKφ = 0 . (3.6)

Notice that φ defines a unique seven-dimensional metric via the equations

g7ij = (det b)−
1
9 bij ,

bij = − 1

144
ǫm1...m7φim1m2φjm3m4φm5m6m7 (3.7)

where ǫ1234567 = 1, and we therefore have g7ijK
j = 0. The intrinsic torsion of the structure

lives in the space Λ1 ⊗ g⊥2 where g2 ⊕ g⊥2 = so(8). The Lie algebra so(8) ≃ 28 decomposes

as 28 →2(7) + 14, so the orthogonal complement of the g2 algebra is given by g⊥2 =7 + 7.

The intrinsic torsion then decomposes into ten modules

T ∈ Λ1 ⊗ g⊥2 =

10
⊕

i=1

Wi,

(1 + 7)× (7+ 7) → 2(1) + 4(7) + 2(14) + 2(27) .

(3.8)
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It turns out that the ten classes are determined by the exterior derivatives of the forms.

These have the following decompositions into irreducible G2 representations

dK → 7′′ + 7′′′ + 14′

dφ → 1 + 1′ + 7+ 7′ + 27+ 27′

d ∗ φ→ 1′ + 7+ 7′ + 14 + 27′ .

(3.9)

Note that some representations appear more than once, and we have denoted different rep-

resentations with different numbers of primes. In particular, the representations 1 + 7 +

14 + 27 are those relevant to d7φ and d7 ∗7 φ discussed in appendix A. Using the identities

(A.14) - (A.16) one shows that ∂Kφ and ∂K ∗7 φ contain the same representations, denoted

with 1′ + 7′ + 27′. Finally, dK = α ∧K + β, with the one-form α corresponding to 7′′′ and

the two-form β to 7′′ + 14′. Notice that we have an eight-manifold of G2 holonomy if and

only if dK = dφ = d ∗ φ = 0. Note also that K is Killing if and only if the representations

1′ + 7′ + 27′ vanish. This follows on noticing that the non-trivial components of the Lie

derivative LKg can be computed from LKφ = iKdφ using equation (3.7).

We can proceed now to analyse the constraints imposed on the structure by the super-

symmetry conditions. Rather than presenting all the details of the calculations, we shall

instead present a simple illustrative computation. Consider, for instance, ∇rK̄m. Using the

definition of K̄ as a spinor bilinear, together with the Killing spinor equations (2.25), after

some straightforward gamma-algebra one calculates

∇rK̄m =
1

12
Frijkǫ

+Tγijkmǫ
+ − 2m sin ζ grm − 1

2
f jφ̄jrm . (3.10)

Next, the first identity in appendix C (with the Clifford element A = γrm), can be used

to compute the antisymmetric part of (3.10), obtaining equation (3.11) below. Similar

calculations yield the following constraints on the G2 structure:

d(e3∆K cos ζ) = 0 (3.11)

K ∧ d(e6∆iK ∗ φ) = 0 (3.12)

e−12∆d(e12∆vol7 cos ζ) = −8m vol7 ∧K sin ζ (3.13)

dφ ∧ φ cos ζ = 24m vol7 − 4 ∗ dζ + 2 cos ζ ∗ f (3.14)

where vol7 = 1
7
φ ∧ iK ∗ φ. The electric and magnetic components of the flux are then

determined as follows

e−3∆d(e3∆ sin ζ) = f − 4mK cos ζ (3.15)

e−6∆d(e6∆φ cos ζ) = − ∗ F + F sin ζ + 4m(iK ∗ φ− φ ∧K sin ζ) . (3.16)
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As we will discuss more extensively in section 4, these equations can be interpreted as

generalised calibrations for membranes or fivebranes wrapped on supersymmetric cycles (at

least when m = 0). An important point to emphasize is that the conditions derived are also

sufficient to ensure solutions to the Killing spinor equations. Notice that generically K is

not a Killing vector. However, we see from (3.11) that it is in fact hypersurface orthogonal

or, equivalently, defines an integrable almost product structure [7] which allows us to write

the metric in the canonical form

dŝ211 = e2∆(x,y)(ds23 + g7ij(x, y)dx
idxj) +

1

cos2 ζ(x, y)
e−4∆(x,y)dy2 . (3.17)

The remaining conditions may be thought of as putting constraints on the seven-dimensional

part of the G2-structure. Consider, for example, equation (3.12). From this we read off

immediately that the 14 representation is absent and the 7 is given by the Lee-form W4 =

18 d7∆. Likewise, equation (3.13) relates ∂y log
√

g7 to ∂y∆ and ∂yζ , hence fixing the 1′

representation. Continuing, the rest of the equations may be used to determine all the

components of the intrinsic torsion. One can thus construct a connection with non-trivial

torsion which preserves the G2 structure, and in particular preserves two spinors of opposite

chirality, corresponding to solutions of the supersymmetry equations. For simplicity we will

present some details of the calculation in the case of purely magnetic solutions in section 5.

The four-form flux is completely determined in terms of the structure by (3.15) and

(3.16). In fact it is easy to show that there are no components which automatically drop

out of the supersymmetry equations (2.25) and (2.26), in contrast to section 2. First let us

decompose the four-form flux into SO(7) irreducible representations:

F = F4 + F3 ∧K . (3.18)

We thus want to check if there areG2 irreducible components whose Clifford action Fmnpqγ
npq

annihilates both the spinors ξ±, namely F4mnpqγ
npqξ± = F3mnpγ

npξ± = 0. This would imply

that the following tensors vanish

1

2!
F3mpqφ

pq
n = 0

1

3!
F4mpqr(∗7φ)pqrn = 0 . (3.19)

As discussed in appendix A these tensors contain all the components of F3 and F4, which

should therefore vanish identically. This situation is to be contrasted with the cases where

we have spinor(s) of a fixed chirality, as recalled in section 2. Each spinor defines a Spin(7)

structure and the 27 component of the flux, with respect to that structure, is undetermined
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by the supersymmetry equations. The existence of two spinors with opposite chirality means

that the associated Spin(7) structures have opposite self-duality, and the undetermined flux

should therefore simultaneously be in the 27+ and 27−, and hence is trivial.

All the non-zero components of the flux can be extracted from the conditions (3.11) -

(3.16). As examples, and for later reference, let us give the expressions for the 1 and 7

components of F3 (cf. appendix A)

π1(F3) =
2

7
(∂Kζ − 2m)φ

π7(F3) = −1

2
e−3∆d7(e

3∆ cos ζ)y iK ∗ φ (3.20)

and of F4

π1(F4) =
2

7

(

4m sin ζ − e−3∆∂K(e
3∆ cos ζ)

)

iK ∗ φ

π7(F4) =
1

2
φ ∧ d7ζ . (3.21)

A solution will also have to obey the equations of motion and Bianchi identity. Using

the above expressions for the fluxes, it is straightforward to show that these reduce to the

two equations

d(e3∆F ) = 0 (3.22)

e−6∆d(e6∆ ∗ f) + 1

2
F ∧ F = 0 . (3.23)

One can now show, using the results of [5], that the Einstein equation is automatically

implied as an integrability condition for the supersymmetry conditions, once the G-field

equation and Bianchi identity are imposed. It is useful to give explicitly the external part

of the Einstein equation:

e−9∆
�8e

9∆ − 3

2
||F ||2 − 3||f ||2 + 72m2 = 0 . (3.24)

One may use this to prove that, when m = 0, there are no compact solutions with electric

and/or magnetic flux. Explicitly, one easily integrates (3.24) over the compact manifold X

to get
∫

X

e9∆||F ||2 + 2

∫

X

e9∆||f ||2 = 0 (3.25)

which requires F = 0 and f = 0. This is a rather general property of supergravity theories

[34]. The common lore to evade such “no-go theorems” is to appeal to higher derivative
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terms, such as the X8 term mentioned in section 2, although these arguments typically

neglect the corresponding terms in the Einstein equations. In our case, a non-zero X8 seems

to allow for the possibility of compact solutions3. One must then also satisfy

∫

X

Ginternal ∧Ginternal = 0 (3.26)

which is implied by integrating equation (3.23). Here one uses the fact that X8 integrates

to zero. This is so because the existence of two linearly independent spinors of opposite

chirality implies that χ(S±) = 0. Equivalently, the vector K constructed from the spinors is

nowhere vanishing, which implies that the Euler number of the eight-manifold is zero.

Comparing with the results reviewed in section 2 we see that allowing the internal spinor

to be non-chiral has a led to a substantially enlarged number of possible geometries and

fluxes. We emphasize the fact that AdS3 solutions are not ruled out any more, and generically

the internal manifold is not conformal to a Spin(7) (or SU(4)) holonomy manifold. Note

also that the function sin ζ plays a role in our equations, and setting it to zero, or constant,

rules out many supersymmetric geometries. In particular, from (3.15) it should be clear that

sin ζ is related to M2-brane charges, as we will see more explicitly in the next section.

4 Generalised calibrations and dyonic M-branes

In this section we show how the supersymmetry constraints on the G-structure are related

to a generalised calibration condition for the M5-brane. For simplicity we will restrict our

analysis to Minkowksi3 backgounds, and hence we set m = 0 throughout this section. We

argue that the supersymmetric geometries we have been describing so far may be thought of

as being generated by M5-branes wrapped over an associative three-cycle in a G2-holonomy

manifold. An interesting twist to the story arises from the otherwise mysterious function

sin ζ , introduced in the last section.

Recall that the M-theory fivebrane has a self-dual three-form field strengthH propagating

on its world-volume, which induces an M2-brane charge on the M5-brane via a Wess-Zumino

coupling. The supergravity description of the M5-brane should account for this feature. Thus

we expect “dyonic” backgrounds – that is, solutions with non-trivial electric and magnetic

fluxes. Placing a dyonic M-brane probe in its corresponding background should not then

break any further supersymmetry, and in particular a generalised calibration condition for

such a probe should exist. We will find that all of the supersymmetry equations (except for

3Equation (3.25) receives a correction proportional to
∫

X
e3∆ sin ζX8.
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one) may be interpreted as generalised calibration conditions for a probe M5-brane in our

background. For example, (3.16) is the generalisation of the associative calibration dφ = 0

in G2-holonomy manifolds to dyonic M5-branes in warped backgrounds with flux.

Supersymmetric probes should saturate a generalised calibration bound which minimises

their energy. In [35] a calibration bound for the M5-brane was derived. Although some

comments were made about general backgrounds the computation there was for a flat space

background with zero G-flux. It is easy to extend their analysis to the case of non-zero G-

flux, by taking into account the Wess-Zumino terms. In appendix B we use the Hamiltonian

formalism of [36] to obtain an expression for the energy of a class of static M5-branes with

non-zero background G-flux and world-volume three-form H . This formula may then be used

to show that supersymmetric branes are calibrated and saturate a bound on the energy.

The very alert reader may notice an obstacle in carrying out the above program. The

calibration bound derived in [35] requires the existence of a time-like Killing vector which

in turn one uses to define the energy in a Hamiltonian formulation. Moreover, such a

vector should arise as a spinor bilinear. However, the supersymmetric geometries we are

considering belong to the “null” class, namely the stabiliser of the spinor η (for any choice

of ψ) is (Spin(7)⋉ R

8)× R and the vector one constructs from it is a null vector [37, 5]. As

discussed in [5], in this case the interpretation of the supersymmetry conditions as calibration

conditions is less clear. However, by some sleight of hand, we may still use the static

formulation of the M5-brane. The key to this is simply that we in fact have two linearly

independent null spinors, from which we may construct a time-like Killing vector.

As discussed in appendix B, an M5-brane probe will be supersymmetric if, and only if,

P−η = 0 (4.1)

where P− is a κ-symmetry projector, and η is the eleven-dimensional supersymmetry pa-

rameter. We have two linearly independent null spinors, ηλ =
√
2e−∆/2ψλ ⊗ ǫ+, where ψλ,

for λ = 1, 2, are two linearly independent constant spinors on R

1,2. With an appropriate

choice of ψλ, the vectors one constructs from these spinors are ∂/∂t± ∂/∂X1. Both vectors

are null, but their sum 2k = 2∂/∂t is time-like. Thus we are led to consider the following

Bogomol’nyi-type bound:

∑

λ=1,2

||P−ηλ||2 =
∑

λ=1,2

1

2
η†λP−ηλ ≥ 0 . (4.2)

One then rewrites this bound in terms of the energy. From appendix B we have

E = TM5

(

C0 + e∆LDBI

)

(4.3)
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where TM5 is the M5-brane tension, C0 is the contribution of a Wess-Zumino-like term to the

energy, and LDBI is a Dirac-Born-Infeld action (cf. appendix B). The bound may therefore

be written

e∆LDBIvol5 ≥
∑

λ=1,2

j∗νλ + j∗χλ ∧H (4.4)

where we have defined the space-time forms

νλ =
1

(||η1||2 + ||η2||2)
1

5!
η†λΓ̂0 M1...M5ηλdX

M1 ∧ . . . ∧ dXM5

χλ = − 1

(||η1||2 + ||η2||2)
1

2!
η†λΓ̂0 MNηλdX

M ∧ dXN (4.5)

and j∗ denotes a pull-back to the M5-brane world-volume. Using (4.3) we obtain a bound

on the energy density E = Evol5:

1

TM5

E ≥
∑

λ=1,2

(j∗νλ + j∗χλ ∧H) + C0vol5 (4.6)

where

C0vol5 = ikC6 −
1

2
ikC ∧ (C − 2H) (4.7)

and a pull-back is understood on the right-hand side of this equation.

Given a static supersymmetric background, a pair (Σ5, H), with Σ5 a 5-cycle and H =

h + j∗C a three-form on Σ5 satisfying dH = j∗G, is said to be calibrated if the bound (4.6)

is saturated on all tangent planes of Σ5. As we will show below, such a calibrated M5-brane

worldspace then has minimal energy in its equivalence class [(Σ5, H)]. Here, a pair (Σ′
5, H

′)

is in the same equivalence class as (Σ5, H) if Σ5 is homologous to Σ′
5 via a six-chain B6

(that is, ∂B6 = Σ5 −Σ′
5) over which H and H ′ extend to the same three-form, H , satisfying

dH = j∗G on B6. In fact, since C clearly extends (it is defined over all of space-time), it

is enough to extend h over B6 as a closed form. Now, by Poincaré duality on the M5-brane

worldvolume, h defines a two-cycle Σ2 ⊂ Σ5, where [Σ2] is isomorphic to [h] under Poincaré

duality. h induces an M2-brane charge via the Wess-Zumino coupling (B.5), and thus Σ2

may be thought of as the effective M2-brane worldspace, sitting inside the M5-brane.

To prove the calibration bound on the energy the forms χλ, νλ must obey suitable dif-

ferential conditions. As we show below, these combine to give the general conditions on the
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forms defining the (Spin(7)⋉ R

8)× R structures in eleven dimensions [5]. These read4

dχλ = iωλ
G

dνλ = iωλ
∗̂G− χλ ∧G (4.8)

where in our case the one-forms

ωλ =
1

(||η1||2 + ||η2||2)
η†λΓ̂0 Mηλ dXM (4.9)

are both null. With our choice of ψλ, we may take their sum ω1 + ω2 = −dte2∆. The dual

vector is then simply (ω1 + ω2)
# = ∂/∂t = k. A calibrated pair (Σ5, H) therefore obeys

E(Σ5, H) =

∫

Σ5

∑

λ=1,2

(νλ + χλ ∧H) + ikC6 −
1

2
ikC ∧ (C − 2H)

=

∫

B6

∑

λ=1,2

(dνλ + d(χλ ∧H)) + d(ikC6)−
1

2
d (ikC ∧ (C − 2H))

+

∫

Σ′

5

∑

λ=1,2

(νλ + χλ ∧H ′) + ikC6 −
1

2
ikC ∧ (C − 2H ′)

= 0 +

∫

Σ′

5

∑

λ=1,2

(νλ + χλ ∧H ′) + ikC6 −
1

2
ikC ∧ (C − 2H ′)

≤ E(Σ′
5, H

′) (4.10)

for any (Σ′
5, H

′) in the same equivalence class as (Σ5, H). Notice that we have used, for

example, d(ikC6) = −ik(dC6) = −ik
(

∗̂G+ 1
2
C ∧G

)

, in order to show that the integral over

B6 vanishes.

Note also that this result holds for all cases where it is possible to construct an appropriate

time-like Killing vector from the Killing spinors (not necessarily as a bilinear), and thus it

holds in particular for the entire “time-like” class of [5].

It is now a simple matter to relate this to the supersymmetry equations of the last section.

Indeed, these are equivalent to (4.8) on rewriting them in terms of the quantities defined in

the last section. In particular, we have that

ν1 + ν2 = −vol2 ∧ e6∆φ cos ζ − dt ∧ e6∆Y (4.11)

χ1 + χ2 = +vol2e
3∆ sin ζ + dt ∧ e3∆K cos ζ (4.12)

where vol2 = dX1 ∧ dX2 is the spatial two-volume. Thus we have

d(χ1 + χ2) = vol2 ∧ d
(

e3∆ sin ζ
)

− dt ∧ d
(

e3∆K cos ζ
)

= ikG = vol2 ∧ e3∆f (4.13)
4Our conventions differ from those of [5]. To rectify this, one can simply change the sign of the gamma

matrices of [5]. This leads to some extra minus signs when using their results.
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which shows the equivalence of (3.11) and (3.15) with the first equation in (4.8), and also

d(ν1 + ν2) = −vol2 ∧ d
(

e6∆φ cos ζ
)

+ dt ∧ d
(

e6∆Y
)

= ik∗̂G− (χ1 + χ2) ∧G
= −vol2 ∧

(

−e6∆ ∗ F + e6∆ sin ζF
)

− dt ∧ e6∆ cos ζF ∧K . (4.14)

This equation is clearly equivalent to the condition (3.16) together with

e−6∆d
(

e6∆Y
)

= −F ∧K cos ζ . (4.15)

On expanding the various terms, this can be shown to be equivalent to (3.12), (3.13), and

the contraction of (3.14) with K. The relation (A.17) is useful for establishing this result.

Interestingly, (3.15) and (3.11) may also be derived from considerations of the M2-brane.

In fact [5], the first condition in (4.8) is a generalised calibration condition for the M2-

brane world-volume theory. The latter is more straightforward than the M5-brane theory as

there is no form-field propagating on the M2-brane. Specifically, there is a simple Nambu-

Goto term plus the Wess-Zumino electric coupling to the C-field. In this case, the energy

is essentially just the action. Equation (3.15) is then a calibration condition for a space-

filling M2-brane, whereas (3.11) is a calibration condition for an M2-brane wrapped over the

K-direction. Notice that the remaining component of equation (3.14) did not enter the M5-

brane calibration and in fact its eleven dimensional origin is in the equation (2.18) of [5] for

the Killing one-form dk. We suspect that this should ultimately be related to a “calibration”

for momentum carrying branes, or waves. It would be interesting to understand this point

further.

5 M5 branes wrapped on associative and SLAG three-

cycles

In this section we specialise our results to the case in which the electric component of the

flux f is set to zero as well as the mass m. This situation corresponds to purely magnetic

M5-branes wrapping three-cycles inside the transverse eight-manifold, with vanishing world-

volume three-form field H . The geometries we consider are then of the form R

1,2×M8, where

M8 generically admits a G2 structure corresponding to N = 1 in the external Minkowski3

space, or an SU(3) structure corresponding to N = 2. We will also briefly discuss how one

can easily extend these results to the case of M5-branes wrapping various four-cycles.
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Associative calibration and N = 1

Specialising the equations of section 3 to the case at hand we get the following set of condi-

tions on the G2 structure:

d(e3∆K) = 0 (5.1)

K ∧ d(e6∆iK ∗ φ) = 0 (5.2)

d(e12∆vol7) = 0 (5.3)

dφ ∧ φ = 0 (5.4)

e−6∆d(e6∆φ) = − ∗ F . (5.5)

The metric takes the following form

dŝ211 = e2∆
(

ds2(R1,2) + ds27
)

+ e−4∆dy2 . (5.6)

Notice that equation (5.3) is equivalent to ∂y log
√

g7 = −12 ∂y∆. Thus M5-branes wrapped

on associative three-cycles give rise to an almost product structure geometry on the trans-

verse eight-manifold which, at any fixed value of y, admits aG2 structure of the typeW3⊕W4.

Explicit solutions were presented in [38]. The close relation to the results of [1] is of course

not accidental. Recall that K is generically not a Killing vector. However, when it is, one

can Kaluza-Klein reduce along the y direction (identifying the dilaton as Φ = −3∆) to get

solutions of the type IIA theory, which describe NS5-branes wrapped on associative three-

cycles [1]. Of course, if additional Killing vectors are present in specific solutions one can also

reduce along those directions to obtain type II backgrounds which may contain RR fluxes in

addition to the NS three-form.

Let us comment here on the relationship of our approach to the work initiated in [21]

and expanded upon in a series of papers (see [39] for a review). The strategy in [21] is to

write down an appropriate ansatz for the solution and then substitute this into the super-

symmetry equations. Eventually one is left with a non-linear PDE for some metric functions

which parameterise the ansatz (after imposing the Bianchi identity). It should be clear that

using the techniques of G-structures one can easily recover the various constraints obtained

using the approach of [21]. As a bonus we have in addition a physical interpretation of the

constraints in terms of generalised calibrations5 and, thanks to the machinery of intrinsic

5The relation of the work of [21] to generalised calibrations was noticed in [40, 41, 42, 43] . These papers

consider a class of geometries where the internal space is Hermitian. This is related to the fact that these

geometries describe M5 or M2 branes wrapped on holomorphic cycles.
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torsion, we can apply the technique to more general cases which do not admit complex ge-

ometries. The work of [8], using the G-structure approach, recovers the N = 1 geometries

of [44], corresponding to M5-branes wrapped on Kähler two-cycles in Calabi-Yau three-folds

(times S1), i.e. seven-manifolds with SU(3)-structure, after including the flux back-reaction.

These in turn reduce in type IIA to the complex geometries first described in [45, 46] in the

context of Type I/Heterotic, as can easily be checked using the equivalent formulation given

in [7]. It is straightforward to see that a similar formulation exists for the N = 2 geometry

of [21] corresponding to M5-branes wrapped on Kähler two-cycles in seven-manifolds with

SU(2)-structure. In this case the supersymmetry conditions are exactly those discussed in

the type IIA limit in section 6 of [7], with the transverse space R2 replaced by R3. Clearly, all

the geometries discussed in [7] have a direct counterpart in M-theory as wrapped M5-branes.

Thus, imposing the Bianchi identity on G, we can write down the associative analogue

of the non-linear equations of [21], which reads

d7

[

e−6∆ ∗7 d7(e
6∆φ)

]

+ ∂2y(e
6∆ ∗7 φ) = 0 (5.7)

where we have used the following expression for the G field

G = ∂y(e
6∆ ∗7 φ) + e−6∆ ∗7 d7(e

6∆φ) ∧ dy . (5.8)

This is equivalent to the generalised calibration condition (5.5). Here we do not write down

possible source terms. Note that equation (2.3) is automatically satisfied, with G ∧ G and

d ∗̂G being separately zero (using (5.4), (5.5), respectively).

Next, as promised in section 3, we address more explicitly the issue of sufficiency of the

conditions we have derived. This is ensured by the careful counting of irreducible components

of the intrinsic torsion, but it is perhaps instructive to look also at the Killing spinor equations

directly. The strategy is essentially to substitute our conditions back into the Killing spinor

equations and check that they indeed admit solutions. Substituting the conditions (5.1) -

(5.5) into the supersymmetry equations, we find that the external part (2.26) gives

− 3γi∂i∆ ξ∓ +
1

12
F3 ijkγ

ijkξ∓ +
1

48
F4 ijklγ

ijklξ± − 3e3∆∂y∆ξ± = 0 (5.9)

while the internal part (2.25) gives

∇(7)
i ξ± +

1

8
F3 ijkγ

jkξ± +
1

4
e3∆∂y(g

7
ij)γ

jξ∓ +
1

24
F4 ijklγ

jklξ∓ = 0 (5.10)

∂yξ± +
1

4
ei[a∂y eb]iγ

abξ± = 0 (5.11)
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where here the indices run from 1 to 7 and ∇(7) is the Levi-Civita connection constructed

from g7ij . Next, we can simplify these equations using the fact that

1

3!
F4 iklm(∗7φ)klmj = −e3∆∂y(g

7
ij) (5.12)

which can be computed from the expression for the flux (5.5) and the conditions (5.3), (5.4).

Notice that, as discussed in appendix A, this means that the 7 representation in F4 vanishes,

as is implied by the second equation in (3.21). One can then show that the equations (5.9)

and (5.10) reduce respectively to

γi∂iΦ ξ +
1

12
F3 ijkγ

ijkξ = 0

∇(7)
i ξ +

1

8
F3 ijkγ

jkξ = 0 (5.13)

where ξ is the unique seven-dimensional spinor corresponding to ξ± in eight dimensions,

and we have intentionally used the notation Φ = −3∆ to demonstrate that the resulting

equations are essentially the dilatino and gravitino equations of type IIA. Thus, by the

results of [47, 48, 1], we indeed have a solution. Equation (5.11) is solved by taking the

spinor to be y-independent and the ωyab component of the spin-connection to be in the 14

of G2: this simply corresponds to the standard choice of local frame where φabc has constant

coefficients.

SLAG calibration and N = 2

Following the same line of reasoning as above, the equations describing M5-branes wrapping

SLAG three-cycles in manifolds with an SU(3)-structure may almost be extrapolated from

those pertaining to NS5-branes wrapping the same cycles obtained in [1]. By repeating the

arguments of [1, 7] we have that doubling the amount of supersymmetry yields the presence of

two G2 structures, whose maximal common subgroup gives us an SU(3)-structure. One may

then carry over the previous analysis by considering a Killing spinor of the type ψ⊗(ξ+⊕ξ−)
where ψ and ξ± are now complex spinors. Thus one can also think of SU(3) as arising from

two SU(4)-structures having opposite chiralities, each defined by a complex Weyl spinor.

Notice that this geometry then belongs to both the “null” and “time-like” classes of [5], as

SU(3) embeds into (Spin(7)⋉ R

8)× R as well as into SU(5).

In a real notation, we take our spinors to be

η(a) = e−
∆
2 ψ(a) ⊗ (ξ

(a)
+ ⊕ ξ

(a)
− ) a = 1, 2 (5.14)
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where each of the ψ(a) has two independent real components, thus corresponding to N = 2 in

three dimensions. To realize the SU(3) structure explicitly one can now construct additional

bilinears. We refer to appendix B of [7] for details. Notice that we have two vectors, which

in a local frame are given by K(1) = e7, K(2) = e8 and a two-form given by

Jmn = ǫ+T
(1) γmnǫ

+
(2), (5.15)

where, as before, ǫ+(a) = (ξ
(a)
+ + ξ

(a)
− )/

√
2 and in a local frame we have J = e12 + e34 + e56.

There are, of course, other bilinears that one can consider, but this is all we need. In fact,

in terms of the associative three-forms, we have

φ(a) = J ∧K(1) ± ImΩ (5.16)

with Ω = (e1 + ie2)∧ (e3 + ie4)∧ (e5+ ie6). The SU(3) structure is given by K(a), J , Ω with

the last two defining the structure in its canonical dimension of six, and iK(a)J = iK(a)Ω = 0.

Using the Killing spinor equations, after some calculations one arrives at the following

set of conditions:

d(e3∆K(a)) = 0 (5.17)

d(e3∆J) = 0 (5.18)

K(1) ∧K(2) ∧ d(e3∆ReΩ) = 0 (5.19)

d(ImΩ) ∧ ImΩ = 0 (5.20)

e−6∆d(e6∆ImΩ) = − ∗ F . (5.21)

The two vectors give rise to an almost product metric structure of the form

dŝ211 = e2∆
(

ds2(R1,2) + ds26
)

+ e−4∆(dy2 + dz2) . (5.22)

As discussed in [7] the six-dimensional slices at fixed y and z have an SU(3) structure

with intrinsic torsion lying in the class W2 ⊕ W4 ⊕ W5 with warp-factor 6 d6∆ = −W4 =

W5 (see [49, 7] for details about the intrinsic torsion of SU(3) structures). Notice that

these geometries are not Hermitian, which mirrors the fact that the M5-branes wrap SLAG

three-cyles: equation (5.21) is the corresponding generalised calibration condition. Explicit

solutions of this type were presented in [50]. The proof that the above equations are also

sufficient to ensure the existence of four solutions to the Killing spinor equations amounts

to the observation that with these one can construct two G2 structures, as in the previous

subsection, each of which corresponds to two Killing spinors with opposite chiralities.
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As in the previous case, let us write down the equation implied by the Bianchi identity

dG = 0. This is the SLAG-3 analogue of the equations of [21] and reads

d6

[

e−9∆ ∗6 d6(e
6∆ImΩ)

]

+△yz(e
3∆ReΩ) = 0 . (5.23)

Where △yz = ∂2y + ∂2z is the flat Laplacian in the transverse directions. To derive this

equation we have made use of the conditions above to rewrite the flux in the following form

G = −e−9∆ ∗6 d6(e
6∆ImΩ) ∧ dy ∧ dz + ∂z(e

3∆ReΩ) ∧ dy − ∂y(e
3∆ReΩ) ∧ dz . (5.24)

The G equation of motion (2.3) is again automatically satisfied.

More wrapped M5-branes

We have presented the general conditions on the geometry of M5-branes wrapped on associa-

tive and SLAG three-cycles, giving explicitly the non-linear PDE which results from imposing

the Bianchi identity. M5-branes wrapped on Kähler two-cycles in Calabi-Yau two-folds and

three-folds were described in [21, 44], and in [8] from the point of view of G-structures.

Consulting the tables in [7] one realises that to complete the analysis of wrapped M5-branes

one needs to consider four-cycles, yielding geometries of the type R1,1 ×M9. Clearly, it is

straightforward to extend our analysis to cover all the remaining cases of M5-brane configu-

rations wrapping supersymmetric cycles. These will essentially be the M-theory lifts of the

conditions derived in [7] for all possible wrapped NS5-branes in the type IIA theory. For

instance, we anticipate that, for static purely magnetic M5-branes, the flux is given by the

generalised calibration condition

∗9 F = e−6∆d(e6∆Ξ) (5.25)

where Ξ is the relevant calibrating form. Thus when fivebranes wrap coassociative four-

cycles in G2-manifolds (times T2) we have Ξ = ∗7φ; for Kähler four-cycles Ξ = 1
2
J ∧ J ,

and so on. Imposing the Bianchi identity gives the corresponding non-linear PDE. Notice

that the “time-like” case in [5] covers the case of M5-branes wrapped on SLAG five-cycles

in Calabi–Yau five-folds, and the resulting SU(5) structure is described there in detail.

6 All purely electric solutions

In this section we discuss supersymmetric solutions with no internal components of the flux;

namely, we set F = 0. Suppose first that m 6= 0. In this case, setting to zero the 1 and 7
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components of the flux in (3.20) and (3.21) one can solve for K, f and ∆ in terms of the

function ζ , which one may take as a coordinate on the internal space, thus obtaining

K =
1

2m
dζ

f = 3 sec ζdζ

e−∆ = cos ζ . (6.1)

Using these, one finds that the supersymmetry conditions (3.11) - (3.16) reduce to the single

equation

d(e3∆φ) = 4m e4∆iK ∗ φ . (6.2)

We can now define a conformally rescaled three-form φ̃ = e−3∆φ, and the corresponding

four-form and metric ∗̃7φ̃ = e−4∆ ∗7 φ and g̃mn = e−2∆gmn, in terms of which equation (6.2)

becomes

dφ̃ = 4m ∗̃7φ̃ . (6.3)

The genereral solution is therefore given by

dŝ211 = sec2 ζ

(

ds23(AdS3) +
1

4m2
dζ2

)

+ ds̃27

G = 3vol3 ∧ sec4 ζdζ (6.4)

where the seven-dimensional metric has weak G2 holonomy, as dictated by (6.3). Notice that

the G equation of motion (3.23) is automatically satisfied since e6∆ ∗ f = 6m ṽol7.

Compactifications of M-theory on weak G2 manifolds were studied extensively in the

1980’s (see, for example, [51]). The simplest example is the well-known AdS4 × S7 com-

pactification, which is in fact maximally supersymmetric. Indeed, by a suitable change of

coordinates, one can check that the solution (6.4) is of the form AdS4 ×M7, where M7 has

weak G2 holonomy. Setting sec ζ = cosh(2mr), the eleven-dimensional metric becomes

dŝ211 = cosh2(2mr) ds2(AdS3) + dr2 + ds̃27 . (6.5)

The four dimensional piece is the metric on AdS4 with radius l = 1/2m, foliated with copies

of AdS3. The seven-metric ds̃27 is a weak G2 manifold, with metric normalised such that the

Ricci tensor satisifies Ric = 6m2g̃.

Let us consider briefly the case when m = 0, so that the three-dimensional external

space is flat R1,2. In this case, setting to zero the components of the internal flux (3.20) and
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(3.21) implies that sin ζ = ±1. This is the limit in which one of the chiral spinors vanishes,

leaving only the spinor of opposite chirality. The one-form K and the three-form φ are then

identically zero, while there is only one independent four-form, Ψ+ or Ψ−. This defines a

Spin(7)-structure in the usual way.

Although this case has been reviewed already in section 2 let us check that one correctly

recovers it from our equations. In taking the limit one needs to be careful and consider only

those equations obtained from spinor bilinears with four gamma matrices as these are the

only equations which are non-trivial. In fact, as written, the conditions on the G2 structure in

section 3 are, naively, all trivial in the limit sin ζ → ±1. This is just because they are written

in G2-invariant form, whereas in this limit there is no G2 structure at all. An appropriate

combination to consider is in fact equation (4.15) which we encountered in section 4. This

reduces to the condition d(e6∆Ψ±) = 0 when sin ζ → ±1, and determines the internal space

to be conformal to a Spin(7) manifold, as in section 2. The electric flux reduces accordingly

to

Gelectric = ±vol3 ∧ d(e3∆) . (6.6)

Notice that in fact we have set to zero only the irreducible G2 components 1 and 7 of the

magnetic flux, and in principle some components are still allowed. Indeed, we recover the

constraint on the magnetic flux from equation (3.10) which reduces to (2.16), requiring the

flux to be in the 27+ or 27− of Spin(7)±, respectively.

Note that taking the Spin(7) manifold to be a cone over a weak G2 manifold and choosing

the harmonic function e−3∆ = 1/(mr)6 one again obtains AdS4×M7 solutions, although now

AdS4 is foliated by R1,2 horospheres, with metric

dŝ211 = e−4ymds2(R1,2) + dy2 + ds̃27 . (6.7)

To summarise, we have shown that warped supersymmetric solutions with purely electric

flux are of only two types: the AdS3 compactifications are in fact more naturally written as

AdS4 compactifications, foliated by copies of AdS3, with the transverse space being weak G2

holonomy. On the other hand in Minkowski3 compactifications the internal manifold must be

conformal to a Spin(7)-holonomy manifold, as discussed in [18], with a single chiral spinor.

Note that in the AdS3 slicing case, the internal manifold M8 provides a simple realisation of

a space whose spinor “interpolates” between two spinors of opposite chirality.
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7 Examples

In this section we demonstrate that the formalism we have developed may be useful for finding

supersymmetric solutions. In particular, we easily recover the dyonic M-brane solution of

[22]. This describes a 1/2-BPS M5/M2 bound state. We also argue that the recently

discovered dyonic solutions of [24, 25] lie within this class, although we will not attempt

to rederive these solutions here. Indeed, all of these solutions involve M5-branes with an

M2-brane sitting inside. Finally, we present some simple solutions to the equations of section

5.

The dyonic M-brane

As explained in section 4, equation (3.16) is a generalised calibration condition for an M5-

brane wrapping an associative three-cycle in a G2 manifold. Presently we shall regard T3⊕R4

as a G2 holonomy space6 in which M5-branes wrap the three-torus T3. The remaining three

unwrapped world-volume directions span a R

1,2 Minkowski space, and we accordingly set

m = 0. Thus, it is natural to write down the following simple metric ansatz describing such

a wrapped brane:

dŝ211 = e2∆
(

ds2(R1,2) + A du.du+H dx.dx
)

. (7.1)

Here u = (u1, u2, u3) are coordinates on the three-torus and x = (x1, . . . , x5) are coordinates

on the Euclidean five-space transverse to the M5-brane. At this point ∆, A and H are

arbitrary functions on the internal eight-manifold. It is convenient to choose the following

orthonormal frame for the latter

e2+i = A1/2dui

e5+ā = H1/2dxā (7.2)

where i = 1, 2, 3 and ā = 1, . . . , 5. We then take the following G2 structure on this eight-

manifold

φ = −e345 − e3 ∧ (e67 − e89)− e4 ∧ (e68 + e79)− e5 ∧ (e69 − e78)

K = e10 . (7.3)

Thus we have written R

8 = ImH ⊕ H ⊕ R, where ImH ⊕ H denotes the G2-structure in its

canonical dimension of seven, and R is the K-direction. This appears to break the invariance

6One may also consider the universal covering space R7, and wrap the brane over R3.
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of the space transverse to the fivebrane under the five-dimensional Euclidean group, but in

fact the solution we shall obtain respects this invariance – it is simply not manifest in the

above notation.

We now solve the equations of section 3. Let us start with equation (3.11) for K which

is solved by taking

e3∆H1/2 cos ζ = c1 (7.4)

where c1 is a constant. Equation (3.12) gives the conditions

e6∆AH = c22 (7.5)

d
(

e6∆H2
)

∧ dx12345 = 0 . (7.6)

One may solve the latter by taking H = H(x), ∆ = ∆(x), which is natural as the solution

should depend only on the coordinates transverse to the brane. Using these relations one

computes

A =

(

c2
c1

)2

cos2 ζ . (7.7)

Equation (3.13) is now automatically satisfied. One also computes

d
(

e6∆φ cos ζ
)

=
c32
c1
du123 ∧ d

(

H−1 cos2 ζ
)

(7.8)

which implies that dφ ∧ φ = 0. Thus (3.14) gives

f = 2 sec ζdζ (7.9)

and inserting this into the definition of f (3.15) yields the following relation

H1/2 tan ζ = c4 . (7.10)

We now set c2 = 1 without loss of generality (by rescaling the coordinates ui). The magnetic

flux is obtained from (3.16) and reads

e3∆F = −c4 du123 ∧ d(AH−1) + c1 ∗̃5dH (7.11)

where ∗̃5 denotes the Hodge dual with respect to the metric dx.dx. Thus the Bianchi identity

(3.22) imposes

�̃H = 0 . (7.12)
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That is, H is an harmonic function on the five flat transverse directions. One may easily

check that the equation of motion (3.23) is identically satisfied. It appears that we now have

a solution with two free parameters, but this is not so: one can remove c1 by rescaling the

coordinates xā. However, to recover7 the solution of [22] we in fact need to set

c4 = − tan ξ c1 = cos ξ . (7.13)

We can choose c4 = − tan ξ for some angle ξ without loss of generality, and then setting

c1 = cos ξ corresponds to a specific choice of normalisation for the harmonic function. In

conclusion, the metric takes the following form [22]

dŝ211 = H− 2
3

(

sin2 ξ +H cos2 ξ
)

1
3

[

ds2(R1,2) +
H

sin2 ξ +H cos2 ξ
du.du+Hdx.dx

]

. (7.14)

Notice that the function ζ is given by

tan2 ζ =
1

H
tan2 ξ (7.15)

and that the M2-brane and M5-brane are recovered in the limits ξ → π/2 and ξ → 0,

respectively.

Note that the solution actually preserves 16 Killing spinors [22], as for the ordinary flat

M5 brane. However, we have shown that the existence of a G2 structure of the type we have

been discussing is enough information to derive the full solution straightforwardly8.

“Dielectric flow” solutions

The solutions recently constructed in [23, 24, 25] fall in our general class of “dyonic” solutions.

Indeed they have a warped Minkowski3 factor times an internal eight-manifold, and most

importantly have non-trivial electric and magnetic fluxes turned on. Thus they may be

thought of as some M5-brane distribution with induced space-filling M2-branes. Note that

the solution of [24], in particular, admits sixteen supersymmetries – as many as the dyonic

M-brane of [22]. In principle one should be able to recover these solutions in much the same

way as we did for the standard dyonic M-brane solution above. All one has to do is to

provide an ansatz for the three-form φ, or equivalently for the metric. Thus as shown in

section 3 the fluxes are determined by the supersymmetry constraints, and one is left finally

7We disagree by factor of 6 with their expression for the flux. However, this appears to be a simple

typographical error in taking the M-theory lift.
8By a circle reduction to type IIA, followed by T-duality, one obtains D-brane bound states in type IIB.

The supersymmetry of the D5/D3 bound state [52] is discussed in [53].
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with a non-linear PDE to be solved. Indeed, we have turned the problem into “algebraic”

equations for the fluxes. While the solutions of [22, 24] preseve sixteen supercharges, and

that of [25] eight, our equations describe the most general “dyonic” solution, which admits

at least two Killing spinors with opposite chiralities. Thus these might be used to look for

more general examples.

Smeared solutions

Here we show that one may derive a simple class of solutions to the equations of section

5. One can think of these as describing M5-branes wrapped on an associative three-cycle

and completely smeared over a G2-manifold. Unfortunately, these solutions are singular. Of

course, many of the singularities of supergravity solutions are “resolved” in M-theory. It

would be interesting to know if this were the case here.

One makes the ansatz

φ = e−3A(y)φ0 (7.16)

where φ0 is the associative three-form for a G2-holonomy manifold, and assume in addition

∆ = ∆(y). Thus, geometrically, we have a family of G2-holonomy manifolds fibred over the

y-direction. One finds that all of the differential equations for the structure are satisfied

automatically, apart from one, which imposes

d
(

e12∆vol7
)

= 0 ⇔ 12∆(y) = 7A(y) + c . (7.17)

Notice that one may set c = 0 by redefining φ0. Thus it remains to satisfy the Bianchi

identity (5.7). This imposes

e−6∆/7 = a+ by (7.18)

where a and b are constants. Thus the solution is

dŝ211 = (a+ by)−7/3ds2
(

R

1,2
)

+ (a+ by)14/3dy2 + (a+ by)5/3ds2(G2) (7.19)

where ds2(G2) is any G2-holonomy metric, and the G-flux is given by

G = b(∗7φ)0 (7.20)

where (∗7φ)0 is the coassociative four-form on the G2-manifold. Setting b = 0 gives R1,3

times a G2-manifold. For b 6= 0 one may make a change of variables to write the metric as

dŝ211 = dr2 + r1/2ds2(G2) + r−7/10ds2(R1,2) . (7.21)

Clearly this is singular at r = 0, although it is a perfectly regular supersymmetric solution

everywhere else.

29



8 Outlook

In this paper we have studied the most general warped supersymmetric M-theory geometry

of the type M3 ×M8, with the external space M3 being either Minkowski3 or AdS3. The

key ingredient which allowed us to extend the analysis of [15, 18, 20] was to allow for an

internal Killing spinor of indefinite chirality. This is in fact the most general form compatible

with the three-eight decomposition and the Majorana condition in eleven dimensions. The

geometries were shown to admit a particular G2-structure. This is a special case of the

most general eleven-dimensional geometry of the “null” type, for which the corresponding

structure is (Spin(7)⋉ R

8)× R [37, 5].

One of our motivations was to extend the analysis of [15, 18] to more general super-

symmetric geometries. However, it is a rather general result that, in the case of Minkowski3

vacua, ignoring higher order corrections or singularities rules out compact solutions. We have

noticed that such corrections allow, in principle, compact geometries. It would be interesting

to see if compact examples can be constructed.

We have found that the supersymmetry constraints also have a physical interpretation

in terms of generalised calibrations [11, 5, 7]. In particular, we have shown most of the

conditions arise as generalised calibrations for “dyonic” M5-branes, namely M5-branes with

M2-brane charge induced on the world-volume by the three-form. We have shown that when

there is a suitable time-like Killing vector, one can construct a Bogomol’nyi bound in the

presence of background G-flux. This applies for the entire class of geometries considered here,

and also to the “time-like” class of [5]. It would be interesting to understand more precisely

the relation of generalised calibrations to the supersymmetry conditions in the general case

of a (Spin(7)⋉ R

8)× R structure, when the Killing vector is null.

The generality of our method implies that the conditions we have derived apply to a

variety of situations. Thus, apart from “compactifcations”, one can use the same results to

describe non-compact geometries of physical interest. Typical examples are wrapped branes

or intersecting branes. In these, as in all other cases, the supersymmetry constraints are

relatively easy to implement, while ensuring that the Bianchi identity is satisfied is often

a challenging task. One generically obtains non-linear PDEs whose explicit solutions are

typically beyond reach. In any case, as illustrated in section 5, it should be clear that

our approach is suitable for generalising the work of [21]. In particular, we have given the

conditions and PDEs describing M5-branes wrapped on associative and SLAG three-cycles.

In the last case one can show that the Calabi-Yau three-fold becomes a non-Hermitian

manifold after allowing for the backreaction. This is to be contrasted with the case where M5-
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branes (or NS5-branes in type II) wrap holomorphic cycles. Here the holomorphic structure

of the manifold is preserved [45, 46, 21, 44, 7, 8].

Rewriting the Killing spinor equations in terms of the underlying G-structure provides an

elegant organisational principle, and sheds light on the geometry of supersymmetric solutions.

Namely, it turns out that the geometrical interpretation of the fluxes is given by the intrinsic

torsion. Much physical insight comes from the interpretation of these in terms of branes and

calibrations. On the other hand, the complication that arises from solving the equations

implied by the Bianchi identitity seems to be a limitation on the method for finding new

solutions. It is conceivable that using the geometrical and physical insights of our approach

in combination with other techniques, such as those related to gauged supergravities, will

improve the situation. Some ideas in this direction have already appeared (see, e.g., [25])

and it would be interesting to elaborate on them further.
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A G2-structures

A G2-structure on a seven-dimensional manifold is specified by an associative three-form φ,

which in a local frame may be written

φ = e246 − e235 − e145 − e136 + e127 + e347 + e567 . (A.1)

This defines uniquely a metric g7 = (e1)2+ · · ·+(e7)2 and an orientation vol7 = e1∧ · · ·∧ e7.
We then have

∗φ = e1234 + e1256 + e3456 + e1357 − e1467 − e2367 − e2457 . (A.2)

The adjoint representation of SO(7) decomposes as 21→7+14 where 14 is the adjoint

representation of G2. We therefore have g⊥2 ≃ 7. The intrinsic torsion then decomposes into

four modules [54]:

T ∈ Λ1 ⊗ g⊥2 = W1 ⊕W2 ⊕W3 ⊕W4,

7× 7 → 1+ 14 + 27+ 7 .
(A.3)
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The components of T in each module Wi are encoded in terms of dφ and d ∗ φ which

decompose as

dφ ∈ Λ4 ∼= W1 ⊕W3 ⊕W4

35 → 1+ 27+ 7

d ∗ φ ∈ Λ5 ∼= W2 ⊕W4

21 → 14+ 7 .

(A.4)

Note that the W4 component in the 7 representation appears in both dφ and d ∗ φ. It is the
Lee form, given by

W4 ≡ φy dφ = − ∗ φy d ∗ φ. (A.5)

The W1 component in the singlet representation can be written as

W1 ≡ ∗(φ ∧ dφ). (A.6)

The remaining components of dφ and d∗φ encodeW3 andW2, respectively. The G2 manifold

has G2 holonomy if and only if the intrinsic torsion vanishes, which is equivalent to dφ =

d ∗ φ = 0. Note that G2-structures of the type W1 ⊕W3 ⊕W4 are called integrable as one

can introduce a G2 Dolbeault cohomology [55].

On a manifold with a G2-structure forms decompose into irreducible G2 represenations.

In particular, we have the following decompositions of the spaces of two-forms and three-

forms:
Λ2 = Λ2

7 ⊕ Λ2
14

Λ3 = Λ3
1 ⊕ Λ3

7 ⊕ Λ2
27 .

(A.7)

The Hodge dual spaces Λ5 and Λ4 decompose accordingly. For applications in the main part

of the paper, it is useful to write down explicitly the decompositions of the three-forms and

four-forms. A three-form Ω ∈ Λ3 is decomposed into G2 irreducible representations as

Ω = π1(Ω) + π7(Ω) + π27(Ω) (A.8)

where the projections are given by

π1(Ω) =
1

7
(Ωyφ)φ

π7(Ω) = −1

4
(Ωy ∗ φ)y ∗ φ

π27(Ω)ijk =
3

2
Q̂r[iφ

r
jk] (A.9)

and Q̂ij is the traceless symmetric part of the tensor Qij =
1
2!
Ωikrφ

kr
j, namely

Qij =
3

7
(Ωyφ)gij −

1

2
φij

k(Ωy ∗ φ)k + Q̂ij . (A.10)
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Similarly, a four-form Ξ ∈ Λ4 decomposes into G2 irreducible represenations as

Ξ = π1(Ξ) + π7(Ξ) + π27(Ξ) (A.11)

where the preojections are given by

π1(Ξ) =
1

7
(Ξy ∗ φ) ∗ φ

π7(Ξ) = −1

4
(φyΞ) ∧ φ

π27(Ξ)ijkm = −2Ûr[i ∗ φr
jkm] (A.12)

and Ûij is the traceless symmetric part of the tensor Uij =
1
3!
Ξikrm ∗ φkrm

j , namely

Uij = −4

7
(Ξy ∗ φ)gij −

1

2
φij

k(φyΞ)k + Ûij . (A.13)

Consider an infinitesimal variation of the associative three-form δφ and the induced

variations of the metric δgij, and coassociative four-form δ ∗ φ. Using the various identities

obeyed by the G2 structure, we obtain an explicit decomposition of δφ, namely

π1(δφ) =
3

7
δ log

√
g φ

π7(δφ) = −1

4
(δφy ∗ φ)y ∗ φ

π27(δφ)ijk =
3

2
δgr[iφ

r
jk] −

3

7
δ log

√
g φijk . (A.14)

The irreducible components of δ ∗ φ are similarly given by

π1(δ ∗ φ) =
4

7
δ log

√
g ∗ φ

π7(δ ∗ φ) = −1

4
(φy δ ∗ φ) ∧ φ

π27(δ ∗ φ)ijkm = 2δgr[i ∗ φr
jkm] −

4

7
δ log

√
g ∗ φijkm . (A.15)

The following relations also hold

1

2!
δφ(i|krφ

kr
j) = δgij + gijδ log

√
g

1

3!
δ ∗ φ(i|krm ∗ φkrm

j) = −δgij − 2gijδ log
√
g

φy δ ∗ φ = −δφy ∗ φ
π27(δ ∗ φ) = − ∗ π27(δφ) . (A.16)

Using these expressions one can derive the following useful equation

δ ∗ φ = − ∗ δφ+ δ log
√
g ∗ φ+

1

2
(δφy ∗ φ) ∧ φ . (A.17)
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B The M5-brane Hamiltonian

In this appendix we present a brief discussion of the Hamiltonian formulation of the M5-

brane world-volume theory [36]. We use this to obtain an expression for the energy of a

class of static M5-branes, which, in the main text, is shown to satisfy a Bogomol’nyi-type

inequality. We also recall some details of the M5-brane κ-symmetry.

The action of the M5-brane is complicated by the presence of a self-dual three-form H

which propagates on the world-volume. This requires one to introduce an auxilliary scalar

field a (see [56] for a review), with a normalised “field strength” vi = ∂ia/
√

−(∂a)2. One

then has an additional gauge invariance that one may use to gauge-fix a, at the expense

of losing manifest spacetime covariance. However, the Hamiltonian treatment requires one

to make a choice of time coordinate. Using the symmetries of the M5-brane action, one

may then choose the “temporal gauge” a = σ0 = t, where σi = (σ0, σa) are world-volume

coordinates (a = 1, . . . , 5), and the background spacetime is assumed to take the static form

dŝ211 = −e2∆dt2+ ds210. One then proceeds with the Hamiltonian approach [36], which yields

the constraints

P̃ 2 + T 2
M5
L2
DBI = 0

∂aX
M P̃M = 0 . (B.1)

Here XM = (t, XI) are the embedding coordinates, TM5 is the M5-brane tension, LDBI =
√

det (δ b
a +H∗b

a ) is a Born-Infeld-like term, and

P̃M = PM + TM5

(

V a∂aX
M − CM

)

. (B.2)

We have that

Vc =
1

4
H∗abHabc (B.3)

where the two-form H∗ = ∗5H is the world-space dual of H (the H0ab components of H

will not contribute to the energy) and the term CM is a contribution from the Wess-Zumino

couplings of the M5-brane, namely

CM = ∗5
[

iMC6 −
1

2
iMC ∧ (C − 2H)

]

(B.4)

where iM denotes interior contraction with the vector field ∂/∂XM . Recall that the Wess-

Zumino coupling of the M5-brane is given by

IWZ =

∫

W

C6 +
1

2
C ∧H (B.5)
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where H is the three-form field strength on the five-brane, coupled to the background C-field

H = h+ j∗C . (B.6)

Here h is closed, and locally of the form h = d b for some two-form potential b. Notice that

dH = j∗G, where j is the M5-brane embedding map.

We may now use the Hamiltonian and momentum constraints (B.1) to obtain an expres-

sion for the energy density. We consider static configurations with P̃ I = 0. This is sufficient

to satisfy the momentum constraint, but not in general necessary. One could extend our

analysis to the general case (with more effort), but we will not do this here – the class of

static configurations we consider will be general enough for our purposes. One defines the

energy in the usual way

E = −PMkN ĝMN = −P0 = e2∆P 0 (B.7)

where k is the time-like Killing vector field ∂/∂t. The Hamiltonian constraint now allows

one to solve for the energy

E = TM5

(

C0 + e∆LDBI

)

. (B.8)

In addition to the energy, the other ingredient we use in the main text is the κ-symmetry

and supersymmetry transformations of the fermions. These combine to give

δθ = P+κ+ η (B.9)

where P± = 1
2
(1±Γ̃) are projector operators. η is the background supersymmetry Spin(1, 10)

spinor, and Γ̃ is a traceless Hermitian product structure, that is, tr Γ̃ = 0, Γ̃2 = 1, Γ̃† = Γ̃.

Explicitly, we have

Γ̃ =
1

LDBI

e−∆Γ̂0

[

V · γ̃ + 1

2
γ̃abH∗

ab +
1

5!
γ̃a1...a5ǫ

a1...a5

]

(B.10)

where γ̃a are the pull-backs of the eleven-dimensional Clifford matrices to the M5-brane

world-space. If we consider static configurations with a rest frame that has zero momentum,

then Va = 0. This is the form of the projector used in the main text. One can show [57] that

the variation (B.9) vanishes if, and only if,

P−η = 0 (B.11)

which therefore characterises bosonic supersymmetric configurations.
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C Useful relations

Given the supersymmetry equations (2.26), and using the symmetry properties of the gamma

matrices, one can derive some useful identities which we have used extensively in deriving

our results. For the reader’s convenience we list them here:

1

288
Fpqrsǫ

±T[γpqrs, A]−ǫ
± ∓ 1

2
∂m∆ǫ

±T[γm, A]−ǫ
± +m(ǫ∓TAǫ± − ǫ±TAǫ∓)

∓1

6
fmǫ

±TAγmǫ∓ ± 1

6
fmǫ

∓TγmAǫ± = 0 (C.1)

1

288
Fpqrsǫ

±T[γpqrs, A]+ǫ
± ∓ 1

2
∂m∆ǫ

±T[γm, A]+ǫ
± +m(ǫ∓TAǫ± + ǫ±TAǫ∓)

±1

6
fmǫ

±TAγmǫ∓ ± 1

6
fmǫ

∓TγmAǫ± = 0 (C.2)

1

288
Fpqrsǫ

+T[γpqrs, A]±ǫ
− − 1

2
∂m∆ǫ

+T[γm, A]∓ǫ
− +m(ǫ−TAǫ− ± ǫ+TAǫ+)

∓1

6
fmǫ

+TAγmǫ+ +
1

6
fmǫ

−TγmAǫ− = 0 (C.3)

where [·, ·]± refers to an anticommutator or commutator, and A is a general Clifford matrix.
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