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Perturbation Theory Treatment of Spin-Orbit Coupling. I: Double Perturbation
Theory Based on a Single-Reference Initial Approximation
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We develop a perturbation theory for solving the many-body Dirac equation within a given
relativistic effective-core potential approximation. Starting from a scalar-relativistic unrestricted
Hartree-Fock solution (SR UHF) we carry out a double perturbation expansion in terms of spin-
orbit coupling (SOC) and the electron fluctuation potential. Computationally convenient energy
expressions are derived through fourth-order in SOC, second-order in the electron fluctuation po-
tential, and a total of third-order in the coupling between the two. Illustrative calculations on the
halogen series of neutral and singly positive diatomic molecules show that the perturbation expan-
sion is well-converged by taking into account only the leading (non-vanishing) term at each order
of the electron fluctuation potential. Our perturbation theory approach provides a computationally
attractive alternative to a two-component self-consistent field treatment of SOC. In addition, it
includes coupling with the fluctuation potential through third-order, and can be extended (in prin-
ciple) to multi-reference calculations, when necessary for both closed- and open-shell cases, using
quasi-degenerate perturbation theory.

Keywords:

I. INTRODUCTION

The treatment of relativistic effects in solids and
molecular systems is usually done, nowadays, start-
ing from a self-consistent field (SCF) treatment. This
can be achieved using two- or four-component rep-
resentations of the Dirac equation. Some of the
most popular two-component variational approaches in-
clude the zeroth- (and higher-) order regular approx-
imations (ZORA),1–5 the Douglas Kroll Hess family
of methods,6–17 and methods based on the eXact-2-
component (X2C) approach.18–28 Four component varia-
tional treatments are also in use, both for molecules29,30

and solids.31

The computational bottleneck in performing varia-
tional relativistic calculations is the need to explic-
itly diagonalize the secular equations in a large two-
or four-component spinor basis (2c-SCF or 4c-SCF).
“Diagonalization-free” methods have also been dis-
cussed, but usually necessitate a small number of
diagonalizations.32–34 Diagonalization cost can be greatly
reduced by exploitation of double-group symmetry, if the
corresponding irreducible representations (IRREPs) can
be built. While algorithms exist for constructing the IR-
REPs of the double group, they are generally limited to
the treatment of states that preserve time-reversal sym-
metry (the so-called Kramer’s restricted, KR, variant of
the theory), but could also be extended to Kramer’s unre-
stricted theory.29,35–37 KR theory is best suited to treat
closed-shell electronic configurations although, even in
that context, the symmetries are usually not exploited
for diagonalization due, in part, to a lack of efficient
algebraic routines. As for open-shell systems, a single-

reference 2c-SCF or 4c-SCF is insufficient for treating
those cases with strong multi-reference character. At-
tempts for a multi-reference generalization of such self-
consistent treatments lead to approaches that are ei-
ther prohibitively expensive or lack the property of size
extensivity.30,38–45 Both cases represent important obsta-
cles for the application of multi-reference approaches to
extended systems.

Perturbation theory represents an alternative to the
SCF treatment of relativistic effects. Some spin-orbit
configuration-interaction (CI) algorithms include part
of the SOC effects both in the CI diagonalization and
by a perturbation theory treatment. As a matter of
fact, the CIPSO algorithm of Teichteil, Pelissier and
Spiegelmann46 is part of a class of algorithms sometimes
referred as CILS+SO, in which SOC is partly included
through perturbation theory in a target space determined
from the correlated scalar relativistic (SR) wave function
and its quasi-degenerate complement. Double group CI
methods are somewhat similar in spirit, with one impor-
tant difference being that the diagonalization of the full
Hamiltonian is achieved in a target space that may be
enlarged by configurations which are selected by a SOC
criterion.47,48

Some success in the perturbation theory treatment of
relativistic effects has been found from methods based on
the two-component Pauli or Breit-Pauli equations.49–58 A
possibly more accurate alternative, however, is to directly
solve a suitable approximation for the four-component
Dirac equation by a perturbation expansion, following
the direct perturbation theory (DPT) developed inde-
pendently by Rutkowski,59–61 and by Kutzelnigg and co-
workers.62 Most total energy DPT calculations reported
thus far involve the perturbation theory treatment of
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both SR (generally more important for the total energy)
as well as SOC effects. DPT has been applied in the con-
text of density-functional theory (DFT) calculations,63

Hartree-Fock calculations64–66 and with coupled cluster
wave functions.67 The extension of DPT to open-shell
systems by means of quasi-degenerate perturbation the-
ory (QDPT) has also been discussed.68–72 Coincidentally,
QDPT also allows for some otherwise non-dynamical
electron correlation to be included in a size extensive
way.73–76

An alternative to the traditional two- or four-
component representations of the Dirac equation is the
use of relativistic effective core potentials (RECP).77–80

In fact, the RECP approximation is probably the most
popular approach to treat relativistic effects (albeit,
only at the SR level) and is implemented in most first-
principles programs.77,81–97 The SR RECP approach
represents a very convenient means to treat relativis-
tic effects, because it is no more expensive than a
one-component non-relativistic (NR) calculation. How-
ever, SOC effects are not included. If they were, the
RECP approach could lead to a computational method
that is more accurate than the costlier four-component
Dirac-Coulomb approach.77,98 The main drawback of the
RECP methodology is the use of the frozen-core approxi-
mation, which can be inappropriate for calculating prop-
erties that directly involve core orbitals (e.g. nuclear
magnetic resonance chemical shifts, Mössbauer isomer
shifts and X-ray spectroscopies).77

Given the widespread use of the SR RECP approach,
it is desirable to develop a means of including SOC ef-
fects perturbatively. We intend to provide the neces-
sary theory for such treatments in a series of papers.
The first paper of this series (part I), presented here,
provides an appropriate (non-iterative) double perturba-
tion theory for solving the many-body Dirac equation in
a given RECP approximation, starting from the corre-
sponding SR single-reference unrestricted Hartree-Fock
(UHF) solution. Part II will present an iterative single-
reference approach, based on the coupled-perturbed
Hartree-Fock/Kohn-Sham (CPHF/CPKS) spin-current
density functional perturbation theory formalism.99 Fur-
ther additions to the series will consider multi-reference
generalizations of the theory, based on QDPT, as well
as the treatment of periodic systems. This series com-
plements work by some of the present authors to pro-
vide a program for two-component spin-current DFT
calculations on periodic systems within the Crystal
code.100–105

In this paper, we present a formalism for solving the
many-body Dirac equation starting from the SR UHF so-
lution. Our formalism is based on a double-perturbation
treatment of SOC and the electron fluctuation potential.
Computational results are provided for the halogen se-
ries of diatomic molecules (F2, Cl2, Br2, I2 and At2).
Although the formalism could be used to calculate the
density matrix and related properties, as well as orbital
energy levels, we limit our considerations in this first pa-

per to the convergence of the perturbation series for the
energy. The illustrative calculations show that the per-
turbation series in SOC — both zeroth order and first
order in the electron fluctuation potential — converge
rapidly to the expected values. Thus, our treatment pro-
vides a convenient starting point for the extension to in-
clude, for example, ordinary Møller-Plesset second-order
correlation energy (second order in the electron fluctua-
tion potential and zeroth order in SOC) and higher order
coupling between SOC and the electron fluctuation po-
tential. Detailed formulas are provided through total or-
der three for this purpose. Moreover, a brief discussion is
included regarding cases where the application of QDPT
may become necessary.

II. FORMALISM

A. Statement of the Problem

Our treatment is formulated within the RECP approx-
imation. Thus, the many-electron problem is partitioned
into one involving only the core electrons and one describ-
ing valence-valence and core-valence interactions. We as-
sume that the core electron problem has already been
solved within a sufficiently accurate approximation to
the many-electron four-component Dirac equation (e.g.
Dirac-Coulomb, Dirac-Coulomb-Breit, or generally any
other variant, possibly including higher-order corrections
from quantum electrodynamics) and that the parameters
of the RECP have been extracted. The reader is referred
to excellent reviews of the RECP method for more ex-
plicit details on the procedure for extraction of the RECP
operators.77,78,97,106–109

Our task is to solve the remaining problem involv-
ing the valence-valence and core-valence interactions.
The starting point is the many-electron time-independent
Dirac equation in the RECP approximation:

Ĥ|ψI〉 = EI |ψI〉 , (1)

in which EI are the energies of the stationary states
|ψI〉 labelled by the index I. Our approach could, in
principle, be used to treat excited states, but here we
limit our discussion to approximating the ground-state
|ψ〉. In general, Eq. (1) can be written in terms of a
two- or four-component representation. Although some
RECP calculations have been performed within an ex-
plicitly relativistic four-component representation of the
valence Hamiltonian Ĥ, these calculations have not found
appreciable differences with respect to a computation-
ally less demanding two-component ansatz.77,110–114 We,
therefore, write Ĥ in a two-component basis wherein all
explicitly relativistic effects are accounted for by the SR
ÛAREP (the averaged relativistic effective potential) plus

the spin-dependent parts ĥSO of the effective-core poten-
tial:

Ĥ = I2 �
[
ĤNR + ÛAREP

]
+ ĥSO . (2)
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Here I2 is the 2×2 identity matrix and ĤNR is the many-
electron NR valence Schrödinger Hamiltonian. The op-
erator � ensures that the direct product ⊗ with I2

is taken once for the one-electron part and twice for
the two-electron part of the Hamiltonian. All spin-
dependent relativistic effects (SOC, spin-other-orbit cou-

pling, spin-spin coupling, etc...) are included in ĥSO
(sometimes called the spin-orbit relativistic effective po-
tential, SOREP). The two-electron scalar and spin-
dependent relativistic effects are included in the core-
valence interactions, but are assumed to be negligeable

for the valence-valence interactions. ÛAREP and ĥSO
can, in turn, be written as a sum of one-electron opera-
tors (labelled by the index i):

ÛAREP =

val∑
i

ÛAREPi , (3a)

ĥSO =

val∑
i

ĥSO,i , (3b)

where val indicates that the index i runs over the set
of valence electron coordinates including both space and

spin. The operators ĥSO,i may be expressed in terms of

the components of the one-electron spin Ŝi and angular
momentum L̂i operators as follows:100

ĥSO,i = ζ̂i

(
L̂z,iŜz,i +

1

2
L̂+,iŜ−,i +

1

2
L̂−,iŜ+,i

)
, (4)

in which ζ̂i is a linear combination of radial and angular
operators that depend on the parameters obtained from
the RECP fitting, Ŝz,i and L̂z,i are the z-components of
the one-electron spin and angular-momentum operators
(the product L̂z,iŜz,i is pure imaginary) and Ŝ±,i and

L̂±,i are the one-electron spin and angular momentum
ladder operators.

Our choice for Ĥ(0,0) is the analog of the usual Møller-
Plesset sum of one-electron Fock operators:115,116

Ĥ(0,0) =

val∑
i

F̂i =

val∑
i

[
ĥi + ÛAREPi +

(
Ĉi − K̂i

)]
,

(5)

in which ĥi contains the NR electronic kinetic energy and
electron-nuclear attraction terms, while Ĉi and K̂i are
the usual Coulomb and exchange operators. Practically,
F̂i is determined by the self-consistent solution of the
one-component SR unrestricted Hartree-Fock-Roothaan
equations:

F̂m|m〉 = εm|m〉 , (6)

where the |m〉 are singly-occupied orbitals. In Eq. (6) the
spin index is implicit; when desirable to make it explicit,
we write:

F̂σm|m,σ〉 = εσm|m,σ〉 , (7)
in which σ = α or β. We note that |m,σ〉 can be ex-
panded in the atomic orbital (AO) |ν〉 basis, (here a set
of atom-centered Gaussian functions), as follows:

|m,σ〉 =
∑
ν

cσνm|ν〉 ⊗ |σ〉 . (8)

With the above definition of Ĥ(0,0), the first-order
Hamiltonians associated with SOC and the electron fluc-
tuation potential, i.e. Ĥ(1,0) and Ĥ(0,1), become:

Ĥ(1,0) = ĥSO , (9a)

Ĥ(0,1) =
1

2

val∑
j 6=i

1

rij
−

val∑
i

(
Ĉi − K̂i

)
= V̂ee −

(
Ĉ − K̂

)
, (9b)

We solve Eq. (1) with Ĥ given by the sum of Hamil-
tonians in Eqs. (5), (9a) and (9b), by expanding the
valence energy and wavefunction, including core-valence
interactions, in a conventional Dalgarno double pertur-
bation series:117

Ĥ|ψI〉 =
[
Ĥ(0,0) + λĤ(1,0) + µĤ(0,1)

] [
|ψ(0,0)
I 〉+ λ|ψ(1,0)

I 〉+ µ|ψ(0,1)
I 〉+ λ2|ψ(2,0)

I 〉+ µ2|ψ(0,2)
I 〉+ λµ|ψ(1,1)

I 〉+ . . .
]

=
[
E

(0,0)
I + λE

(1,0)
I + µE

(0,1)
I + λ2E

(2,0)
I + µ2E

(0,2)
I + λµE

(1,1)
I + . . .

]
×
[
|ψ(0,0)
I 〉+ λ|ψ(1,0)

I 〉+ µ|ψ(0,1)
I 〉+ λ2|ψ(2,0)

I 〉+ µ2|ψ(0,2)
I 〉+ λµ|ψ(1,1)

I 〉+ . . .
]
, (10)

The energy terms of zeroth order in SOC and arbitrary
order M = 0, 1, 2, . . . in the electron fluctuation poten-

tial, E(0,M), are elements of the well-known SR MP se-
ries. The energy terms of arbitrary order N = 0, 1, 2, . . .



4

in SOC and zeroth order in the electron fluctuation po-
tential, E(N,0), represent pure SOC contributions to the
energy. All other terms couple SOC with the electron
fluctuation potential. A key issue, of course, is the con-
vergence properties of the various energy sub-series.

B. Energy Contributions

In accordance with standard MP theory, the sum of
the terms E(0,0) and E(0,1) give us the SR UHF energy:

EUHF = E(0,0) + E(0,1) . (11a)

with:

E(0,0) = 〈ψ(0,0)|Ĥ(0,0)|ψ(0,0)〉 =

occ∑
m

εm , (11b)

where occ denotes the set of occupied SR UHF valence
orbitals; similarly virt will later denote the set of virtual
(or unoccupied) orbitals. For the MP1 term, we have:

E(0,1) = 〈ψ(0,0)|Ĥ(0,1)|ψ(0,0)〉

= −1

2

occ∑
mn

[
(mm|nn)− (mn|nm)

]
, (11c)

wherein the bi-electronic integrals are written in Mulliken
notation.

1. Terms of Order Zero in the Electron Fluctuation
Potential

Expressions for the contributions E(N,0) (N =
1, 2, 3, 4) in terms of the many-electron wavefunctions

|ψ(0,0)
I 〉 of Eq. (10) are readily obtained from ordinary

non-degenerate (see further below) RSPT. In first order:

E(1,0) = 〈ψ(0,0)|ĥSO|ψ(0,0)〉 , (12)

and in second order:

E(2,0) = 〈ψ(0,0)|ĥSOR̂(0,0)ĥSO|ψ(0,0)〉 , (13)

in which the non-degenerate RSPT resolvant operator
R̂(0,0) is written as:

R̂(0,0) =
∑
I

′
|ψ(0,0)
I 〉

(
E(0,0) − E(0,0)

I

)−1

〈ψ(0,0)
I | (14)

where the sum is over all configurations spanned by the
SR UHF valence orbitals of the (0, 0) problem and the
prime over the summation indicates that the ground state
is excluded. The occurrence of the energy denominators

E(0,0) − E(0,0)
I in Eq. (13), and in higher order terms of

the series, implies that the perturbation theory expansion
may not converge if degenerate and/or quasi-degenerate
configurations interact with the ground state, as is the

case, for example, in many open-shell systems. An ade-
quate treatment of such cases would require, in general,
a QDPT approach, which is postponed until later papers
of this series. The corresponding third and fourth order
expressions can be found in Appendix A, along with a
demonstration of how these expressions can be reduced
to a computationally manageable form in terms of one-
electron SR UHF orbitals.

Here we simply quote the final orbital formulas from
Appendix A. In first order

E(1,0) =

occ∑
m

〈m|ĥSO|m〉 = 0 . (15)

An explanation for why E(1,0) vanishes is provided in
the discussion associated with Eq. (A1) of Appendix
A. In order to write the energy contributions of higher
order, it is convenient to introduce the following complex-
Hermitian matrix

Gσσ
′(1,0)

mp = 〈m,σ|ĥSO|p, σ′〉 , (16a)

and the following complex-anti-Hermitian matrix:

Uσσ
′(1,0)

mp =
G
σσ′(1,0)
mp

εσ′p − εσm
. (16b)

In terms of these matrices we obtain, in second order:

E(2,0) =
∑
σ,σ′

occ∑
m

virt∑
p

Gσσ
′(1,0)

mp Uσ
′σ(1,0)

pm , (17)

in third order:

E(3,0) =
∑

σ,σ′,σ′′

[
occ∑
mn

virt∑
p

Uσσ
′(1,0)

mp Uσ
′σ′′(1,0)

pn Gσ
′′σ(1,0)
nm

−
occ∑
m

virt∑
pq

Uσσ
′(1,0)

mp Gσ
′σ′′(1,0)
pq Uσ

′′σ(1,0)
qm

]
, (18)

and in fourth order:

E(4,0) =
∑

σ,σ′,σ′′,σ′′′

×

[
2

occ∑
mn

virt∑
pq

U
σσ′(1,0)
mp G

σ′σ′′(1,0)
pq G

σ′′′σ′(1,0)
nm U

σ′′σ′′′(1,0)
qn

εσm − εσ
′′
q

−
occ∑
m

virt∑
pqr

U
σσ′(1,0)
mp G

σ′σ′′(1,0)
pq G

σ′′σ′′′(1,0)
qr U

σ′′′σ(1,0)
rm

εσm − εσ
′′
q

−
occ∑
mno

virt∑
p

U
σσ′(1,0)
mp G

σ′′σ(1,0)
nm G

σ′′′σ′′(1,0)
on U

σ′σ′′′(1,0)
po

εσ′′n − εσ
′
p

+

occ∑
mn

virt∑
pq

U
σσ′(1,0)
mp G

σ′σ′′(1,0)
pn U

σ′′′σ(1,0)
qm G

σ′′σ′′′(1,0)
nq

εσ′′n − εσ
′
p

]
.(19)

The energy denominators in Eqs. (17)-(19) make explicit
the possibility, discussed above, that near degeneracies
due, for example, to a small HOMO-LUMO gap may
occasion the need for a QDPT treatment.
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2. Terms of Order One in the Electron Fluctuation
Potential

We now proceed to the energy contributions E(N,1)

through third order in SOC. The detailed derivations can
be found in Appendix B. For the case N = 1:

E(1,1) = 2R
[
〈ψ(0,0)|ĥSO|ψ(0,1)〉

]
= 0 , (20)

where R denotes the real part of the argument. Here
E(1,1) vanishes since, according to Brillouin’s theorem,
|ψ(0,1)〉 consists only of doubly-excited configurations,

whereas ĥSO, given by Eq. (3), consists only of mono-
electronic operators. For N = 2:

E(2,1) = 2R
[
〈ψ(0,0)|Ĥ(0,1)R̂(0,0)ĥSOR̂

(0,0)ĥSO|ψ(0,0)〉
]

+ 〈ψ(0,0)|ĥSOR̂(0,0)
(
Ĥ(0,1) − E(0,1)

)
R̂(0,0)ĥSO|ψ(0,0)〉 ,(21)

and for N = 3:

E(3,1) = 2R
[
〈ψ(0,0)|ĥSOR̂(0,0)

(
H(0,1) − E(0,1)

)
× R̂(0,0)ĥSOR̂

(0,0)ĥSO|ψ(0,0)〉
]

+ 2R
[
〈ψ(0,0)|Ĥ(0,1)R̂(0,0)ĥSOR̂

(0,0)

× ĥSOR̂
(0,0)ĥSO|ψ(0,0)〉

]
. (22)

The terms E(2,1) and E(3,1) can be conveniently re-
expressed in the AO basis (see discussion associated with
Eqs. (B10)-(B22b) of Appendix B). For E(2,1) we obtain:

E(2,1) =
∑
σ,σ′

R

∑
ων

[
Pσσ(1,0)
ων

]∗∑
τγ

Mσ′σ′(1,0)
γτ (ων|τγ)


−
∑
σ,σ′

R

∑
ων

[
Pσσ

′(1,0)
ων

]∗∑
τγ

Mσσ′(1,0)
γτ (ωγ|τν)

 ,(23)

where P
σσ′(1,0)
ων are elements of the complex-Hermitian

first order perturbed-density matrix and M
σσ′(1,0)
γτ are

elements of a complex non-Hermitian matrix (for defi-
nition see Eqs. (B15) and (B17) Appendix B). Both
of these matrices are defined in terms of the orbital co-
efficients cσνm of Eq. (8) and the matrix of first order

orbital rotations Uσσ′(1,0), whose elements are defined in
Eq. (16b).

For E(3,1) we obtain:

E(3,1) = 2
∑
σσ′

R

[∑
ων

[
Pσσ(1,0)
ων

]∗∑
τγ

Mσ′σ′(2,0)
γτ (ων|τγ)

]
− 2

∑
σσ′

R

[∑
ων

[
Pσσ

′(1,0)
ων

]∗∑
τγ

Mσσ′(2,0)
γτ (ωγ|τν)

]

+ 4
∑
σσ′

R

[∑
ων

Mσσ(1,0)
νω

∑
τγ

[
Oσ
′σ′(2,0)
γτ − V σ

′σ′(2,0)
γτ

]
(ων|τγ)

]

− 4
∑
σσ′

R

[∑
ων

Mσ′σ(1,0)
νω

∑
τγ

[
Oσσ

′(2,0)
γτ − V σσ

′(2,0)
γτ

]
(ωγ|τν)

]
. (24)

where the M
σσ′(2,0)
γτ , O

σσ′(2,0)
γτ and V

σσ′(2,0)
γτ are elements

of non-Hermitian matrices that are defined in terms
of the occupied-virtual, occupied-occupied and virtual-
virtual blocks, respectively, of the second order matrix
of orbital rotations Uσσ′(2,0) (see Eqs. (B21a)-(B22b) of
Appendix B).

3. Terms of Order Two in the Electron Fluctuation
Potential

Finally, we consider terms that are second order in the
fluctuation potential and through first order in SOC. Al-
though these terms are not calculated here, it is of inter-

est to establish that they can both be obtained without
significant increase in computational effort.

For E(0,2), we have the usual sum-over-states expres-
sion obtained, as before, from ordinary non-degenerate
RSPT:

E(0,2) = 〈ψ(0,0)|Ĥ(0,1)R̂(0,0)Ĥ(0,1)|ψ(0,0)〉 , (25)

On the other hand, for the E(1,2) term a derivation is
provided in the discussion associated with Eq. (C1) of
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Appendix C, which yields:

E(1,2) = 2R
[
〈ψ(0,0)|ĥSOR̂(0,0)

×
(
Ĥ(0,1) − E(0,1)

)
R̂(0,0)Ĥ(0,1)|ψ(0,0)〉

]
+ 〈ψ(0,0)|Ĥ(0,1)R̂(0,0)ĥSOR̂

(0,0)Ĥ(0,1)|ψ(0,0)〉 .(26)

Writing the configurations |ψ(0,0)
I 〉 in Eq. (25) as doubly-

excited Slater determinants |ψpqmn〉 and evaluating matrix
elements using the Slater-Condon rules, we obtain the
well-known SR MP2 energy formula:115

E(0,2) =
1

4

occ∑
mn

virt∑
pq

|(mp|nq)− (mq|np)|2

εm + εn − εq − εp
. (27)

The corresponding expression for E(1,2) in Eq. (26) is de-
rived in the discussion associated with Eqs. (C2)-(C6) of
Appendix C. To write our working expression for E(1,2)

in a compact way, it is expedient to introduce the follow-
ing four-index tensors:

Am,n,p,q =

[
(mp|nq)− (mq|np)

](
εm + εn − εp − εq

) , (28a)

Bm,n,q,r =

virt∑
p

Am,n,p,q〈p|ĥSO|r〉 , (28b)

Dn,o,p,q =

occ∑
m

Am,n,p,q〈o|ĥSO|m〉 , (28c)

In,p,q,r = −
occ∑
m

Am,n,p,qU
(1,0)
mr , (28d)

Jm,n,o,q = −
virt∑
p

Am,n,p,qU
(1,0)
op , (28e)

Kn,p,q,r = (rp|nq)− (rq|np) , (28f)

and:

Lm,n,o,q = (no|mq)− (nq|mo) . (28g)

With these tensors, we obtain:

E(1,2) =

occ∑
n

virt∑
pqr

R
[
In,p,q,r Kn,p,q,r

]
+

occ∑
mno

virt∑
q

R
[
Jm,n,o,q Lm,n,o,q

]
+

1

2

occ∑
mn

virt∑
qr

Bm,n,q,rAm,n,r,q

− 1

2

occ∑
no

virt∑
pq

Dn,o,p,qAo,n,p,q . (29)

C. Computational Cost for Calculation of E(1,2)

From Eq. (27), a determination of E(0,2) involves cal-
culating N2

occ × N2
virt four-index bi-electronic integrals,

where there are Nocc occupied orbitals, and Nvirt virtual
orbitals. If the bi-electronic integrals are calculated and
stored in an AO basis, it is well-known that they can be
transformed to molecular orbitals (MOs) one index at a
time for a cost approximately proportional to NoccN

4
AO.

The integrals in the molecular orbital basis (including
those involving three virtual orbital indices) can also be
used to calculate E(1,2) from Eq.(29) for a modest addi-
tional cost, as shown below.

The tensor A of Eq. (28) is constructed, using the
bi-electronic integrals in the MO basis, for a cost that is
proportional to N2

occ × N2
virt. Then, in order to include

SOC in the third line of Eq. (29), for example, we need
to calculate the tensor B of Eq. (28b) which involves a
computational cost proportional to N2

occ × N3
virt. Simi-

larly, for the fourth line of Eq. (29) we require the tensor
D of Eq. (28c) which may be obtained at a lesser cost
proportional to N3

occ × N2
virt. Then, the above tensors

can be used to calculate both energy contributions as:

1

2

occ∑
mn

virt∑
qr

Bm,n,q,rAm,n,r,q , (30)

for the term in the third line of Eq. (29), and:

−1

2

occ∑
no

virt∑
pq

Dn,o,p,qAo,n,p,q , (31)

for the term in the fourth line of Eq. (29). Once the
energy contributions in the third and fourth lines of Eq.
(29) are calculated, we can concentrate on the energy
contributions in the first and second lines. At this point,
the tensors B and D can be deallocated. Then, in order
to include the first line of Eq. (29), we can calculate
the tensor I of Eq. (28d) which is an N2

occ ×N3
virt step.

Similarly, for the second line of Eq. (29) we require the
tensor J of Eq. (28e) - an N3

occ×N2
virt step. At this point,

the tensor A may be deallocated to free up space for the
tensors K and L of Eqs. (28f) and (28g). Finally, the
above tensors can be used to calculate both remaining
energy contributions as:

occ∑
n

virt∑
pqr

R
[
In,p,q,r Kn,p,q,r

]
, (32)

for the term in the first line of Eq. (29), and:

occ∑
mno

virt∑
q

R
[
Jm,n,o,q Lm,n,o,q

]
, (33)

for the term in the second line of Eq. (29). In sum-
mary, the total computational cost of calculating both
E(0,2) and E(1,2) involves only a modest increase over
that of an SR MP2 calculation. As in the case of the
latter, the computational bottleneck is the time needed
for transforming the bielectronic integrals from the AO
to molecular orbital basis — a cost that is approximately
proportional to NoccN

4
AO.
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III. COMPUTATIONAL DETAILS

The zeroth-order SR UHF calculations were carried
out with a developer’s version of the Crystal17 code.101

These were performed with the RECPs and associated
basis sets from the libraries available in Refs. 118 and
119. The experimental bond lengths of 1.42, 2.00, 2.28,
2.67 and 3.00 Å were used for the molecules F2, Cl2,
Br2, I2, respectively whereas for At2, the bond length
was estimated from the trend along the series.120 All SCF
procedures were converged to a total energy difference of
less than 1×10−12 Hartree atomic units (Eh). After the
last SCF cycle, the SR UHF eigenvectors and eigenvalues
were used to calculate the various perturbation theory
energy contributions of section II. These were compared
with reference energies determined from our previously
existing two-component SCF (2c-SCF) implementation
in the Crystal code as described in section IV.

IV. COMPUTATIONAL RESULTS FOR THE
HALOGEN SERIES DIATOMIC MOLECULES

TABLE I: SOC perturbation theory contributions to the SV
energy (in Eh) calculated for the diatomic molecules of the
halogen series. Our results were obtained with the fully rel-
ativistic shape-consistent RECPs and associated basis sets of
the Columbus group available at Ref. 119, with 7 electron
included in the valence space. See text for definition of indi-
vidual entries.

F2 Cl2 Br2 I2

E(2,0) −4.09×10−05 −1.60×10−04 −3.60×10−03 −2.07×10−02

E(3,0) −6.98×10−08 −2.16×10−07 −2.08×10−05 −7.19×10−04

E(4,0) −3.02×10−10 +1.59×10−09 +1.47×10−06 −6.10×10−05

E(2,1) −1.19×10−05 −6.08×10−05 −1.57×10−03 −7.91×10−03

E(3,1) −2.82×10−08 −6.38×10−08 +7.41×10−08 −2.09×10−04

PT∞ −4.10×10−05 −1.61×10−04 −3.62×10−03 −2.15×10−02

PT∞1 −5.30×10−05 −2.22×10−04 −5.19×10−03 −2.96×10−02

SV −5.30×10−05 −2.21×10−04 −5.18×10−03 −2.95×10−02

∆21 +9.55×10−08 +1.98×10−07 +5.65×10−06 +8.24×10−04

∆∞1 −2.81×10−09 −2.96×10−07 −1.36×10−05 −1.64×10−04

We investigated the convergence of the perturbation
series by calculating the terms E(N,M) for values up to
order four in SOC and order one in the electron fluctua-
tion potential (N = 0, 1, 2, 3, 4 and M = 0, 1). In analogy
to Eq. (11a), we may partition the HF energy obtained

after one iteration of the SCF procedure ESV into terms
of zeroth and first order in the fluctuation potential (i.e.
M = 0, 1):

ESV = E(0) + E(1) (34a)

TABLE II: Same as Table I, but using instead the energy-
consistent RECPs and associated basis sets of the Stuttgart
group, available at Ref. 118, with 7 electrons in the valence
space. The asterisk denotes a calculation on the I2 molecule
using the larger valence basis set of Ref. 121

Br2 I2 I∗2 At2

E(2,0) −2.86×10−03 −3.86×10−03 −3.59×10−03 −3.70×10−02

E(3,0) +4.17×10−05 −2.32×10−05 −1.68×10−05 −5.59×10−04

E(4,0) −4.39×10−06 +1.72×10−06 +1.90×10−06 +1.91×10−04

E(2,1) −2.98×10−04 −1.63×10−03 −1.58×10−03 −1.74×10−02

E(3,1) −6.14×10−06 +6.41×10−06 +7.72×10−06 +5.49×10−04

PT∞ −2.82×10−03 −3.88×10−03 −3.61×10−03 −3.74×10−02

PT∞1 −3.12×10−03 −5.50×10−03 −5.18×10−03 −5.42×10−02

SV −3.12×10−03 −5.49×10−03 −5.17×10−03 −5.35×10−02

∆21 −3.29×10−05 +1.28×10−07 −8.31×10−06 −9.04×10−04

∆∞1 −1.68×10−06 −1.49×10−05 −1.55×10−05 −7.24×10−04

TABLE III: Same as Tables I and II above, but this time
using a smaller core shape-consistent RECP from the Colum-
bus group, in which 17 electrons are treated explicitly in the
valence space.

Br2 I2 At2

E(2,0) −5.73×10−03 −2.83×10−02 −2.40×10−01

E(3,0) −2.78×10−05 −9.04×10−04 −1.69×10−02

E(4,0) +1.45×10−06 −8.28×10−05 +2.03×10−03

E(2,1) −1.83×10−03 −8.80×10−03 −8.62×10−02

E(3,1) −2.54×10−06 −2.48×10−04 −3.53×10−03

PT∞ −5.75×10−03 −2.93×10−02 −2.54×10−01

PT∞1 −7.59×10−03 −3.83×10−02 −3.44×10−01

SV −7.57×10−03 −3.82×10−02 −3.32×10−01

∆21 +1.40×10−05 +1.09×10−03 +5.84×10−03

∆∞1 −1.49×10−05 −1.49×10−04 −1.25×10−02

Expanding both the MP0 E(0) and MP1 E(1) terms
of Eq. (34a) in orders of SOC, we obtain a double-
perturbation series for ESV:

ESV = E(0,0) + E(1,0) + E(2,0) + E(3,0) + · · ·+ E(0,1) + E(1,1) + E(2,1) + E(3,1) + . . . (34b)
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Thus, according to Eq. (34b) a calculation of all terms
E(N,M) (N = 0, 1, 2, 3, 4, . . . and M = 0, 1) up to order
one in the fluctuation potential corresponds to a pertur-
bation theory expansion of the second-variational (SV)
approach to SOC in solid-state physics.122–124 The ref-
erence SV energy ESV is simply calculated by using the
zeroth-order SR UHF density-matrix as a starting guess
for performing one iteration of the 2c-SCF.

A comparison of the perturbation theory approach
with an SV calculation, performed with our 2c-SCF
implementation — also in the Crystal code —
100,101,103–105 is given in Table I for the members F2,
Cl2, Br2 and I2 of the halogen diatomic molecule se-
ries. This set of molecules was chosen because of the
availability of many sets of RECPs and because of the
large contribution of SOC to their energy. The results in
Table I were obtained from large-core shape-consistent
RECPs,125–129 with 7 electrons in the valence space for
each atom. The pure SOC contribution to the energy
is reported for E(2,0), E(3,0), andE(4,0) as well as for
the sum E(2,0) + E(3,0) + E(4,0) . . . extrapolated to in-
finite order, using an extrapolation formula from Ref.
130 (PT∞). The addition of E(2,1) and E(3,1) to PT∞
is denoted in the table as PT∞1. The quantities ∆21

and ∆∞1 in the last row represent the difference between
E(2,0) + E(2,1) and SV (= ESV − EUHF), and between
PT∞+ E(2,1) + E(3,1) and SV, respectively.

It is clear from the first three rows of the table that
the individual perturbation theory energy contributions
– E(2,0), E(3,0), E(4,0) . . . – are monotonically decreasing
(in absolute value), such that the pure SOC perturbation
series is rapidly convergent for all systems. Moreover, the
reported differences in the last row of the table are very
small (about two to four orders of magnitude smaller
than the energy of the SV approach). We note also that
E(3,1) is always much smaller than E(2,1). In fact, a sim-
ple calculation through E(2,0) and E(2,1) is sufficient to
adequately reproduce the SV energy. Thus, the coupling
between SOC and the fluctuation potential is well de-
scribed using only the leading (non-vanishing) term for
order M = 0, 1 of the fluctuation potential. We specu-
late that this is likely to extend to M = 2, so that a first
order treatment in SOC would satisfactorily describe the
coupling with correlation through MP2.

In Table II, we report similar calculations (again with
large-core potentials, including 7 electrons in the valence
space of each atom), this time using RECPs and as-
sociated basis sets generated by the energy-consistent
method from Ref. 118. These RECPs are available for
the systems Br2, I2 and At2. We see that the differ-
ence reported in the last row of Table II is now two
to three orders of magnitude smaller than the SV en-
ergy for the systems Br2 and I2. For the most chal-
lenging system, At2, the difference is −7.24×10−04 Eh,
which represents an error of 1.4% in approximating the
SV energy. The difference ∆21 is −9.04×10−04 Eh; it
represents an error of 1.7%. The energy contributions
E(2,0), E(3,0), E(4,0) . . . , as well as E(2,1), E(3,1) . . . are

again monotonically (and rapidly) decreasing. Thus, the
perturbation series through order two in SOC and order
one in the electron fluctuation potential again provides
an excellent approximation for the SV energy.

Table III gives results for the systems Br2, I2 and At2,
now using a smaller core shape-consistent potential, with
17 electrons included in the valence space of each atom.
Again, the differences between perturbation theory and
the SV approach are two to three orders of magnitude
smaller than the SV energy for Br2 and I2. Once more
At2 shows a larger discrepancy (about 3.8% for ∆∞1 or
1.8% for ∆21). Thus, the small-core RECPs behave in
the same way as the large core potentials.

TABLE IV: Same as table I, but now for the open-shell radi-
cals, in which one electron from the highest occupied molec-
ular orbital has been removed.

F+
2 Cl+2 Br+2 I+2

E(2,0) −4.45×10−05 −1.90×10−04 −4.35×10−03 −2.43×10−02

E(3,0) −7.99×10−08 −3.27×10−07 −3.13×10−05 −8.98×10−04

E(4,0) −3.09×10−10 +4.66×10−09 +3.62×10−06 −1.82×10−05

E(2,1) −1.93×10−05 −1.05×10−04 −2.68×10−03 −1.33×10−02

E(3,1) −2.49×10−08 +2.75×10−07 +5.30×10−05 +3.20×10−04

PT∞ −4.45×10−05 −1.90×10−04 −4.38×10−03 −2.52×10−02

PT∞1 −6.38×10−05 −2.95×10−04 −7.00×10−03 −3.81×10−02

SV −6.38×10−05 −2.94×10−04 −6.94×10−03 −3.75×10−02

∆21 +5.58×10−08 −7.10×10−07 −8.36×10−05 −4.28×10−05

∆∞1 −4.93×10−08 −7.57×10−07 −5.84×10−05 −6.39×10−04

Table IV provides results for systems that are identical
to those reported in Table I, except that now one elec-
tron has been removed from the highest occupied molecu-
lar orbital, such that they represent open-shell electronic
configurations. The reported energy differences between
perturbation theory and the SV value remain small as
in the case of the closed-shell configurations in Table I.
In the worst case (I+

2 ), the perturbation theory approach
overestimates the SV energy by 1.7% (for ∆∞1). This dif-
ference is reduced to 0.1% for ∆21. As for the closed-shell
systems, the perturbation series E(2,0), E(3,0), E(4,0) . . .
and E(2,1), E(3,1) . . . converge rapidly. A more than ade-
quate treatment is obtained, again, simply by calculating
E(2,0) and E(2,1), since the terms E(3,0), E(4,0) and E(3,1)

are around two to three orders of magnitude smaller than
the SV energy.

To provide results on other challenging cases for per-
turbation theory, in Table S1 of the electronic support-
ing information (ESI), we report on calculations for Sele-
nium oxide SeO131 (using the experimental bond length
of 2.648 Å from Ref. 132) and the positively charged
homonuclear diatomic Tenessine Ts+

2 molecule (bond
length of 3.00 Å ). The ECP10MDF and ECP92MDFQ
Stuttgart potentials were used for Se and Ts, respec-
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tively along with the associated double-zeta valence basis
sets,118 while the basis set of Ref. 133 was used for O. Ex-
cellent agreement between the double-perturbation and
SV methods is obtained in both cases (see Table S1), as
the reported ∆21 and ∆∞1 values are smaller than the
SV energy by around one order of magnitude for Ts+

2

and four orders of magnitude for SeO. In the case of Ts+
2 ,

monotonicity of the E(2,0), E(3,0), E(4,0) . . . series breaks
down in 4th order, because E(4,0) (= 0.0504) is slightly
larger in absolute value than E(3,0) (= −0.0459). For
Ts+

2 , monotonicity is restored by scaling down the SOC
operator (scaling factor ≤ 0.90), to ensure that the ratio
of |E(2,0)| to the HOMO-LUMO gap Egap is less than 3.9.

Coincidentally, this criterion on |E(2,0)|/Egap < 3.9 also
ensures monotonicity for the whole positively charged
homonuclear diatomic halogen series through fourth or-
der, as shown in Figure S1, as well as Table S2.

V. CONCLUSIONS

We have presented a double perturbation theory ap-
proach to the solution of the many-body Dirac equation
in a given relativistic effective-core potential (RECP) ap-
proximation. The zeroth-order approximation is the cor-
responding scalar relativistic unrestricted Hartree-Fock
(SR UHF) solution. This is followed by a double pertur-
bation theory expansion in terms of the spin-orbit cou-
pling (SOC) and electron fluctuation potential. Practical
perturbation energy expressions are provided up to a to-
tal order of three with most higher-order terms included.

Tests on the neutral halogen diatomic molecules F2,
Cl2, Br2, I2 and At2, as well as their single positive
open-shell ions, show that the proposed approach is well-
converged to the second variational (SV) value through
second order in SOC and first order in the fluctuation

potential. Since the double perturbation treatment is no
more difficult to carry out than the SV procedure, it is
a computationally attractive alternative to performing
a 2c-SCF for treatment of SOC, and, in addition, rep-
resents a convenient starting point for further improve-
ments.

A calculation of E(0,2), that is to say, the famil-
iar SR MP2 energy — a procedure that represents an
O
(
NoccN

4
AO

)
computational problem for a calculation

with NAO atomic and Nocc occupied orbitals — would
provide a computationally tractable, relativistic corre-
lated approach. A further calculation of E(1,2) involves
only a modest additional cost, and would allow for a full
treatment of the coupling between SOC and the fluctu-
ation potential through total order three. Furthermore,
the present approach opens the possibility of a multi-
reference treatment through quasi-degenerate perturba-
tion theory (QDPT) that could be used in those cases
where it is necessary (i.e. open-shell or closed-shell sys-
tems of a strong multi-reference character).

Supplemental Material

See Supplemental Material at URL for the derivation
of Eqs. (19), (24), (B19) and (B20) of the main text
of the manuscript, and for additional calculations on the
systems SeO and Ts+

2 , as well as a discussion on a nec-
essary criterion to ensure monotonic convergence of the
E(2,0), E(3,0), E(4,0) . . . series through fourth order.
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28 Iliaš, M.; Saue, T. An infinite-order two-component rela-
tivistic Hamiltonian by a simple one-step transformation.
J. Chem. Phys. 2007, 126, 064102.

29 Saue, T.; Jensen, H. A. Quaternion symmetry in rela-
tivistic molecular calculations: The Dirac–Hartree–Fock
method. J. Chem. Phys. 1999, 111, 6211–6222.

30 Jorgen Aa. Jensen, H.; Dyall, K. G.; Saue, T.; Fæ-
gri Jr, K. Relativistic four-component multiconfigura-
tional self-consistent-field theory for molecules: Formal-
ism. J. Chem. Phys. 1996, 104, 4083–4097.

31 Kadek, M.; Repisky, M.; Ruud, K. All-electron fully rela-
tivistic Kohn-Sham theory for solids based on the Dirac-
Coulomb Hamiltonian and Gaussian-type functions. Phys.
Rev. B 2019, 99, 205103.
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Baima, J.; Salustro, S.; Kirtman, B. Quantum-Mechanical
Condensed Matter Simulations with CRYSTAL. WIREs
Comput. Mol. Sci. 2018, 8, e1360.

102 Desmarais, J.; Erba, A.; Dovesi, R. Generalization of the
Periodic LCAO Approach in the CRYSTAL Code to g-
type Orbitals. Theor. Chem. Acc. 2018, 137, 28.

103 Desmarais, J. K.; Flament, J.-P.; Erba, A. Fundamental
Role of Fock Exchange in Relativistic Density Functional
Theory. J. Phys. Chem. Lett. 2019, 10, 3580–3585.

104 Desmarais, J. K.; Flament, J.-P.; Erba, A. Spin-orbit cou-
pling in periodic systems with broken time-reversal sym-
metry: Formal and computational aspects. Phys. Rev. B
2020, 101, 235142.

105 Desmarais, J. K.; Flament, J.-P.; Erba, A. Adiabatic con-
nection in spin-current density functional theory. Phys.
Rev. B 2020, 102, 235118.

106 Dolg, M. Theor. Comput. Chem.; 2002; Vol. 11; pp 793–
862.

107 Stoll, H.; Metz, B.; Dolg, M. Relativistic energy-
consistent pseudopotentials—Recent developments. J.
Comput. Chem. 2002, 23, 767–778.

108 Cao, X.; Dolg, M. Pseudopotentials and modelpotentials.
Wiley Inter. Revs.: Comput. Mol. Sci. 2011, 1, 200–210.

109 Schwerdtfeger, P. The pseudopotential approximation in
electronic structure theory. ChemPhysChem 2011, 12,
3143–3155.

110 Dolg, M. Fully relativistic pseudopotentials for alkaline
atoms: Dirac-Hartree-Fock and configuration interaction
calculations of alkaline monohydrides. Theor. Chim. Acta
1996, 93, 141–156.

111 Ishikawa, Y.; Malli, G. Effective core potentials for fully
relativistic Dirac–Fock calculations. J. Chem. Phys. 1981,
75, 5423–5431.

112 Datta, S. N.; Ewig, C. S.; van Wazer, J. R. Application
of effective potentials to relativistic hartree—fock calcu-
lations. Chem. Phys. Lett. 1978, 57, 83–89.

113 Pyper, N. Relativistic pseudopotential theories and cor-
rections to the Hartree-Fock method. Mol. Phys. 1980,
39, 1327–1358.

114 Pyper, N.; Marketos, P. Atomic fine-structure inver-
sions explained as first-order relativistic corrections to the
Hartree-Fock energy. J. Phys. B 1981, 14, 4469.

115 Szabo, A.; Ostlund, N. S. Modern quantum chem-
istry: introduction to advanced electronic structure the-
ory ; Courier Corporation, 2012.

116 Møller, C.; Plesset, M. S. Note on an approximation treat-
ment for many-electron systems. Phys. Rev. 1934, 46,
618.

117 Dalgarno, A.; Stewart, A. A perturbation calculation of
properties of the helium iso-electronic sequence. Proc. R.



13

Soc. A 1958, 247, 245–259.
118 http://www.tc.uni-koeln.de/PP/clickpse.en.html.
119 https://lin-web.clarkson.edu/ pchristi/reps.html.
120 Huber, K.-P. Molecular spectra and molecular structure:

IV. Constants of diatomic molecules; Springer Science &
Business Media, 2013.

121 Martin, J. M.; Sundermann, A. Correlation consistent va-
lence basis sets for use with the Stuttgart–Dresden–Bonn
relativistic effective core potentials: The atoms Ga–Kr
and In–Xe. J. Chem. Phys. 2001, 114, 3408–3420.

122 Koelling, D.; Harmon, B. A technique for relativistic spin-
polarised calculations. J. Phys. C 1977, 10, 3107.

123 C. Li, H. J., A.J. Freeman; Fu, C. Magnetic anisotropy
in low-dimensional ferromagnetic systems: Fe monolayers
on Ag (001), Au (001), and Pd (001) substrates. Phys.
Rev. B 1990, 42, 5433.

124 S. Steiner, M. M., S. Khmelevskyi; Kresse, G. Calculation
of the magnetic anisotropy with projected-augmented-
wave methodology and the case study of disordered Fe
1- x Co x alloys. Phys. Rev. B 2016, 93, 224425.

125 Fernandez Pacios, L.; Christiansen, P. Ab initio relativis-
tic effective potentials with spin-orbit operators. I. Li
through Ar. J. Chem. Phys. 1985, 82, 2664–2671.

126 Hurley, M.; Pacios, L. F.; Christiansen, P.; Ross, R.;
Ermler, W. A binitio relativistic effective potentials with
spin-orbit operators. II. K through Kr. J. Chem. Phys.
1986, 84, 6840–6853.

127 LaJohn, L.; Christiansen, P.; Ross, R.; Atashroo, T.;
Ermler, W. A binitio relativistic effective potentials with
spin–orbit operators. III. Rb through Xe. J. Chem. Phys.
1987, 87, 2812–2824.

128 Ross, R.; Powers, J.; Atashroo, T.; Ermler, W.; La-
John, L.; Christiansen, P. A binitio relativistic effective
potentials with spin–orbit operators. IV. Cs through Rn.
J. Chem. Phys. 1990, 93, 6654–6670.

129 Ermler, W.; Ross, R.; Christiansen, P. Ab initio relativis-
tic effective potentials with spin-orbit operators. VI. Fr
through Pu. Int. J. Q. Chem. 1991, 40, 829–846.

130 Weniger, E. J.; Kirtman, B. Extrapolation methods for
improving the convergence of oligomer calculations to the
infinite chain limit of quasi-one-dimensional stereoregular
polymers. Comput. Math. Appl. 2003, 45, 189–215.

131 Mokambe, R. M.; Hicks, J. M.; Kerker, D.; Jiang, W.;
Theis, D.; Chen, Z.; Khait, Y. G.; Hoffmann, M. R.
GVVPT2 multireference perturbation theory study of se-
lenium oxides. Mol. Phys. 2013, 111, 1078–1091.

132 Lide, D. R. CRC handbook of chemistry and physics; CRC
press, 2004; Vol. 85.

133 Heifets, E.; Kotomin, E.; Bagaturyants, A.; Maier, J. Ab
initio study of BiFeO3: thermodynamic stability condi-
tions. J. Phys. Chem. Lett. 2015, 6, 2847–2851.

134 Desmarais, J. K. Development of Tools for the Study
of Heavy-Element Containing Periodic Systems in the
CRYSTAL Code and their Application. Ph.D. thesis, Uni-
versity of Saskatchewan and University of Turin, 2020.

Appendix A: Energy Contributions of Zeroth Order
in the Electron Fluctuation Potential in Terms of

SR UHF Orbitals

Since L̂z,iŜz,i is purely imaginary, it follows from Eq.

(4) that the real part of the matrix elements of ĥSO in-

volving orbitals of like spin (the real part of diagonal

spin-block matrix elements of ĥSO) vanishes:

R
[
〈m,α|ĥSO|n, α〉

]
= 0 , (A1)

On the other hand, the off-diagonal spin-block matrix

elements of ĥSO are complex. It follows that E(1,0) in Eq.

(15) vanishes because ĥSO is Hermitian, which means
that diagonal matrix elements must be real.

In second order, ordinary non-degenerate RSPT re-

duces to Eq. (17) since ĥSO is a sum of one-electron
operators and only single excitation configurations con-
tribute to the sum-over-states. Our choice for the (0, 0)

problem ensures that the E(0,0)−E(0,0)
I denominators of

Eq. (13) become just a difference of SR UHF eigenvalues.
Ordinary non-degenerate RSPT, in third order, gives:

E(3,0) = 〈ψ(0,0)|ĥSOR̂(0,0)ĥSOR̂
(0,0)ĥSO|ψ(0,0)〉 , (A2)

and in fourth order (using intermediated normaliza-
tion):

E(4,0) = 〈ψ(0,0)|ĥSOR̂(0,0)ĥSOR̂
(0,0)ĥSOR̂

(0,0)ĥSO|ψ(0,0)〉
− 〈ψ(0,0)|ĥSOR̂(0,0)E(2,0)R̂(0,0)ĥSO|ψ(0,0)〉 . (A3)

To simplify Eq. (A2), we denote singly-excited config-
urations by |ψpm〉 where virtual orbital |p〉 is substituted
for occupied orbital |m〉; the associated energy is Epm.
Doubly-excited configurations will be denoted as |ψpqmn〉.
Expanding Eq. (A2) in singly-excited Slater determi-
nants, we find

E(3,0) =

occ∑
m

virt∑
pq

〈ψ(0,0)|ĥSO|ψp
m〉〈ψp

m|ĥSO|ψq
m〉〈ψq

m|ĥSO|ψ(0,0)〉(
E(0,0) − Ep

m

)(
E(0,0) − Eq

m

)
+

occ∑
mn

virt∑
p

〈ψ(0,0)|ĥSO|ψp
m〉〈ψp

m|ĥSO|ψp
n〉〈ψp

n|ĥSO|ψ(0,0)〉(
E(0,0) − Ep

m

)(
E(0,0) − Ep

n

) ,(A4)

which, can be written in terms of one-electron orbitals
as:

E(3,0) =

occ∑
m

virt∑
pq

〈m|ĥSO|p〉〈p|ĥSO|q〉〈q|ĥSO|m〉(
εm − εp

) (
εm − εq

)
−

occ∑
mn

virt∑
p

〈m|ĥSO|p〉〈n|ĥSO|m〉〈p|ĥSO|n〉(
εm − εp

) (
εn − εp

) .(A5)

Expressing Eq. (A5) in terms of the matrices reported
in Eq. (16), we obtain Eq. (18).

A similar demonstration can be carried out in fourth
order, starting from Eq. (A3) to obtain Eq. (19). The
full derivation is reported in the ESI.

Appendix B: Energy Contributions of First Order in
the Electron Fluctuation Potential in Terms of SR

UHF Orbitals

Eq. (20) is obtained by combining the (1,1), (1,0) and
(0,1) RSPT equations. We use intermediate normaliza-
tion here and throughout this paper:

〈ψ(0,0)|ψ(N,M)〉 = δN,0 δM,0 . (B1)
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The (1,1) RSPT equation:[
Ĥ(0,0) − E(0,0)

]
|ψ(1,1)〉+

[
ĥSO − E(1,0)

]
|ψ(0,1)〉

+
[
Ĥ(0,1) − E(0,1)

]
|ψ(1,0)〉 − E(1,1)|ψ(0,0)〉 = 0 . (B2)

may be multiplied on the left by 〈ψ(0,0)| to yield:

E(1,1) = 〈ψ(0,0)|ĥSO|ψ(0,1)〉+ 〈ψ(0,0)|Ĥ(0,1)|ψ(1,0)〉 .
(B3)

Similarly, for the (1,0) RSPT equation:[
Ĥ(0,0) − E(0,0)

]
|ψ(1,0)〉+

[
ĥSO − E(1,0)

]
|ψ(0,0)〉 = 0 .

(B4)
we multiply on the left by 〈ψ(0,1)|, which gives:

〈ψ(0,1)|Ĥ(0,0) − E(0,0)|ψ(1,0)〉+ 〈ψ(0,1)|ĥSO|ψ(0,0)〉 = 0 .
(B5)

Finally, the (0,1) RSPT equation leads to:

〈ψ(1,0)|Ĥ(0,0)−E(0,0)|ψ(0,1)〉+ 〈ψ(1,0)|Ĥ(0,1)|ψ(0,0)〉 = 0 .
(B6)

after multiplication on the left by 〈ψ(1,0)|. The sum of
Eq. (B3) minus the complex conjugate-transpose of Eq.
(B6) plus Eq. (B5), leads directly to Eq. (20).

Below we provide an outline of the derivation that al-
lows us to obtain expressions for E(2,1) and E(3,1). More
details on the derivation can be found in section H.6 of
Ref. 134. A procedure analogous to that developed in
Eqs. (B2)-(B6) can be used for E(2,1) by combining the
(1,0), (0,1), (1,1), (2,0) and (2,1) RSPT equations to ob-

tain:

E(2,1) = 2R
[
〈ψ(0,0)|Ĥ(0,1)|ψ(2,0)〉

]
+ 〈ψ(1,0)|Ĥ(0,1) − E(0,1)|ψ(1,0)〉 , (B7)

For E(3,1) we combine the (1,0), (0,1), (1,1), (2,0), (2,1),
(3,0) and (3,1) RSPT equations:

E(3,1) = 2R
[
〈ψ(1,0)|Ĥ(0,1) − E(0,1)|ψ(2,0)〉

]
+ 2R

[
〈ψ(0,1)|ĥSO|ψ(2,0)〉

]
− 2E(2,0)R

[
〈ψ(1,0)|ψ(0,1)〉

]
. (B8)

The last term in Eq. (B8) vanishes since, from Brillouin’s
theorem, |ψ(0,1)〉 consists only of doubly-excited configu-
rations, while |ψ(1,0)〉 consists only of singly-excited con-
figurations because the SOC operator is a sum of mono-
electronic operators. Thus, Eq. (B8) reduces to:

E(3,1) = 2R
[
〈ψ(1,0)|Ĥ(0,1) − E(0,1)|ψ(2,0)〉

]
+ 2R

[
〈ψ(0,1)|ĥSO|ψ(2,0)〉

]
. (B9)

Then, expanding |ψ(2,0)〉, |ψ(1,0)〉 and |ψ(0,1)〉 in Eqs.
(B7) and (B9) in eigenfunctions of the (0, 0) problem,
we obtain Eqs. (21) and (22). Taking into account the
form of the perturbation operators from Eq. (9) for the
case of E(2,1) leads to:

E(2,1) = 2

occ∑
n<m

virt∑
q<p

R

[
〈ψ(0,0)|V̂ee|ψpq

mn〉

{
〈ψpq

mn|ĥSO|ψp
m〉〈ψp

m|ĥSO|ψ(0,0)〉(
E(0,0) − Epq

mn

) (
E(0,0) − Ep

m

) +
〈ψpq

mn|ĥSO|ψp
n〉〈ψp

n|ĥSO|ψ(0,0)〉(
E(0,0) − Epq

mn

) (
E(0,0) − Ep

n

)
+
〈ψpq

mn|ĥSO|ψq
m〉〈ψq

m|ĥSO|ψ(0,0)〉(
E(0,0) − Epq

mn

) (
E(0,0) − Eq

m

) +
〈ψpq

mn|ĥSO|ψq
n〉〈ψq

n|ĥSO|ψ(0,0)〉(
E(0,0) − Epq

mn

) (
E(0,0) − Eq

n

) }]

+

occ∑
n 6=m

virt∑
q 6=p

〈ψp
m|V̂ee|ψq

n〉
〈ψ(0,0)|ĥSO|ψp

m〉〈ψq
n|ĥSO|ψ(0,0)〉(

E(0,0) − Ep
m

) (
E(0,0) − Eq

n

) +
occ∑
m

virt∑
q 6=p

〈ψp
m|V̂ee − (Ĉ − K̂)|ψq

m〉
〈ψ(0,0)|ĥSO|ψp

m〉〈ψq
m|ĥSO|ψ(0,0)〉(

E(0,0) − Ep
m

) (
E(0,0) − Eq

m

)
+

occ∑
n 6=m

virt∑
p

〈ψp
m|V̂ee − (Ĉ − K̂)|ψp

n〉
〈ψ(0,0)|ĥSO|ψp

m〉〈ψp
n|ĥSO|ψ(0,0)〉(

E(0,0) − Ep
m

) (
E(0,0) − Ep

n

) − E(0,1)
occ∑
m

virt∑
p

〈ψ(0,0)|ĥSO|ψp
m〉〈ψp

m|ĥSO|ψ(0,0)〉(
E(0,0) − Ep

m

) (
E(0,0) − Ep

m

)
+

occ∑
m

virt∑
p

〈ψp
m|V̂ee − (Ĉ − K̂)|ψp

m〉
〈ψ(0,0)|ĥSO|ψp

m〉〈ψp
m|ĥSO|ψ(0,0)〉(

E(0,0) − Ep
m

) (
E(0,0) − Ep

m

) , (B10)

Based on the Slater-Condon rules, we can evaluate all
of the integrals in Eq. (B10) and express E(2,1) as a

sum of two terms E
(2,1)
S and E

(2,1)
D , arising, respectively,

from singly-excited and doubly- (as well as singly-) ex-

cited configurations:

E(2,1) = E
(2,1)
S + E

(2,1)
D , (B11)
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where

E
(2,1)
S =

occ∑
mn

virt∑
pq

{
(pm|nq)− (pq|nm)

}
× 〈m|ĥSO|p〉〈q|ĥSO|n〉(

εm − εp
) (
εn − εq

) , (B12)

and

E
(2,1)
D = 2

occ∑
n<m

virt∑
q<p

R

[
(mp|nq)− (mq|np)
εm + εn − εp − εq

×

{
〈q|ĥSO|n〉〈p|ĥSO|m〉

εm − εp
− 〈q|ĥSO|m〉〈p|ĥSO|n〉

εn − εp

− 〈p|ĥSO|n〉〈q|ĥSO|m〉
εm − εq

+
〈p|ĥSO|m〉〈q|ĥSO|n〉

εn − εq

}]
.(B13)

Since the contribution to E
(2,1)
D in Eq. (B13) from the

terms m = n and p = q vanish, we can extend the sum-
mations over orbital indices to all values of the occupied
and virtual sets occ and virt. Then, using the fact that

(mp|nq)− (mq|np) = −{(np|mq)− (nq|mp)}, Eq. (B13)
can be simplified to:

E
(2,1)
D =

occ∑
mn

virt∑
pq

R

[{
(mp|nq)− (mq|np)

}
× 〈q|ĥSO|n〉〈p|ĥSO|m〉(

εn − εq
) (
εm − εp

) ] . (B14)

Eqs. (B11), (B12) and (B14) can be combined to write
a computationally convenient expression for E(2,1) by in-
troducing the complex non-Hermitian matrix:

Mσσ′(N,0)
ων =

occ∑
m

virt∑
p

cσωp

[
cσ
′

νm

]∗
Uσσ

′(N,0)
pm , (B15)

where the orbital coefficients cσωp are defined through Eq.
(8) and the elements of the matrix of orbital rotations

Uσσ′(N,0) are defined for the case N = 1 in Eq. (16b).
Combining Eqs. (B11), (B12), (B14) and (B15), we ob-
tain:

E(2,1) =
∑
σσ′

R

∑
ων

{[
Mσσ(1,0)
ων

]∗
+Mσσ(1,0)

νω

}∑
τγ

Mσ′σ′(1,0)
γτ (ων|τγ)


−
∑
σσ′

R

∑
ων

{[
Mσσ′(1,0)
ων

]∗
+Mσ′σ(1,0)

νω

}∑
τγ

Mσσ′(1,0)
γτ (ωγ|τν)

 . (B16)

Finally, in order to write Eq. (B16) in a more compact
way, it proves useful to define the elements of the first
order perturbed-density matrix:

Pσσ
′(1,0)

ων = Mσσ′(1,0)
ων +

[
Mσ′σ(1,0)
νω

]∗
. (B17)

Substituting Eq. (B17) in Eq. (B16), we obtain Eq. (23).

A similar demonstration to that provided in Eqs.
(B10)-(B13) can be developed for E(3,1) starting from
Eq. (22). The full derivation is provided in the ESI.

We write E(3,1) as a sum of two terms E
(3,1)
S and E

(3,1)
D ,

arising, respectively, from singly-excited and doubly- (as
well as singly-) excited configurations:

E(3,1) = E
(3,1)
S + E

(3,1)
D , (B18)

After evaluation of all the integrals employing the Slater-

Condon rules, the corresponding expressions for E
(3,1)
S

and E
(3,1)
D in Eq. (B18) are:

E
(3,1)
S = 2

occ∑
mn

virt∑
pqr

R

[{
(pm|nq)− (pq|nm)

}
× 〈m|ĥSO|p〉〈q|ĥSO|r〉〈r|ĥSO|n〉(

εm − εp
) (
εn − εq

)
(εn − εr)

]

− 2

occ∑
mno

virt∑
pq

R

[{
(pm|nq)− (pq|nm)

}
× 〈m|ĥSO|p〉〈o|ĥSO|n〉〈q|ĥSO|o〉(

εm − εp
) (
εn − εq

) (
εo − εq

) ] , (B19)
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and:

E
(3,1)
D = 2

occ∑
mn

virt∑
pqr

R

[{
(rp|nq)− (rq|np)

}
× 〈m|ĥSO|r〉〈q|ĥSO|n〉〈p|ĥSO|m〉

(εm − εr)
(
εn − εq

) (
εm − εp

) ]

+ 2

occ∑
mno

virt∑
pq

R

[{
(mq|no)− (mo|nq)

}
× 〈o|ĥSO|p〉〈q|ĥSOn〉〈p|ĥSO|m〉(

εo − εp
) (
εn − εq

) (
εm − εp

) ]

+ 2

occ∑
mn

virt∑
pqr

R

[{
(mp|nq)− (mq|np)

}
× 〈q|ĥSO|n〉〈p|ĥSO|r〉〈r|ĥSO|m〉(

εn − εq
) (
εm − εp

)
(εm − εr)

]

− 2

occ∑
mno

virt∑
pq

R

[{
(mp|nq)− (mq|np)

}
× 〈q|ĥSO|n〉〈o|ĥSO|m〉〈p|ĥSO|o〉(

εn − εq
) (
εm − εp

) (
εo − εp

) ] . (B20)

We can represent E(3,1) in the AO basis by introduc-
ing the elements of the matrix of second order orbital
rotations U(2,0) which reads as follows for the occupied-
virtual block:

Uσ
′σ(2,0)

pm =
1

εσ′p − εσm

∑
σ′′

(
occ∑
n

Uσ
′σ′′(1,0)

pn Gσ
′′σ(1,0)
nm

−
virt∑
q

Gσ
′σ′′(1,0)
pq Uσ

′′σ(1,0)
qm

)
. (B21a)

For the virtual-virtual blocks:

Uσσ
′(2,0)

qr = −1

2

∑
σ′′

occ∑
n

[
Uσ
′′σ(1,0)

nq

]∗
Uσ
′′σ′(1,0)

nr , (B21b)

and for the occupied-occupied blocks:

Uσσ
′(2,0)

on = −1

2

∑
σ′′

virt∑
q

[
Uσ
′′σ(1,0)

qo

]∗
Uσ
′′σ′(1,0)

qn . (B21c)

U
σσ′(2,0)
qr and U

σσ′(2,0)
on are used to represent E(3,1) in the

basis of AOs through the following matrices:

Oσσ
′(2,0)

ων =

occ∑
on

cσωo

[
cσ
′

νn

]∗
Uσσ

′(2,0)
on , (B22a)

and:

V σσ
′(2,0)

ων =

virt∑
qr

cσωq

[
cσ
′

νr

]∗
Uσσ

′(2,0)
qr , (B22b)

Substituting Eqs. (B21a)-(B22b) and (B15) into Eqs.
(B19) and (B20), we obtain Eq. (24) (see ESI for more
details).

Appendix C: E(1,2) Contribution in Terms of SR
UHF Orbitals

For Eq. (26), we proceed in a manner similar to that
outlined in Eqs. (B2)-(B6) and combine the (0,1), (1,0),
(1,1), (0,2) and (1,2) RSPT equations to find:

E(1,2) = 2R
[
〈ψ(1,0)|Ĥ(0,1) − E(0,1)|ψ(0,1)〉

]
+ 〈ψ(0,1)|ĥSO|ψ(0,1)〉 . (C1)

Then, expanding |ψ(0,1)〉 and |ψ(1,0)〉 in the basis of con-
figurations of the (0, 0) problem we obtain Eq. (26). Only
singly- and doubly-excited configurations contribute to
the double sum, which leads to:
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E(1,2) = 2

occ∑
n<m

virt∑
q<p

R

[
〈ψpq

mn|V̂ee|ψ(0,0)〉
E(0,0) − Epq

mn

{
〈ψ(0,0)|ĥSO|ψp

m〉〈ψp
m|V̂ee − (Ĉ − K̂)|ψpq

mn〉
E(0,0) − Ep

m
+
〈ψ(0,0)|ĥSO|ψp

n〉〈ψp
n|V̂ee − (Ĉ − K̂)|ψpq

mn〉
E(0,0) − Ep

n

+
〈ψ(0,0)|ĥSO|ψq

m〉〈ψq
m|V̂ee − (Ĉ − K̂)|ψpq

mn〉
E(0,0) − Eq

m
+
〈ψ(0,0)|ĥSO|ψq

n〉〈ψq
n|V̂ee − (Ĉ − K̂)|ψpq

mn〉
E(0,0) − Eq

n

}]

+ 2

occ∑
n<m

virt∑
q<p

virt∑
r

′′
R

[
〈ψpq

mn|V̂ee|ψ(0,0)〉
E(0,0) − Epq

mn

{
〈ψ(0,0)|ĥSO|ψr

m〉〈ψr
m|V̂ee|ψpq

mn〉
E(0,0) − Er

m

+
〈ψ(0,0)|ĥSO|ψr

n〉〈ψr
n|V̂ee|ψpq

mn〉
E(0,0) − Er

n

}]

+ 2

occ∑
n<m

occ∑
o

′′
virt∑
q<p

R

[
〈ψpq

mn|V̂ee|ψ(0,0)〉
E(0,0) − Epq

mn

{
〈ψ(0,0)|ĥSO|ψp

o〉〈ψp
o |V̂ee|ψpq

mn〉
E(0,0) − Ep

o
+
〈ψ(0,0)|ĥSO|ψq

o〉〈ψq
o |V̂ee|ψpq

mn〉
E(0,0) − Eq

o

}]

+

occ∑
n<m

virt∑
q<p

virt∑
r

′′ 〈ψ(0,0)|V̂ee|ψpq
mn〉〈ψpq

mn|ĥSO|ψrq
mn〉〈ψrq

mn|V̂ee|ψ(0,0)〉(
E(0,0) − Epq

mn

) (
E(0,0) − Erq

mn

) +

occ∑
n<m

virt∑
r<p<q

〈ψ(0,0)|V̂ee|ψpq
mn〉〈ψpq

mn|ĥSO|ψpr
mn〉〈ψpr

mn|V̂ee|ψ(0,0)〉(
E(0,0) − Epq

mn

) (
E(0,0) − Epr

mn

)
+

occ∑
n<m

occ∑
o

′′
virt∑
q<p

〈ψ(0,0)|V̂ee|ψpq
mn〉〈ψpq

mn|ĥSO|ψpq
on〉〈ψpq

on|V̂ee|ψ(0,0)〉(
E(0,0) − Epq

mn

) (
E(0,0) − Epq

on

) +

occ∑
o<n<m

virt∑
q<p

〈ψ(0,0)|V̂ee|ψpq
mn〉〈ψpq

mn|ĥSO|ψpq
mo〉〈ψpq

mo|V̂ee|ψ(0,0)〉(
E(0,0) − Epq

mn

) (
E(0,0) − Epq

mo

) ,(C2)

where the symbol ′′ on the sum over r, for example, indi-
cates that it extends to all r that satisfy r 6= p, q. Eval-

uating all the integrals in Eq. (C2) gives:

E(1,2) =
1

2

occ∑
m 6=n

virt∑
p6=q

R

[
(pm|qn)− (qm|pn)

εm + εn − εp − εq

{ 〈m|ĥSO|p〉
([

(nq|pp)− (np|pq)
]
−
[
(nq|mm)− (nm|mq)

])
εm − εp

+
〈n|ĥSO|p〉

([
(mq|nn)− (mn|nq)

]
−
[
(mq|pp)− (mp|pq)

])
εn − εp

+
〈m|ĥSO|q〉

([
(np|mm)− (nm|mp)

]
−
[
(np|qq)− (nq|qp)

])
εm − εq

+
〈n|ĥSO|q〉

([
(mp|qq)− (mq|qp)

]
−
[
(mp|nn)− (mn|np)

])
εn − εq

}]

+
1

2

occ∑
m 6=n

virt∑
p6=q

virt∑
r

′′
R

[
(pm|qn)− (qm|pn)

εm + εn − εp − εq

{
〈m|ĥSO|r〉

[
(rp|nq)− (rq|np)

]
εm − εr

+
〈n|ĥSO|r〉

[
(mp|rq)− (mq|rp)

]
εn − εr

}]

+
1

2

occ∑
m 6=n

occ∑
o

′′
virt∑
p 6=q

R

[
(pm|qn)− (qm|pn)

εm + εn − εp − εq

{
〈o|ĥSO|p〉

[
(no|mq)− (nq|mo)

]
εo − εp

+
〈o|ĥSO|q〉

[
(mo|np)− (mp|no)

]
εo − εq

}]

+
1

4

occ∑
m 6=n

virt∑
p 6=r 6=q

[
(mp|nq)− (mq|np)

]
〈p|ĥSO|r〉

[
(rm|qn)− (qm|rn)

]
(εm + εn − εp − εq) (εm + εn − εr − εq)

+
1

4

occ∑
m 6=n

virt∑
p 6=q 6=r

[
(mp|nq)− (mq|np)

]
〈q|ĥSO|r〉

[
(pm|rn)− (rm|pn)

]
(εm + εn − εp − εq) (εm + εn − εp − εr)

− 1

4

occ∑
m 6=o6=n

virt∑
p6=q

[
(mp|nq)− (mq|np)

]
〈o|ĥSO|m〉

[
(po|qn)− (qo|pn)

]
(εm + εn − εp − εq) (εo + εn − εp − εq)

− 1

4

occ∑
m 6=n6=o

virt∑
p6=q

[
(mp|nq)− (mq|np)

]
〈o|ĥSO|n〉

[
(pm|qo)− (qm|po)

]
(εm + εn − εp − εq) (εm + εo − εp − εq)

. (C3)

The double and triple sums in Eq. (C3) can now be
extended to all values, by realizing that the cases m = n,
p = q, o = m, o = n, r = p, and r = q have vanishing

contributions to E(1,2):



18

E(1,2) =
1

2

occ∑
mn

virt∑
pq

R

[
(pm|qn)− (qm|pn)

εm + εn − εp − εq

{ 〈m|ĥSO|p〉
([

(nq|pp)− (np|pq)
]
−
[
(nq|mm)− (nm|mq)

])
εm − εp

+
〈n|ĥSO|p〉

([
(mq|nn)− (mn|nq)

]
−
[
(mq|pp)− (mp|pq)

])
εn − εp

+
〈m|ĥSO|q〉

([
(np|mm)− (nm|mp)

]
−
[
(np|qq)− (nq|qp)

])
εm − εq

+
〈n|ĥSO|q〉

([
(mp|qq)− (mq|qp)

]
−
[
(mp|nn)− (mn|np)

])
εn − εq

}]

+
1

2

occ∑
mn

virt∑
pq

virt∑
r

′′
R

[
(pm|qn)− (qm|pn)

εm + εn − εp − εq

{
〈m|ĥSO|r〉

[
(rp|nq)− (rq|np)

]
εm − εr

+
〈n|ĥSO|r〉

[
(mp|rq)− (mq|rp)

]
εn − εr

}]

+
1

2

occ∑
mn

occ∑
o

′′
virt∑
pq

R

[
(pm|qn)− (qm|pn)

εm + εn − εp − εq

{
〈o|ĥSO|p〉

[
(no|mq)− (nq|mo)

]
εo − εp

+
〈o|ĥSO|q〉

[
(mo|np)− (mp|no)

]
εo − εq

}]

+
1

4

occ∑
mn

virt∑
prq

[
(mp|nq)− (mq|np)

]
〈p|ĥSO|r〉

[
(rm|qn)− (qm|rn)

]
(εm + εn − εp − εq) (εm + εn − εr − εq)

+
1

4

occ∑
mn

virt∑
pqr

[
(mp|nq)− (mq|np)

]
〈q|ĥSO|r〉

[
(pm|rn)− (rm|pn)

]
(εm + εn − εp − εq) (εm + εn − εp − εr)

− 1

4

occ∑
mon

virt∑
pq

[
(mp|nq)− (mq|np)

]
〈o|ĥSO|m〉

[
(po|qn)− (qo|pn)

]
(εm + εn − εp − εq) (εo + εn − εp − εq)

− 1

4

occ∑
mno

virt∑
pq

[
(mp|nq)− (mq|np)

]
〈o|ĥSO|n〉

[
(pm|qo)− (qm|po)

]
(εm + εn − εp − εq) (εm + εo − εp − εq)

. (C4)

Then, we use (pm|qn) − (qm|pn) =
−
[
(pn|qm)− (qn|pm)

]
and interchange the indices

m and n in: (i) the second line, (ii) the second term in

the third line, (iii) the second term in the fourth line,
and (iv) the last line of Eq. (C4), which yields:

E(1,2) =

occ∑
mn

virt∑
pq

R

[
(pm|qn)− (qm|pn)

εm + εn − εp − εq

{ 〈m|ĥSO|p〉
([

(nq|pp)− (np|pq)
]
−
[
(nq|mm)− (nm|mq)

])
εm − εp

+
〈m|ĥSO|q〉

([
(np|mm)− (nm|mp)

]
−
[
(np|qq)− (nq|qp)

])
εm − εq

}]

+

occ∑
mn

virt∑
pq

virt∑
r

′′
R

[
(pm|qn)− (qm|pn)

εm + εn − εp − εq

{
〈m|ĥSO|r〉

[
(rp|nq)− (rq|np)

]
εm − εr

}]

+
1

2

occ∑
mn

occ∑
o

′′
virt∑
pq

R

[
(pm|qn)− (qm|pn)

εm + εn − εp − εq

{
〈o|ĥSO|p〉

[
(no|mq)− (nq|mo)

]
εo − εp

+
〈o|ĥSO|q〉

[
(mo|np)− (mp|no)

]
εo − εq

}]

+
1

4

occ∑
mn

virt∑
prq

[
(mp|nq)− (mq|np)

]
〈p|ĥSO|r〉

[
(rm|qn)− (qm|rn)

]
(εm + εn − εp − εq) (εm + εn − εr − εq)

+
1

4

occ∑
mn

virt∑
pqr

[
(mp|nq)− (mq|np)

]
〈q|ĥSO|r〉

[
(pm|rn)− (rm|pn)

]
(εm + εn − εp − εq) (εm + εn − εp − εr)

− 1

2

occ∑
mno

virt∑
pq

[
(mp|nq)− (mq|np)

]
〈o|ĥSO|m〉

[
(po|qn)− (qo|pn)

]
(εm + εn − εp − εq) (εo + εn − εp − εq)

. (C5)

Similarly, in Eq. C5, we interchange the indices p and q in (i) line 2, (ii) second term in line 4, and (iii) the
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next-to-last line to obtain:

E(1,2) = 2

occ∑
mn

virt∑
pq

R

[
(pm|qn)− (qm|pn)

εm + εn − εp − εq

{ 〈m|ĥSO|p〉
([

(nq|pp)− (np|pq)
]
−
[
(nq|mm)− (nm|mq)

])
εm − εp

}]

+

occ∑
mn

virt∑
pq

virt∑
r

′′
R

[
(pm|qn)− (qm|pn)

εm + εn − εp − εq

{
〈m|ĥSO|r〉

[
(rp|nq)− (rq|np)

]
εm − εr

}]

+

occ∑
mn

occ∑
o

′′
virt∑
pq

R

[
(pm|qn)− (qm|pn)

εm + εn − εp − εq

{
〈o|ĥSO|p〉

[
(no|mq)− (nq|mo)

]
εo − εp

}]

+
1

2

occ∑
mn

virt∑
pqr

[
(mp|nq)− (mq|np)

]
〈p|ĥSO|r〉

[
(rm|qn)− (qm|rn)

]
(εm + εn − εp − εq) (εm + εn − εr − εq)

− 1

2

occ∑
mno

virt∑
pq

[
(mp|nq)− (mq|np)

]
〈o|ĥSO|m〉

[
(po|qn)− (qo|pn)

]
(εm + εn − εp − εq) (εo + εn − εp − εq)

. (C6)

Finally, we recognize that the first line of Eq. (C6) is
equivalent to a combination of the cases r = p and r = q
in the second line, as well as the cases o = m and o = n
in the third line, so that Eq. (C6) reduces to Eq. (29).


