
T E C HN I C A L R E PO R T

BACON: A tool for reverse inference in brain activation
and alteration

Tommaso Costa1,2,3 | Jordi Manuello1,2,3 | Mario Ferraro3,4 |

Donato Liloia1,2,3 | Andrea Nani1,2,3 | Peter T. Fox5,6 | Jack Lancaster5,6 |

Franco Cauda1,2,3

1GCS-fMRI, Koelliker Hospital and

Department of Psychology, University of

Turin, Turin, Italy

2Department of Psychology, University of

Turin, Turin, Italy

3FOCUS Laboratory, Department of

Psychology, University of Turin, Turin, Italy

4Department of Physics, University of Turin,

Turin, Italy

5Research Imaging Institute, University of

Texas Health Science Center, San Antonio,

Texas

6South Texas Veterans Health Care System,

San Antonio, Texas

Correspondence

Tommaso Costa, GCS-fMRI, Koelliker Hospital

and Department of Psychology, University of

Turin, Via Verdi 10, 10124, Turin, Italy.

Email: tommaso.costa@unito.it

Funding information

Fondazione Carlo Molo, Grant/Award Number:

none

Abstract

Over the past decades, powerful MRI-based methods have been developed, which

yield both voxel-based maps of the brain activity and anatomical variation related to

different conditions. With regard to functional or structural MRI data, forward infer-

ences try to determine which areas are involved given a mental function or a brain dis-

order. A major drawback of forward inference is its lack of specificity, as it suggests the

involvement of brain areas that are not specific for the process/condition under inves-

tigation. Therefore, a different approach is needed to determine to what extent a given

pattern of cerebral activation or alteration is specifically associated with a mental func-

tion or brain pathology. In this study, we present a new tool called BACON (Bayes fAC-

tor mOdeliNg) for performing reverse inference both with functional and structural

neuroimaging data. BACON implements the Bayes' factor and uses the activation

likelihood estimation derived-maps to obtain posterior probability distributions on the

evidence of specificity with regard to a particular mental function or brain pathology.
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1 | INTRODUCTION

The notion of “cerebral areas” is central in the brain imaging research

on normative and clinical population. The complex activity emerging

from the neuronal territories is the forming part of the physiological

basis of cognitive and sensorimotor functions. On the other hand,

neuronal regions may present different degrees of anatomical varia-

tion, depending on the pathology by which they are affected.

In the last decades, powerful in vivo MRI-based methods have

been developed; they yield maps of the brain structure and function

underlying different conditions and processes, respectively. For exam-

ple, functional (fMRI) maps, generated in resting-state or task-related

manner, provide a link between activity of certain parts of the brain

and specific mental functions (Poldrack, Mumford, & Nichols, 2011),

whereas voxel-based morphometry (VBM), measuring differences in

local concentrations of brain tissue, allows to establish relationships

between abnormalities in the brain structure and the occurrence of

pathological conditions (Ashburner & Friston, 2000).

With regard to functional or structural MRI data, forward infer-

ences try to determine which areas are involved given a mental
Abbreviations: BACON, Bayes fACtor mOdeliNg; fMRI, functional magnetic resonance

imaging; GM, gray matter; VBM, voxel-based morphometry; WM, white matter.
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function or a brain disorder (Henson, 2006). In other words, forward

inferences aim to answer questions like “Which are the brain areas

involved in such mental process?” or “Which are the altered brain

areas in a given pathology?”. In this case, answers are sought by

means of frequentist statistical procedures, such as the maximum-

likelihood method. However, the major drawback of forward infer-

ence is its lack of specificity, in that it tends to suggest involvement of

areas that are not specific for the variable under investigation. For

instance, a brain area can be found activated during different pro-

cesses, resulting in a large overlap of functions as shown by Anderson,

Kinnison, and Pessoa (2013) and Cauda et al. (2012). Similarly, a neu-

ronal subpopulation can be damaged by a wide range of brain disor-

ders (Cauda et al., 2019; Crossley et al., 2014; Goodkind et al., 2015;

Liloia et al., 2018) and this significantly reduces the utility of forward

inference and of the associated maps.

Thus, a different approach is needed to determine the specific

cognitive function or pathology associated with a pattern of activation

or alteration in the brain and, in particular, to answer questions such

as: “To what extent the activation of (a pattern of) brain areas is spe-

cific to pain perception?” or “How much the alteration of (a pattern

of) brain areas is specific to a certain pathology?”. This is precisely the

aim of reverse inference-based analyses, which are theoretically

founded on the Bayes' theorem.

Reverse inference has been adopted in a number of neuroimaging

studies, starting from the seminal work by Poldrack (2006), who

applied reverse inference to meta-analytical data obtained from the

functional sector of the BrainMap database (Fox et al., 2005; Fox &

Lancaster, 2002; Laird, Lancaster, & Fox, 2005; Vanasse et al., 2018).

In particular, Poldrack examined how specific the activation of the

Broca's area was for the language function. Moreover, a recent study

by Cauda et al. (2020) points out that reverse inference can determine

specific morphometric pattern of alterations due to a given brain

disorder.

In the years following Poldrack's work (2006), the use of Bayes' the-

orem in neuroimaging has been subjected to a lively debate, mainly cen-

tered on the choice of priors, which is a critical aspect in the application

of the theorem (Gelman, 2017; Hutzler, 2014; Lieberman, 2015;

Lieberman & Eisenberger, 2015; Machery, 2014; Poldrack, 2013;

Shackman, 2015;Wager et al., 2016; Yarkoni, 2015a, 2015b). Difficulties

in making correctly a reverse inference have been extensively discussed

after the publication of Lieberman and Eisenberger (2015)

(Gelman, 2017; Lieberman, 2015; Poldrack, 2013; Shackman, 2015;

Wager et al., 2016; Yarkoni, 2015a, 2015b), who claimed that activity of

the anterior dorsal cingulate is selective for pain. Results by these

authors are based on analyses performed with the help of Neurosynth, a

freely accessible platform and database for the automated synthesis of

fMRI data (http://www.neurosynth.org; Yarkoni, Poldrack, Nichols, Van

Essen, &Wager, 2011).In assessing the feasibility of reverse inference, it

should be noted that it requires not just a sample of MRI data related to

task or pathology (“everything that IS A”), but also data concerning the

negation of the sample (“everything that IS NOT A”). This can be

achieved through an extensive search on databases with peer-reviewed

contents (e.g., PubMed, PsycInfo,Web of Science, BrainMap, etc.).

To date, the only available method for computing an estimate of

specificity (i.e., association test) is Neurosynth. This platform, albeit

valuable, has some limitations concerning its structure and the possi-

bility to manipulate the query about the data in a too limited way. Fur-

thermore, Neurosynth stores fMRI results but lacks structural data,

which are essential in order to investigate patterns of brain alteration

(Cauda et al., 2018). Further limitations concern methodological and

statistical issues. The association test can be performed directly via

the Neurosynth interface, but proper reverse inference requires pro-

gramming of the “core tools” of Neurosynth. More importantly,

Neurosynth is based on the frequentist approach and inherits its limi-

tations. Frequentist methods, besides requiring a large set of data to

perform consistent inference, do not yield probabilities of the validity

of hypotheses, but solely a rejection criterion for the null hypothesis,

which can lead to misinterpretations. Finally, the kernel used for the

association test is a spherical kernel with fixed radius, so that

the resulting map indicates for each voxel the number of peaks within

r millimeters (mm).

In order to provide the neuroimaging field with a sound reverse

inference method, in the present study we propose a new computa-

tional tool called BACON (Bayes fACtor mOdeliNg) which can per-

form reverse inferences both with functional and structural

neuroimaging data. BACON is based on the Bayesian statistic, espe-

cially on the Bayes' factor (BF), and uses activation likelihood estima-

tion (ALE) derived-maps generated by the GingerALE software

package (Eickhoff et al., 2009; Eickhoff, Bzdok, Laird, Kurth, &

Fox, 2012; Turkeltaub et al., 2012).

It is worth noting that the proposed Bayesian approach presents

several advantages with respect to the frequentist methods: (a) it pro-

vides not just a dichotomous reject/do-not-reject decision with respect

to null-hypotheses, but it computes the evidence in favor of each of the

hypotheses under consideration; (b) it can be used for the evaluation of

multiple hypotheses; (c) data supporting the hypotheses of interest can

continuously be updated (i.e., Bayesian updating); (d) differently from

Neurosynth, the ALE uses a Gaussian kernel with the variance modeled

by the number of subjects in the experiment, which allows to model the

variability of the peaks distribution; finally, (e) the method provides the

final probability of activation (or alteration) taking into account the inde-

pendent activation (or alteration) of the foci.

Here we show the rationale and the statistics behind the use of

BF in the analysis of meta-analytic data and present a different and

improved approach to the calculation of the BF on neuroimaging

data. This approach is implemented in a new tool, named BACON

(Bayes fACtor mOdeliNg), designed to calculate the BF starting

from meta-analytic neuroimaging data. BACON was developed as a

plug-in for the software Mango (ric.uthscsa.edu/mango; Multi-

image Analysis GUI), that is, a viewer for medical images endowed

with several analysis tools (Lancaster et al., 2010; Lancaster

et al., 2011; Lancaster et al., 2012). As a proof of concept, we test

BACON using both functional and structural data sets extracted

from BrainMap.

The BrainMap database stores peak coordinates (x, y, z) from pub-

lished neuroimaging studies, along with the corresponding meta-data
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that summarize the experimental design (Fox et al., 2005).

The BrainMap environment has been designed to facilitate quantita-

tive synthesis of neuroimaging results reported in the literature

(Vanasse et al., 2018), especially through the ALE method. Compared

to Neurosynth, BrainMap presents several advantages: (a) it contains

functional meta-data reporting both activation and deactivation which

can be searched separately; (b) it contains structural meta-data

reporting both gray (GM) and white (WM) matter results, as well as

increase and decrease morphometric variations; (c) a dedicated team

supervises the correctness of the included data; (d) it has a set of soft-

ware tools, such as Scribe, Sleuth, GingerALE (Eickhoff et al., 2012;

Fox et al., 2005; Fox & Lancaster, 2002), Mango, Papaya (Lancaster

et al., 2010; Lancaster et al., 2011; Lancaster et al., 2012), and ALE-

derived methods, such as the meta-analytic connectivity modeling

(MACM) (Laird et al., 2013; Robinson, Laird, Glahn, Lovallo, &

Fox, 2010) and the morphometric co-alteration networking (MCN)

analysis (Cauda et al., 2018; Cauda, Nani, Manuello, et al., 2018; Man-

uello et al., 2018; Tatu et al., 2018). All these resources make

BrainMap a simple but powerful instrument of research.

BACON is therefore an important complement to BrainMap, as it

provides a new method for performing reverse inference-based ana-

lyses. This is particularly insightful for the study of brain disorders,

since BACON allows to distinguish between areas that are altered by

the majority of brain disorders and areas that are specifically affected

by certain diseases. What is more, when considering neuropathology

under the aspect of its temporal progression, the BF index can identify

which cerebral areas are likely to be early affected by the disease

(Cauda et al., 2020).

2 | MATERIALS AND METHODS

2.1 | Reverse inference and BF definition

The basis of reverse inference is the Bayes' theorem. To place this in

the field of neuroimaging, let us consider two hypotheses: H0 affirming

the occurrence of a specific state (e.g., a pathological condition such

as schizophrenia, or a mental function such as the processing of

painful stimuli), and H1 affirming the absence of that state (i.e., the

negation of H0). Let D be a measurement of activation (or structural

alteration) in a brain area or voxel. What is the probability that,

given that measurement (D), the specific state is actually occurring

(i.e., H0 is true)?

According to Bayes' theorem, we have:

P H0jDð Þ¼P DjH0ð Þ
P Dð Þ P H0ð Þ ð1Þ

and, correspondingly,

P H1jDð Þ¼P DjH1ð Þ
P Dð Þ P H1ð Þ ð2Þ

The quotient of these probabilities represents the Bayes' theorem

in terms of relative belief:

P H0

��D� �

P H1

��D� �¼P D
��H0

� �

P D
��H1

� �P H0ð Þ
P H1ð Þ ð3Þ

Let us then consider the priors P(H0), P(H1). If no knowledge of these

priors is available, it is natural to consider them as identical (Cauda

et al., 2020; Jaynes, 2003):

P H0ð Þ¼P H1ð Þ ð4Þ

Therefore, the BF01 can be expressed as:

BF01 ¼P DjH0ð Þ
P D H1j Þð ð5Þ

BF01 gives the degree of evidence for the two hypotheses: if BF01 is

greater than 1, the evidence favors H0; if BF01 is less than 1, the evi-

dence favors H1.

Considering Formulas (3) and (4), BF01 can be also written as:

BF01 ¼
P H0

��D� �

P H1

��D� � ð6Þ

Since the sum of the two posterior probabilities must be 1

P H0 Dj ÞþP H1 Dj Þ¼1ðð ð7Þ

formula 6 can be written as:

BF01 ¼
P H0

��D� �

1�P H0

��D� � ð8Þ

(See Figure 1 for a graphical interpretation of the formulas here

described).

Inverting Formula (8) we obtain:

P H0

��D� �¼ BF01
BF01þ1

ð9Þ

The advantage of this expression is that we can directly obtain a pos-

terior probability by computing the BF. This allows to choose the

probability level according to which we want to verify our hypothesis.

2.2 | Using ALE-derived map for the calculation of
the BF

For the calculation of the BF, we used the maps obtained by means of the

ALE computation (Eickhoff et al., 2012). In thismethod each focus of every

experiment ismodeled by the ALE as a Gaussian probability distribution:
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p dð Þ¼ 1

σ3
ffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þ3

q e�
d2

2σ2 ð10Þ

where d indicates the Euclidean distance between the voxels and the

considered focus, and σ indicates the spatial uncertainty. Subse-

quently, we determined for every experiment a modeled alteration

(MA) map as the union of the Gaussian probability distribution of each

focus of the experiment. The union of these MA maps provided the

final ALE map. The significance of the ALE activations (or alterations)

has been then tested against an empirical null distribution, thus yield-

ing a p-value (see also Eickhoff et al., 2012) for a detailed description

of the algorithm). As the ALE creates smooth estimates of the local

abundance of peak activations and is equivalent to a density estima-

tion, for our purposes we normalized this density so as to obtain a

probability function.

2.3 | Plug-in description

BACON is a plug-in for Mango viewer (Lancaster et al., 2010; Lancas-

ter et al., 2011; Lancaster et al., 2012) that allows to compute reverse

inference, based on the calculation of the BF. It is coded in Python

and can be installed and executed using the Script Manager of Mango.

This plug-in is intended to be used in conjunction with the other soft-

ware packages and tools developed by the BrainMap Project.

BACON requires as input a couple of ALE-derived maps. The

most straightforward method to obtain this is to search data in

the BrainMap database by means of the software Sleuth (http://

www.brainmap.org/sleuth/) and then perform the ALE with Gin-

gerALE (www.brainmap.org/ale; see Figure 2). An extensive ad-hoc

search using a different database is also possible. Crucially, if inter-

ested for example in GM abnormalities in schizophrenia, the first

query has to contain the criterion “IS schizophrenia”, while the second

query has to contain “IS NOT schizophrenia” (see the queries used in

the plug-in testing section and in the Supporting Information). There-

fore, the first map will be the result of the ALE computed on the data

representing the domain of interest. The second map will be the nega-

tion of the first one (i.e., everything but the domain of interest). It is

important to not invert the order of the maps during the upload, as

this would affect the calculation and produce invalid results. Of note,

the two ALE maps must be unthresholded and in nifty format. The

output map contains in each voxel the value of the posterior probabil-

ity obtained as previously described, and can be saved as floating-

point 32-bit image (a detailed description of the plug-in usage is pro-

vided in the BACONManual).

2.4 | Plug-in testing

To assess the functionality of our plug-in we performed two different

analyses of reverse inference: a first one on fMRI data about pain

tasks, and a second one on VBM data about the comparison between

subjects with schizophrenia and healthy subjects. For the former, in

order to have the two required data sets, we made the following two

queries in the functional BrainMap database sector (April 2018):

QUERY A (IS PAIN). [Experiments Context IS Normal Mapping] AND

[Experiments Activation IS Activation Only] AND [Subjects Diagno-

sis IS Normals] AND [Experiments Imaging Modality IS fMRI] AND

[Experiments Paradigm Class IS Pain Monitor/Discrimination];

QUERY B (IS NOT PAIN). [Experiments Context IS Normal Mapping]

AND [Experiments Activation IS Activation Only] AND [Subjects

Diagnosis IS Normals] AND [Experiments Imaging Modality IS

fMRI] AND [Experiments Paradigm Class IS NOT Pain Monitor/

Discrimination].

The VBM sector of BrainMap was queried for the analysis of

schizophrenia (SCZ). The search algorithms were constructed as

follows:

F IGURE 1 Graphical representation of the role of the maps,
previously obtained in the pipeline, for the Bayes' Factor calculation
as implemented in the plug-in. In the formula, the numerator
represents the probability calculated from the unthresholded ALE
map showing the effect of interest. In the denominator, the
probability calculated from this same map is summed with the
probability calculated for its negation (i.e., the unthresholded ALE map
computed on the experiments not showing the effect of interest). The
final map represents values of probabilities, obtained by means of the
BF01 computation, and can be thresholded depending on the desired
level of probability. Maps are showed for visualization purpose only,
and are not based on the data described in the Section 2
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QUERY A (IS SCZ). [Experiments Context IS Disease] AND [Experiment

Contrast IS Gray Matter] AND [Experiments Observed Changes IS

Controls > Patients] AND [Experiments Observed Changes IS Con-

trols < Patients] AND [Subjects Diagnosis IS Schizophrenia];

QUERY B (IS NOT SCZ). [Experiments Context IS Disease] AND [Experi-

ment Contrast IS GrayMatter] AND [ExperimentsObserved Changes

IS Controls >Patients] AND [Experiments Observed Changes IS Con-

trols < Patients] AND [Subjects Diagnosis IS NOT Schizophrenia].

For the overview of the selection strategy, see also the Supporting

Information Methods and Figure S1. Detailed information about

the meta-data of the selected fMRI experiments are viewable in the

Tables S1 and S3. For more information about the meta-data for the

VBM set, see the Table S2.

Starting from the retrieved functional data, we calculated the ALE

for the conditions “pain” and “no-pain,” using the random effects

algorithm as implemented in GingerALE (v.2.3.6, http://brainmap.org;

Eickhoff et al., 2012; Eickhoff et al., 2009; Turkeltaub et al., 2012).

Subsequently, we determined the posterior probability using BACON

(see also the Supporting Information Material and Figure 3). The same

procedure was repeated for the data on schizophrenia. In order to

verify with an external tool if the voxels with high values in the map

obtained for the domain “pain” were actually more specific for that

condition, we employed the behavioral analysis tool of Mango (http://

ric.uthscsa.edu/mango/plugin_behavioralanalysis.html; Lancaster

et al., 2011; Lancaster et al., 2012). Of note, this method relies on the

spatial extent of the map it is applied to. For this reason, in

the absence of a specific cut-off value to be used, it is possible to

repeat the analysis for more than one threshold. In the present case,

each voxel with a value in the posterior probability map obtained

through BACON is significant. Therefore, the output map for the pain

domain has been thresholded at 0.7 and 0.8, to test more extreme

(and specific) voxels. Finally, we repeated the behavioral analysis on

the association map for the term “pain,” available on Neurosynth, so

as to compare the results obtained with the two methods.

With regard to structural data on schizophrenia, we tested the

related probability through the disease analysis plug-in available in

Mango (http://ric.uthscsa.edu/mango/plugin_diseaseanalysis.html).

For the reasons explained above, the same two thresholds were used

in this case as well.

3 | RESULTS

3.1 | Pain domain

The resulting posterior probability map for the pain domain shows the

involvement of bilateral insula (BA 13), left cingulate gyrus (BA 24),

right middle and inferior frontal gyrus (BA 10), bilateral thalamus (right

medial dorsal nucleus and bilateral ventral lateral nucleus), right post-

central gyrus (BA 5), right putamen (lentiform nucleus), and left

F IGURE 2 Examples of pipeline for the calculation of specificity using the BACON plug-in
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superior temporal gyrus (BA 22) (Figure 6; see Tables S4 and S5 for

the different thresholds).

The posterior probability map was submitted to the Mango behav-

ioral analysis plug-in. Results are different for the different thresholds.

Using the probability map threshold at p= .7, we show that only 7 out

of 51 behavioral subdomains exceed the level of statistical significance

(i.e., z ≥3, corresponding to a threshold of p< .05 with Bonferroni

correction for multiple comparisons). Notably, the subdomain

Somesthesis (pain) showed the highest z-value. Using the probability

map threshold at p= .8, only the Somesthesis (pain) and Somesthesis

(other) subdomains report significant results. Finally, we submitted the

map generated by Neurosynth (i.e., association map) to the behavioral

plug-in. Overall, results show a lower specificity compared to the prob-

ability map obtained with BACON (see also Figure 4).

F IGURE 3 Posterior maps of the specificity of the PAIN threshold at p(PAINj activation) = 0.7 (70%) and p(PAINj activation) = 0.8 (80%)

F IGURE 4 Comparison of
the results of the behavioral
analysis on the maps related to

the cognitive domain “pain.” Top
panel refers to the map produced
by BACON and thresholded at
p = .7. Middle panel refers to the
map produced by BACON and
thresholded at p = .8. Bottom
panel refers to the map available
on Neurosynth. Colors refer to
the domain, as they are organized
in the behavioral analysis tool. All
the showed sub-domains are
statistically significant (z ≥3)
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3.2 | Schizophrenia condition

The resulting posterior probability map for SCZ shows the involve-

ment of the right middle temporal gyrus (BA 21), bilateral precentral

gyrus (BA 6), left middle frontal gyrus (BA 10), left superior temporal

gyrus (BA 22 and BA 42), and bilateral precuneus (BA 7) (Figure 5; see

Tables S6 and S7 for the different thresholds).

The posterior probability map obtained with VBM data of SCZ

was submitted to the disease analysis plug-in of Mango. For both the

thresholds used (i.e., 0.7 and 0.8), only SCZ exceeds the level of

F IGURE 5 Posterior probability maps of the specificity to Schizophrenia, thresholded at p(SCZj alteration) = 0.7 (70%) and 0.8 (80%)

F IGURE 6 Comparison of the results of the behavioral analysis on the maps related to schizophrenia. Top panel refers to the map produced
by BACON and thresholded at p = .7. Bottom panel refers to the map produced by BACON and thresholded at p = .8

COSTA ET AL. 3349



statistical significance (i.e., z ≥3 corresponding to a threshold of

p< .05 with Bonferroni correction for multiple comparisons; Figure 6).

4 | DISCUSSION AND CONCLUSION

In the present study, we present a novel application of the Bayes' theo-

rem to the analysis of neuroimaging data and, more specifically, to the

computation of their specificity with respect to a given process or patho-

logical condition. The calculation of the BF, which here has been specifi-

cally carried out for ALE maps, made possible to show results in terms of

probability; this, in turn, has led to the notion of different degrees of

specificity. This approach was implemented in BACON, a user-friendly

but powerful plug-in, which can be used not only in the pipeline of

BrainMap meta-data, but also with other databases storing peer-

reviewed neuroimaging results. The behavioral analysis confirmed the

reliability of the tool. In fact, the output map thresholded at 0.7 (i.e., a

probability of the 70%) was associated with only 7 out of 51 possible

cognitive domains, the strongest being pain. Increasing the threshold to

0.8 reduced the association to just two domains. The disease analysis

carried out on the SCZ map showed confirmatory evidence as well. This

result was not obvious, given the high degree of overlap between the

pattern of structural alteration associated with different psychiatric and

neurodegenerative disorders (Cauda et al., 2019; Cauda et al., 2020).

Of note, the probability maps obtained through BACON are less

prone to misinterpretation than those constructed following the

canonical frequentist approach. In fact, in the Bayesian framework

the results directly represent the probability of the phenomenon. This

allows to answer in a straightforward way the following question:

how probable is that the brain areas in the map are specifically

involved in a given process? Moreover, the BF compares two hypoth-

eses (H0vs. H1) that are fully conditioned by the observed data. For

this reason, it is possible to investigate what it is specific as well as

what it is nonspecific. On the contrary, in the more often used

approach based on the p-value, if the null hypothesis (H0) is rejected,

nothing can be said about the alternative hypothesis. Finally, the

results obtained with the BF are not affected by the problem of multi-

ple comparisons, as it is the case with the frequentist approach.

It should be noted that thus far the analyses based on the BF

reported in the neuroimaging literature were carried out considering

data as binary (i.e., a voxel is active or nonactive during a given task;

Poldrack, 2006). On the contrary, the ALE method used here con-

siders the probability of activation (or alteration) of a voxel across a

set of experiments; this enables a more precise modeling of the distri-

bution of the activation peaks. What is more, the use of the ALE algo-

rithm allows to correctly account for the spatial uncertainty between

multiple results, as well as to control the possible bias introduced by

under-powered experiments due to small sample size.

In conclusion, we propose an alternative method to investigate

meta-analytic data, whose final result is a posterior probability map

that allows to make reverse inferences in a simple and straightforward

way. The use of BACON could significantly contribute to the improve-

ment of our understanding of the brain, both in its healthy functioning

and in its modifications during the development of pathological

conditions.
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