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We study the thermodynamics of AdS4 black hole solutions of Einstein-Maxwell theory that are
accelerating, rotating, and carry electric and magnetic charges. We focus on the class for which the black
hole horizon is a spindle and can be uplifted on regular Sasaki-Einstein spaces to give solutions of D ¼ 11

supergravity that are free from conical singularities. We use holography to calculate the Euclidean on-shell
action and to define a set of conserved charges which give rise to a first law. We identify a complex locus of
supersymmetric and nonextremal solutions, defined through an analytic continuation of the parameters,
upon which we obtain a simple expression for the on-shell action. A Legendre transform of this action
combined with a reality constraint then leads to the Bekenstein-Hawking entropy for the class of
supersymmetric and extremal black holes.
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I. INTRODUCTION

The study of black hole thermodynamics in the context
of the AdS=CFT correspondence continues to be a very
active area of research. Focusing on the class of super-
symmetric black holes in AdS spacetime with dimension
D > 3, there has been significant progress in quantitatively
recovering the Bekenstein-Hawking entropy by analysing
appropriate statistical ensembles of the dual superconfor-
mal field theory (SCFT), starting with [1,2] for D ¼ 4 and
[3–5] for D ¼ 5. In this context, the problem of microstate
counting via holography is conveniently reformulated in
terms of a supersymmetric field theory path integral in a
background with sources. This takes the form of a super-
symmetric index that can then be computed using a variety
of methods and then compared with the black hole entropy;
for example in the case of D ¼ 4, which is the focus of this
paper, see [6–18]. On the gravity side, the same partition
function is obtained from a suitably defined on-shell action,
regularized so that the supersymmetric and extremal limit
is well defined, see, e.g., [19–22] for static black holes in

AdS4 and [3,23] for the rotating case, where it was
necessary to identify a novel complex locus of super-
symmetric solutions.
In this paper we study various aspects of the thermo-

dynamics of a class of AdS4 black holes with nonzero
acceleration. The black holes are solutions of D ¼ 4

minimal gauged supergravity, whose bosonic content is
simply Einstein-Maxwell theory with a negative cosmo-
logical constant. The solutions of interest lie within the
Plebański-Demiański (PD) family of solutions [24] and are
also rotating as well as carrying both electric and magnetic
charge. A consequence of the acceleration is that the black
hole event horizon has conical singularities which stretch
all the way out to the AdS4 boundary. From a physical point
of view these singularities can be interpreted as the tensions
of “cosmic strings” which pierce the horizon and give rise
to the acceleration.
Remarkably, these conical singularities can be completely

removed after imposing suitable restrictions on the physical
parameters and then embedding the solutions into D ¼ 11

supergravity [25]. Recall that any solution ofD ¼ 4minimal
gauged supergravity can be uplifted on a seven-dimensional
Sasaki-Einstein space to obtain a local solution of D ¼ 11

supergravity. One key ingredient in the construction of [25]
is that the Sasaki-Einstein manifold should be taken to lie in
the regular class, meaning it is a Uð1Þ fibration over a six-
dimensional Kähler-Einstein base; the simplest examples are
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S7, as well as the discrete quotients S7=Z2, S7=Z4, all of
which are Uð1Þ fibrations over CP3. A second key ingre-
dient is to impose suitable restrictions on the parameters of
the D ¼ 4 black hole solution and, in particular, the conical
deficits are assumed to be quantized so that the black hole
horizon is a “spindle.” Topologically the spindle is a two-
sphere but there are orbifold singularities at both poles
specified by two integers n� ∈ N or, in other words,
the spindle is the weighted projective space WCP1

½n−;nþ�.
It is also the case that the magnetic charge of the black
hole is fixed by the spindle data and given by Gð4ÞQm ¼
ðn− − nþÞ=ð4n−nþÞ and is always nonvanishing since we
must have n− ≠ nþ. By combining these ingredients, it was
shown in [25] that for a spindle with given n�, together
with a suitably chosen regular Sasaki-Einstein manifold,
the D ¼ 11 solution is free from any conical singularities.1

Furthermore, the D ¼ 11 solutions preserve supersymmetry
when the D ¼ 4 solutions do.
While we are principally interested in this regular class

of black hole solutions in D ¼ 11, we will analyze their
thermodynamics in D ¼ 4 and the details of the internal
Sasaki-Einstein space will not be important. The regular
D ¼ 4 black hole solutions, by which we mean the D ¼ 4
solutions which can be uplifted to give regular D ¼ 11
solutions, can be specified by three physical parameters,
the mass,M, angular momentum, J, and electric chargeQe,
along with the spindle data, n�. For a fixed spindle, by
varying the parameters appearing in the solution, we will
show that this three-parameter family of black holes
satisfies a first law which takes the standard form. An
interesting feature is that the conformal boundary of these
black hole solutions is not conformally flat. Our first law
involves varying the conformal class of the boundary and
also involves a specific rescaling of the time coordinate,2 as
also seen in the derivation of the first law for accelerating
black holes with vanishing magnetic charge given in [33].
By calculating the Euclidean on-shell action we also derive
a quantum statistical relation for the dual CFT at finite
temperature.
The three-parameter family of regular D ¼ 4 black hole

solutions includes a locus of supersymmetric solutions
which satisfy the BPS relation

M ¼ 2

χ
J þQe; ð1:1Þ

where χ ¼ ðnþ þ n−Þ=ðnþn−Þ is the Euler character of the
spindle. Our analysis will assume nonzero acceleration

throughout, but many of our main results can be seen as
generalizations of the well-studied electrically charged,
AdS Kerr-Newman black holes with spherical horizons
[34–36], provided that we formally set n− ¼ nþ ¼ 1, so
that χ ¼ 2, the Euler character of the two-sphere, and
Qm ¼ 0. For example, the relation (1.1) is then identical to
that of the Kerr-Newman black holes. For the Kerr-
Newman black holes it is well known that the condition
for supersymmetry does not coincide with the condition
that the black holes are extremal and the same is true for the
accelerating black holes. The regular, supersymmetric and
extremal accelerating black holes are specified by a single
parameter which can be taken to be the electric charge Qe.
The angular momentum J and Bekenstein-Hawking
entropy, SBH, are then given by [25],

J ¼ Qe

4

�
−χ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 þ ð4Gð4ÞÞ2ðQ2

e þQ2
mÞ

q �
;

SBH ¼ π

Gð4Þ

J
Qe

. ð1:2Þ

Notice that these expressions again formally reduce to
the corresponding relation for the supersymmetric and
extremal Kerr-Newman black holes.
In this paper we will focus on black holes with non-

vanishing rotation, J ≠ 0, with the associated supersym-
metric and extremal black holes then having Qe ≠ 0. This
is partly because the case with J ¼ 0 was analyzed in some
detail in [25] and also because the J ¼ 0 solutions have
some specific features which are not present when J ≠ 0.
For example, with J ¼ 0 the supersymmetric and extremal
black holes, which arise when Qe ¼ M ¼ 0, have an
acceleration horizon that splits the conformal boundary
into two halves and, furthermore, supersymmetry of the
boundary is then preserved as a result of two different
topological twists, one on each half. By contrast when
J ≠ 0 the conformal boundary is always regular and the
boundary supersymmetry is not preserved as a result of a
topological twist. In fact, here we will clarify how super-
symmetry is preserved on the boundary when J ≠ 0 by
explicitly constructing the boundary spinors that solve
the conformal Killing spinor equation, as expected on
general grounds [37].
At finite temperature the Euclidean on-shell action,

IðT;Φe;ΩÞ, of the black hole solutions can be identified
with minus the logarithm of the partition function of the
dual field theory. The action is a function of the temperature
T and the electric and rotational chemical potentials, Φe
and Ω, respectively, and the partition function is in a grand
canonical ensemble. At finite temperature we can obtain
the entropy of the black holes as a function of the mass M
and charges J, Qe in a microcanonical ensemble via a
Legendre transformation using the quantum statistical
relation. For extremal black holes at zero temperature this
prescription breaks down because the on-shell action

1The construction is essentially the same as that used for a
class of AdS3 ×WCP1

½n−;nþ� solutions of minimal D ¼ 5 gauged
supergravity which are uplifted on SE5 to obtain solutions of type
IIB supergravity and describe D3-branes wrapping a spindle [26].
Related work on spindles appears in [27–31].

2It would be interesting to see how our derivation of the first
law fits into the approach of [32].
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becomes ill-defined. However, motivated by recent
progress for the Kerr-Newman and other black holes
[3,23], we can develop an analogous prescription for
supersymmetric and extremal black holes.
To do this we first introduce a complex locus of super-

symmetric solutions that is obtained by an analytic con-
tinuation of some of the parameters appearing in the black
hole solutions. The one-parameter family of supersymmet-
ric and extremal black holes, which are of course real, are
then obtained on a special slice of this complex locus. By
analyzing various thermodynamic quantities, analytically
continued to this complex locus, we are able to derive an
expression for the on-shell Euclidean action I ¼ Iðω;φÞ,
expressed as a function of rotational and electric chemical
potentials, ω and φ, respectively, both of which are
complex and defined on the supersymmetric locus.
Specifically, we find that the on-shell action can be written
in the form

Iðω;φÞ ¼ � 1

2iGð4Þ

�
φ2

ω
þ ðGð4ÞQmÞ2ω

�
; ð1:3Þ

with ω and φ satisfying the constraint

φ −
χ

4
ω ¼ �iπ: ð1:4Þ

By carrying out a Legendre transform, or more precisely
extremizing the quantity, −Iðω;φÞ − ωJ − φQe, which is
sometimes called an entropy function, subject to the
constraint (1.4), we obtain an expression for the entropy
SBHðJ;QeÞ and charges J, Qe. By imposing the condition
that SBH,Qe and J are all real, we then precisely recover the
expressions for the entropy and angular momentum for the
supersymmetric and extremal black holes given in (1.2).
Our result extends the extremization principles that have
been formulated forD ¼ 4 rotating and dyonically charged
black holes in [38,39] (see also [40,41] for earlier results in
different dimensions) and in this context it is worth high-
lighting again that our magnetically charged black holes are
not preserving supersymmetry via a topological twist.
In a separate calculation, we show that the expression

(1.3) for the on-shell action defined on the complex locus
of solutions can also be obtained from a suitable analytic
continuation of the result of [42], which calculates the
action using the fixed point data of the supersymmetric
Killing vector obtained as a bi-linear of the bulk Killing
spinors. It would be of much interest to derive our result
for the on-shell action, I ¼ Iðω;φÞ, directly from the dual
SCFT using localization techniques.
The plan of the paper is as follows. In Sec. II, we

introduce the class of accelerating black holes of interest as
well as present the supersymmetric and extremal limits. We
also summarize the conditions required in order to get a
regular solution after uplifting to D ¼ 11. In Sec. III, we
discuss the thermodynamics of the accelerating black holes.

Our analysis, which generalizes that of [33] to include
magnetic charge, actually covers the general class of
accelerating black holes, without imposing the conditions
required for regularity. In particular, by varying the
parameters appearing in the solution, we derive a first
law which involves introducing the tensions of the cosmic
strings as extensive variables, along with their associated
chemical potentials. In addition, we also show that the first
law can be formally extended to allow for variations of the
cosmological constant, again generalising [33]. In Sec. IV,
we introduce and study the complex locus of supersym-
metric black hole solutions that includes the real super-
symmetric and extremal black hole solution as a special
case. This section also derives the entropy function on this
complex locus. In Sec. V, we obtain the boundary Killing
spinors by directly solving the conformal Killing spinor
equation. We construct the boundary supersymmetric
Killing vector as a spinor bilinear and make contact with
the results of [42]. We conclude with some discussion in
Sec. VI. Finally, in the Appendix we show that for
supersymmetric solutions, the boundary metric and gauge
field can be recast in a canonical form as studied in [37].

II. THE BLACK HOLE SOLUTIONS

A. The solutions

We consider solutions to minimalD ¼ 4,N ¼ 2 gauged
supergravity, which has a bulk action given by

Sbulk ¼
1

16πGð4Þ

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 6

l2
− F2

�
: ð2:1Þ

Here F ¼ dA, and the cosmological constant is −3=l2 < 0.
Our starting point is the black hole solution to the
corresponding equations of motion, given by [24,43] and
discussed in [25]

ds2 ¼ 1

H2

	
−
Q
Σ

�
1

κ
dt − asin2θdϕ

�
2

þ Σ
Q
dr2

þ Σ
P
dθ2 þ P

Σ
sin2θ

�
a
κ
dt − ðr2 þ a2Þdϕ

�
2


; ð2:2Þ

where

PðθÞ ¼ 1− 2αm cosθþ
�
α2ða2 þ e2 þ g2Þ− a2

l2

�
cos2θ;

QðrÞ ¼ ðr2 − 2mrþ a2 þ e2 þ g2Þð1− α2r2Þ

þ r2

l2
ða2 þ r2Þ;

Hðr;θÞ ¼ 1− αrcosθ;

Σðr;θÞ ¼ r2 þ a2cos2θ; ð2:3Þ

and the gauge field is given by
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A ¼ −e
r
Σ

�
1

κ
dt − asin2θdϕ

�

þ g
cos θ
Σ

�
a
κ
dt − ðr2 þ a2Þdϕ

�
¼ Atdtþ Aϕdϕ: ð2:4Þ

The solution depends on five free parametersm, e, g, a, and
α, loosely corresponding to mass, electric charge, magnetic
charge, angular momentum, and acceleration, respectively,
together with the AdS radius l > 0 and the constant κ > 0.
The latter, which at this stage is a trivial constant that can be
absorbed in a rescaling of the time coordinate, will be fixed
later so that the Killing vector ∂t is appropriately normal-
ized in order to obtain a first law of thermodynamics.
We will focus on the case m > 0. By utilizing discrete
isometries, as discussed in [25], without loss of generality
in the physical Lorentzian solution we can consider

m > 0; and α; e; g; a ≥ 0; ð2:5Þ

and for the most part we will take

α > 0: ð2:6Þ

The range of the θ coordinate is taken to be 0 ≤ θ ≤ π. The
black hole horizon is located at r ¼ rþ, with QðrþÞ ¼ 0,
where rþ is the largest root of Q, and we demand

0 < rþ < 1=α: ð2:7Þ

The first inequality ensures that we avoid the black hole
singularity at r ¼ 0 and the second that the horizon does
not touch the conformal boundary, as we will see later. For
convenience, we now continue with

l ¼ 1; ð2:8Þ

although we will briefly reinstate the AdS radius l when
we discuss the first law of thermodynamics in Sec. III C.
This may be done via dimensional analysis, noting that
the parameters m, e, g, a, and 1=α all have dimensions of
length.
The metric has two Killing vectors, ∂t and ∂ϕ.

Furthermore, the gauge we are using is such that
L∂tA ¼ L∂ϕA ¼ 0. As in [25] we will discuss residual
gauge transformations of the form

A → Ã ¼ Aþ α1dtþ α2dϕ: ð2:9Þ

There is no choice of α1, α2 which makes A globally well
defined when the magnetic charge is nonvanishing, g ≠ 0.
As we will discuss later there is a natural choice of α1
which, after setting g ¼ 0, does make A globally defined in
the Euclidean solution.

B. Regularity

When αm ≠ 0, it is not possible to choose the period,
Δϕ, of ϕ so that we obtain a smooth metric on a two-sphere
S2 on the surfaces of constant t and r. Instead, there is
always a conical deficit at one or both of the poles θ ¼ θ�,
where it is convenient to define

θ− ¼ 0; θþ ¼ π: ð2:10Þ

To see this, we introduce

P� ≡ Pðθ�Þ ¼ Ξ� 2αm; ð2:11Þ

where

Ξ≡ 1þ α2ða2 þ e2 þ g2Þ − a2: ð2:12Þ

We then take the period Δϕ of ϕ to be [25]

Δϕ
2π

¼ 1

nþPþ
¼ 1

n−P−
: ð2:13Þ

The constant t, r surfaces, which we call Σ, are then
topologically two-spheres but with conical deficit angles
2πð1 − 1

n�
Þ at the poles θ ¼ θ�. If n� are coprime positive

integers, thenΣ ¼ WCP1
½n−;nþ� is aweighted projective space,

which is an orbifold also commonly known as a spindle.
It will also be convenient to define the tensions of the

associated “cosmic strings”

μ� ≡ 1

4Gð4Þ

�
1 − ðΞ� 2αmÞΔϕ

2π

�
; ð2:14Þ

so that

μ− − μþ ¼ αm
Gð4Þ

Δϕ
2π

;

μ− þ μþ ¼ 1

2Gð4Þ

�
1 − Ξ

Δϕ
2π

�
; ð2:15Þ

and

1

n�
¼ 1 − 4Gð4Þμ�: ð2:16Þ

The first equation in (2.15) shows immediately that we
cannot take n− ¼ nþ ¼ 1, to obtain Σ ¼ S2, when αm ≠ 0.
The orbifold Euler characteristic of Σ is

χ ¼ χðΣÞ ¼ 1

n−
þ 1

nþ
¼ 2 − 4Gð4Þðμ− þ μþÞ: ð2:17Þ

Regarding μ� (or equivalently n�) as fixed, one can regard
the first equation in (2.15) as fixing Δϕ in terms of the
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parameters, while the second equation in (2.15) is then a
constraint on the parameters.
Any solution of minimal D ¼ 4, N ¼ 2 gauged

supergravity automatically uplifts locally to a solution of
D ¼ 11 supergravity on an arbitrary Sasaki-Einstein seven-
manifold Y7 [44]. In [25] it was shown that, starting from
one of the black hole solutions with Σ ¼ WCP1

½n−;nþ� a

spindle with coprime positive integers n− > nþ, one can
uplift to a completely smooth3 solution of D ¼ 11 super-
gravity, free from conical deficit singularities, provided two
conditions hold. First, we require

g ¼ αm: ð2:18Þ

Strictly speaking this is a sufficient condition, rather than
necessary, but we shall see in the next subsection that it is
also required for supersymmetry. Second, the internal
Sasaki-Einstein manifold Y7 needs to be in the so-called
regular class, i.e., Y7 is the total space of a principal circle
bundle over a positively curved Kähler-Einstein six-
manifold. The precise circle fibration is in turn determined
by the integers n� and the Fano index of the Kähler-
Einstein base, as discussed in detail in [25]. We will not
need any of the details of this uplift in the remainder of the
paper, and will work entirely in four dimensions.

C. Supersymmetry and extremality

In this section we summarize the additional conditions on
the parameters required for the solution to be supersym-
metric, and also for the black hole solution to be extremal,
i.e., to have zero surface gravity. We follow [25,45].
A solution to the equations of motion resulting from the

action (2.1) is supersymmetric if there is a Dirac spinor ϵ
satisfying the Killing spinor equation

∇μϵ ¼
�
iAμ −

1

2
Γμ −

i
4
FνσΓνσΓμ

�
ϵ: ð2:19Þ

Here ∇μ is the spin connection and fΓμ;Γνg ¼ 2gμν.
Substituting the solutions of section II A into the integra-
bility condition for the Killing spinor equation (2.19) leads
to the following constraints when α ≠ 0:

g ¼ αm;

0 ¼ α2ðe2 þ g2ÞðΞþ a2Þ − ðg − aαeÞ2: ð2:20Þ

We refer to these as the supersymmetry equations, the first
of which was discussed in a quite different context at the
end of the previous subsection.
A supersymmetric solution is also extremal provided the

following relation also holds [25]

ag2ðaαe − gÞðeþ aαgÞ þ α3e2ðe2 þ g2Þ2 ¼ 0: ð2:21Þ

The first equation in (2.20) is of course straightforward
to implement, although imposing the second equation
together with (2.21) is at best cumbersome. We shall see
later in Sec. IV that these equations, and indeed also various
physical quantities of interest, significantly simplify if one
first introduces a different set of variables.

III. THERMODYNAMICS

In this section, we use holography to determine the
thermodynamics of the black holes. Our results generalize
those given in [33] to also include nonvanishing magnetic
charge, g ≠ 0, which is essential for supersymmetry.

A. Boundary stress tensor, current,
and conserved charges

As discussed in [25,33], the conformal boundary of the
metric (2.2) is located at Hðr; θÞ ¼ 0. It is then convenient
to introduce a new radial coordinate z via4

1

r
¼ α cos θ þ z; ð3:1Þ

so that the conformal boundary is located at z ¼ 0. We thus
introduce a small cutoff ϵ ≥ 0 and study the near-boundary
hypersurfaces of constant z in the limit z ¼ ϵ → 0. Notice
then that the condition (2.7) ensures that the black hole
horizon does not touch the conformal boundary at θ ¼ 0.
In this parametrization, the four-dimensional coordinates
are xμ ¼ ðt; θ;ϕ; zÞ, while the coordinates on the hyper-
surfaces are xi ¼ ðt; θ;ϕÞ. The ADM decomposition of the
bulk metric is

ds2 ¼ N2dz2 þ hijðdxi þ NidzÞðdxj þ NjdzÞ; ð3:2Þ

where the induced metric hij, the lapse function N, and the
shift vector Ni ¼ ð0; Nθ; 0Þ depend both on z and θ. The
outward-pointing unit vector normal to the hypersurfaces of
constant z is given by

n ¼ 1

N
ðNi∂i − ∂zÞ: ð3:3Þ

The extrinsic curvature of the hypersurfaces, as a tensor on
the hypersurface, is given by

Kij ¼
1

2
Lngij ¼ −

1

2N
ð∂zhij −∇ðhÞ

i Nj −∇ðhÞ
j NiÞ; ð3:4Þ

where here ∇ðhÞ
i is the Levi-Civita connection of hij.

3Apart from the black hole singularity.

4It would be less convenient to write r ¼ 1
α cos θ þ z, in

particular at θ ¼ π=2.
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The metric on the conformal boundary is defined to be

ds2bdy ≡ lim
ϵ→0

ϵ2hijjz¼ϵdx
idxj

¼ −P̃
�
1

κ
dt −

að1 − α2PÞsin2θ
P̃

dϕ

�
2

þ ð1þ a2α2cos4θÞ2
PðP̃þ a2α2cos4θÞ dθ

2

þ Psin2θ

�
1þ a2α2cos4θ

P̃

�
dϕ2; ð3:5Þ

and we have defined

P̃ ¼ P̃ðθÞ≡ 1 − α2PðθÞsin2θ: ð3:6Þ

In the a ¼ 0 limit we recover the boundary metric studied
in some detail in Sec. 6 of [25], up to a conformal factor.
We emphasize that the Cotton tensor of the boundary
metric (3.5) is, generically, nonvanishing, and hence the
boundary is not conformally flat. This is in contrast to the
case when the acceleration parameter vanishes, α ¼ 0,
when the Cotton tensor vanishes and the boundary is
conformally flat.5 The boundary gauge field is defined
to be

Abdy ¼ lim
ϵ→0

Aijz¼ϵdx
i

¼ −
cos θ

1þ α2a2cos4θ

�
α

κ
ðe − gαacos2θÞdt

þ ðgþ gα2a2cos2θ − eαasin2θÞdϕ
�
: ð3:7Þ

Note that in the gauge we are using, while Abdy
i ¼ Abdy

i ðθÞ,
we have

R
π
0 dθAbdy

i ¼ 0.
To calculate the stress tensor of the boundary theory we

need to consider the total action given by

S ¼ Sbulk þ Sbdy: ð3:8Þ

Here the bulk action is given in (2.1), while the boundary
action, which includes the Gibbons-Hawking term as well
as the counterterms, is given by

Sbdy ¼
1

16πGð4Þ

Z
bdy

d3x
ffiffiffiffiffiffi
−h

p
ð2K − 4 − RðhÞÞ: ð3:9Þ

Here K ¼ hijKij is the trace of the extrinsic curvature, and
RðhÞ is the Ricci scalar of the metric hij.
The renormalized energy-momentum tensor is given

by [46]

Tij ¼
1

8πGð4Þ
lim
ϵ→0

1

ϵ

�
−Kij þ hijK − 2hij þ RijðhÞ

−
1

2
hijRðhÞ

�
z¼ϵ

: ð3:10Þ

The explicit expression is lengthy and so we will not report
it here. Similarly the electric current of the dual field theory
is defined by

ji ¼ −
1

4πGð4Þ
lim
ϵ→0

�
1

ϵ3
nμFμi

�
z¼ϵ

; ð3:11Þ

and explicitly we have

jt ¼ κ
e½1þ 3α2a2x2 − α2a2x4ð3þ α2a2x2Þ� þ gαa½1 − 3x2 − α2a2x4ð3 − x2Þ�

4πGð4Þð1þ α2a2x4Þ3 ;

jϕ ¼ α½eαax2ð3 − α2a2x4Þ þ gð1 − 3α2a2x4Þ�
4πGð4Þð1þ α2a2x4Þ3 ; ð3:12Þ

where we are using the variable

x≡ cos θ; ð3:13Þ
and we have jθ ¼ 0.
One can check directly that ji and Tij satisfy the Ward

identities

Diji ¼ 0;

DiTij ¼ −jiFbdy
ij ; ð3:14Þ

where Di is the Levi-Civita connection of the boundary
metric (3.5) (i.e., the limit ϵ → 0 of the metric hij rescaled
by ϵ2), which is also used to raise and lower indices, and
Fbdy ¼ dAbdy. Furthermore, we have checked that Ti

i ¼ 0,
as expected. It is useful to also recall that if the boundary
metric has a Killing vector field k, satisfying Lkhij ¼ 0 and
LkAbdy ¼ 0, then we obtain a conserved boundary current:

Di½ðTi
j þ jiAbdy

j Þkj� ¼ 0: ð3:15Þ
Note that the current ðTi

j þ jiAbdy
j Þkj changes under gauge

transformations that maintain LkAbdy ¼ 0, a point we
return to below.5The Cotton tensor also vanishes when m ¼ g ¼ e ¼ 0.
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We are now in a position to compute the total mass and
angular momentum in the boundary theory. These are
conserved charges associated with Killing vectors of the
boundary metric, and given by integrals at the boundary
over a two-dimensional spatial hypersurface Σ∞ of
constant time. However, some care is required in choos-
ing these constant time hypersurfaces. To proceed,
we first introduce new coordinates on the boundary
defined by

t ¼ t̄; ϕ ¼ ϕ̄þ Δϕ
2π

Ω∞t̄; ð3:16Þ

with

∂ t̄ ¼ ∂t þΩ∞
Δϕ
2π

∂ϕ; ∂ϕ̄ ¼ ∂ϕ; ð3:17Þ

and Ω∞ is a constant which will be chosen momentarily.
We denote the surfaces of constant t̄ on the conformal
boundary by Σ∞. The associated ADM decomposition of
the boundary metric (3.5) can be written

ds2bdy ¼ −ν2dt̄2 þ γ {̂ |̂ðdx{̂ þ ν{̂dt̄Þðdx|̂ þ ν|̂dt̄Þ; ð3:18Þ

where γ {̂ |̂, {̂; |̂ ¼ 1, 2, is the induced metric on Σ∞, and the
future-directed unit vector normal to the hypersurfaces of
constant t̄ is

u ¼ ui∂i ¼
1

ν
ð∂ t̄ − ν{̂∂ {̂Þ: ð3:19Þ

For a Killing vector k, with associated conserved
current as in (3.15), we can then define the conserved
charge Qk as

Qk ≡
Z
Σ∞

d2x
ffiffiffi
γ

p
uiðTi

j þ jiAbdy
j Þkj: ð3:20Þ

We now fix the choice of time coordinate t̄ by defining

Ω∞ ¼ −
2π

κΔϕ
að1 − α2ΞÞ
Ξð1þ a2α2Þ : ð3:21Þ

The total energy or massM is associated with the boundary
Killing vector k ¼ ∂ t̄. We define

M≡Q∂ t̄ ≡
Z
Σ∞

d2x
ffiffiffi
γ

p
uiðTi

t̄ þ jiAbdy
t̄ Þ ¼

Z
Σ∞

d2x
ffiffiffi
γ

p
uiTi

t̄

¼ mΔϕ
2πκGð4Þ

ðΞþ a2Þð1 − α2ΞÞ
Ξð1þ α2a2Þ ; ð3:22Þ

where the last equality in the first line is a feature of the
gauge we are using.6 Our definition of M depends on the
choice Ω∞; we will later see that this definition of M
appears in the first law, with M a function of the entropy
SBH and the charges J, Qe, defined below. In the special
case that α ¼ 0, it is the definition of mass that has
appeared in previous discussions of the Kerr-Newman
AdS4 black holes (e.g., see [32]). When α ≠ 0 and
g ¼ 0, this choice was also used in [47]. Finally, we will
later see that this definition ofM leads to a simple form for
the BPS relation between M and J, Qe for supersymmetric
solutions.
The total angular momentum J is associated with the

boundary Killing vector k ¼ − Δϕ
2π ∂ϕ, and we define it as

J ≡ −
Δϕ
2π

Z
Σ∞

d2x
ffiffiffi
γ

p
uiðTi

ϕ þ jiAbdy
ϕ Þ

¼ −
Δϕ
2π

Z
Σ∞

d2x
ffiffiffi
γ

p
uiðTi

ϕÞ ¼
am
Gð4Þ

�
Δϕ
2π

�
2

: ð3:23Þ

Note that J is independent of Ω∞ since ∂ϕ ¼ ∂ϕ̄. In [25],
following [32], it was emphasized that J is a kind of Page
charge, and in particular using Stokes’ theorem, it was also
explained how J can be obtained as an integral over the
horizon, which is a copy ΣH of the two-dimensional
surface Σ.
The definition of the conserved electric and magnetic

charges is more straightforward, and in particular are gauge
invariant. The total electric charge, Qe, is obtained by
integrating the charge density over Σ∞, and we have

Qe ¼ −
Z
Σ∞

d2x
ffiffiffi
γ

p
uiji ¼

1

4πGð4Þ

Z
Σ∞

�4F ¼ eΔϕ
2πGð4Þ

;

ð3:24Þ

while the total magnetic charge, Qm, is given by

Qm ≡ 1

4πGð4Þ

Z
Σ∞

Fbdy ¼
gΔϕ
2πGð4Þ

: ð3:25Þ

Both Qe and Qm are independent of Ω∞. Furthermore,
like J, they can also be obtained as horizon integrals over
ΣH, as discussed in [25].

B. Black hole entropy and on-shell action

The black hole horizon is located at r ¼ rþ. The null
generator of the black hole horizon, V, is given by

6This is not true, for example, for the special case of g ¼ 0 if
we used a gauge transformation of the form (2.9) with α1 chosen
so that Ã was globally defined; in fact one would find
Q∂ t̄ ¼ M −ΦeQe, with Φe and Qe the chemical potential and
electric charge appearing in the first law.
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V ¼ ∂t þ ΩH
Δϕ
2π

∂ϕ; ð3:26Þ

where the angular velocity of the horizon, ΩH, is

ΩH ¼ 2π

κΔϕ
a

r2þ þ a2
: ð3:27Þ

If we introduce new coordinates

t ¼ t0; ϕ ¼ ϕ0 þ ΩH
Δϕ
2π

t0; ð3:28Þ

then the generator is V ¼ ∂t0 and furthermore they are the
natural coordinates to show that the Euclidean metric,
discussed below, is regular at the horizon.
The Bekenstein-Hawking entropy of the black hole is

given by

SBH ¼ Δϕ
2Gð4Þ

r2þ þ a2

1 − α2r2þ
: ð3:29Þ

The surface gravity, κsg, is obtained via κ2sg ¼ − 1
2
∇μVν∇μVν,

evaluated at the horizon. Identifying the temperature via
T ¼ β−1 ¼ κsg

2π, we have

T ¼ Q0ðrþÞ
4πκða2 þ r2þÞ

: ð3:30Þ

To evaluate the on-shell action we perform the Wick
rotation

t ¼ −iτ; I ¼ −iS: ð3:31Þ

To get a real solution we should also take a ¼ iaE
and e ¼ ieE. Moving to new coordinates τ ¼ τ0 and
ϕ ¼ ϕ0 − iΩH

Δϕ
2π τ

0 so that V ¼ i∂τ0 , we find that the metric
is smooth at r ¼ rþ provided that we identify

ðτ0;ϕ0Þ ∼ ðτ0 þ βm1;ϕ0 þ Δϕm2Þ; ð3:32Þ

where mi ∈ Z. Equivalently, in the unprimed Euclidean
coordinates we have the twisted identification

ðτ;ϕÞ ∼
�
τ þ βm1;ϕ − iΩ

Δϕ
2π

βm1 þ Δϕm2

�
; mi ∈ Z:

ð3:33Þ

While τ is not a periodic coordinate, it is useful to note
that we have

R
dτdϕ ¼ βΔϕ. We note that the Euclidean

solution has topology R2 × Σ, where the horizon r ¼ rþ is
at the origin of R2, and the Euclidean time τ0 plays the role

of a polar coordinate on R2. Indeed, it will sometimes be
convenient to use the canonically normalized coordinates
defined by

ψ ≡ 2π

β
τ0; σ ≡ 2π

Δϕ
ϕ0; ð3:34Þ

so that ψ is ð2πÞ-period polar coordinate on the R2

normal to the horizon, and σ is a ð2πÞ-period coordinate
on the surface Σ. We would also like to highlight that
the gauge field is not regular at the black hole horizon;
indeed, in general, there is no gauge in which this is
the case. In the special case that g ¼ 0, it is possible if
we make a gauge transformation of the form (2.9) with
α1 ¼ ðerþÞ=½κða2 þ r2þÞ�.
After some calculation we find that the Euclidean on-

shell action [see Eq. (3.31)] is

I ¼ βΔϕ
16πκGð4Þ

�
−4rþ

�
a2 þ r2þ

ðα2r2þ − 1Þ2 þ
e2 − g2

a2 þ r2þ

�

þ 4m

�
1 − 2α2 −

2α4ðe2 þ g2Þ
1þ α2a2

��
: ð3:35Þ

We next define the electrostatic potential, Φe via

Φe ≡Φ∞ −ΦH; ð3:36Þ

with ΦH ¼ V · Ajr→rþ , which is necessarily a constant, and
Φ∞ to be the θ-independent component of V · Abdy (i.e.,
the zero mode). In the gauge we are using, as noted
below (3.7), we have Φ∞ ¼ 0 and so

Φe ¼
erþ

κðr2þ þ a2Þ : ð3:37Þ

We then we immediately find that the following quantum
statistical relation is satisfied:

I ¼ −SBH þ βðM −ΩJ −ΦeQeÞ; ð3:38Þ

where we have defined

Ω≡ ΩH −Ω∞: ð3:39Þ

A number of comments are now in order. First, a
derivation of the expression for Φe in (3.37) was given
in appendix E of [25], following [33]; the factor of κ here
arises because of the normalization of the time coordinate
in (2.2). Second, to discuss the gauge transformations (2.9)
it is illuminating to rewrite (3.38) in the form I¼
−SBHþβðMþΩ∞J−Φ∞QeÞ−ΩHJþΦHQe, where as
we noted above in the current gauge Φ∞ ¼ 0. In particular
we notice that M þΩ∞J −Φ∞Qe is the conserved charge
associated with the Killing vector ∂t, i.e., Q∂t . We first
consider the gauge transformations as in (2.9) that are
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parametrized by α2: as shown in [25] this takes
J → J þ α2Qe and ΦH → ΦH þ α2ΩH, with Φ∞ invariant
(and, of course, Qe also). Furthermore, it is clear that
M þ Ω∞J −Φ∞Qe is invariant because it is the conserved
charge associated with the Killing vector ∂t and the At
component is unchanged for this gauge transformation.
Thus, we see that I is invariant, as it had to be. For the
gauge transformations parametrized by α1, we have
M þ Ω∞J −Φ∞Qe will transform to the same thing plus
−α1Qe while ΦH → ΦH þ α1, again leaving I invariant.
Importantly, as we show in the next section, within the
gauge we are using, there is a standard first law for
M ¼ MðSBH; J; QeÞ, for a suitably chosen κ, and, with
the quantum statistical relation we can then deduce
I ¼ IðT;Ω;ΦeÞ and hence W ¼ TI can be identified as
the Gibbs free energy of the dual field theory. Finally, we
emphasize that we have not yet used the regularity
constraints of Sec. II B, nor those for supersymmetry as
in Sec. II C.

C. The first law

Elsewhere we have set the AdS radius l ¼ 1. We now
briefly restore l, so it can temporarily be varied. We first
collect formulas that we have derived so far:

M ¼ mΔϕ
2πκGð4Þ

ðΞþ a2=l2Þð1 − α2l2ΞÞ
Ξð1þ α2a2Þ ;

SBH ¼ Δϕ
2Gð4Þ

r2þ þ a2

1 − α2r2þ
;

Qe ¼
eΔϕ
2πGð4Þ

; Qm ¼ gΔϕ
2πGð4Þ

;

Φe ¼
erþ

κðr2þ þ a2Þ ; Φm ¼ grþ
κðr2þ þ a2Þ ; ð3:40Þ

as well as

J ¼ am
Gð4Þ

�
Δϕ
2π

�
2

; ΩH ¼ 2π

κΔϕ
a

r2þ þ a2
;

Ω∞ ¼ −
2π

κΔϕ
að1 − α2l2ΞÞ
Ξl2ð1þ a2α2Þ ; Ω ¼ ΩH −Ω∞;

μ� ¼ 1

4Gð4Þ

�
1 − ðΞ� 2αmÞΔϕ

2π

�
; T ¼ Q0ðrþÞ

4πκðr2þ þ a2Þ ;

ð3:41Þ

where Ξ ¼ 1 − a2

l2 þ α2ða2 þ e2 þ g2Þ. Here we have also
added the magnetic potential Φm, which may in principle
be derived in a similar manner to the electrostatic potential
Φe discussed in the previous subsection. Alternatively,
electric-magnetic duality simply exchanges the parameters
e and g, which leads to the form forΦm given in (3.40). It is
interesting to note that

ΦmQe −ΦeQm ¼ 0: ð3:42Þ

To state the most general form of the first law we also
introduce the variables λ� conjugate to the cosmic string
tensions μ�, together with the cosmological constant
parameter p, its conjugate variable v and the function ξ:

λ� ¼ rþ
κð1� αrþÞ

−
m½Ξþ a2=l2 þ a2=l2ð1 − α2l2ΞÞ�

κΞ2ð1þ a2α2Þ

∓ αl2ðΞþ a2=l2Þ
κð1þ a2α2Þ ;

p ¼ 3

8πl2Gð4Þ
;

v ¼ 4π

3κ

Δϕ
2π

�
rþ

ðr2þ þ a2Þ
ð1 − α2r2þÞ2

þm
a2ð1 − α2l2ΞÞ þ α2l4ΞðΞþ a2=l2Þ

Ξð1þ a2α2Þ
�
;

ξ ¼ M − TSBH −ΦeQe −ΦmQm −ΩJ

þ λþμþ þ λ−μ− − pv: ð3:43Þ

See, e.g., [48–50] for a discussion of p, v in black hole
thermodynamics with a cosmological constant. In addition
to the quantum statistical relation (3.38), we find that the
following Smarr relation holds:

M ¼ 2ðTSBH þ ΩJ − pvÞ þΦeQe þΦmQm; ð3:44Þ

which generalizes the result of [33] to include magnetic
charge. Similarly to [33], we now find that provided
we choose the normalization of the time coordinate by
setting

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΞþ a2=l2Þð1 − α2l2ΞÞ

p
1þ a2α2

; ð3:45Þ

then the following first law holds:

dM ¼ TdSBH þΦedQe þΦmdQm þΩdJ − λþdμþ

− λ−dμ− þ vdp − ξ
dGð4Þ
Gð4Þ

; ð3:46Þ

where we vary with respect to all seven parameters
m; a; e; g; α;Δϕ;l and we have also entertained the pos-
sibility of also allowing for variations of the Newton’s
constant Gð4Þ as in [51,52].
Turning now to a standard holographic perspective we

want to keep l; Gð4Þ fixed, and from now on we will again
continue with

l ¼ 1: ð3:47Þ
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In addition, we would like to keep μ� fixed, as these
determine the conical deficit angles and thus the topology
of the surfaces Σ. If we also keep the magnetic charge Qm
fixed, so as to fix all topological data at the boundary, then
we recover a more standard first law

dM ¼ TdSBH þΦedQe þ ΩdJ; ð3:48Þ

where this now holds for a three-parameter family of
solutions. In practice, recalling the explicit expressions
of Qm; μ� in (3.40), we see that holding these quantities
fixed means that we are fixing the following products of
parameters: gΔϕ, αmΔϕ, ΞΔϕ.
Using the version (3.48) of the first law in the variation of

the quantum statistical relation (3.38), one obtains the
variation of the on-shell action

dI ¼ dβðM −ΩJ −ΦeQeÞ þ βð−dΩJ − dΦeQeÞ
¼ dβM − dðβΩÞJ − dðβΦeÞQe; ð3:49Þ

expressing the fact that the on-shell action can be viewed
as a function of the chemical potentials, I ¼ Iðβ;Ω;ΦeÞ,
such that

∂I
∂β

����
βΩ;βΦe

¼ M; −
1

β

∂I
∂Ω

����
β;Φe

¼ J; −
1

β

∂I
∂Φe

����
β;Ω

¼ Qe:

ð3:50Þ

Equivalently, one can express the variation of the free
energy W ¼ I=β as

dW ¼ −SBHdT − JdΩ −QedΦe; ð3:51Þ

and so W ¼ WðT;Ω;ΦeÞ.
We emphasize the versions of the first law given in

(3.48), (3.49) or (3.51) all utilize the expression for κ given
in (3.48). Notice that when there is no acceleration, α ¼ 0,
we have κ ¼ 1 and hence the role of κ in the first law is
intrinsically connected with the acceleration. It would be
interesting to have a better understanding of κ and the
following observation may be useful: if we vary the
boundary metric components appearing7 in (3.5) with
respect to the parameters (with fixed spindle data) then
we have

R
bdy d

3x
ffiffiffiffiffiffi
−h

p
Tijδhij ¼ 0.

Finally, we note that we can choose the fixed boundary
data μ�, Qm so that the surface Σ is a spindle, Σ ¼
WCP1

½n−;nþ�, and the D ¼ 11 solution is regular on and

outside the horizon. To achieve this, we need to demand
that μ� are chosen so that n� given by (2.16) are integer.
We also need to impose the condition (2.18), i.e., g ¼ αm;

using the first equation in (2.15) this is equivalent to the
following relation between our fixed quantities,

Gð4ÞQm ¼ Gð4Þðμ− − μþÞ ¼
n− − nþ
4n−nþ

: ð3:52Þ

This is a balancing condition between the magnetic charge
Qm and the relative conical deficit angles between the poles
of Σ. With this choice of boundary data, we obtain a black
hole with spindle horizon depending on three continuous
parameters and satisfying the thermodynamics discussed
in this section, in particular the quantum statistical
relation (3.38) and the first law (3.48).

IV. SUPERSYMMETRIC AND EXTREMAL
BLACK HOLES

We now turn to examine the supersymmetry (2.20)
and extremality (2.21) conditions in detail. Some of the
thermodynamic quantities of interest were computed in
[25] for supersymmetric and extremal solutions, although
this involved first going to the near horizon limit, where the
solution simplifies. This indirect method was used due to
the unwieldy nature of imposing (2.20) and (2.21), which
depend on the original set of parameters m, e, g, a, α (but
not Δϕ). We begin in this section by introducing a new set
of parameters, in which both these equations and the
physical quantities of interest take a much simpler form.
As we shall see, imposing only supersymmetry leads
naturally to complex parameters, which then describe an
analytic continuation of the solutions, and the parameters
become real for extremal solutions.
For this supersymmetric and complex family of solutions

we will derive an explicit expression for the action, which is
complex, and show that it can be expressed in terms of
suitably defined complex chemical potentials. Moreover,
we show that after a Legendre transform we obtain an
expression for the entropy in terms of the conserved
charges and furthermore that we obtain the correct expres-
sion for the entropy of the (real) extremal and super-
symmetric black holes by demanding that the resulting
expression is real.

A. New variables

We begin by defining

μ≡ 1 − 2Gð4Þðμ− þ μþÞ
2Gð4Þðμ− − μþÞ

¼ n− þ nþ
n− − nþ

; ð4:1Þ

in terms of the cosmic string tensions μ� introduced
in (2.14), or equivalently spindle parameters n� in (2.16).
Eqs. (2.15) together with the condition (2.18) then imply

Ξ ¼ 2gμ; g ¼ αm; ð4:2Þ
7Note that the coordinates used in (3.5) are subject to the

identifications given in (3.33).
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where recall that the second equation is related to regularity
of the uplifted solution in D ¼ 11, but is also the first
supersymmetry condition in (2.20). Using (2.16) we may
also rewrite (3.52) as

Gð4ÞQm ¼ n− − nþ
4nþn−

¼ 1

2nþð1þ μÞ : ð4:3Þ

Note that expressions containing ðnþ; n−Þ can also equiv-
alently be expressed in terms of ðnþ; μÞ or ðGð4ÞQm; χÞ,
where χ is the orbifold Euler characteristic of the spindle
given in (2.17).
Next it is convenient to make a change of parameters

which will allow us to parametrize the three-parameter
family of solutions in terms of three independent variables
ðb; c; sÞ. This is achieved via

e ¼ bs
α2c

; g ¼ s
α2c

; a ¼ s
α
;

⇔ b ¼ e
g
; c ¼ a

gα
; s ¼ aα: ð4:4Þ

Notice that this is valid only if the rotation parameter a is
nonzero, and so we will continue with assuming

a ≠ 0: ð4:5Þ

The case a ¼ 0 should be examined separately, although
we note that this nonrotating solution was studied in some
detail in [25]. Recall also that in (2.5) we initially took all
parameters to be non-negative, and moreover we are most
interested in having a nonzero acceleration parameter
α > 0. This then implies that b ≥ 0, c, s > 0 for physical
solutions, although we shall shortly relax the requirement
that all parameters are real. In what follows we shall
therefore be careful to state what reality properties are
being assumed when stating any given equation.
We may then proceed by expressing things in terms of

the three parameters ðb; c; sÞ. From the definition (2.12)
of Ξ, the first equation in (4.2) is equivalent to

α2 ¼ 2gμ − 1þ a2

a2 þ e2 þ g2
¼ s½2cμþ sðc2 − 1 − b2Þ�

c2ð1þ s2Þ : ð4:6Þ

We next move to the thermodynamic quantities that do not
depend explicitly on the horizon radius rþ. We find that the
mass M is given by

Gð4ÞM ¼ 1

ακ

ðcsþ 2μÞðc − 2sμÞ
4nþμð1þ μÞcð1þ s2Þ : ð4:7Þ

Using (3.45) we then also compute

ακ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðcsþ 2μÞðc − 2sμÞp

cð1þ s2Þ ; ð4:8Þ

where there is inherently a sign ambiguity in this equation
due to the square root. For physical solutions we have
κ > 0 and M > 0, and hence c > 2sμ, and we take the
positive square root in (4.8). The mass M, angular
momentum J and electric charge Qe are given by

Gð4ÞM ¼
Gð4ÞQm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2cGð4ÞQm − χsÞð2csGð4ÞQm þ χÞ

q
χ

ffiffiffi
s

p ;

Gð4ÞJ ¼ cðGð4ÞQmÞ2;
Gð4ÞQe ¼ bðGð4ÞQmÞ; ð4:9Þ

where here we have replaced ðnþ; μÞ with ðχ; Gð4ÞQmÞ
using (2.17), (4.3). Note that given the magnetic chargeQm
(which is part of our fixed boundary data), the parameters
b and c directly provide the electric charge Qe and the
angular momentum J, respectively.

B. Supersymmetry condition

We now turn to imposing the second supersymmetry
equation in (2.20). In the new variables this reads

s2

c3α4
½−cð1 − 2bs − s2Þ þ 2sμð1þ b2Þ� ¼ 0: ð4:10Þ

This is then immediately solved via

c ¼ 2ð1þ b2Þsμ
1 − 2bs − s2

; ð4:11Þ

where the denominator is assumed to be nonzero. The
supersymmetry locus is thus parametrized by the two
parameters ðb; sÞ. From (4.6) we now have

α2 ¼ 4μ2ð1 − bsÞ2 − ð1 − 2bs − s2Þ2
4ð1þ b2Þð1þ s2Þμ2 ; ð4:12Þ

and from (4.8)

ακ ¼ ðbþ sÞð1 − bsÞ
ð1þ b2Þð1þ s2Þ : ð4:13Þ

Focusing on the case where all parameters are non-negative,
from c > 0 we see from (4.11) that on the supersymmetry
locus we must have 1 − 2bs − s2 > 0. We also have,
trivially, cþ 2bμ > 0, and after substituting (4.11) we
can also conclude that 1 − bs > 0 on the supersymmetry
locus. Again, we shall shortly relax these conditions.
Substituting the supersymmetry condition (4.11) into the

mass M in (4.9), one finds the perfect square

ðcsþ 2μÞðc − 2sμÞ
s

¼
�
2ðbþ sÞð1 − bsÞμ

1 − 2bs − s2

�
2

: ð4:14Þ
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Taking the square root that gives the quantity inside the
bracket on the right hand side, one finds that the corre-
sponding conserved charges in (4.9) satisfy the relation

M ¼ 2

χ
J þQe; ð4:15Þ

where recall that χ ¼ χðΣÞ is the Euler characteristic of the
surface Σ introduced in (2.17). This relation is expected to
be a direct consequence of the supersymmetry algebra
evaluated on the solution.

C. Horizon radius and extremal solutions

A number of the thermodynamic quantities of interest in
(3.40), (3.43) depend on the horizon radius rþ, which recall
is the largest root of the metric function QðrÞ in (2.3).

On the other hand, by definition an extremal solution has a
double root of QðrÞ at r ¼ rþ. To examine this further it is
convenient to define

rþ ≡ s
α
ρ; ð4:16Þ

and regard ρ as a new parameter. Imposing the supersym-
metry and regularity conditions from the previous sub-
sections, the condition QðrþÞ ¼ 0 reads

ð1þ b2Þð1þ s2Þμ2
½ð1 − 2bs − s2Þ2 − 4μ2ð1 − bsÞ2�2QðρÞ ¼ 0; ð4:17Þ

where we have introduced

QðρÞ≡ ½ð1 − 2bs − s2Þ2 þ 4μ2ðbþ sÞ2�s4ρ4 þ 4μð1þ s2Þð1 − 2bs − s2Þs3ρ3
þ 2½2μ2ð2b2s2 þ 2bðs2 − 1Þsþ s4 þ 1Þ − ð1 − 2bs − s2Þ2�s2ρ2
− 4μð1þ s2Þð1 − 2bs − s2Þsρþ 1þ sð4b2sþ 4bs2 þ 4μ2sð1 − bsÞ2 − 4bþ s3 − 2sÞ: ð4:18Þ

SettingQðρÞ ¼ 0 is a quartic in ρ, as expected, but it is also
a quadratic in b. Solving for the latter gives

b ¼ b� ≡ 2μρ

ρ2 − 1
þ ð1 − s2 � 2iμsÞBðρ; sÞ
2sðρ2 − 1Þðρ2s2 − 1 ∓ iμsðρ2 þ 1ÞÞ ;

ð4:19Þ

where

Bðρ; sÞ≡ ð1 − ρ2Þð1 − ρ2s2Þ þ 2μð1þ ρ2Þρs: ð4:20Þ

From (4.19) we see that after imposing supersymmetry,
generically we cannot demand that ρ, s, b are all real
parameters, and as a consequence the physical charges and
the entropy are complex quantities. From now on, in the
remainder of this section, we will assume that

ρ ∈ R; ð4:21Þ

while we will allow the parameters s and b to be complex,8

and related by (4.19). Notice that b is real precisely when
Bðρ; sÞ ¼ 0 (the parameter μwas introduced in (4.1), and is
necessarily real due to its relation to the conical deficit
angles on Σ.).
An extremal solution has a double root at r ¼ rþ.

We compute

Q0ðρÞ ¼ 4s2μ2ð1þ s2Þ2ðρ ∓ iÞð�iρs2 þ μðρ ∓ iÞs − 1Þ
ð1 − ρ2s2 � iμð1þ ρ2ÞsÞ2

× Bðρ; sÞ; ð4:22Þ

where we have substituted for b using (4.19) with the
� signs correlated with that in (4.19). We are interested in a
supersymmetric complexified solution that at extremality
matches the Lorentzian supersymmetric and extremal
solution, which is necessarily real. Hence at extremality
the parameters ρ and s should both be real. Setting
Q0ðρÞ ¼ 0 to obtain a double root and demanding that
both ρ and s ≠ 0 are real implies either ρs ¼ 1 and μ ¼ 1
[which is not possible from (4.1)] or else Bðρ; sÞ ¼ 0,
which gives

b⋆ ¼ 2μρ

ρ2 − 1
; ð4:23Þ

where we will denote the supersymmetric and extremal
values of all quantities with a subscript ⋆. Equation (4.20)
may then be viewed as a quadratic for s, and with s ¼
s⋆ > 0 [from (4.4), (4.5)] the solution is

s⋆ ¼ −μð1þ ρ2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ð1þ ρ2Þ2 þ ðρ2 − 1Þ2

p
ρðρ2 − 1Þ ; ð4:24Þ

which is manifestly real. From (2.7), for the physical, real
Lorentzian solution we have 0 < αrþ ¼ sρ < 1, and hence
0 < s⋆ < 1 and ρ > 1. We can thus parametrize the super-
symmetric and extremal solutions, for fixed values of

8In the following analysis it is also possible to assume that
s ∈ R, but we shall not do so.
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χ; Gð4ÞQm (or equivalently fixed n�) by the parameter ρ,
with

ρ > 1: ð4:25Þ

Clearly, from (4.23) we have b⋆ > 0 and one can check
from (4.11) that we also have c ¼ c⋆ > 0. We can also

directly check that the extremality condition for super-
symmetric solutions given in (2.21), which in the new
variables9 reads b2ð1þ b2Þ2s ¼ c2ð1 − bsÞðbþ sÞ, is
indeed satisfied after substituting (4.11), (4.23), and (4.24).
It is straightforward to now compute the thermodynamic

quantities of Sec. III C in the supersymmetric and extremal
case as a function of ρ for fixed χ; Gð4ÞQm and we find

Gð4ÞM⋆ ¼
ρ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2ðρ2 þ 1Þ2 þ 16ðGð4ÞQmÞ2ðρ2 − 1Þ2
q

þ χðρ2 − 1Þ
�

4ðρ2 − 1Þ2 ;

Gð4ÞJ⋆ ¼
χρ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2ðρ2 þ 1Þ2 þ 16ðGð4ÞQmÞ2ðρ2 − 1Þ2
q

− χρ2 þ χ
�

8ðρ2 − 1Þ2 ;

Gð4ÞðQeÞ⋆ ¼ χρ

2ðρ2 − 1Þ . ð4:26Þ

These satisfy10 the supersymmetry relation (4.15)

M⋆ ¼ 2

χ
J⋆ þ ðQeÞ⋆; ð4:27Þ

as well as the following nonlinear relation between the
charges [25]

J⋆¼
ðQeÞ⋆
4

�
−χþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2þð4Gð4ÞÞ2½ðQeÞ2⋆þQ2

m�
q �

: ð4:28Þ

We may also compute the chemical potentials in the
supersymmetric extremal case:

T⋆¼0; Ω⋆¼
2

χ
; ðΦeÞ⋆¼1; ðΦmÞ⋆¼

1

b⋆
: ð4:29Þ

The first equation, namely the black hole having zero
temperature T⋆ ¼ 0, was of course expected as it character-
izes extremality. The supersymmetry relation (4.27) may
thus also be written as

M⋆ ¼ ðΩJÞ⋆ þ ðΦeQeÞ⋆: ð4:30Þ

We also find that the extremal value of Bekenstein-
Hawking entropy is given by

ðSBHÞ⋆ ¼ π

4Gð4Þ

0
B@−χ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2ðρ2 þ 1Þ2 þ 16ðGð4ÞQmÞ2ðρ2 − 1Þ2

q
ρ2 − 1

1
CA

¼ π

Gð4Þ

J⋆
ðQeÞ⋆

: ð4:31Þ

The range of ρ is given by ρ ∈ ð1;∞Þ. As ρ → ∞ the
supersymmetric and extremal solutions approach the non-
rotating black hole solutions. Although we have been
considering the case a > 0, the case of a ¼ 0 was con-
sidered in some detail in Sec. 6 of [25]. In particular, it was
shown there that the supersymmetric and extremal limit is
then achieved when e ¼ 0. As a consequence these black

holes have J⋆ ¼ ðQeÞ⋆ ¼ 0. Furthermore, using (6.6) of
[25] and the expression for the mass given in (3.40) we find
that these black holes also have M⋆ ¼ 0. Taking the limit
ρ → ∞ in (4.26) precisely gives these values. Moreover, the
ρ → ∞ limit of the first expression in (4.31) gives the
correct expression for the black hole entropy.
As ρ → 1, from (4.24) we have s⋆ → 0 and hence

αrþ → 0, which is excluded from our analysis, since we
have focused on α > 0. It is worth noting however, that the
correct thermodynamic expressions can be obtained for the
nonaccelerating, supersymmetric and extremal, electrically
charged Kerr-Newman black holes by setting χ ¼ 2,
Qm ¼ 0 (obtained by formally setting nþ ¼ n− ¼ 1)

10Notice that if we compare the expression or J⋆ in (4.26) and
(4.9) we deduce that c ¼ c⋆ > 0, as noted above.

9Note that if one just substitutes (4.11) into this extremality
condition, one obtains the equivalent extremality condition
b2ðb2 þ 1Þ ¼ cðcþ 2bμÞ.
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in (4.26)–(4.31), along with setting b⋆ ¼ ∞, as suggested
by (4.23), so that Φm ¼ 0.

D. Complex supersymmetric locus

In the last subsection we have seen that we may para-
metrize solutions to the supersymmetry equations, for fixed
χ; Gð4ÞQm, in terms of the two variables ρ ∈ R, s ∈ C and
generically there are two branches of complex solutions
with the parameter b ∈ C given by (4.19), and the
parameter c ∈ C then determined from (4.11). The param-
eter b is real if and only if the solution is extremal, for
which we then require

s ¼ s⋆ > 0; ρ > 1; ð4:32Þ

with s⋆ ∈ R, given in (4.24). In this section we study the
family of complex supersymmetric but nonextremal sol-
utions for which the second inequality in (4.32) also holds.
For this complex supersymmetric locus we continue with

the positive square root in (4.8). We first find that the
supersymmetry relation (4.15) between charges continues
to hold. We also find that the chemical potentials satisfy

β

�
1þ χ

2
Ω − 2Φe

�
¼∓ 2πi; ð4:33Þ

where β ¼ 1=T, and in what follows the signs are corre-
lated with those of the two complex branches with b ¼ b�.
We may then define the following complex chemical
potentials:

ω≡ βðΩ −Ω⋆Þ; φ≡ βðΦe − ðΦeÞ⋆Þ; ð4:34Þ

where the extremal values of the chemical potentials Ω⋆,
ðΦeÞ⋆ are given in (4.29). We find

ω ¼ 4πðρ ∓ iÞs
χð−1 ∓ iρÞsþ 4Gð4ÞQmð�iþ ρs2Þ ;

φ ¼ �iπ þ χ

4
ω; ð4:35Þ

and in particular the combination

φ −
χ

4
ω ¼ �iπ ð4:36Þ

is independent of the parameters.
Combining the supersymmetry relation (4.15) with the

first law (3.48), we arrive at the following supersymmetric
form of the first law [23]

dSBH þ φdQe þ ωdJ ¼ 0: ð4:37Þ

Using (4.36) this can equivalently be written in either of the
following two forms:

dðSBH � iπQeÞ þ ωd

�
J þ χ

4
Qe

�
¼ 0;

or d

�
SBH ∓ 4

χ
iπJ

�
þ 4

χ
φd

�
J þ χ

4
Qe

�
¼ 0: ð4:38Þ

In particular, from either of the last two equations, it
follows that ω ¼ ωðJ þ χ

4
QeÞ, φ ¼ φðJ þ χ

4
QeÞ. As we

will see in the next section, the combination of charges
J þ χ

4
Qe commutes with the boundary supercharge.

Recall that in Sec. III C we showed that the on-shell
action I ¼ Iðβ;Ω;ΦeÞ may be viewed as a function only of
the chemical potentials. We have not found an explicit
expression for this in general. However, for the complex
supersymmetric solutions one can verify that we can write
the action as a complex function of the complex chemical
potentials φ;ω:

I ¼ −SBH − ωJ − φQe ¼ � 1

2iGð4Þ

�
φ2

ω
þ ðGð4ÞQmÞ2ω

�
:

ð4:39Þ

Here all quantities are complex functions of s and ρ:

SBH ¼ 2πQmð1þ ρ2Þð1þ b2Þμs2
ð1 − ρ2s2Þð1 − 2bs − s2Þ ;

J ¼ Gð4ÞQ2
m
2ð1þ b2Þμs
1 − 2bs − s2

; Qe ¼ Qmb; ð4:40Þ

where one should substitute for b given in (4.19).
The formulas (4.33), (4.36), (4.39) correctly reduce to

those derived for the supersymmetric Kerr-Newman black
holes in [23]. Specifically, as noted above, one should
(formally) set n− ¼ nþ ¼ 1 to obtain an S2 horizon,
which sets the Euler number χ ¼ 2 and the magnetic
charge Qm ¼ 0 in the above formulas.
The extremal limit of this complex locus of super-

symmetric solutions is obtained using (4.23), (4.24). In
this limit we obtain the extremal “starred” values for the
conserved charges given in the previous subsection, all of
which are real.11 We also obtain complex limiting expres-
sions for ðω⋆;φ⋆Þ, still satisfying φ⋆ ¼ χ

4
ω⋆ � iπ, and by

substituting into (4.39) we obtain an expression I� for the
action, which is complex. When we take the extremal limit
we recover the real supersymmetric and extremal solutions
of interest and it may seem strange that the action is
complex in this limit. However, we should recall that the
action is not defined for the real extremal solutions since
this involves, in the Euclidean section, taking β → ∞. Thus
I⋆ can be viewed as a definition. Of more interest is that
after a Legendre transform we can obtain an expression
for the black hole entropy along the supersymmetric and

11We prove a converse result in the next subsection.
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complex locus, which recovers the entropy of the real
supersymmetric and extremal black holes, as we dis-
cuss next.

E. Legendre transform

Let us start from the supersymmetric on-shell action
from the last subsection:

I ¼ � 1

2iGð4Þ

�
φ2

ω
þ ðGð4ÞQmÞ2ω

�
: ð4:41Þ

This is minus the logarithm of a supersymmetric grand-
canonical partition function, depending on φ, ω, where the
electrostatic and rotational chemical potentials are subject
to the constraint

φ −
χ

4
ω ¼ �πi: ð4:42Þ

The action also depends on the magnetic charge Qm, that is
always held fixed in the problem under study. The entropy,
for given ðGð4ÞQm; χÞ, is given by the Legendre transform

SBHðJ;QeÞ ¼ extfω;φ;Λg

�
−Iðω;φÞ − ωJ − φQe

− Λ
�
φ −

χ

4
ω ∓ πi

��
; ð4:43Þ

where Λ is a Lagrange multiplier enforcing the constraint
(4.42); here we are following the method of Appendix B
in [3]. The entropy is the logarithm of the micro-canonical
partition function and thus depends on the charges, that is J
and Qe (for given ðGð4ÞQm; χÞ, both of which are fixed by
the spindle horizon).
The extremization equations are given by

−
∂I
∂ω ¼ J −

χ

4
Λ; −

∂I
∂φ ¼ Qe þ Λ; ð4:44Þ

together with the constraint (4.42). Substituting for the
derivatives using (4.41) we deduce

Λ ¼ −Qe �
iχ

4Gð4Þ

þ iη
4Gð4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 þ ð4Gð4ÞQmÞ2 � 8iGð4ÞðχQe þ 4JÞ

q
;

ω ¼ 4πiηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 þ ð4Gð4ÞQmÞ2 � 8iGð4ÞðχQe þ 4JÞ

q ;

φ ¼ χ

4
ω� πi; ð4:45Þ

where η ¼ �1. At the extremum we then have

SBH ¼ �πiΛ; ð4:46Þ

with Λ as in (4.45). To see this, note that since I
is homogeneous of degree one in φ;ω, we have I ¼
φ ∂I

∂φ þ ω ∂I
∂ω and then one can use (4.44) in (4.43). Note

that from the expression for ω in (4.45) it is clear that this
depends on the charges that are being varied in the
extremization, only through the combination J þ χ

4
Qe,

consistent with (4.38).
If we now assume that SBH, Qe and J are real then we

recover the supersymmetric extremal limit, as we now
argue. We first note that from (4.45), (4.46) we can deduce

J ¼ Qe

4

�
−χ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 þ ð4Gð4ÞÞ2ðQ2

e þQ2
mÞ

q �
;

SBH ¼ π

Gð4Þ

J
Qe

; ð4:47Þ

which are precisely the extremal values (4.28), (4.31),
where we have chosen the sign to ensure that J > 0.
To complete the argument, we next observe from (4.9)
that b, c must be real and s is constrained via (4.11).
Proceeding, the second condition in (4.47) expressed in

terms of the parameters implies b ¼ 1−ρ2s2
sð1þρ2Þ and after

substituting this into the first condition in (4.47) implies
½ð1 − ρ2Þð1 − ρ2s2Þ − 2μð1þ ρ2Þρs�Bðρ; sÞ ¼ 0. We now
find that with s > 0, ρ > 1 the only possibility is the
extremal solution we found in Sec. IV C with, in particu-
lar, Bðρ; sÞ ¼ 0.

V. EUCLIDEAN SUPERSYMMETRIC ACTION
FROM A FIXED POINT FORMULA

In this section we will recover our expression for the on-
shell Euclidean supersymmetric action (4.41) using a
general fixed point formula for gravitational solutions that
was presented in [42]. In order to do this, we have to
compute a canonical Killing vector possessed by the family
of supersymmetric solutions, which wewill extract, slightly
indirectly, from a corresponding supersymmetric Killing
vector of the boundary geometry. To obtain the latter we
first obtain the boundary Killing spinor, which solves the
conformal Killing spinor equation, and then use it to
construct the boundary Killing vector as a suitable bilinear.
By continuity, this boundary Killing vector can then be
extended into the bulk.
AdS=CFT implies that we should be able to identify

the on-shell action (4.41) with minus the logarithm of an
appropriate supersymmetric index of the boundary field
theory. For such a comparison with field theory, the uplift
to D ¼ 11, briefly summarized at the end of Sec. II B, is
certainly important. Furthermore, we anticipate that the
boundary Killing vector will play a key role in a direct
evaluation of the corresponding supersymmetric partition
function of the dual field theories.
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A. Boundary Killing spinor and Killing vector

In order to perform the computations of the present
section, we have found it technically more convenient to
start by working in Lorentzian signature, assuming that all
the parameters are real. In practice, this means that we treat
the Killing spinors as spinors in Lorentzian signature, with
the usual rules for charge conjugation. We then Wick rotate
and analytically continue any results of interest to complex
parameters at the end, in particular once we have computed
the Killing vector bilinear.
We begin by introducing the following orthonormal

frame for the boundary metric (3.5):

e0¼
ffiffiffiffĩ
P

p �
1

κ
dt−afdϕ

�
; e1¼−

ffiffiffiffi
F

p
dx; e2¼

ffiffiffiffi
G

p
dϕ;

ð5:1Þ

where as in (3.13) it is convenient to use the variable

x≡ cos θ: ð5:2Þ

In a slight abuse of notation we write the metric functions
(2.3), (3.6) as

P ¼ PðxÞ≡ 1 − 2αmxþ ðα2ða2 þ e2 þ g2Þ − a2Þx2;
P̃ ¼ P̃ðxÞ≡ 1 − α2ð1 − x2ÞPðxÞ; ð5:3Þ

and we have introduced the functions

f ¼ fðxÞ≡ 1 − α2PðxÞ
P̃ðxÞ ð1 − x2Þ;

F ¼ FðxÞ≡ ð1þ a2α2x4Þ2
PðxÞðP̃ðxÞ þ a2α2x4Þð1 − x2Þ ;

G ¼ GðxÞ≡ PðxÞ
�
1þ a2α2x4

P̃ðxÞ
�
ð1 − x2Þ: ð5:4Þ

The boundary gauge field (3.7) is

Abdy ¼ Abdy
t dtþ Abdy

ϕ dϕ; ð5:5Þ

where

Abdy
t ≡ −

αx
κð1þ a2α2x4Þ ðe − gaαx2Þ;

Abdy
ϕ ≡ −

x
1þ a2α2x4

½gþ ga2α2x2 − eaαð1 − x2Þ�: ð5:6Þ

We eliminate the parameter m by using the first super-
symmetry condition m ¼ g=α, then change variables from
ðe; g; aÞ to ðb; c; sÞ via (4.4), and finally impose the second
supersymmetry condition by imposing the Eq. (4.11) for
the parameter c. As we explained at the beginning of
the section, this leads to a two-parameter family of real
supersymmetric Lorentzian solutions, parametrized by
the real constants b, s, together with the parameters
ðGð4ÞQm; χÞ, or equivalently n�, which determine the
conical deficits of the spindle horizon surface Σ. The
parameter α is given in terms of ðb; s; μÞ by (4.12), where
μ is defined in (4.1), and ακ is given in (4.13).
The bulk Killing spinor equation (2.19) for minimal

D ¼ 4, N ¼ 2 gauged supergravity induces [37,53] the
following conformal Killing spinor equation (CKSE) on
the conformal boundary

∇iζ ¼ 1

3
γiγ

j∇jζ; ð5:7Þ

where the covariant derivative is ∇i≡∂iþ 1
4
ωjk
i γjk− iAbdy

i .
We use the gamma matrix conventions of [25], namely
γ0 ¼ iσ1, γ1 ¼ σ2, γ2 ¼ σ3, in terms of Pauli matrices σa,
with γ0γ1γ2 ¼ þ1. After a lengthy calculation we find the
solution12

ζ ¼ e−iðμ1tþμ2ϕÞ
�

s

−s�

�
; ð5:8Þ

where s ¼ sðxÞ is a complex function, and μ1, μ2 are real
constants given by

μ1 ¼
1þ a2α2

2ð1 − aαe=gÞ ¼
1þ s2

2ð1 − bsÞ ;

μ2 ¼ gμ ¼ 2μ2ð1þ s2Þð1 − 2bs − s2Þ
4μ2ð1 − bsÞ2 − ð1 − 2bs − s2Þ2 : ð5:9Þ

The complex function sðxÞ is

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�ð1 − 2bs − s2Þ
2μ

ð1 − x2Þ þ ð1þ s2Þxþ iαðbþ sÞ
ffiffiffiffi
G

p �s
; ð5:10Þ

or, in terms of just the original variables,

12Recall that for these real Lorentzian supersymmetric solutions, discussed in Sec. IV B, we had 1 − bs > 0, in particular due to
Eq. (4.13). More generally signð1 − bsÞ appears as a factor in the lower component of (5.8).
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s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
α2

g
ðe2 þ g2Þð1 − x2Þ þ ð1þ a2α2Þxþ iα

�
e
g
þ aα

� ffiffiffiffi
G

p �s
; ð5:11Þ

where the metric parameters ðe; g; a; αÞ should be sub-
stituted for their supersymmetric values, parametrized by
ðb; s; μÞ, as described just below (5.6).
Next defining the usual Dirac adjoint of the Lorentzian

spinor ζ as

ζ̄ ≡ ζ†γ0 ¼ −ieiðμ1tþμ2ϕÞðs − s�Þ; ð5:12Þ

we may introduce the vector bilinear

K ¼ Kμ∂μ ≡ ζ̄γμζ∂μ: ð5:13Þ

Substituting in for the metric functions and the solution
for the Killing spinor, remarkably we find the simple
expression

K ¼ κð1þ s2Þ∂t þ αðbþ sÞ∂ϕ

¼ κð1þ a2α2Þ∂t þ α

�
e
g
þ aα

�
∂ϕ: ð5:14Þ

This is manifestly a Killing vector of the boundary metric,
preserving also the gauge field.

B. Analytic continuation and fixed point formula

Recall that in Sec. III B we introduced the primed
coordinates (3.28)

t ¼ t0; ϕ ¼ ϕ0 þ ΩH
Δϕ
2π

t0; ð5:15Þ

where ΩH is the angular velocity of the horizon (3.27). The
null generator of the latter is then V ¼ ∂t0 , and furthermore
these are the natural coordinates to show that the Euclidean
metric is regular at the horizon. This involves the Wick
rotation

t0 ¼ −iτ0; ð5:16Þ

where recall that the Euclidean black hole then has top-
ology R2 × Σ. It is then convenient to introduce 2π-period
angular coordinates

ψ ≡ 2π

β
τ0; σ ≡ 2π

Δϕ
ϕ0: ð5:17Þ

Here ψ is a polar angular coordinate on the R2 normal to
the horizon, while σ is an azimuthal coordinate on the
spindle horizon Σ.

Having performed this Wick rotation to a Euclidean
signature solution with topology R2 × Σ, we would next
like to analytically continue to complex values of the
parameters, as discussed in Sec. IV. In principle we could
have started directly with these complex solutions, with the
Lorentzian presentation above adapted with relatively little
change. In that case the boundary spinors ζ and ðζ̄ÞT should
be regarded as independent spinors with opposite charge
under Abdy, each solving the corresponding conformal
Killing spinor equation. The supersymmetric Killing
vector is still given by (5.14), with t → −iτ and with the
parameters appearing there now taking complex values.
Since the Killing vector is complex, notice that this back-
ground is not immediately included in the classification of
[54] (not even when the spindle is a regular two-sphere).
However, rather than taking this approach, we instead
simply analytically continue the real solutions we have
constructed. It is straightforward to compute the Killing
vector field (5.14) under the above change of coordinates
(5.15) and Wick rotation (5.16).
With this perspective in mind and imposing also the

complex supersymmetric locus, with b¼b� given by (4.19),
we find that

K ¼ N
�
∂ψ ∓ i

�
ω

2π

�
∂σ

�
: ð5:18Þ

Here ω ¼ ω� is given by (4.35), and the overall normali-
zation factor is N ¼ 2πiκð1þ s2Þ=β, although the latter
may be rescaled by simply rescaling the Killing spinor ζ
by an overall constant. Notice that (5.18) is generically
complex.
Geometrically ∂ψ and ∂σ rotate the two factors in the

product R2 × Σ with weight one, and the angular velocity
iω then appears as the relative weight between these
generators in the supersymmetric Killing vector in (5.18)
in a natural way. We note that in Ref. [42] a general formula
for the holographically renormalized action I of Euclidean
supersymmetric asymptotically locally AdS solutions of
minimal gauged supergravity was presented. This formula
depends only on the fixed points of the supersymmetric
Killing vector field K in the bulk. Although we have only
computed the restriction of this Killing vector to the
conformal boundary, since ∂t and ∂ϕ are generically the
only Killing vectors of the solution, it follows by continuity
that (5.18) must coincide with the bulk Killing vector. The
formula in [42] was derived for real Euclidean solutions,
although since our complex solutions arise from an analytic
continuation of real Lorentzian supersymmetric solutions,
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we expect the result of [42] to still hold. For nonzero ω the
fixed points of K in (5.18) are at the north and south poles
of the spindle Σ located at the black hole horizon, which is
at the origin of the R2 factor. Writing

K ¼ a1∂ψ þ a2∂σ; where a1 ¼N ; a2 ¼∓ iN
�
ω

2π

�
;

ð5:19Þ
the general formula for the Euclidean action in [42] reads

I ¼
�
1

nþ

ða2nþ þ a1Þ2
4a1

a2
nþ

þ 1

n−

ða2n− þ a1Þ2
4a1

a2
n−

�
π

2Gð4Þ
: ð5:20Þ

Notice here that ∂ψ has weight 1 on the normal R2 to the
horizon, while ∂σ has weights 1=n� on the tangent spaces
to the poles of spindle horizon Σ, which are R2=Zn� ,
respectively. The overall factors of 1=n� in each of the two
terms in (5.20) similarly arise because of the orbifold
singularities. Substituting in for the values of a1, a2 in
(5.19), we precisely recover our Euclidean supersymmetric
action (4.41) from the fixed point formula (5.20).
We can also examine the phase of the Killing spinor (5.8)

in the above Euclidean continuation. As discussed already
in Sec. III B, our original gauge field is not regular at
the black hole horizon, and indeed in general there is no
gauge in which this is the case, due to the magnetic flux
through Σ. However, in the case when g ¼ 0 the gauge field
becomes completely regular if we make a gauge trans-
formation of the form (2.9) with α1 ¼ ðerþÞ=½κða2 þ r2þÞ�.
When g ≠ 0 this gauge transformation makes the gauge
field regular everywhere, except at the poles of the horizon
Σ. In this gauge, and evaluating on the complex super-
symmetric locus with b ¼ b� given by (4.19) we find that
the Killing spinor (5.8) reads

ζ ¼ e
i
2
ð�ψ−χ

2
σÞ
�

s

−s�

�
: ð5:21Þ

In particular we see that this is antiperiodic around the
Euclidean time circle ψ , which has period 2π. This is
necessary in order that the bulk Killing spinor is smooth at
the horizon, as only the antiperiodic spin structure extends
smoothly to the origin of R2. Of course this is a slightly
delicate statement, as these are complex solutions.
However, before imposing the complex supersymmetric
locus we have real, nonextremal Euclidean solutions. The
thermal circle and radial direction together form a “cigar”
geometry, and any spinor field must be antiperiodic around
the thermal circle in order to be nonsingular at the horizon
(in a gauge that is regular at the tip of the cigar, for a fixed
point on the spindle). We then complexified the solutions
and imposed supersymmetry, and (5.21) shows that the
resulting Killing spinor is antiperiodic. This is a very
reasonable regularity condition to maintain for these

complex solutions, where a priori the precise regularity
conditions one wants to impose are perhaps not clear.
Finally, notice that the Killing spinor ζ in (5.21) has

charge −χ=4 under J, which is generated by ∂σ. It also has
R-charge 1 under the R-symmetry gauge field Abdy, as one
sees from the Killing spinor equation (2.19). It follows that
ζ has charge zero under J þ χ

4
Qe ¼ − χ

4
þ χ

4
¼ 0, and the

corresponding supercharge Q in field theory should then
commute with the operator J þ χ

4
Qe. It is also interesting to

point out that J þ χ
4
Qe is precisely the same quantity as

JAdS2 , the angular momentum of the near horizon solution
that was defined in [25]. In particular, recalling that the
angular momentum is gauge dependent, JAdS2 is defined
with a gauge field that is invariant under the symmetries
of AdS2. The new observation here is that the relation
JAdS2 ¼ J þ χ

4
Qe of [25] shows that the charge JAdS2 is the

one that commutes with the field theory supercharge.

VI. DISCUSSION

Using holographic techniques we have carried out a
detailed analysis of the thermodynamics for a general
class of accelerating black hole solutions of D ¼ 4
minimal gauged supergravity. The black holes are rotating
and carry electric and magnetic charges and lie within the
family13 constructed in [24]. Of particular interest is that
by taking the horizon to be a spindle and suitably
constraining the parameters, one can uplift on regular
Sasaki-Einstein manifolds to obtain D ¼ 11 solutions
that are free from conical singularities [25]. In particular,
this construction requires that the magnetic charge,
which is specified by the spindle data, is nonvanishing.
Furthermore, the D ¼ 11 solutions preserve supersym-
metry when the D ¼ 4 solutions do.
After holographically defining a set of conserved

charges, we presented a first law which generalizes the
result of [33] to include magnetic charge. To obtain the first
law, as in [33], when the acceleration is nonvanishing,
α ≠ 0, it was necessary to choose a specific, constant
scaling, κ, of the time coordinate with, crucially, κ depend-
ing on the parameters of the solution. While a constant and
parameter independent scaling of the time coordinate
corresponds to a simple scaling of dimensionful quantities
in the dual field theory, the full significance of the
parameter dependence of κ for the accelerating black holes
warrants further study. In [33] some justification of the
specific form of κ was given by considering the limit of
vanishing black hole mass and string tensions, when the
spacetime is then AdS4 spacetime written in Rindler
coordinates. However, these considerations do not fully
fix κ and, in fact, we found the precise form of κ that gives

13We did not consider the possibility of NUT charge, which is
included in the solutions of [24], since we did not want to include
closed timelike curves.
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the first law by trial and error. It would certainly be
interesting to have a better understanding of κ; the fact
that the conformal boundary is not conformally flat, along
with the fact that the variations entering the first law change
the local conformal class of the boundary, appear to be
significant features. It would also be interesting to make a
direct connection with the approach of [32].
We have also studied in some detail the one-parameter

family of supersymmetric and extremal black holes, which
is the class where we hope to make precise contact with the
dual field theory in future work, as we discuss below.
Adopting the approach of [3,23], we relaxed the extrem-
ality condition and analytically continued some of the
parameters appearing in the black hole solutions so as to
identify a locus of complex supersymmetric solutions. On
this complex locus we showed that the on-shell Euclidean
action can be expressed as a function of complex rotational
and electric chemical potentials which satisfy a constraint,
and, moreover, the black hole entropy of the supersym-
metric and extremal black holes can be recovered via a
Legendre transformation and then imposing a reality
constraint. The expression of this supersymmetric on-shell
action generalizes the one given in [16,23] to the accel-
erating case. It seems likely that this complex action can be
suitably identified with minus the logarithm of the super-
symmetric partition function of the dual field theory. From
the gravitational point of view, we are considering a class of
complex saddle points of the gravitational path integral. In
our formulation the underlying Euclidean manifold is real,
but we are considering complex metrics and spinors that are
obtained by analytic continuation of the parameters appear-
ing in the solutions. Another interesting topic for future
research is to elucidate more intrinsic criteria for determin-
ing which complex metrics should be considered along
with which precise notions of spinors and supersymmetry
one should use.
The results of our paper imply that the geometry of the

conformal boundary provides a supersymmetric back-
ground where one can define three-dimensional N ¼ 2
supersymmetric field theories. It is then natural to con-
jecture that the supersymmetric partition function in this
background will define a generalized index of the field
theory. Specifically, after Wick rotating and compactifying
the time direction on a circle, the background is S1 × Σ,
together with a background R-symmetry gauge field
AR≡Abdy, such that 1

2π

R
ΣdAR¼ n−−nþ

2nþn−
. On general grounds,

we expect this partition function to take the form

Zðnþ; n−;φ;ωÞS1×Σ ¼ Trtwiste−βfQ;Q̄geωJþφQe

¼ Trtwiste�iπQee−βfQ;Q̄gþωðJþχ
4
QeÞ;

ð6:1Þ

where to go from the first to the second line we used the
constraint

φ −
χ

4
ω ¼ �iπ: ð6:2Þ

HereQ is the supercharge of the theory compactified on Σ,
and recall that the combination J þ χ

4
Qe is the operator

commuting with Q, as discussed at the end of Sec. V. The
subscript “twist” on the trace indicates the twisting that we
are performing is different from the topological twist for
which a corollary is 1

2π

R
Σ dAR ¼ χ

2
¼ n−þnþ

2nþn−
, whereas we

have 1
2π

R
Σ dAR ¼ 2Gð4ÞQm ¼ n−−nþ

2nþn−
. Notice that since Qe is

the R-charge, the bosons and fermions within a multiplet
have Qe values differing by 1, and the expression (6.1) is
hence indeed an index.14 In the large N limit this should
reproduce the entropy function (4.41) for Iðφ;ωÞ, but it will
be of independent interest as an exact field theory object.
It is interesting to note that the expression (4.41) for

Iðφ;ωÞ makes sense even in the nonrotating limit, that
corresponds to ρ → ∞ in our parametrization of the super-
symmetric bulk solution. Indeed in this limit, before impos-
ing extremality, there is still a (complex) one-parameter
family of solutions, parametrized by s. This implies that the
above index in fact will also capture the entropy of the static
accelerating black holes. In order to define this index, the
main technical issue that will need to be addressed is what
are the appropriate choices of boundary conditions on the
fields at the orbifold singularities.
In [25] it was shown that uplifting the accelerating black

hole solutions on Sasaki-Einstein spaces in the regular class
can give rise to regular solutions inD ¼ 11. There are other
ways to uplift the D ¼ 4 solutions to D ¼ 11 or D ¼ 10
[44,55,56] (in fact, locally this is possible whenever there is
a supersymmetric AdS4 solution [44,57]), but generically
they will be singular. It would be interesting to explore
these uplifted solutions in more detail, and investigate
whether or not it is still possible to make precise compar-
isons with the associated dual field theories. In fact, it has
recently been shown [30] that wrapping M5-branes on a
spindle and then uplifting to D ¼ 11 on a four-sphere
gives rise to solutions with orbifold singularities and yet a
holographic computation of the central charge of the
d ¼ 4 SCFT was found to precisely agree with a field
theory computation.
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14Furthermore, notice that shifting ω≡ ω̃ ∓ 4πi
χ , the

expression (6.1) for the partition function becomes
Trtwiste

∓4πi
χ Je−βfQ;Q̄gþω̃ðJþχ

4
QeÞ. Setting n− ¼ nþ ¼ 1, so that

χ ¼ 2, the first factor is e∓2πiJ ¼ ð−1ÞF, and since Qm ¼ 0 there
is no magnetic flux and hence no twist. This is then the same
index computed in [15].
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APPENDIX: SUPERSYMMETRIC BOUNDARY
IN CANONICAL FORM

For supersymmetric solutions, the boundary metric
and gauge field, given in (3.5), (3.7), can be recast in a
canonical form. Specifically, we show that they lie within
the timelike class of three-dimensional supersymmetric
rigid Lorentzian geometries which solve the charged
conformal Killing spinor equation, as studied in [37].
This class is associated with the Killing vector bilinear,
K, being timelike. Choosing coordinates such that

K ¼ ∂
∂ t̃ ; ðA1Þ

the three-dimensional metric and gauge field can be written

ds2can ¼ ϒ2½−ðdt̃þ ω̃Þ2 þ ds22�;
Acan ¼ −fðdt̃þ ω̃Þ þ Að2Þ; ðA2Þ

where ϒ, f are functions and ω̃; Að2Þ are one-forms on the
locally defined 2d base transverse to K with metric ds22,
and thus all independent of t̃. These quantities have to
satisfy [37]

dω̃ ¼ 2fvol2;

dAð2Þ ¼ −
1

4
R2vol2; ðA3Þ

where vol2 and R2 are the volume form and the Ricci scalar
for ds22, respectively.

15 Notice that the 3d metric is the most
general one that admits a timelike Killing vector and the
gauge field is then determined in terms of the metric.
We now consider the boundary metric (3.5) together

with the gauge field (3.7) and impose the super-
symmetry conditions. This is most conveniently done
using the variables introduced in Sec. IVA and imposing

m ¼ g=α ¼ s=ðα3cÞ together with the expression for c in
(4.11) and the one for α in (4.12). The following analysis
focuses on the conformal boundary of the bulk solution and
we will not impose the extremality condition. Thus, the
analysis applies to the conformal boundary for the class of
supersymmetric bulk solutions for which, when all param-
eters are real, only the extremal case does not have a
naked singularity.
Next we make the coordinate transformation

t ¼ κð1þ s2Þt̃; ϕ ¼ ϕ̃þ αðbþ sÞt̃; ðA4Þ

so that the supersymmetric Killing vector, given in (5.14),
takes the form (A1). Then matching the metric with (A2)
we find

ϒ2 ¼ ½Zð1 − x2Þ þ 2μðs2 þ 1Þx�2
4μ2

; ðA5Þ

and

ω̃ ¼ ð1 − x2Þ½4αðb2 þ 1Þμ2ϒ2�−1
× ½4μ2ðbþ sÞðbs − 1Þðs2x2 þ 1Þ
þ 4bμðs2 þ 1ÞZxþ bð1 − x2ÞZ2�dϕ̃: ðA6Þ

Here x ¼ cos θ as before, and to slightly simplify the
formula we denoted

Z≡ 1 − 2bs − s2: ðA7Þ

We also find that the two-dimensional metric reads

ds22 ¼ gð2Þxx dx2 þ gð2Þ
ϕ̃ ϕ̃

dϕ̃2; ðA8Þ

with

gð2Þxx ¼ ðb2 þ 1Þðs2 þ 1Þðs2x4 þ 1Þ2ðZ2 − 4μ2ðbs − 1Þ2Þ
× fϒ2½ðsx2ðbs − 1Þ þ bþ sÞ2 þϒ2�½ðx − 1ÞZ − 2μðsxðbþ sÞ − bsþ 1Þ�
× ½2μðsxðbþ sÞ þ bs − 1Þ þ ðxþ 1ÞZ�ðx2 − 1Þg−1; ðA9Þ

and

gð2Þxx g
ð2Þ
ϕ̃ ϕ̃

¼ ðs2 þ 1Þ2ðs2x4 þ 1Þ2
ϒ6

: ðA10Þ

It follows that

vol2 ¼ −
ðs2 þ 1Þðs2x4 þ 1Þ

jϒj3 dx ∧ dϕ̃; ðA11Þ

the minus sign being due to the fact that the positive
orientation induced on the two-dimensional base is given
by sin θdθ ∧ dϕ̃ ¼ −dx ∧ dϕ̃.
For the boundary gauge field (3.7), we would like to

extract f and Að2Þ and check the differential relations (A3).
In the coordinates given in (A4) we can write

15In [37] coordinates ðx; yÞ on the 2d base are used so that the
two-dimensional metric is conformally flat, ds22¼ e2ψ ðdx2þdy2Þ,
and the volume form is vol2 ¼ e2ψdx ∧ dy. In this case one
can write Að2Þ ¼ 1

2
ð∂xψdy − ∂yψdxÞ, since this satisfies dAð2Þ ¼

1
2
ð∂2

xψ þ ∂2
yψÞdx ∧ dy ¼ − 1

4
R2vol2.
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Abdy ¼ At̃dt̃þ Aϕ̃dϕ̃; ðA12Þ

with

At̃ ¼ κð1þ s2ÞAt þ αðbþ sÞAϕ; Aϕ̃ ¼ Aϕ; ðA13Þ

where At; Aϕ can be read from (3.7). After imposing
supersymmetry we obtain

At̃ ¼
Z½sð1 − 2bs − b2Þx2 þ bðbs − 2Þ − s�x

2αμðb2 þ 1Þðs2x4 þ 1Þ ;

Aϕ̃ ¼ 2μZðs2 þ 1Þ½1 − bsþ sðbþ sÞx2�x
ðs2x4 þ 1Þ½Z2 − 4μ2ðbs − 1Þ2� : ðA14Þ

Since the gauge potential needs to match the canonical
form only up to a gauge transformation, we also allow
for a shift

Abdy → Abdy þ kdt̃; ðA15Þ
with k a constant. Matching the resulting expression with
(A2) gives

f ¼ −At̃ − k

¼ −
Z½sð1 − 2bs − b2Þx2 þ bðbs − 2Þ − s�x

2αμðb2 þ 1Þðs2x4 þ 1Þ − k;

ðA16Þ
and

Að2Þ ¼ ðs2 þ 1Þf4μ2ϒ2ðb2 þ 1ÞZxðsx2ðbþ sÞ − bsþ 1Þ þ ðxZðsx2ðb2 þ 2bs − 1Þ þ bð2 − bsÞ þ sÞ
− 2kαμðb2 þ 1Þðs2x4 þ 1ÞÞð1 − x2Þð4μ2ðbþ sÞð1 − bsÞðs2x2 þ 1Þ − 4bμZðs2 þ 1Þxþ bZ2ðx2 − 1ÞÞg
× ½2μϒ2ðb2 þ 1Þðs2x4 þ 1ÞðZ2 − 4μ2ðbs − 1Þ2Þ�−1dϕ̃: ðA17Þ

We have checked that with the above ingredients both equations in (A3) are satisfied, provided that we make the gauge
choice (A15) with k given by

k ¼ ðbþ sÞð1 − bsÞ
αðb2 þ 1Þ : ðA18Þ
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