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Several studies have investigated links between the gut microbiome and colorectal cancer (CRC), but 
questions remain about the replicability of biomarkers across cohorts and populations. We performed a 
meta-analysis of five publicly available datasets and two new cohorts and validated the findings on two 
additional cohorts, considering in total 969 fecal metagenomes. Unlike micro- biome shifts associated 
with gastrointestinal syndromes, the gut microbiome in CRC showed reproducibly higher richness than 
controls (P < 0.01), partially due to expansions of species typically derived from the oral cavity. Meta-
analysis of the microbiome functional potential identified gluconeogenesis and the putrefaction and 
fermentation pathways as being associated with CRC, whereas the stachyose and starch degradation 
pathways were associated with controls. Predictive microbiome signatures for CRC trained on multiple 
datasets showed consistently high accuracy in datasets not considered for model training and 
independent validation cohorts (average area under the curve, 0.84). Pooled analysis of raw 
metagenomes showed that the choline trimethylamine- lyase gene was overabundant in CRC (P = 0.001), 
identifying a relationship between microbiome choline metabolism and CRC. The combined analysis of 
heterogeneous CRC cohorts thus identified reproducible microbiome biomarkers and accurate disease- 
predictive models that can form the basis for clinical prognostic tests and hypothesis-driven mechanistic 
studies.  



Colorectal cancer is the second most common non-sex-specific to increase by nearly 80% to 2.2 million cases over the next 
two cancer and is responsible for more deaths than any other can- decades2. Sporadic CRCs, as opposed to hereditary CRCs, 
account cer after lung cancer . Because of demographic trends toward for approximately 70–87% of cases and genetics can 
explain only an aging population, the annual global incidence rate is expected a small proportion of disease incidence4. The 
missing strong link of CRC with genetics points to the potential role of other variables, including lifestyle and environmental 
factors, as disease co- determinants. Reported risk factors associated with CRC include age, tobacco and alcohol consumption, 
lack of physical activity, increased body weight and diet5,6. However, many non-genetic risk factors are common to several 
cancer types and these remain largely unsettled for CRC7,8. The human gut microbiome—defined as the microbial com- 
munities that populate our intestinal tract—is emerging as a relevant factor in human diseases9,10. Supported by some 
evidence of carcinogenic mechanisms induced by bacterial organisms11–13, the gut microbiome has also been hypothesized to 
play a crucial role in the development of CRC. Studies using 16S ribosomal RNA (rRNA) gene amplicon sequencing have led to 
the discovery of the association of Fusobacterium nucleatum with CRC14, which was subsequently shown to be causal in 
animal models of CRC carcinogenesis and progression15,16. Compared to 16S rRNA gene studies, a smaller number of 
metagenomic sequencing studies have linked other microbial species and potential functional activities of the gut 
microbiome to CRC17–19,20. However, the reproducibility and predictive accuracy of these high-resolution microbial signatures 
across cohorts and study design choices remain unclear. The potential use of the gut microbiome as a diagnostic tool for CRC 
has been pro- posed17–19,21,22, but not yet validated, across multiple independent study populations. There is thus a need to 
establish and validate links between the human gut microbiome and CRC carcinogenesis across populations, cohorts and 
microbiome tools. Some multi-cohort works have been performed based on 16S rRNA gene studies23, but this technique has 
important technical limitations24. The recent availability of whole- metagenome shotgun datasets of CRC cohorts17–19,21,22 

enables a combined multi-population exploration of the CRC-associated microbiome with strain-level resolution25,26 and meta-
analytic predictive approaches10,27, but the only meta-analysis study performed to date on CRC is affected by overfitting 
issues28. It is thus crucial to perform large-scale, cross-cohort studies to provide an unbiased and well-powered assessment of 
the link between CRC and the gut microbiome.  In this study, we have sequenced 140samples from two different cohorts, 
performed an integrated analysis combining all current metagenomic CRC datasets available and assessed prediction 
accuracies of the gut microbiome for CRC detection across populations, datasets and conditions.  

Results  

A meta-analysis of metagenomic datasets to identify links between the gut microbiome and CRC. To identify 
reproducible relationships between the gut microbiome and CRC, we performed shotgun metagenomic sequencing29 of the 
stool microbiome of 140patients with CRC and controls recruited in two cohorts, and analyzed these in the context of 
624additional samples from five publicly available and geographically diverse metagenomic studies. We validated the results 
on two datasets of 60 CRC and 65 controls30 and 40 CRC and 40 controls (see Methods), respectively. In total, we considered 
413 samples from patients with CRC, 143 from subjects with adenoma and 413 control samples. Participants from all studies 
underwent colonoscopy to diagnose CRC or adenoma, or to confirm the absence of disease, with samples collected before 
diagnosis or the beginning of treatment (Supplementary Table 1 and Table 1). All datasets were sequenced at high depth 
except for the study in ref. 31 (Extended Data Fig. 1a and Methods).  

Meta-analysis shows higher species richness in CRC-associated samples. We first tested whether microbial richness and 
diversity differed between CRC samples and controls, given contrasting cur- rent evidence32–34. In all but one study the median 
species richness was higher in CRC samples compared to controls, and the increase was significant in four of the six deeply 
sequenced datasets (P < 0.05; Extended Data Fig. 1b,c). Meta-analysis of standardized mean differences by random effects 
model for the number of microbial species confirmed the higher number of species in CRC compared to controls (meta-
analysis coefficient estimate (μ) =0.5, 95% confidence interval (0.16, 0.85), P=0.004), although with significant heterogeneity 
across datasets (percentage of total variation due to heterogeneity (I2) =74.8%, P=0.0007, Q-test). This difference was not 
meaningfully affected when controlling for potential confounding by age, body mass index (BMI) or sex (Extended Data Fig. 
1d,e). Conversely, we observed no difference in diversity between carcinomas and controls (Extended Data Fig. 2a,b). We 
thus provide strong evidence that the CRC-associated microbiome has a quantitative species distribution that is consistent 
with healthy controls, but is significantly enriched in the total number of detected microbes. We further tested whether the 
CRC-associated microbiome possesses more oral cavity-associated species than controls, as previously hypothesized23,35. 
Considering the 161species we identified from multiple existing datasets36,37 as being typical colonizers of the oral cavity (see 
Methods), we found increased oral species richness in CRC samples for all but one of the six deeply sequenced datasets 
compared to controls, and the increase was significant in meta- analysis (μ=0.16, 95% confidence interval (−0.03, 0.35), 
P=0.02; Extended Data Fig. 2g). Similarly, the total abundance of oral species in the stool microbiome was also significantly 
higher in patients with CRC compared to controls (meta-analysis μ=0.23, 95% confidence interval (0.07, 0.39), P=0.003). 
Altogether, greater species richness and abundance may be a sign of an altered gut microbiome in CRC, and it is indicative of 
an influx of bacterial species originating from the oral cavity.  

A panel of microbial biomarkers for CRC is reproducible across cohorts. Individual biomarker discovery efforts can be 
sensitive to both technical artifacts and the heterogeneity of factors implicated in microbial shifts in healthy populations, 
including biogeography, diet and host genetics26,38. This is confirmed by the two newly sequenced datasets that have only 
partially overlapping taxonomic and functional potential biomarkers (Extended Data Fig. 3). Even so, several CRC biomarker 
species were identified by univariate statistics39 independently in the majority of the datasets (Fig. 1a): F. nucleatum, 
Solobacterium moorei, Porphyromonas asaccharolytica, Parvimonas micra, Peptostreptococcus stomatis and Parvimonas spp. 
Other species were identified in fewer data- sets or were dataset-specific (Fig. 1a and Supplementary Table 2). F. nucleatum, 



whose connection with CRC has been extensively reported14,17–19, had significantly increased abundance in patients with CRC 
in all datasets with adequate sequencing depth, when considering single markers for this species (Extended Data Fig. 4a). 
Some of the cross-cohort CRC biomarker species have previously been reported14,23,35 and many of these are commonly found 
in the oral cavity (eight out of the 39total biomarkers found in at least two datasets), consistent with the increased presence 
of oral taxa in CRC samples mentioned above. We then pooled evidence of differential abundance across data- sets by random 
effects meta-analysis. Among the 26differentially abundant species at false discovery rate (FDR)<0.005, those with the 
highest effect size were again F. nucleatum, S. moorei, P. asaccharolytica, P. micra and P. stomatis. The meta-analysis addition- 
ally identified Clostridium symbiosum, which has been tested as a marker for early CRC detection40 (Fig. 1b). Other 
differentially abundant species at FDR<0.05 have not previously been reported in CRC microbiome studies, including 
Streptococcus tigurinus and Streptococcus dysgalactiae, and three different Campylobacter spe- cies. We also confirmed 
Gemella morbillorum and Streptococcus gallolyticus as being relevant biomarkers, as previously suggested in smaller 
cohorts18,41. In contrast, only 12 species were associated with the control population in the meta-analysis and only four were 
sig- nificantly enriched for the same populations in at least three data- sets. Control-associated species with the highest effect 
sizes were Gordonibacter pamelae and Bifidobacterium catenulatum (Fig. 1b, Supplementary Table 2 and Extended Data Fig. 
4c), which are gen- erally considered beneficial microbes and have been used as probiotic supplements42. Adjustment for 
potential confounding by host characteristics did not meaningfully affect crude estimates in the meta-analysis (Fig. 1d and 
Extended Data Fig. 4b). The substantially higher number of species enriched in CRC as opposed to controls (49 versus 12), 
even when focusing only on species with putative oral origin (15 versus 2; Extended Data Fig. 5a), points to the existence of a 
reproducible taxonomic signature of the CRC- associated microbiome.  

Functional potential of the microbiome was also significantly associated with CRC samples when compared to healthy 
controls. We found overall increased richness of UniRef gene families43 in CRC samples in two datasets, with percentages of 
unmapped reads ranging between 20 and 40 (Extended Data Fig. 5e). We found 33,840 of the 2,479,274 single gene families 
detected at least once to be associated with CRC and 30,475 associated with controls at FDR<0.05 (9,154 and 7,115 
differential gene families at FDR<0.005). We further observed 136 out of 590metagenomically reconstructed microbial 
functional pathways to be CRC-associated, and only 37 associated with controls (Supplementary Table 3). Among the most 
differentially abundant pathways (Fig. 1c) that are at worst only minimally affected by potential confounding factors (Fig. 1e), 
we found starch, stachyose and galactose degradation to  

be associated with controls. These associations may indicate how potentially diet-associated changes in the functional 
repertoire of the microbiome can influence host conditions. The CRC-associated microbiome showed an association with both 
gluconeogenesis and the capacity for uptake and metabolism of amino acids via putrefaction and fermentation pathways 
(Supplementary Tables 3 and 4). These included pathways responsible for the conversion of different amino acids to tumor-
promoting compounds19,44, such as polyamines (for example, l-arginine and l-ornithine degradation to putrescine) and 
ammonia (l-histidine and l-arginine degradation, and l-lysine and l-alanine fermentation to acetate, butyrate and propionate). 
These pathways (Fig. 1c) and the set of species described above (Fig. 1a,b) thus constitute a collection of microbiome 
biomarkers that are reproducible across cohorts.  

Predicting CRC from single metagenomic datasets in independent cohorts leads to reduced accuracy. To test the 
hypothesis that the stool microbiome could be used as a reproducible CRC pre- screening tool, we performed intra-cohort, 
cross-cohort and combined-cohort prediction validation on the overall set of 621CRC and control samples using a random 
forest classifier (Table 1). In intra-cohort cross-validation using species-level taxonomic relative abundances, we observed 
performances ranging in area under the receiver operating characteristic curve (AUC) score from 0.92 to 0.58 , with an 
average in the deeply sequenced datasets of 0.81 (Fig. 2a). When using the functional potential of the gut microbiome by 
means of pathway abundances we observed decreased single-data- set cross-validation accuracies, with the exception of our 
Cohort1 (maximum 0.82AUC, average 0.71AUC; Extended Data Fig. 6a). The profiling of the more fine-grained UniRef90 gene-
family abundances improved predictions, with AUC scores reaching 0.8 for Cohort2 and an average of 0.77 in the deeply 
sequenced datasets (Fig. 2b). These results show that, while cross-validation AUCs can be high for prediction of CRC in 
certain datasets, these are highly variable and dataset dependent. We then tested whether and how much the microbial 
signatures of CRC remained predictive across distinct datasets and cohorts. To this end, we trained the classifier on each 
single ‘training’ dataset and applied the model to each distinct ‘testing’ dataset. For most datasets this led to decreased AUC 
values when compared to single cross-validation AUCs, and AUCs showed high variability across cohorts (minimum 0.5 and 
maximum 0.86 AUC for cross-dataset). These results were consistent when using either pathway or gene- family abundances 
as predictors (Extended Data Fig. 6a and Fig. 2b). Overall, we highlight a poor transportability of the microbiome signature 
from one dataset to the other, and experimental choices45 and cohort or population characteristics26 may explain the reduced 
cross-study predictability when considering single datasets to train the model (Extended Data Fig. 6c,d).  

Pooling of training cohorts substantially improves prediction across datasets. To overcome the limitations of training 
on single datasets (Supplementary Table 5), we performed a leave-one-data- set-out (LODO) analysis46 in which classifiers 
were trained on six datasets combined, and validated on the left-out dataset, for each dataset in turn. For taxonomic profiles, 
this approach improved both AUC values and inter-dataset consistency, producing AUCs ≥0.80 (average = 0.84, s.d. = 0.03) 
for all six deeply sequenced datasets (Fig. 2a). Predictors based on clade-specific markers also produced high, albeit more 
variable, AUC values, outperforming taxonomic profiles in some datasets (Extended Data Fig. 6b). Gene families achieved 
slightly reduced performances, whereas pathway abundances produced substantially less accurate predictions (Fig. 2b and 
Extended Data Fig. 6a). The technical and host population diversity embedded in these training meta-cohorts may be crucial 
in improving the generalizability of classifiers, as we found this LODO approach to be substantially and consistently more 



informative than a single-dataset cross- validation, and independent investigations found similarly high LODO performances 
using different metagenomic profilers and machine learning tools30.  

The model trained on taxonomic or functional features was also shown to capture the above whole-microbiome biomarkers 
because the direct inclusion of alpha-diversity metrics, oral species abundance and a measure of metagenome mappability 
did not provide substantial improvements (average=0.83, s.d.=0.03 for the deeply sequenced datasets when the additional 
features were combined with the taxonomic model). However, based on the performance and variability of the predictive 
models across datasets, we recommend using species-level microbial abundance as the main feature set for CRC status 
prediction in a LODO setting.  

To assess the relation between population diversity in the training meta-cohort and prediction performance, we considered 
increasingly larger subsets of the available training cohorts. AUC values sharply increased when moving from one to two 
training datasets (10–13% median AUC improvement depending on the features considered in the model), with less marked 
improvements at further dataset additions (Fig. 2c,d and Extended Data Fig. 7). Large and heterogeneous combined training 
sets thus generate improved accuracy for identifying CRC cases in independent metagenomic datasets.  

Accurate predictive models using a minimal microbial signature. The predictive CRC-associated microbiome signatures 
identified above considered all observed species and gene functions, and would thus be impractical for clinical application 
without whole- microbiome profiling. We thus sought to identify a minimal set of highly predictive microbial features by 
exploiting the internal feature ranking of the random forest classifier10. We found that P. stomatis was the species with the 
highest average rank. As expected, other CRC-associated species including F. nucleatum, Parvimonas spp., P. asaccharolytica, 
G. morbillorum, C. symbiosum and P. micra were also crucial to prediction accuracy (Fig. 3a), with the seven top-ranked 
species for CRC detection amongst those with the largest effect sizes in the meta-analysis. Very few control-associated species 
were ranked high in the learning models, further highlighting that successful discrimination is achieved by CRC-specific 
rather than control-specific microbial features. To evaluate how many microbial species or gene families are necessary to 
achieve prediction scores comparable to those obtained using the full set of features, we computed AUC values at increasing 
numbers of features. Feature ranking was performed internally to each training fold to avoid overfitting. By applying this 
approach to all datasets (Fig. 3b,c), we found that using as few as 16species achieved cross-validation AUC >0.8 for the 
majority of the data- sets, with little improvement from using all remaining species (2% average improvement in AUC value). 
We also found that using only 64 gene families achieved prediction values >0.8 for the same datasets, and that using all 8,192 
gene families improved AUC only slightly (2% improvement; Extended Data Fig. 8). Therefore, these results suggest that a 
stool-based diagnostic test using genetic mark- ers targeting a limited number of microbial species or genes would serve as a 
promising clinical tool.  

Microbiome signatures for adenomas are only partially predicive. We assessed the ability to discriminate adenomas 
from controls or carcinomas, using 27 newly sequenced adenoma-associated samples and 116adenoma-associated samples 
from available studies (Table 1). Adenomas could be distinguished from patients with CRC with lower accuracy than controls 
(average AUC=0.69 versus 0.79; Extended Data Fig. 6e,f), and there are only eight species that differentiate patients with 
adenomas from patients with carcinomas in the meta-analysis (FDR < 0.05). Seven of these eight biomarkers are in common 
with the comparison between patients with carcinomas and healthy individuals, and the LODO approach did not improve 
discrimination of adenomas from CRC (average AUC=0.68). Moreover, we found that no dataset could accurately predict 
adenomas from control samples (maximum AUC=0.58), even when using a LODO approach (average AUC=0.54). In the meta-
analysis, none of the species were significantly different when contrasting samples from patients with adenomas and healthy 
controls. These results reinforce previous findings18,19 that the adenoma-associated stool microbiome closely resembles that 
of the healthy gut.  

Increased abundance of choline trimethylamine-lyase-encoding genes in CRC. Microbiome-derived metabolites, and 
specifically polyamines, have been implicated in carcinogenesis in both animal models and humans44. We chose to focus on 
trimethylamine (TMA), an amine produced by bacteria from choline and carnitine, because it has been shown to play a role in 
complex diseases such as atherosclerosis and primary sclerosing cholangitis9,47. Since dietary components have been linked 
with CRC risk5,6, we hypothesized that the TMA-producing potential of the human gut microbiome could also be associated 
with CRC48. To test this hypothesis, we considered the genes belonging to the main TMA-synthesis pathways to reconstruct 
and quantify the presence of such genes in the CRC- associated metagenomes. The main genes associated with TMA synthesis 
are those encoding choline TMA-lyase (cutC), l-carnitine dioxygenase (yeaW) and the l-carnitine/gamma-butyrobetaine 
antiporter (caiT), and we identified these in 923, 5,185 and 5,709 available bacterial genomes, respectively. Screening the 
seven CRC-associated metagenomic datasets, we found that only one of these had a significant increase of caiT in CRC 
samples compared to controls, whereas no significant differences were detected for yeaW (Extended Data Fig. 9a). However, 
we found increased abundance of cutC in CRC samples compared to controls in all seven datasets (P<0.05 by Wilcoxon rank-
sum test on reads per kilobase million (RPKM) abundances for five datasets; Fig. 4a). Meta-analysis indicated an overall 
strong association with no evidence of heterogeneity (P=0.001, μ=0.27, 95% confidence interval (0.1, 0.42), I2=4.2%, Q-
test=0.65; Fig. 4b). We also analyzed the abundance of the gene encoding the choline TMA-lyase- activating enzyme (cutD), 
finding a significant increase in CRC (meta-analysis P=0.001, μ=0.32, 95% confidence interval (0.16, 0.47), I2 = 0%, Q-test = 
0.96; Extended Data Fig. 9b,c). These results indicate that TMA production might happen preferentially via choline 
degradation, and not via carnitine, and could substantially affect the amounts of TMA and trimethylamine oxide (TMAO) 
present in an individual49. Intermediate levels of cutC in adenomas (Fig. 4a) are further suggestive of a TMA action along the 
adenoma– carcinoma axis. We validated the increased cutC gene abundance in CRC by quantitative PCR (qPCR)50 on a subset 



of samples from Cohort1 with sufficient DNA left after sequencing, and confirmed the metagenomic findings (one-tailed 
Wilcoxon signed-rank test P=0.024; Fig. 4d). Further quantification of cutC transcript abundance from the co-extracted RNA 
in the same dataset also pointed to an overexpression of this gene in CRC (P = 0.035; Fig. 4e). We further explored the role of 
cutC in the gut microbiome by reconstructing sample-specific sequence variants using a reference- aided targeted assembly 
approach (see Methods). We found a large sequence divergence for the gene encoding this enzyme that is known to occur in 
single copies in the genomes50, and we identified four main sequence variants that are associated with the taxonomic 
structure (Fig. 4c and Extended Data Figs. 9d,e and 10a,b). Interestingly, the most prevalent (46.5%) cutC sequence type 
(>95% identity over the full length of the gene) belonged to an unknown species that was only recently assembled from 
metagenomics51 and assigned to species-level genome bin ID3957. This candidate species comprises 56metagenomically 
assembled species51 and is placed within the Lachnospiraceae family, but the missing genus assignment confirms that several 
microbes remain under characterized in the human microbiome. This cutC variant was associated with non-CRC samples 
(odds ratio 0.38, 95% confidence interval (0.25, 0.57), P=0.0001, Fisher test), whereas cutC sequence types mostly belonging 
to Hungatella hathewayi and Clostridium aspara- giforme (Firmicutes) were significantly CRC-associated (odds ratio 2.14, 
95% confidence interval (1.29, 3.56), P = 0.004, Fisher test), as were sequence types belonging to Klebsiella oxytoca and 
Escherichia coli (odds ratio 1.85, 95% confidence interval (1.13, 3.00), P = 0.02, Fisher test; Fig. 4b). Altogether, these findings 
highlight that sequence variants of cutC can be strongly associated with disease, potentially because of corresponding 
differences in the efficacy of choline degradation and TMA production.  

Additional independent validation of predictive models. To further validate our meta-analysis results, we considered two 
additional independent metagenomic cohorts from Germany30 (Validation Cohort1) and Japan (Validation Cohort2) 
comprising a total of 100patients with CRC and 105controls (see Methods). The metagenomic predictive model was 
confirmed to be highly accurate on these new cohorts (Fig. 5a), with an AUC of 0.90 and 0.81 for the German and Japanese 
cohorts, when using the species- level taxonomic abundance model. Species newly associated with the CRC microbiome, such 
as S. tigurinus and S. dysgalactiae, were confirmed as having higher prevalence in CRC than in controls in the two validation 
datasets (blocked Wilcoxon test52 P=0.049 and P=0.011 for S. tigurinus and S. dysgalactiae, respectively). Enrichment in the 
CRC-associated microbiome of these two species was confirmed also by the analysis of additional metagenomic datasets of 
inflammatory bowel disease53 and type2 diabetes54,55, in which the prevalence of S. tigurinus was always below 10% in both 
cases and controls, whereas S. dysgalactiae was never detected in these additional datasets. We also confirmed species 
richness to be significantly higher in CRC (P = 0.0005 for both validation datasets after rarefaction at the tenth percentile; Fig. 
5b) as well as richness of oral microbial species in the rarefied samples (blocked Wilcoxon test52 P = 0.003), and the 
abundance of cutC in CRC (P < 1 × 10–6).  

CRC specificity of microbiome predictive models. We performed additional experiments to validate the discriminative 
power of the above microbial signatures specifically for CRC and not for other potentially microbiome-linked disease 
conditions. To this end, we first considered 13 additional fecal samples sequenced from patients who underwent colonoscopy 
in our Cohort1 and that were originally discarded because the final diagnosis pointed at diseases other than adenoma or 
carcinoma, such as ulcerative colitis, Crohn’s dis- ease, uncategorized colitis and diverticular diseases. These were 
distinguishable from CRC samples based on the taxonomic model (0.78cross-validation AUC, 0.80AUC using only 16species), 
and only slightly decreased the AUC of the model trained on all the other datasets when these were added to the non-disease 
(that is, healthy) category (from 0.83 to 0.79 in AUC). We then expanded this analysis to diseases for which at least two 
distinct large metagenomic datasets are available in the public domain, and this includes ulcerative colitis and Crohn’s 
disease53,56 as well as non-gastrointestinal diseases such as type 2 diabetes54,55. For this purpose we added samples randomly 
drawn from each of the case and control conditions of these additional disease cohorts to the control class of the new 
validation cohort, and recorded the variations in AUC when attempting to predict CRC (see Methods). By comparing the AUCs 
obtained when adding non-CRC external cases and when adding the corresponding external controls, we found for both 
validation cohorts a small decrease in prediction accuracy for both ulcerative colitis (3 and 4% for Validation Cohort1 and 
Validation Cohort2, respectively; Fig. 5c) and Crohn’s disease (5 and 9% for Validation Cohort1 and Validation Cohort2, 
respectively; Fig. 5c), pointing to a limited effect on the CRC model of samples from these two dis- eases. For type 2 diabetes 
we observed an increase in the predictive power in one dataset54 and a decrease in the other55 in both validation datasets, and 
the CRC model always remained highly predictive (AUC≥0.80). Altogether, these results point to the existence of a clear 
microbiome signature of CRC that is distinct from other relevant diseases with a gastrointestinal component.  

Relationship to currently available non-invasive clinical screening tests. To assess the potential of microbiome-based 
prediction models in comparison and in combination with currently used non-invasive clinical screening tests, we considered 
the fecal occult blood test (FOBT) and the Wif-1 methylation test available for 110 samples of the ZellerG_2014 cohort19. The 
LODO microbiome model tested on this dataset proved to be slightly superior to the FOBT at multiple combinations of 
specificity and sensitivity levels (Fig. 5d), and on a par with the Wif-1 methylation test. Considering the LODO model 
predictions and the FOBT together in the same test improves the sensitivity/specificity trade-off at high specificity levels 
when the integration is based on having at least one predictor positive, and at relatively lower specificity levels when 
requiring both predictors to be positive (Fig. 5d). Integrating the microbiome model with the Wif-1 methylation test resulted 
in similar performances, and the use of the reduced microbiome model with only 16 species generally improved the results 
(Fig. 5d). We thus provide evidence for the potential clinical value of microbiome predictive models, especially when 
considered together with other available non-invasive clinical tests.  

Discussion  



In the present study, we comprehensively assessed the CRC- associated gut microbiome and its ability to distinguish newly 
diagnosed patients with CRC from tumor-free controls. Our study was performed across multiple datasets and populations, 
through a combined analysis of fecal CRC metagenomes from four previously unpublished cohorts and five publicly available 
datasets. Whereas direct specific host–microbe interactions have been shown to cause certain malignancies in both in vitro 
and in vivo animal models11–13,57, and genotoxic determinants such as colibactin tend to be over-represented in the analyzed 
datasets30, indirect metabolite- mediated mechanisms may be more important in the development of carcinomas although 
causality relations need to be tested. In our analysis, we indeed found a reproducible panel of microbiome species (Fig. 1), 
whole-microbiome characteristics and strain-level biomarkers (Fig. 4) beyond the validated mechanisms of specific variants 
of E. coli11,57 and Bacteroides fragilis57. We found that the gut microbiome in CRC has greater richness than controls, partially 
due to the presence of oral cavity-associated species rarely found in the healthy gut, challenging the widespread assumption 
that decreased alpha-diversity is generally associated with intestinal dysbiosis58,59.  

The identification of reproducible microbial biomarkers for CRC may enable the design of non-invasive diagnostic tools. We 
developed machine learning models able to distinguish patients with carcinomas from controls with an average performance 
of 0.84AUC when validated on datasets excluded from the training of the model (Fig. 2a). Importantly, these performances 
are quite independent of specific methodological choices given that comple- mentary investigations30 using different 
metagenomic profilers and machine learning approaches achieved very similar results. Further increase in prediction 
performance can be achieved using larger datasets (n>1,000) rather than different methodologies (Figs. 2c,d and Extended 
Data Fig. 7), and the combination of a microbiome model with other clinical tests and patient risk factors could sub- stantially 
improve this diagnostic accuracy (Fig. 5d). Current clini- cal pre-colonoscopy screening tests (for example, FOBT, Wif-1) 
remain cheaper, but microbiome-based CRC prediction models enable a very high diagnostic potential that increases with the 
num- ber of microbes or microbial genes used, with single biomarkers being much inferior to multi-feature diagnostic 
models. However, near maximal accuracy was achieved with as few as 15–25 microbes (Fig. 3b,c) or a few hundred genes 
(Extended Data Fig. 8), poten- tially enabling inexpensive clinical microbiological tests to be per- formed on stool samples. 
Prospective studies of these biomarkers are needed to establish whether they can identify individuals at elevated risk of CRC 
and provide the possibility of disease prevention.  

The diversity and subject-specificity of the human gut microbiome is not yet fully uncovered, with many microbial genes 
having unknown function and with strain-level diversity that is missed by many current analysis pipelines51. Large-scale 
shotgun metagenomics can begin to overcome these limitations, as shown here by the identification of a link between CRC 
and the microbial pathway producing TMA from choline49. The gene encoding for the key enzyme for this pathway, cutC 
choline TMA-lyase, is both more abundant and expressed in the gut microbiome of patients with carcinomas, with specific 
variants of cutC characterizing controls, adenomas and carcinomas (Fig. 4). TMA-producing choline lyases have been found to 
be associated with atherosclerosis9, and higher plasma TMA oxide and choline levels have been reported to be cor- related 
with CRC risk60,61. We highlight the importance of strain- level gene resolution in understanding any potential carcinogenic 
role of cutC. CRC-associated variants mostly originated from H. hathewayi, C. asparagiforme, K. oxytoca and E. coli, whereas no 
significant enrichment was detected for a cutC variant carried by an unexplored, recently discovered candidate species in the 
family Lachnospiraceae51. Thus, genetic variants in key microbial genes involved in choline-induced TMA production by the 
gut microbiome are a plausible and potential mechanism for colorectal carcinogenesis. Other partially diet-dependent 
microbiome factors can contribute to the promotion of carcinogenesis, and we found in our parallel work that genes for 
secondary bile acid conversion are consistently enriched in CRC-associated microbiomes30. Further work is needed to 
establish the changes in protein structure and function associated with the genetic variants of the diet-related microbial 
genes found here to be enriched in the CRC microbiome.  

Analysis of cancer cohorts that are heterogeneous for geography, ethnicity and lifestyle presents a distinct opportunity for 
studying the cancer-associated microbiome. By combining multiple small cohorts of potentially low generalizability, it is 
possible to obtain better representation of the spectrum of cancer cases and controls. With appropriate methodology, 
artifactual findings due to batch effects present in any individual dataset can be avoided. The use of large, diverse training 
sets enables the creation of more accurate diagnostic models, and the availability of independent validation datasets enables 
more realistic estimation of that accuracy. Future shotgun metagenomic studies of the intestinal mucosa-associated 
microbiome, which are currently infeasible due to excessive human DNA contamination29, will be important to further refine 
the list of CRC-associated gut microbes. Nevertheless, this study identifies highly reproducible microbial CRC biomarkers and 
points to the potential for non-invasive microbial diagnostic tests to supplement existing screening.  

Online content  

Any methods, additional references, Nature Research reporting summaries, source data, statements of data availability and 
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Table 1 | Size and charac 
Dataset  

eristics of the 
larg  

Groups (n)  

e-scale CRC 
metagen  

Age (average ± 
s.d.)  

mic datasets 
include  

BMi (average ± 
s.d.)  

in this study  

Sex F (%)/M 
(%)  

Country  No. of reads 
(×109)  

ZellerG_2014 (ref. 19)  
Control (61)  60.6 ± 11.4  24.7 ± 3.2  54.1/45.9    
Adenoma (42)  63 ± 9.1  25.9 ± 4.1  28.5/71.5  France  9.4  
CRC (53)  66.8 ± 10.9  25.5 ± 5.2  45.2/54.8    

YuJ_2015 (ref. 17)a  Control (54)  61.8 ± 5.7  23.5 ± 3  38.9/61.1  China  7.2  
CRC (74)  66 ± 10.6  24 ± 3.2  35.1/64.9    

FengQ_2015 (ref. 18)  
Control (61)b  67 ± 6.5  27.6 ± 3.8  41/59    
Adenoma (47)  66.5 ± 7.9  28 ± 4.7  51.1/48.9  Austria  8.3  
CRC (46)  67 ± 10.9  26.5 ± 3.5  39.1/60.9    

VogtmannE_2016 (ref. 20)  Control (52)  61.2 ± 11  25.3 ± 4.2  28.8/71.2  USA  6.9  
CRC (52)  61.8 ± 13.6  24.9 ± 4.2  28.8/71.2    

HanniganGD_2018 (ref. 31)  
Control (28)     USA (54)   
Adenoma (27)  NA  NA  NA  Canada (28)  0.5  
CRC (27)       

Cohort1 (This study)  
Control (24)  67.9 ± 7.1  25.3 ± 3.5  45.8/54.1    
Adenoma (27)  62.8 ± 8.6  25.3 ± 4.1  40.7/59.3  Italy  8.2  
CRC (29)  71.4 ± 8.2  25.7 ± 4.1  20.7/79.3    

Cohort2 (This study)  Control (28)  57.8 ± 8.3  24.6 ± 3.8  42.9/57.1  Italy  5.1  
CRC (32)  58.4 ± 8.4  26.8 ± 4.3  28.1/71.9    

Total  
Control (308)       
Adenoma (143)      45.6  
CRC (313)       

aThere is an updated version of this paper that was published in 2017, but the paper was first published in 2015; 2015 has been included in the dataset name, as it better reflects when 
the data was produced. bNumbers differ from those of the original sample (n = 61 rather than 63) reported in the article due to metadata and/or sequence-processing issues. NA, not 
available. The last three rows in bold refer to the combined stats of all cohorts above and were included to highlight the number of samples for each condition and the total number of 
reads; combined stats could not be computed because of missing data for one of the cohorts.  



 

 
Fig. 1 | Reproducible taxonomic and functional microbial biomarkers across datasets when comparing carcinoma to healthy 
controls (no adenoma samples considered). a, UpSet plot showing the number of taxonomic biomarkers identified using LEfSE on 
MetaPhlAn2 species profiles shared by combinations of datasets (see Supplementary Table 3 for all single significant associations). b,c, 
Pooled effect sizes for the 20 significant features with the largest effect size, calculated using a meta-analysis of standardized mean 
differences and a random effects model on MetaPhlAn2 species abundances (b) and HUMANn2 pathway abundances (c). Bold lines represent 
the 95% confidence interval for the random effects model coefficient estimate. d, Scatter plot of crude and age-, sex- and BMI-adjusted 
coefficients obtained from linear models using MetaPhlAn2 species abundances. e, Scatter plot of crude and age-, sex- and BMI-adjusted 
coefficients obtained from linear models using HUMANn2 pathway abundances.  



 

Fig. 2 | Assessment of prediction performances of the gut microbiome for CRC detection within and across cohorts. a, Cross-
prediction matrix reporting prediction performances as AUC values obtained using a random forest model on species-level relative 
abundances (see Methods). Values on the diagonal refer to 20 times repeated tenfold stratified cross-validations. Off-diagonal values refer to 
the AUC values obtained by training the classifier on the dataset of the corresponding row and applying it to the dataset of the corresponding 
column. The LODO rows refer to the performances obtained by training the model on the species-level abundances and MetaPhlAn2 markers, 
using all but the dataset of the corresponding column and applying it to the dataset of the corresponding column. See Extended Data Fig. 6 for 
the marker cross-study validation matrix. b, Cross-prediction matrix of AUC values obtained using HUMANn2 UniRef90 gene-family 
abundances and HUMANn2 pathway relative abundances. See Extended Data Fig. 6 for the pathway cross-study validation matrix. c, 
Prediction performances for the two Italian cohorts at increasing numbers of external datasets considered for training the model. The dark 
yellow line interpolates the median AUC at each number of training datasets considered. See Extended Data Fig. 7 for the plots referred to in 
the other testing datasets. d, Prediction performances at increasing number of datasets considered in the training, using HUMANn2 
UniProt90 gene- family abundances. See Extended Data Fig. 7 for the plots referred to in the other testing datasets.  



 

Fig. 3 | Ranking relevance of each species in the predictive models for each dataset and identification of a minimal microbial 
signature for CRC detection. a, The importance of each species for the cross-validation prediction performance in each dataset estimated 
using the internal random forest scores. Only species appearing in the five top-ranking features in at least one dataset are reported. b,c, 
Prediction performances at increasing number of microbial species obtained by retraining the random forest classifier on the top-ranking 
features identified with a first random forest model training in a cross-validation (b) and LODO setting (c). The rankings are obtained 
excluding the testing datasets to avoid overfitting.  



 

 

Fig. 4 | Choline TMA-lyase gene cutC and its genetic variants are strong biomarkers for CRC-associated stool samples. a, Distribution 
of RKPM abundances obtained using ShortBRED for the choline TMA-lyase enzyme gene cutC. P values were computed by two-tailed 
Wilcoxon signed-rank tests comparing values between controls and carcinomas for each dataset. b, Forest plot reporting effect sizes 
calculated using a meta-analysis of standardized mean differences and a random effects model on cutC RPKM abundances between 
carcinomas and controls. c, A phylogenetic tree of sample-specific cutC sequence variants identified four main sequence variants. Tips with 
no circles represent cutC sequence variants from genomes absent from the datasets. Taxonomy was assigned based on mapping against 
existing cutC sequences (criteria of >80% breadth of coverage, >97% identity and minimum 2,000- nt alignment length). d,e, qPCR validation 
of cutC gene abundance (d) and cutC transcript abundance (normalized by total 16S rRNA gene/transcript abundance) (e) on a subset of 
DNA samples from Cohort1. qPCR validation P values were obtained by one-tailed Wilcoxon signed-rank test. The lower and upper hinges of 
boxplots presented in the Figures correspond to the 25th and 75th percentiles, respectively. The midline is the median. The upper and lower 
whiskers extend from the hinges to the largest (or smallest) value no further than ×1.5 interquartile range from the hinge, defined as the 
distance between the 25th and 75th percentiles. Data beyond the end of the whiskers are plotted individually. 



 

 
Fig. 5 | Clinical potential and validation of the predictive biomarkers. a, Prediction performance of the taxonomic models trained on the 
seven datasets of Table 1 and applied to the new validation cohorts (using all features and the top 16 features) confirmed the strong 
reproducibility of metagenomic models for CRC across cohorts when sufficiently large training cohorts are available. Random forest internal 
ranking of the 16 most predictive species was obtained on each training fold separately to avoid overfitting. b, Species richness, rarefied oral 
species richness and cutC gene abundance (RPKM) are confirmed as strong biomarkers of CRC in the validation datasets30. P values 
underlying the panels refer to one-tailed Wilcoxon signed-rank test; P values overlying the panels refer to one-sided permutation-based 
Wilcoxon–Mann–Whitney tests, blocked for cohort. c, Prediction performances as AUC values on the validation cohorts when adding an 
external set of case and control samples from metagenomic cohorts of diseases other than CRC (Crohn’s disease, ulcerative colitis, type 2 
diabetes (T2D)). The studies that were included are HMP56, MetaHit53, T2Da54 and T2Db55. d, Assessment of the potential of microbiome-
based prediction models in comparison, and in combination, with current non-invasive clinical screening tests. Models integrating our LODO 
machine learning approach with the FOBT or the Wif-1 methylation test are termed OR and AND, depending on whether only one or both is 
required to be positive for the combined test to be positive. FPR, false-positive rate; TPR, true-positive rate; V., validation. The lower and 
upper hinges of boxplots presented in the Figures correspond to the 25th and 75th percentiles, respectively. The midline is the median. The 
upper and lower whiskers extend from the hinges to the largest (or smallest) value no further than ×1.5 interquartile range from the hinge, 
defined as the distance between the 25th and 75th percentiles. Data beyond the end of the whiskers are plotted individually.  



Methods  

Italian cohorts of patients with CRC, adenomas and controls. The two clinical studies performed here were approved by the relevant 
ethics committees (Cohort1: Ethics Committee of Azienda Ospedaliera ‘SS. Antonio e Biagio e C. Arrigo’ of Alessandria, Italy, protocol No. 
Colorectal_miRNA_CEC2014; and Cohort2: Ethics Committee of European Institute of Oncology of Milan, Italy, protocol No. R107/14-IEO 
118). Informed consent was obtained from all participants. For Cohort1, samples were collected from patients at the Clinica S. Rita in Vercelli, 
Italy. Patients with hereditary CRC syndromes, with a previous historyof CRC and with uncompleted or poorly cleaned colonoscopy were 
excludedfrom the study. Patients were recruited at initial diagnosis and had not received any treatment before fecal sample collection. 
Subjects reporting the use of antibiotics during the 6 months before the sample collection were excluded from the study. On the basis of 
colonoscopy results, recruited subjects were classified into three categories: (1) healthy subjects: individuals with colonoscopy negative for 
tumor, adenomas and other diseases; (2) patients with adenoma: individuals with colorectal adenoma(s); and (3) patients with CRC: 
individuals with newly diagnosed CRC. A total of 93 subjects were initially recruited, and the 80 that passed quality control (see below) were 
divided into 29 patients with CRC,27 adenomas and 24 controls. An additional 13 subjects affected by inflammatory gastrointestinal tract 
diseases (ulcerative and Crohn’s colitis, diverticular diseases) were recruited and fecal samples were subsequently used as a part of the final 
validation. Stool was collected in stool nucleic acid collection and transport tubes with RNA stabilizing solution (Norgen Biotek Corp.) and 
returned before performing the colonoscopy. Aliquots of stool samples were stored at –80 °C until use. DNA was extracted from aliquots of 
fecal samples using the Qiamp DNA stool kit (Qiagen) following the manufacturer’s instructions. Total RNA from feces was extracted using 
the Stool Total RNA Purification Kit (Norgen Biotek Corp.) following the manufacturer’s instructions. For Cohort2, a total of 60 subjects were 
recruited at the European Oncology Institute in Milan, Italy and were divided into 32 patients with CRC and 28 controls. Controls, matched 
for age (±5 years) and season when blood withdrawn (±2 years), were recruited among subjects who underwent recent colonoscopy and had 
negative or no other relevant gastrointestinal disorders. Subjects reporting the use of antibiotics in the 6 months before sample collection 
were excluded. Fecal samples were collected from healthy subjects and patients (before surgery, or any other cancer treatment) and directly 
frozen at −80 °C in resuspension buffer (TES buffer: 50 mM Tris-HCL, 10 mM NaCl, 10 mM EDTA, pH 7.5) and kept in liquid nitrogen until 
DNA extraction. DNA was extracted from fecal samples with the GNOME DNA isolation kit (MP Biochemicals). Sequencing libraries were 
prepared using the Nextera XT DNA Library Preparation Kit (Illumina), following the manufacturer’s guidelines. Sequencing was performed 
on a HiSeq2500 (Illumina) at the internal sequencing facility at University of Trento, Trento, Italy.  

Public metagenomic cohorts of patients with CRC, adenomas and controls.  

We downloaded five public fecal shotgun CRC datasets covering samples from six different countries, totaling 313 patients with CRC, 143 
adenomas and 308 controls (Table 1), and now available in curatedMetagenomicData27. We manually curated metadata tables for the public 
cohorts according to the curatedMetagenomicData27 R package grammatical rules. The metadata table includes ten fields (sampleID, 
subjectID, body_site, country, sequencing_platform, PMID, number_reads, number_bases, minimum_read_length, median_read_length) that 
are mandatory for all datasets, in addition to other fields that are dataset-specific.  

Description of the two validation cohorts. We considered an additional set of samples from two independent cohorts that were not 
available at the time we performed the meta-analysis on the other seven datasets, and we therefore used these as validation cohorts. 
Validation Cohort1 consisted of 60 CRC metagenomes collected in Germany after colonoscopy and 65 sex- and age-matched healthy controls, 
and is described in depth in the study accompanying this work30. Shotgun metagenomic sequencing was performed by Illumina HiSeq 
2000/2500/4000 (Illumina) platforms at the Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany. 
Validation Cohort2 consisted of 40 CRC samples and 40 controls from a Japanese cohort from Tokyo. DNA was extracted for Validation 
Cohort2 from frozen fecal samples by bead-beating using the GNOME DNA Isolation Kit (MP Biomedicals), and DNA quality was assessed 
with an Agilent 4200 TapeStation (Agilent Technologies). Sequencing libraries were generated with a Nextera XT DNA Sample Prep Kit 
(Illumina), and shotgun metagenomics of fecal samples was carried out on the HiSeq 2500 platform (Illumina) at a targeted depth of 5.0 Gb 
(150 base pair (bp) paired-end reads). The samples and clinical information used from both validation cohorts in this study were obtained 
under conditions of informed consent and with approval of the institutional review boards of each participating institute.  

Public metagenomic cohorts of patients without CRC. We used the curatedMetagenomicData27 resource to retrieve taxonomical and 
functional potential profiles as well as the metadata of three public cohorts: NielsenHB_2014 (ref. 53), comprising 21 patients with Crohn’s 
disease, 127 patients with ulcerative colitis and 248 controls; KarlssonFH_2013 (ref. 54), comprising 53 patients with type 2 diabetes and 43 
controls; QinJ_2012 (ref. 55), comprising 172 patients with type 2 diabetes and 174 controls; and we downloaded 1,339 metagenomes from 
the Human Microbiome Consortium phase-2 cohort56, comprising 598 patients with Crohn’s disease, 375 patients with ulcerative colitis and 
365 controls.  

Sequence preprocessing and taxonomic and functional profiling. Fecal metagenomic shotgun sequences obtained from the Italian 
cohorts were subjected to a preprocessing pipeline whereby sequences were quality filtered using trim_galore (parameters: --nextera --
stringency 5 --length 75 --quality 20 --max_n 2 --trim-n), discarding all reads of quality less than 20 and shorter than 75 nucleotides. Filtered 
reads were then aligned to the human genome (hg19) and the PhiX genome for human and contaminant DNA removal using bowtie2 (ref. 62). 
Thirteen samples having less than 2 Gb of host-decontaminated DNA were excluded from the study. We used MetaPhlAn2 (ref. 63) for 
quantitative profiling of the taxonomic composition of the microbial communities of all metagenomic samples, whereas HUMANn2 (ref. 64) 
was used to profile pathway and gene-family abundances. The profiles generated for the six public cohorts, along with their metadata and the 
two newly sequenced cohorts, are available through the curatedMetagenomicData R package27. Oral species were defined in this work by 
analyzing the 463 oral samples from the Human Microbiome Project dataset37 and the 140 saliva samples from ref. 36. Specifically, all species 
with >0.1% abundance and >5% prevalence were deemed to be of oral origin. For F. nucleatum marker analysis, we extracted MetaPhlAn2 
clade-specific markers from each sample sam file and considered a marker to be present if the coverage was greater than zero.  

The random forest-based machine learning approach. Our machine learning analyses exploited four types of microbiome quantitative 
profiles: taxonomic species-level relative abundances and marker presence or absence patterns inferred by MetaPhlAn2 (ref. 63) and gene-
family and pathway-relative abundances estimated by HUMAnN2 (ref. 64). All machine learning experiments used random forest65, as this 
algorithm has been shown to outperform, on average, other learning tools for microbiome data10. The code generating the analyses and the 
Figures is available at https://bitbucket. org/CibioCM/multidataset_machinelearning/src/, and is based on MetAML10 with the random forest 
implementation taken from Scikit-Learn v.0.19.0 (ref. 66). We used an ensemble of 1,000 estimator trees and Shannon entropy to evaluate the 



quality of a split at each node of a tree. The two hyperparameters for the minimum number of samples per leaf and for the number of 
features per tree were set, as indicated elsewhere67, to 5 and 30%, respectively. For the marker presence/absence profiles we used a number 
of features equal to the square root of the total number of features, and this percentage was further decreased to 1.0 when using gene- family 
profiles as these have a substantially higher number of features (>2 million). The experiments ran on reduced sets of input features (Fig. 4 
and Extended Data Fig. 8) avoided feature subsampling when fewer than 128 features were used (Extended Data Fig. 8).  

Application and evaluation of the learning models. The inside-dataset prediction capability was measured through tenfold cross-
validation, stratified so that each fold contained a balanced proportion of positive and negative cases. The procedure of forming the folds and 
assessing the models was repeated 20 times. The final result is therefore an average over 200 validation folds. In the cross-study validation, 
datasets were considered two by two: one is used for training the model, the other to validate. The LODO approach consists of training the 
model on the pooled samples from all cohorts except the one used for model testing. This mimics the scenario in which all available samples 
from multiple cohorts are used to predict CRC-positive samples in a newly established cohort. As part of the meta-analysis, we iterated along 
all the cohorts, performing a LODO validation on each set of samples (Fig. 2).  

Additional validation experiments on independent datasets and other 
diseases. We built a validation LODO model trained on MetaPhlAn2 taxonomic abundances from the previously described set of seven 
cohorts and applied it to the independent validation cohorts. To test the performance of the model when challenged with other diseases, we 
selected four metagenomic cohorts53–56 covering three non-CRC diseases (ulcerative colitis, Crohn’s disease and type 2 diabetes) and we used 
these for further experiments. For each disease in each dataset, we randomly drew 60 samples from the control class as well as 60 samples 
from the cases and added them to each validation dataset in turn, labeled as controls. The random selection was repeated ten times, and the 
validation AUC was computed on the model’s prediction accordingly. The rationale is to observe the decrease in AUC when the external cases 
are added to the controls of the validation cohort with respect to the addition of healthy controls. Specificity of the prediction model was also 
assessed by the addition of 13 inflammatory bowel disease samples to Cohort1: we used these 13 samples either as controls for Cohort1 or 
added them to the original controls; we performed a cross-validation and a LODO on Cohort1 (no validation cohorts in the training) using 
MetaPhlAn2 microbial species. To assess the prediction ability of our random forest approach with respect to more traditional non-invasive 
tests such as the FOBT and the Wif-1 methylation tests, we recorded the true-positive rate (sensitivity) and false-positive rate 
(1 – specificity) for a subset of the ZellerG_2014 cohort according to these two tests, and 100 positive detection thresholds in the case of 
random forest models. We then combined the random forest approach with the two tests in turn, first assigning the positive class when both 
predictors are positive (‘AND’ model) and secondly when just one predictor is positive (‘OR’ model).  

Statistical analysis. Univariate analyses on a per-dataset basis was performed using linear discriminant analysis effect size (LEfSe)39 to 
identify features that were statistically different among groups and to estimate their effect size. Analysis of Composition of Microbes was also 
applied68, but showed reduced power on our datasets (for example, it identified F. nucleatum as a biomarker in only one dataset) probably 
due to the low relative abundance of CRC biomarkers that are thus only minimally affected by the problem of compositionality. For these 
reasons, we chose to use LEfSe for the univariate analysis and focused on those biomarkers with the highest effect size. To overcome the 
limitations of univariate statistics, we performed multivariate analysis using linear models fitted to the data using the limma R package69, and 
potential confounders such as age, sex and BMI were included in the models. For the meta-analysis on taxonomic and functional profiles, we 
converted relative abundances to arcsine-square root-transformed proportions and used the escalc function from the R metafor package that 
employs Cohen’s standardized mean difference statistic to calculate random effects model estimates. We quantified study heterogeneity 
using the I2 estimate (percentage of variation reflecting true heterogeneity), as well as Cochran’s Q-test to assess statistically significant 
heterogeneity. P values obtained from the random effects models were corrected for multiple hypothesis testing using the Benjamini– 
Hochberg procedure, with corrected P < 0.05 considered statistically significant. Cluster analysis was conducted by calculating distance 
matrices from phylogenetic trees using the APE R package, clustering using partitioning around medoids and computing the prediction 
strength of clusters using the cluster R package. When validating differential species richness, oral species richness and increased abundance 
of the cutC gene, we also assessed significance through one-sided, permutation-based Wilcoxon–Mann–Whitney tests where we blocked for 
cohort52, as implemented in the ‘coin’ R package.  

Identification and quantification of the genes encoding TMA-producing enzymes. To obtain a more comprehensive database of choline 
TMA-lyase enzyme sequences, we downloaded amino acid sequences that matched the keywords 
cutC and cutD from UniProt90 (ref. 43), mapped their identifiers to those of the European Molecular Biology Laboratory’s coding sequences 
using UniParc and used the resulting DNA sequences to search, using BLASTn70, all 48,902 Prokka71 annotated genomes available in our 
repository72. Matching queries were filteredto include only alignments with >80% identity and length >1,000 nt for cutC 
and >800 nt for cutD, and an e-value <1 × 10–15. We used ShortBRED73 to identify short seed sequences that were representative of the filtered 
queries using UniProt’s UniRef100 database and quantified these in the metagenomes, normalizing by the number of RPKM. The pipeline was 
also applied to identify and quantify the l-carnitine/gamma-butyrobetaine antiporter (caiT) and the dioxygenase yeaW, responsible for 
producing TMA preferentially via carnitine degradation. To investigate differences in cutC sequence types, we clustered cutC sequences at 
97% sequence identity using UCLUST74 and aligned raw reads to the clustered cutC database using bowtie2 (ref. 62). From the bam files we 
calculated the breadth and depth of each sequence and generated their corresponding consensus sequence using Samtools75 and VCF utils76. 
We chose the representative cutC sequence for each sample as the one with the highest breadth or the highest depth, if there were multiple 
cutC sequences with the same breadth. We filtered representative cutC sequences from each sample to include only those of breadth >80%, 
aligned them using MAFFT77 and built a phylogenetic tree using fastTree78, which was refined with RAxML79 and visualized using GraPhlAn80.  

Validation of cutC gene and transcript abundances by qPCR. Real-time qPCR was used to assess differences in cutC genes and transcripts 
between CRC samples and controls. We used a previously described protocol50 that employs 16S rRNA abundances as an internal sample 
normalization. For first-strand cDNA synthesis, 400 ng of RNA templates were retrotranscribed using the High-capacity cDNA Reverse 
Transcription Kit with Random Primers (ThermoFisher Scientific), following the manufacturer’s instructions. The cutC and 16S rRNA genes 
(and transcripts from complementary DNA (cDNA)) were amplified using degenerate primers and cycling conditions as described 
previously50. Briefly, reactions were performed in triplicate with 10 ng of template DNA or 30 ng of cDNA on the Rotor Gene Q (QIAGEN) 
using HOT FIREPol EvaGreen qPCR mix (SOLIS BIODYNE) at a final primer concentration of 0.5 μM (16S) or 0.75 μM (cutC). Cycling 
conditions were as follows: initial denaturation of 95 °C for 15 min, followed by 40 cycles of denaturing at 95 °C for 45 s, annealing at 57 °C 
(cutC) or 55 °C (16 S) for 45 s and an extension step of 72 °C for 45 s. Melting curves were subsequently performed for all reactions using the 
following program: 95 °C for 5 s, followed by 65 °C for 60 s and a final continuous reading step of seven acquisitions per second between 65 
and 97 °C. Quantification of the cutC gene by means of the qPCR protocol was applied to 44 samples belonging to Cohort1 for which sufficient 



DNA was available. Samples for which either the cutC or the 16S rRNA amplification failed were removed, and we retained measurements for 
a total of 16 CRC and 19 control samples. Relative gene fold change was calculated by applying the ΔΔcycle threshold (Ct) method81, with ΔCt 
calculated as the difference between cutC and 16S rRNA Ct values. Significance of the cutC versus 16S rRNA comparison was assessed by one-
tailed Wilcoxon signed-rank test. The same procedure was applied to the quantification of cutC and 16S rRNA transcripts from cDNA, which 
was computed using 26 CRC and 20 control samples for which we obtained a reliable quantification of both cutC and 16S rRNA.  

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.  

 

Data availability  

Nucleotide sequences for the two new Italian cohorts are available in the Sequence Read Archive under accession No. SRP136711. 
MetaPhlAn2 and HUMANn2 profiles for the new cohorts were also added to the curatedMetagenomicData 
R package27 along with their corresponding metadata. Validation Cohort1  

is available in the European Nucleotide Archive under the study identifier PRJEB27928; Validation Cohort2 is available in the DNA data bank 
of Japan databases under the accession No. DRA006684.  

References  

62. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357 (2012).  

63. Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902–903 (2015).  

64. Franzosa, E. A. et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 15, 962–968 (2018).  

65. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001). 
66. Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn.  

Res. 12, 2825–2830 (2011). 
67. Hastie, T, Tibshirani, R. & Friedman, J. The Elements of Statistical Learning  

Vol. 1 (Springer, 2009). 
68. Mandal, S. et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb. Ecol. Health Dis. 26, 
27663 (2015).  

69. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 
(2015).  

70. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). 
 

71. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014). 
 

72. Segata, N., Börnigen, D., Morgan, X. C. & Huttenhower, C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic 
placement of microbes. Nat. Commun. 4, 2304 (2013). 

 
73. Kaminski, J. et al. High-specificity targeted functional profiling in microbial communities with ShortBRED. PLoS Comput. Biol. 11, 
e1004557 (2015).  

74. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010). 

75. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). 
 

76. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011). 
 

77. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. 
Biol. Evol. 30, 772–780 (2013). 
 



78. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum- likelihood trees for large alignments. PLoS ONE 5, e9490 
(2010). 
 

79. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 
(2014). 
 

80. Asnicar, F., Weingart, G., Tickle, T. L., Huttenhower, C. & Segata, N. Compact graphical representation of phylogenetic data and metadata 
with GraPhlAn. PeerJ 3, e1029 (2015). 

 
81. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔC(T) Method. Methods 
25, 402–408 (2001).  

 



 

 

Extended Data Fig. 1 | Sequencing depths and species richness across CRC datasets a, Boxplots reporting the total number of reads in 
each dataset. 
P values between the carcinoma and control groups were calculated by two-tailed Wilcoxon rank-sum tests. b, Boxplots showing the total 
number of microbial species per dataset. P values were calculated by two-tailed Wilcoxon rank-sum tests. c, Boxplots showing the total 
number of microbial species per dataset calculated on metagenomes subsampled in each dataset to the number of reads of the tenth 
percentile. P values were calculated by two- tailed Wilcoxon rank-sum tests. d, Multivariate analysis of species richness using crude and age-, 



sex- and BMI-adjusted coefficients obtained from linear models. e, Meta-analysis of crude and adjusted multivariate richness coefficients 
using a random effects model. Bold lines represent the 95% confidence interval for the random effects model estimate.  

 

Extended Data Fig. 2 | Meta-analysis of species diversity and oral species richness in CRC datasets. a, Boxplots reporting the Shannon 
species diversity in each dataset. P values between the carcinoma and control groups were calculated by two-tailed Wilcoxon rank-sum tests. 
b, Boxplots reporting 
the Shannon species diversity calculated on metagenomes subsampled in each dataset to the number of reads of the tenth percentile. P 
values were calculated by two-tailed Wilcoxon rank-sum tests. c, Multivariate analysis of species diversity using crude and age-, sex- and 
BMI-adjusted coefficients obtained from linear models. d, Meta-analysis of crude and adjusted multivariate Shannon diversity coefficients 



using a random effects model. Bold lines represent the 95% confidence interval for the random effects model estimate. e, Boxplots reporting 
the total number of oral microbial species per dataset. P values were calculated by two-tailed Wilcoxon rank-sum tests comparing values 
between controls and carcinomas for each dataset. f, Multivariate analysis of putative oral species richness using crude and age-, sex- and 
BMI-adjusted coefficients obtained from linear models. g, Meta-analysis of crude and adjusted multivariate putative oral species richness 
coefficients using a random effects model. Bold lines represent the 95% confidence interval for the random effects model estimate.  

 

Extended Data Fig. 3 | Two metagenomic cohorts identify clear but only partially overlapping microbiome signatures associated 
with CRC. a,b, Relative abundances (log scale) and effect sizes (estimated using the linear discriminant analysis score in LEfSe) for the 
significantly different microbial species 
in CRC samples compared to control samples for Cohort1 (significance assessed by the non-parametric test in LEfSe) (a) and Cohort2 (b). c, 
Alpha- diversities measured as the total number of species and total number of UniProt90 gene families in each sample for the two cohorts. 
d, Beta-diversities estimated with the Bray–Curtis dissimilarity metric for intra- and inter-condition comparisons in the two cohorts. 



 

 

Extended Data Fig. 4 | Analysis of F. nucleatum markers and taxonomic meta-analysis of CRC datasets. a, Percentages of F. nucleatum 
clade-specific markers (200 in total) in each dataset. P values were obtained by two-tailed Wilcoxon rank-sum tests comparing values 
between controls and carcinomas for each dataset. b, Multivariate analysis of meta-analysis species-level abundance biomarkers. Crude and 
age-, sex- and BMI-adjusted coefficients 
for species associated with disease status in the meta-analysis of standardized mean differences. c, Meta-analysis of CRC datasets using 
species-level MetaPhlAn2 profiles. Bold lines represent the 95% confidence interval for the random effects model estimate.  



 

 



Extended Data Fig. 5 | Analysis of putative oral species abundances in CRC datasets and gene-family richness across CRC datasets. a, 
Effect sizes of the abundances of significant putative oral species identified using a meta-analysis of standardized mean differences and a 
random effects model. Bold lines represent the 95% confidence interval for the random effects model estimate. b, Total abundance of 
putative oral species in each gut metagenomic dataset. P values were obtained by two-tailed Wilcoxon rank-sum tests comparing values 
between controls and carcinomas for each dataset. c, The total number of reads in each sample of each dataset correlates with the total 
number of gene families identified using HUMANn2. Ellipses represent the 95% confidence level assuming a multivariate t-distribution. d, 
Distribution of the total number of gene families identified in the samples of each dataset. P values were obtained by two-tailed Wilcoxon 
rank-sum tests comparing values between controls and carcinomas for each dataset. e, Distribution of the percentages of unmapped reads 
across datasets for UniProt90 gene families.  

 

 



Extended Data Fig. 6 | Cross-validation, cross-cohort and LODO predictions using pathway abundances, species abundances and 
species-specific markers. a, Prediction matrix reporting prediction performances as AUC values obtained using a random forest model on 
pathway relative abundances. Values on the diagonal refer to 20 times repeated tenfold stratified cross-validations. Off-diagonal values refer 
to the AUC values obtained by training the classifier on the dataset of the corresponding row and applying it to the dataset of the 
corresponding column. The LODO row refers to the performances obtained by training the model on pathway abundances using all but the 
dataset of the corresponding column and applying it to the dataset of the corresponding column. b, Prediction matrix as in a but using 
MetaPhlAn2 marker presence and absence information. c, Prediction of samples-to-cohort assignments using species-level relative 
abundances. Only control samples from each dataset are considered. d, Principal coordinate analysis of Bray– Curtis distances computed on 
MetaPhlAn2 species-level abundances across datasets. Ellipses represent the 95% confidence level assuming a multivariate t-distribution. e, 
Cross-prediction matrix for the performances of random forest models in predicting adenomas versus CRC conditions. f, Cross-prediction 
matrix as described in e but on the distinction of adenomas versus controls.  

 

 



Extended Data Fig. 7 | Prediction performances with increasing numbers of external datasets considered in the training model. a, 
Prediction performances computed based on MetaPhlAn2 species abundances. The dark yellow line interpolates the median AUC at each 
number of training datasets considered. b, Prediction performances computed based on HUMANn2 gene-family abundances.  
 

 

 

Extended Data Fig. 8 | identification of a minimal number of microbial gene families for CRC detection. Prediction performances in the 
LODO settings at increasing numbers of gene families. Each ranking is obtained excluding the testing dataset to avoid overfitting.  



 

Extended Data Fig. 9 | Metagenomic analysis of genes involved in the TMA synthesis pathway. a, ShortBRED analysis of yeaW and caiT 
gene abundances. Points represent the log of RPKM for each sample and crosses represent average values per group/dataset. b, ShortBRED 
analysis of cutD gene abundances. Boxplots report the RKPM abundances obtained using ShortBRED for the gene of the activating TMA-lyase 
enzyme cutD. P values were calculated by two-tailed Wilcoxon rank-sum tests comparing values between controls and carcinomas for each 
dataset. c, Forest plot showing effect sizes calculated using a meta-analysis of standardized mean differences and a random effects model on 
cutD RPKM abundances between carcinomas and controls. d, Breadth of coverage of cutC gene sequence clusters across CRC datasets. e, 
Depth of coverage of cutC gene sequence clusters across CRC datasets.  



 



 

Extended Data Fig. 10 | Cluster analysis of representative cutC sequence variants of samples. a, Prediction strengths at differing 
numbers of clusters showing optimum numbers at two and four clusters. b, Tables showing the number of samples for carcinomas, 
adenomas and controls with breadth of coverage >80% at two different cluster thresholds. P values were calculated using a Fisher t-test, and 
taxonomy was assigned by BLASTn and the cutC sequence database (criteria of 80% coverage, >97% identity and minimum 2,000 nt 
alignment length).  

 


