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Nicolò Anselmetto,1* Emanuele Marco Sibona,1 Fabio Meloni,1

Luca Gagliardi,1 Massimo Bocca,2 and Matteo Garbarino1

1Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO,
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ABSTRACT

The synergic influence of land use and climate

change on future forest dynamics is hard to dis-

entangle, especially in human-dominated forest

ecosystems. Forest gain in mountain ecosystems

often creates different spatial–temporal patterns

between upper and lower elevation belts. We

analyzed land cover dynamics over the past

50 years and predicted Business as Usual future

changes on an inner subalpine watershed by using

land cover maps, derived from five aerial images,

and several topographic, ecological, and anthro-

pogenic predictors. We analyzed historical land-

scape patterns through transition matrices and

landscape metrics and predicted future forest

ecosystem change by integrating multi-layer per-

ceptron and Markov chain models for short-term

(2050) and long-term (2100) timespans. Below the

maximum timberline elevation of the year 1965,

the dominant forest dynamic was a gap-filling

process through secondary succession at the ex-

pense of open areas leading to an increase of

landscape homogeneity. At upper elevations, the

main observed dynamic was the colonization of

unvegetated soil through primary succession and

timberline upward shift, with an increasing speed

over the last years. Future predictions suggest a

saturation of open areas in the lower part of the

watershed and stronger forest gain at upper eleva-

tions. Our research suggests an increasing role of

climate change over the last years and on future

forest dynamics at a landscape scale.
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HIGHLIGHTS

� Alpine forest gain shows two different landscape

patterns depending on the elevation.

� Primary successions at upper elevations are

increasing due to climate change.

� Future LUC scenarios suggest an expansion of

dense forests mostly at upper elevations

INTRODUCTION

Mountain ecosystems and populations around the

world are increasingly affected by the combination

of changes in climate and land use (Bugmann and

others 2007; Lasanta and others 2017). Tropical

mountains, for instance, are facing expansion and

intensification of agriculture and an over-ex-

ploitation of natural resources (Peters and others

2019). In contrast, temperate mountain forest

dynamics, especially in Europe, are controlled by

land-abandonment processes (Chauchard and

others 2007) that, along with gradual effects of

climate change, are expected to modify landscape

structures and ecosystem services supply in the

future (Van der Sluis and others 2019). Neverthe-

less, it is hard to disentangle the role of climate and

land use changes (hereafter, CC and LUC), since

they influence in synergy, especially in highly

exploited landscapes (Clavero and others 2011).

At lower elevations, LUC plays the most relevant

role through secondary successions represented by

in-filling of open areas and forest gaps at the ex-

pense of abandoned meadows, grasslands and ara-

ble lands (Gautam and others 2004; Garbarino and

others 2014; Malandra and others 2019). The loss

of these areas is strongly related to the abandon-

ment of marginal areas during the twentieth cen-

tury and to the decline of traditional land uses and

practices (Chauchard and others 2007; Tattoni and

others 2017).

In the upper part of mountain watersheds, the

limit of tree distribution, that is, the treeline, is one

of the most studied ecotones where the role of

long-term CC can be assessed since it is mainly

limited by heat availability (Körner 2015; Fajardo

and others 2019). However, other environmental

variables such as soil and topography also proved to

be important treeline drivers (Holtmeier and Broll

2020). Several studies have shown evidence of

wood encroachment on upper grasslands (Barros

and others 2017; Malfasi and Cannone 2020) and

of treeline upward shift in different ecosystems

around the world (Fang and others 2009; Elliott

2011; Ameztegui and others 2016). Land aban-

donment effect is often highlighted as the main

driver of the treeline upward shift, but it is ex-

pected to be equalized by the CC, which will be-

come the most important in future years (Gehrig-

Fasel and others 2007).

Vegetation maps and aerial photographs are

fundamental historical data sources for the com-

prehension of past dynamics and future trajectories

of forests. These spatially explicit datasets are useful

for LUC detection and can be used to assess the

contribution of climate and land use on forest gain

(Cousins and others 2015; Filippa and others 2019;

Ridding and others 2020). A long time-series da-

taset with a fine temporal resolution is a crucial

aspect for setting observed current changes in a

comprehensive historical context in order to pro-

duce more realistic future predictions of a process

that is highly variable and nonlinear (Becker and

others 2007; Tattoni and others 2017).

Many approaches and classification methods can

be adopted in LUC forecast modeling. Six types of

models exist (sensu Lantman and others 2011): (i)

agent-based; (ii) artificial neuron networks (ANNs);

(iii) cellular automata (CA); (iv) economics-based;

(v) Markov chains (MCs); and (vi) statistical. Since

there is not a ‘right model’ for all ecological pur-

poses, different tools can be integrated in a single

framework to boost their strengths and minimize

their weaknesses (Mas and others 2014). Another

important decision that must be made in forecast

modeling is the one between scenario-based sim-

ulation models and Business as Usual (BaU) ones.

BaU models base their predictions according to the

continuation of current land use practices and

policies. BaU models are data-driven tools that

permit to: (i) forecast landscape trajectories

according to past situations and (ii) stress past

dynamics. There are two model types that can be

considered adequate to carry out this task: Markov

chains (MCs) and artificial neuron networks

(ANNs). MCs are widely used to model both

anthropogenic and natural or semi-natural LUC at

different spatiotemporal scales (Muller and Mid-

dleton 1994; Tattoni and others 2011; Al-Shaar and

others 2021). MCs forecasts are based on previous

changes and on the assumption of the persistence

of historical dynamics, thus they are reliable tools

for BaU scenarios. Their main strengths are sim-

plicity and flexibility and the ability to describe

complex and lengthy processes of land use

dynamics as simple transition probabilities (Lant-

man and others 2011; Iacono and others 2015).

However, these models are not spatially explicit

(Noszczyk 2019), and because of these aspects they
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are often combined with other models such as

ANNs and CAs (Tattoni and others 2011; Ozturk

2015).

ANNs are machine learning algorithms built

around several layers of interconnected neurons,

similar to human brains (Noszczyk 2019). There-

fore, they can recognize patterns and facilitate the

development of irregular relationships between

past and future LUC (Lantman and others 2011).

ANNs are usually connected to suitability maps,

expressions of transition potential from one state of

the system to another. Their principal limitations

are the ‘black box’ approach and the time required

to build them. They have different applications on

LUC modeling like urban growth, natural trends,

habitat loss (for example, Gontier and others 2010;

Tattoni and others 2011; Fattah and others 2021).

Though the interaction between MCs and ANNs

has been thoroughly analyzed, few studies use

more than two or three land cover maps (that is,

time steps) to predict future dynamics, oversim-

plifying the complexity of LUC over time.

In this study, we analyzed past dynamics and

future trajectories of LUC using five land cover

maps and a nonlinear BaU modeling approach to

test our three hypotheses on an inner subalpine

watershed: (i) post-abandonment forest gain at

lower and upper elevations shows different land-

scape patterns; (ii) primary successions at higher

elevations are becoming more important in the last

decades due to increasing climate change and

decreasing land abandonment effects; (iii) forest

canopy closure at lower elevations and the avail-

ability of open areas at the treeline ecotone will

favor a stronger forest gain at higher elevations. We

had the opportunity to test our hypotheses at the

Mont Avic Natural Park, Aosta valley (hereafter,

MA), a human-dominated forest ecosystem with a

history of intense forest exploitation and a rela-

tively low agro-pastoral impact.

MATERIALS AND METHODS

Study Area

MA is located on the southwest part of Aosta Val-

ley, a mountainous autonomous region in north-

western Italy. The Natural Park covers more than

5800 ha and contains Chalamy and Champorcher

valleys. It was created in 1989 to protect natural

resources in the upper part of the valleys, where

high value landscapes had not been strongly

modified by humans because of their rough terrain.

For this reason, the main human disturbance is not

livestock grazing as in many other alpine valleys,

but forest cutting for mining activities (Mont Avic

2018). The climate is Alpine, with annual average

temperatures ranging from 1 to 3 �C and precipi-

tations (800–1200 mm year-1) mainly concen-

trated in autumn and spring (Tiberti and others

2019). The valleys belong to the ‘Mont Avic

Ophiolitic Complex’, and the prevailing lithology is

serpentine (D’Amico and others 2008). Deciduous

trees such as beech Fagus sylvatica L., chestnut

Castanea sativa Mill., downy oak Quercus pubescens

Willd. and birch Betula pendula Roth prevail below

1100 m a.s.l. and are sporadic over 1500 m a.s.l.

Three coniferous forest species (Larix decidua Mill.,

Pinus sylvestris L. and Pinus mugo Turra subsp. unci-

nata) dominate the landscape in the upper mon-

tane and subalpine zones (1100–2000 m a.s.l.).

The study area (about 5500 ha and with an ele-

vation gradient between 500 and 2600 m a.s.l.)

contains only the Chalamy watershed and some

neighboring areas and lies on four different eleva-

tion zones: lowland (500–800 m a.s.l.), montane

(801–1500 m a.s.l.), subalpine (1501–2200 m

a.s.l.) and alpine (2201–2600 m a.s.l.) (Figure 1).

Elevations above 2600 m a.s.l. were excluded

from analyses because conditions are considered

unfavorable for plant species; in this way, the

analyses were limited to the vegetated areas,

reducing the weight of unvegetated soil (Garbarino

and others 2020). For the analysis of trends and

successions, three areas were chosen: (i) the full

study area (5478 ha), (ii) the upper elevations

(1230 ha) and (iii) lower elevations (4248 ha). The

threshold between upper and lower areas was

determined based on the maximum elevation of

the dense forests in the oldest available aerial image

(that is, 1965), corresponding to a medium eleva-

tion of 2182 m a.s.l.

Image Analysis and Environmental
Predictors

Historical forest dynamics were evaluated by using

land cover maps obtained from the classification of

five aerial images spanning 52 years (Table 1 Sup-

plementary Materials). Historical aerial pho-

tographs were orthorectified and segmented. A

supervised classification based on an initial set of

polygons was then performed, and lastly a manual

classification of residual unclassified polygons

(Garbarino and others 2020). Five land cover clas-

ses (LCCs) were considered: dense forest (FO),

sparse forest (SF), grassland (GR), urban surface

(UR) and unvegetated (UV). The land cover class

‘dense forest’ includes high (‡ 80%) canopy cover

stands; the ‘sparse forest’ class represents lower
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(< 80%) canopy cover stands and shrublands,

which have a similar spectral signature and pixel

texture and are therefore hard to separate in this

landscape. The unvegetated class is a residual class

that includes rocks, bare soil, gravel, sand and

water. Urban surfaces were not considered in fur-

ther analyses because our main goal was to explore

natural forest dynamics, independent of the mar-

ginal expansion of human settlements in the lower

part of the valley. Among the maps, overall accu-

racy (OA) ranged from 78% (1988) to 92% (2017)

with a Cohen’s Kappa coefficient between 0.71 and

0.89, respectively (Table 1 Supplementary Materi-

als).

Several environmental predictors of land use

change (Table 1) were produced such as topo-

graphic variables (elevation, aspect, slope, heat load

index (HLI), topographic wetness index (TWI),

topographic position index (TPI), terrain rugged-

ness index (TRI), roughness, curvature), anthro-

pogenic variables (cost of movement, Euclidean

distance to buildings and roads), the distance from

preexisting forest and sparse forest edges and the

likelihood of class transitions. The choice of pre-

dictors was based on a preliminary literature search

and expert knowledge (for example, Rutherford

and others 2008; Dubovyk and others 2011; Gar-

barino and others 2020). A neighborhood size of 8

was used for all the GIS variables computed at the

neighborhood level. We derived the accumulated

cost of movement through Tobler’s hiking on-path

function using slope and buildings from Open

Street Map as starting points. The cost was ex-

pressed as hours required for the movement. Al-

most all the predictors were produced in R

environment: Cost of movement was implemented

with the movecost package (Alberti 2019), the heat

load index was calculated with the spatialEco

package (Evans 2020), and the topographic wet-

ness index was calculated according to Beven’s

classical topmodel with the dynatopmodel package

(Metcalfe and others 2018). The likelihood of

transitions was calculated in the TerrSet environ-

ment (Eastman 2016).

Historical Landscape Pattern Analysis

The historical patterns were evaluated looking at

both quantity and allocation of changes. The

quantification was assessed in the R environment

by producing 10 transition matrices regarding all

the possible combinations between land cover

maps. This procedure was conducted for the full

landscape and the upper and lower parts of the

landscape (Table 2 Supplementary Materials). The

qualitative and spatial dynamics were assessed with

landscape metrics, produced with the R package

landscapemetrics (Hesselbarth and others 2019).

These two analyses allowed a more comprehensive

insight into the nature of ecological successions.

We considered four landscape metrics for the

comparison between higher and lower elevations:

edge density, patch density, contagion and Shan-

non’s evenness index. The Shannon’s evenness

index was preferred over diversity indices because

it does not include the richness, which is a mean-

ingless variable in our landscape since the number

of classes does not change over the years.

Figure 1. Study area location on the Italian Alps and elevation zones. The black line indicates the elevation threshold

based on dense forest treeline in 1965.
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Landscape Pattern Forecast

Future changes were predicted for both short (that

is, 2050) and long-term (that is, 2100) predictions

using a GIS modeling approach in TerrSet envi-

ronment within the panel ‘Land Change Modeler’

(LCM), conveniently implemented with other

TerrSet tools. This framework joins two separate

models: MC and multi-layer perceptron (MLP)

(Figure 2).

First, a ‘transition probability matrix’ was pro-

duced through the use of MC model that expresses

the likelihood of change from one state to another

in a consecutive way, by providing two distinct

land cover maps (Jokar Arsanjani and others 2013).

A MC is a system of elements that pass through one

state to another over a discrete time space (Balzter

2000) consistent with the Markov property:

PðXtþ1 ¼ isþ1jXt ¼ is;Xt�1 ¼ is�1; :::;X0 ¼ i0Þ
¼ PðXtþ1 ¼ isþ1jXt ¼ isÞ ð1Þ

For all times t = 1,2,3,… and for all states s = s0,

s1,…, st, s. Accordingly, Xt+1 depends upon Xt, but it

does not depend upon Xt-1, …, X1, X0. The transi-

tion probability matrix P reports the probability

that each land cover type would be found after a

certain number of time units for k states:

P ¼
p11 ::: p1k
::: ::: :::
pk1 ::: pkk

0
@

1
A ð2Þ

Table 1. Environmental Predictors Used in the Study with the Unit, Description and Source

Predictor Name Type Unit Description Source

Elevation Topographic m Elevation above sea level DTM

Aspect cosine Topographic - 1 to +

1

Easterness (aspect relative to west) DTM

Aspect sine Topographic - 1 to +

1

Northerness (aspect relative to

south)

DTM

Slope Topographic � Proxy for diffuse solar radiation and

growth limitations

DTM

Curvature Topographic – Rate of change of slope DTM

Roughness Topographic m The largest inter-cell difference of a

central pixel and its surrounding

cell

DTM

Heat load index Topographic 0 to 1 Incident radiation of sun according

to the aspect; McCune and Grace

2002

DTM

Topographic wetness index Topographic – Proxy for moisture accumulation

and availability

DTM

Topographic position index Topographic – Index of the position of a cell

according to the neighbors

DTM

Terrain ruggedness index Topographic – Amount of elevation difference be-

tween adjacent cells of a DEM;

Riley et al. 1999

DTM

Euclidean distance from buildings Anthropogenic m Proxy for accessibility of the site OSM

Euclidean distance from roads Anthropogenic m Proxy for accessibility of the site OSM

Cost of movement Anthropogenic h Proxy for accessibility of the site

that considers buildings and ter-

rain according to the Tobler’s

hiking function

OSM + DTM

Distance from preexisting forests Ecological m Proxy for land abandonment

dynamics and seed sources

Land Cover

Distance from preexisting sparse for-

ests

Ecological m Proxy for land abandonment

dynamics and seed sources

Land Cover

Likelihood of class transitions Ecological 0 to 1 Likelihood of class transitions

according to past observations;

computed in TerrSet

Land Cover

Past and Future Dynamics of a Subalpine Forest Ecosystem



where pij are calculated according to Eq. (1).

An assumption to the original MC formulation is

the time homogeneity between observations. If

time intervals are not equal, different estimation

techniques are available (see Takada and others

2010 for the implementation of yearly matrices).

Second, a spatially explicit model was trained to

produce a suitability map that describes the likeli-

hood of change among the different cells. For this

study, we applied a MLP model, one of the most

common types of ANN (Sangermano and others

2012) that consists of an input layer, one or more

hidden layers and an output layer, where every

neuron in each hidden layer is connected to other

neighboring layers’ neurons (Ozturk 2015). MLP is

a non-parametric algorithm; thus, it allows multi-

collinearity and meaningless variables to be ex-

cluded.

The model consists of a series of submodels that

represents specific transitions. For this study, only

the main dense forest dynamics, that is, the tran-

sitions from SF, GR and UV to FO, were considered

when training MLP. Model parameterization is a

crucial part of the process and requires adjusting

especially the start learning rate and the hidden

layer nodes in order to produce the highest accu-

racy (Eastman and others 2005). The explanatory

variables in the submodels can be both static and

dynamic. Static variables do not change over time,

while dynamic variables are recalculated during the

prediction. In this study, we considered all the

variables as static except for the distance from forest

and sparse forest areas. It is common in landscape

ecology studies (Mishra 2016; Ozturk 2015) to

consider distance from buildings and roads as dy-

namic variables, but since the area did not show

great urbanization, these variables were counted as

fixed. The MLP model also applies a Jackknife test

to measure the relevance of each variable in driving

the changes.

The joining of the two models (MLP-MC) allows

for the change allocation prediction according to

the amount of change (MC model) and the

potential for change (MLP model). A common

Figure 2. Conceptual workflow of the LCM model adopted at Mont Avic. A combination of MC (Markov chain) and MLP

(multi-layer perceptron) models.
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experimental approach is to predict future cover

classes based on the oldest and newest land cover

maps (for example, Al-Shaar and others 2021;

Mirici 2018). In this research, we compared this

standard model (hereafter, SM; 1965 as a starting

date for the calibration period) with an optimized

model (OM) that considered the ability in predict-

ing future land cover for the year 2017. To do this,

all possible combinations between maps before

2017 were tested to extract all the change detection

matrices (Markov chain’s probability transition

matrices and area matrices) of LU change (Table 3

Supplementary Materials). Note the numbers in

this table refer to probabilities of change according

to MC, and consequent areas, while the numbers in

Table 2 Supplementary Materials are observed

transitions in the past. By using the ‘Markov’ tool

of TerrSet, the probability transition matrices were

calculated considering the classification accuracy as

a measure of uncertainty called proportional error,

which in this study was based on the mean of the

OAs of the calibration periods. We then validated

these MCs by comparing observed and predicted

land cover values for 2017 using Pearson’s Chi-

square test according to the Eq. (3):

X2 ¼
Xn
i¼1

Oi � Eið Þ2

Ei

ð3Þ

where n = 4 (FO, SF, GR and UV classes were

considered); Oi is the observed value of land cover;

Ei is the expected one obtained from the MC

model. The initial state chosen for this OM was the

one with the lowest Pearson’s Chi-square in respect

of the 2017 prediction.

We predicted the 2017 land cover map according

to the SM and the OM with reference to 2006 to

validate the results (Verburg and others 2004). The

process was conducted with the TerrSet tool ‘Vali-

date’, which provides an assessment of the spatial

prediction according to four components of the

kappa index of agreement (KIA): Kstandard, Kno,

Klocation and Klocationstrata (Table 4 Supple-

mentary Materials). The combination of these four

kappa indices allows the overall success rate to be

assessed and to understand the strength factors of

the prediction (that is, allocation and quantity).

Once this MLP-MC validation had been per-

formed, two BaU predictions were assessed for both

the SM (1965–2017 calibration period) and OM

(initial state selected according to Pearson’s Chi-

Square results and final state as 2017), one for the

short-term (2050) and one for the long-term

timespan (2100). The two models were also aver-

aged to evaluate mean trends. The transition

potential matrices obtained with the MC were ap-

plied to all the LCCs (Table 3 Supplementary

Materials). The future allocation (MLP-MC model)

considered only the major transition (all-to-FO) to

obtain superior results (Ozturk 2015) and to gather

just future forest dynamics. Three class metrics

(edge density, patch density, mean core area) based

on FO class were performed to compare past and

future dynamics.

RESULTS

Historical Landscape Pattern

Historical landscape dynamics were measured with

quantitative and spatial metrics, according to

transition matrices and landscape metrics. Figure 3

shows the evolution of the five LCCs area from

1965 to 2017 on the total landscape. The most

important trend is the expansion of dense forest,

from 1778 ha in 1965 to 2978 ha in 2017, corre-

sponding to an increase at a rate of + 1.3% year-1.

The biggest loss was experienced by unvegetated

areas, more than 36% of their surface and a de-

crease at a rate of –0.7% year-1 (from 1876 to

1194 ha). According to the Producer’s Accuracy,

the most uncertain class is SF, while other classes

are relatively accurate.

Temporal (Figure 3) and spatial (Figure 4) LUC

patterns at MA emerged as being not linear. FO

increase between 1975 and 2006 was constant

(+ 2.0% year-1 in the period 1975–1988 and +

1.5% year-1 between 1988 and 2006), while it

decreased in the last 11 years (+ 0.6% year-1). SF

decreased between 1975 and 2006, but showed an

improvement in the last 11 years (2006–2017),

with an increase rate of + 2.1% year-1.

At lower elevations, the decreasing trend of edge

density, patch density and Shannon evenness and

the increase of the contagion index suggest a sim-

plification of spatial pattern due to the forest gain

(Table 2). In the upper part of the landscape, the

most relevant class over the period remains UV,

thus facing a decrease at a rate of –0.4% year-1 in

the 50 years (from 1082 ha in 1965 to 891 ha in

2017). SF and GR increased over the period with a

rate of + 7.8% year-1 and + 1.6% year-1, respec-

tively (Figure 4b). Looking at the transition matri-

ces (Table 2 Supplementary Materials), UV

contributed to increasing especially the GR (168 ha

exchanged between 1965 and 2017) and then SF

(46 ha). Landscape metrics (Table 2) indicate an

opposite trend with respect to the lower elevations,

corresponding to fragmentation and plant colo-

nization of UV areas. Biggest changes—represented

Past and Future Dynamics of a Subalpine Forest Ecosystem



in Figure 4b and Table 2—were experienced in the

last years, especially from 2006 to 2017; UV surface

decreased at a rate of –1.1% year-1 in this period,

more than nine time faster than the previous

40 years –0.14% year-1, Shannon evenness in-

crease in this period (+ 3.4% year-1) was more

than ten times higher with respect to the previous

period (+ 0.3% year-1).

Model Outcomes

The Pearson’s Chi-square analyses show that the

highest predictive power for 2017 projection was

the one obtained from the 1975–2006 period, with

a value of 40.1. Thus, we selected 1975 as the initial

state for the OM. The mean accuracy of MLP

models was about 60% (Table 4 Supplementary

Materials). All the kappa values for the 2017 vali-

dation (1965–2006 and 1975–2006 calibration

periods) are greater than 0.80, reaching 0.88 peaks

for Klocation and Klocationstrata in the SM (Ta-

ble 4 Supplementary Materials). Predictions can

thus be considered strong, and both the optimized

and standard MLP-MC models can be applied to

predict future dynamics.

Figure 5 shows the relative importance of the

most relevant driving variables common to all the

MLP models (distance from FO, the likelihood of

class transitions, the cost of movement and the

TWI) according to the Jackknife test of MLP mod-

els. These four driving factors contribute to more

than 99.8% of the total accuracy. There are little

Figure 3. Historical land cover maps (1965, 1975, 1988, 2006, 2017) and area of each land cover class over time. Urban

class was removed from the analysis. The error bars represent the Producer’s Accuracy of the different classes (Table 1

Supplementary Materials).

Figure 4. Land cover classes area for the lower (a) and upper (b) elevations at MA from 1965 to 2017. The error bar

represents the Producer’s Accuracy of different classes (Table 1 Supplementary Materials).
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differences between the models regarding the

driving variables explanatory power, and the rele-

vance order is the same.

Landscape Pattern Forecast

Predicted forest gain is higher for the OM (1975–

2017 calibration period) than the SM (1965–2017)

(Figure 6). Initial FO expansion (2017–2050)

shows an increase at a rate of + 0.29% y-1 and +

0.16% y-1, respectively, for the OM (3258 ha in

2050) and SM (3139 ha). Between 2050 and 2100,

the OM’s trend remains quite constant (+ 0.33%

y-1, 3802 ha), while it increases for the SM

(+ 0.33% y-1, 3674 ha). SF class shows an initial

growth until 2050 for the two models, then a de-

crease related to FO transitions, confirmed by the

mirrored behavior of FO and SF transitions and by

the potential matrices (Table 3 Supplementary

Materials), which reflects a great inclination of SF

classes toward FO. UV, the second biggest class in

2017, will be outclassed by SF before 2050. GR

cover was predicted as decreasing in a similar way

according to the two models: about –0.30% y-1 for

the period 2017–2050, about –0.55% y-1 for the

period 2050–2100.

Dense forest gain was forecast toward upper

elevations, especially in the long-term prediction

(Figure 7). Class metrics relative to the dense forest

stands reflect different future forest dynamics at

lower and upper elevations (Table 3). Below the

timberline, edge density and patch density were

predicted to decrease between 1965 and 2100

(–50% and –80%, respectively), while mean core

area was forecast to increase tenfold over the years.

Edge density and patch density showed a divergent

trend in the upper part of the landscape, while

mean core area showed an increase where in 1965

there were no dense forests.

DISCUSSION

Historical Landscape Pattern

Forest gain following land abandonment is a com-

mon dynamic in temperate mountain areas

(Kamada and Nakagoshi 1997; Gautam and others

2004; Benayas and others 2007). Considering

dense (FO) and sparse (SF) forest classes together,

we observed an overall increase at a rate of +

0.56% year-1 (1965–2017 period) that is similar to

the mean value recently observed by Garbarino

and others (2020) for other landscapes of the Alps

and Apennines (+ 0.60% year -1) and to the

reforestation rate of temperate areas reported by

Sitzia and others (2010) of 0.59 ± 0.30% year-1.

The FO class alone shows a higher past overall in-

crease (+ 1.30% year-1). The length of time since

abandonment affects forest density; thus, the value

we observed highlights an important role of land

abandonment (Tasser and others 2007; Orlandi and

others 2016).

We observed a divergent pattern of change be-

tween lower and upper elevation in our study area.

Landscape metrics and transition matrices display

an increase of homogeneity at lower elevations due

to the expansion of dense forests led especially by

gap-filling processes to the detriment of sparse

forests (SF) and grasslands (GR) (Tables 2, 2 Sup-

plementary Materials). The increase of dense for-

ests started in 1975, while between 1965 and 1975

their amount remained quite stable, and the SF

class increased from 1164 to 1353 ha (Figure 3).

Looking at the transition matrices, these starting

dynamics seem to be linked to a mutual exchange

of surface between the two land classes (SF/FO).

The observed pattern may be explained by the

slowness of initial forestation processes and the

occurrence of the final stage of forest use and rural

Table 2. Landscape Metrics for Past Classes in the Upper (above 2182 m a.s.l.) and Lower (below 2182 m
a.s.l.) Parts of the Landscape and Trend Over Time.

Years Landscape metrics

Edge density (m ha-1) Contagion (%) Patch density (N 100 ha-1) Shannon evenness (-)

Low High Low High Low High Low High

1965 372.0 76.5 39.1 79.4 155.0 29.6 0.81 0.30

1975 387.0 108.0 39.5 75.8 146.0 41.5 0.80 0.33

1988 365.0 96.1 43.6 76.1 130.0 29.9 0.74 0.34

2006 285.0 165.0 51.8 73.6 131.0 72.9 0.64 0.35

2017 197.0 189.0 59.2 65.5 82.4 63.3 0.57 0.48

TREND & % % & & % & %
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economy. However, the limited SF class accuracy

could have led to an overestimation of the transi-

tion from SF to FO and vice versa. The forest gain

appears to recede in the last years (1990–2020)

maybe due to a saturation of available open areas.

The faster decline of edge density and patch density

at lower elevations between 2006 and 2017 is

associated to the intensification of canopy cover

closure. This process is probably favored by longer

vegetation periods with warmer spring tempera-

tures and by land use legacies (Richardson and

others 2013; Filippa and others 2019). In contrast,

the upper elevations appear to be more frag-

mented, as demonstrated by the increase of Shan-

non’s evenness and edge density, and a decrease of

contagion index. This was due to the encroachment

of unvegetated soil by grasslands, and woody veg-

etation (88% of the total upper area was occupied

by unvegetated soil in 1965, 71% in 2017), where

the role of land use is expected to be lower (Fig-

ure 4b). The general timberline upward shift in MA

study area for FO categories was measured as +

2.3 m year-1 (maximum dense forest elevation of

2182 m a.s.l. in 1965, 2302 m a.s.l. in 2017). These

results are comparable to the treeline migration

(+ 2.0–3.0 m year-1) described in many European

mountain areas (Walther and others 2005; Lenoir

and others 2008; Ameztegui and others 2016;

Leonelli and others 2016). Treelines in the Cana-

dian Rocky Mountains showed a similar behavior

Figure 5. Drivers’ relevance corresponding to the amount of accuracy gained by including the variable in the model

according to backward stepwise constant forcing based on the mean of standard (1965–2006 and 1965–2017) and

optimized (1975–2006 and 1975–2017) models. The error bars represent the standard deviation.

Figure 6. Observed and predicted land cover with Markov chain model based on standard model (1965–2017 calibration

period) and optimized model (1975–2017 calibration period). The geometric line represents the mean between the two

models; the geometric ribbon represents the range described by the two models.
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(that is,, treeline advance and tree density in-

crease), but the upward shift rate was lower (Trant

and others 2020). The transition from unvegetated

to vegetated classes (primary succession) increased

in magnitude in the last decade (+ 15.9 ha year-1),

compared to the previous period (+ 2.7 ha year-1).

The acceleration of primary succession processes at

MA may reflect the leading role of the CC, which is

probably equaling the relevance of LUC and is ex-

pected to become the dominant driver of change,

especially at upper elevations (Gehrig-Fasel and

others 2007; Filippa and others 2019). A particular

case of transition in the upper part is the expansion

of sparse forests and shrubs, which highlights a fast

woody intrusion in the subalpine and alpine zone.

The SF class increase is due to the transition from

unvegetated soil (46 ha), which can be considered

a primary succession, and from grassland (37 ha), a

secondary succession (Table 2 Supplementary

Materials). Mountain areas with past heavy

exploitation followed by abandonment typically

show a similar pattern, with gap-filling processes at

lower elevations (Malandra and others 2019), and

an upward shift of treeline and woody encroach-

ment at upper elevations (Harsch and others 2009;

Malfasi and Cannone 2020).

Historical land use legacies on forest structure

and landscape patterns is a well-known process

(Garbarino and Weisberg 2020). New forests that

developed in the last 50 years through encroach-

ment on grasslands and meadows show a higher

proportion of larch among seedlings, young, and

dominant trees layers, whereas mountain pines

dominate forest patches developed on unvegetated

areas (primary succession).

Landscape Pattern Forecast

Our land cover change models predict a future

change that is consistent with the historical one.

Gap-filling dynamics will be dominant at lower

elevations and a fragmentation will continue in the

upper part of the catchment (Table 3). However,

the overall forest gain and the expansion of FO

class alone are predicted to slow down in the future

(2017–2100) according to the two models at a

mean rate of + 0.31% year-1 (Figure 6). These

predictions are considered realistic because of a

reduction of space availability for forest gain at

lower elevations and the slow processes at the

timberline ecotone. Moreover, future predictions

tend to allocate forest gain at upper elevations

more than to the detriment of grasslands located in

the lower portion; this may be explained by the

present utilization of these meadows that do not

persuade the MLP-MC model to forecast future

forest gap-filling in these areas (Figure 7). A de-

crease in forest edge and patch densities is predicted

by our models. Mean core area, instead, shows

different behaviors, with a regular increasing trend

for the standard model and a higher increase for

the optimized model that suggests strong future

gap-filling dynamics causing a further saturation of

available open habitats.

At upper elevations, the density of forest pat-

ches is predicted to follow two different future

patterns: a linear expansion of trees (standard

model) and a rapid expansion of small patches

followed by a decrease in the number of patches

(optimized model), maybe due to a closure of the

patches. Since the two models differed only for

the starting period, the amount of dense forests of

1965 and 1975 influences the future forest gain

prediction.

Figure 7. Land cover predictions for future scenarios (2050, 2100) based on the standard model (calibration period 1965–

2017) and on the optimized model (calibration period 1975–2017).
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According to long-term future predictions, sparse

forests will be replaced by dense ones in our study

area (Figure 7, Table 3 Supplementary Materials).

However, it is important to consider that the pre-

vailing serpentine lithology of the catchment limits

soil fertility and subsequently slows down the

growth and establishment of trees (Kim and Shim

2008). Nevertheless, the increase in extreme

drought frequency due to CC may counteract the

expensive dynamics of forest, leading to different

and complex treeline dynamics, ignored by models

like MLP-MC (Allen and others 2010). Other ex-

treme events, such as wildfires, heavy rains with

potential of landslides, insect disturbances and their

interaction, are expected to increase in frequency

and intensity according to climate and LU changes

and may dampen future predictions reliability

(Barros and others 2017; Seidl and others 2017).

Models Discussion: MC, MLP-MC
and Driving Factors

LUC historical patterns show a nonlinear trend in

our study area, so we adopted a non–linear mod-

eling approach to make predictions. Assessment of

future dynamics based on past land use data proved

to be a useful tool not only for predicting future

trends, but also for amplifying and better under-

standing past dynamics, especially with a fine

temporal resolution. Still, forest landscape ecologi-

cal forecasting studies often lack a common design

and rely on a few maps or low time frequency. Our

methodological approach based on the selection of

the initial stage with the Pearson’s Chi-square

highlights that land use dynamics between 1965

and 1975 were different from the recent ones.

Furthermore, by looking at general trends it is

possible to notice that the slope of transition re-

mains constant from 1975 to 2006 for almost all

LCCs. This means that the OM focuses on the most

relevant degree of change.

The distance from preexisting forest edges is the

most important driver for the forest cover change

(Figure 5). The proximity to closed canopy affects

seed recruitment and creates favorable microsites

for forest gain in different forest ecosystems (for

example, Günter and others 2007; Garbarino and

others 2020).

The second driving variable according to its rel-

evance is the evidence likelihood, which represents

the future transition probability based on past

observations. Another important driver appears to

be the cost of movement according to the Tobler

hiking function that joins anthropogenic and

topographic aspects to determine the accessibility of
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land for human activities and is thus a proxy for site

remoteness that is strictly related to historical hu-

man legacies such as harvesting and pasturing.

Prediction of forest landscape changes through

historical aerial images and environmental driving

variables can be important to satisfy the increasing

request of future LUC scenarios to guide decision

making (Guan and others 2008; Tattoni and others

2011; Stürck and Verburg 2017). With this study,

park managers can understand future trajectories

of forests under BaU scenarios. Our predictions

confirm the hypothesis under which climate

change and land abandonment promote gap-filling

dynamics at lower elevations and woody

encroachment at upper elevations, leading to an

overall loss of open habitats (Barros and others

2017). This may cause different cascading effects

such as loss of biodiversity, increased risk of fire

ignition and propagation due to landscape unifor-

mity and fuel buildup, and the loss of cultural

landscapes and management techniques (Lasanta

and others 2017; Mantero and others 2020). In

European mountains, the loss of a-diversity caused

by the decline of open habitats is mostly related to

least concern species with low vagility, while the

past forest gain led to an enrichment in forest

specialist birds and mammals (Guliherme and Per-

eira 2013; Martı́nez-Abraı́n and others 2020).

CONCLUSIONS

Our data provide evidence of divergent land use

change dynamics between lower and upper eleva-

tions in a subalpine watershed of the Alps over the

last 50 years. Secondary succession gap-filling pro-

cesses dominate at lower elevations, whereas pri-

mary successions and treeline advancement are

stronger at upper elevations and have accelerated in

recent years. Climate and land use change effects

are difficult to disentangle, but our predictions

suggest that the influence of climate will be stronger

than land use legacies on future upper elevation

forest dynamics. Our results are in line with other

studies in mountain watersheds and represent a

possibility of a BaU forecasting approach in alpine

ecosystems. One caveat to this approach is the

assumption that socioeconomic conditions will en-

dure in the future. It is important to remark that

different land use scenarios might arise unpre-

dictably because of changes in agricultural and

forestry policies (for example, the European Un-

ion’s Common Agricultural Policy, CAP). In some

mountain regions, recent pastoral promotion is

leading to an increase in domestic density and tra-

ditional land uses (Lasanta and others 2016).

However, it is rather difficult that an abrupt change

in socioeconomic patterns will occur in a remote

and marginal area such as MA, where the soil

conditions have always been a limitation for pas-

toral practices as a consequence of the toxic and

unfertile serpentine lithology (D’Amico and others

2008). Long fine-resolution time series allowed a

good evaluation of past dynamics on a subalpine

watershed and led to the evidence of the role of

climate change at upper elevations. We believe that

this approach should be applied to reconstruct time

series of land use change over a wide range of

mountain forest ecosystems. As shown in this

study, a higher number of LC maps over the years

can be crucial to assess the role of climate change

and land abandonment in alpine landscapes and to

predict future dynamics. Moreover, the application

of a nonlinear model along with different LC maps

allowed a thorough model calibration, avoiding the

traditional approach in which the adopted calibra-

tion period is given by the oldest and newest land

cover classification. The relatively low agro-pastoral

activity at Mont Avic and the high classification

accuracy of the unvegetated class are important to

emphasize the role of climate-driven primary suc-

cessions. The main limitation of our work is the low

accuracy of the SF class, which includes both rare

woody areas and shrubs, which can lead to some

mistakes in the accuracy assessment and future

projection. Climate change is expected to be the

most relevant process in the near future, overcom-

ing LUC in alpine forests and our results suggest that

it is likely that forest gain at upper elevations will

increase in the future, with consequences on habi-

tat composition, biodiversity, natural disturbance

regime and forest management.
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of landscape conservation measures in changing landscape

patterns: a case study in Mediterranean mountains. Land Degr

Develop 27(2):373–386.
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