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A distributed-consensus mechanism of decision making explains 

economically irrational behaviours 2 

Abstract  

In humans, as in many other animals, preferences between options can be reversed when 4 

other irrelevant options are added to the choice set. Heuristics theories view such puzzling 

departure from economic rationality as evidence that decisions rely on simple rules that make 6 

a context-dependent use of the available information. The computational mechanisms 

underlying these rules, however, remain largely unresolved. Using a “sequential-sampling” 8 

model of decision making, I show that irrational decisions may arise when an information-

processing mechanism that works optimally in one-choice tasks is co-opted in multiple-10 

choice contexts. The model supports the assumption that different heuristics may sometimes 

be the elusive expression of a single general mechanism and that natural selection, rather than 12 

promoting the evolution of different mechanisms and rules, may favour the parsimonious use 

of bounded computational resources. 14 

 

KEYWORDS 16 

Decision-making, Decoy effect, Evo-mecho, Heuristics, Irrational behaviour, Rule-of-thumb, 
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Introduction  20 

Humans, as many other animals, make decisions by integrating different sources of 

information about the expected benefits and costs of the available options.  Economic 22 

theories of consumer behaviour assume that decisions maximize the chooser’s perceived 

utility (Simon 1955). Evolutionary theory predicts a positive association between the 24 

perceived utility of an option and its expected consequences on the Darwinian fitness of the 

chooser (Parker, Maynard Smith 1990). While the option may vary along multiple 26 

dimensions, the perceived utility is a one-dimensional representation of its economic value 

(Kacelnik 2006). Decisions that optimize economic utilities obey the two axioms of 28 

economic rationality: transitivity (if A is preferred to B and B to C, then A is preferred to C) 

and regularity (the probability of choosing A over B is the same, independent of the presence 30 

or the absence of a third option, C) (Kacelnik 2006). 

Humans, and other animals as well, however, often show cognitive biases, which cause 32 

systematic departures from economic rationality (Tversky and Kahneman 1974). A well-

known example is the “decoy effect”, whereby the preference between two options depends 34 

on the presence of a third option (Huber, Payne and Puto 1982, Lea and Ryan 2015). 

According to some authors, these violations, though economically irrational and sub-optimal, 36 

could be rational and optimal from an evolutionary point of view (Kacelnik 2006). For 

example, models of optimal foraging show that intransitive choices and decoy effects can be 38 

favoured by natural selection, if the fitness benefits they provide depend on either the spatial 

(Houston et al. 2007, Trimmer 2013) or the temporal patterns (McNamara et al. 2014) of the 40 
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available options. According to this view, cognitive biases are evidence that decisions do not 

rely on complex and accurate representations of perceived utilities, but on “fast and frugal” 42 

heuristics (or rules of thumb), which may not perform optimally in all situations, but 

satisfactory in the ecological contexts where decisions are actually made (Gigerenzer and 44 

Goldstein 1996). 

Both optimality and heuristic models focus on the decision rules. The optimality models first 46 

define the decision problem and the currency that the decision maker is expected to 

maximize, then, they search for the rule that maximizes that currency, often, under the 48 

assumption that decision makers are omniscient, fully-rational agents (Stephens and Krebs 

1986). The heuristic models, in contrast, relax the rational assumption and search for rules 50 

that can make “satisficing” decisions, with a parsimonious use of time, information, and 

computation. Heuristics are not optimal, but approximate optimality. They are not strictly 52 

rational, but ecologically rational, because they exploit the environmental structure to yield 

simple, efficient rules, which could be plausibly implemented by rationally-bounded agents. 54 

Despite these relevant differences, both optimality and heuristic models explicitly ignore the 

computational mechanisms of decision rules and this neglect of mechanisms has been argued 56 

to have impoverished the functional analyses of behaviours (McNamara and Houston 2009, 

Kacelnik 2012). For example, Kacelnik et al. (2011) show that when European starlings are 58 

given a choice between two foraging options, they adopt the same computational mechanism 

independent of whether the alternatives are presented sequentially or simultaneously. These 60 

results not only conflict with the “toolbox” hypothesis of heuristics as narrow-domain 

decision devices (Gigerenzer, Todd 1999), but they also suggest that mechanisms are 62 

important constraints in the evolution of optimal decision rules and, thus, that they should 
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play also an important role in the functional studies of behavioural flexibility (McNamara and 64 

Houston 2009). 

Here I present a race model of decision making, which describes decisions as the bounded 66 

accumulation of noisy sensory information (Bogacz 2006, Ratcliff et al. 2016, Vickers 1970). 

Following Kacelnik et al. (2011), I also assume the choice mechanism to work in both the 68 

sequential and the comparative contexts. Most race models assume that all types of 

supporting evidence for an option are integrated into a single accumulator, which thus 70 

provides a one-dimension, dynamic representation of the option value (Ratcliff et al. 2016). 

My model relaxes this assumption and, consistently with some recent neurophysiological 72 

studies of action choice (Cisek and Kalaska 2010, Cisek 2012, Engel et al. 2013), it assumes 

the parallel, multi-dimension processing of the option attributes. The decision mechanism is 74 

equivalent to a race in a multi-dimension plane, which terminates as soon as the accumulating 

evidence enters either a rejection or an acceptance consensus area. This general mechanism 76 

can explain decisions in both one-, two-, and multiple-choice contexts. However, while in 

one- and two-choice contexts, the mechanism predicts economically rational decisions, in 78 

multi-choice contexts, it introduces systematic errors and predicts irrational choices, such as 

those described by the “decoy effect”.   80 

The model 

The model considers the behaviour of a hypothetical insect, which is hovering above the 82 

grass, collecting nectar from flowers. The insect spots a bunch of brightly coloured flowers 

just a few meters on the left and it decides to turn left. While approaching the bunch, its 84 

attention is captured by a yellow daisy on the left and a purple poppy on the right. The insect 
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decides to turn right and to land on the poppy. The behaviour of this foraging insect is the 86 

result of two types of choice. The first choice depends only on the quality of the bunch of 

flowers being inspected, which is considered to be worthy of further inspection. I call this  88 

“sequential choice” (Kacelnik et al. 2011), because it is the type of decisions that an animal 

makes when it encounters options sequentially. In contrast, the second type of decision 90 

depends on the relative quality of the purple poppy, which is considered more worthy than 

the yellow daisy. I call it “simultaneous choice”. The model assumes that the sequential and 92 

the simultaneous choice are not the expression of different heuristics, but of the same 

cognitive machinery designed by natural selection to make both types of decision effectively. 94 

This cognitive machinery processes sensory information and provides an internal 

representation of the benefits and costs of either exploiting or rejecting the prospective 96 

resource.  

Benefits and costs may be viewed as the two axes of a Cartesian information plane (Fig. 1): 98 

the y-axis describes the perceived benefits; the x-axis describes the perceived costs. Benefits 

and costs are a function (either a linear, monotonic or unimodal) of the characteristics of the 100 

prospective resource. For example, the benefits depend on the quantity and quality of the 

nectar provided by the flower, whereas the costs depend on the time required to collect the 102 

nectar, which depends on the type and the location of the flower and on the presence of other 

competitors. Benefits and costs, however, should not be viewed as the internal representation 104 

of the economic value of the resource, but as the supporting evidence for either exploiting or 

rejecting it (see also Appendix 1). 106 

During the decision process, the insect accumulates over time the noisy sensory information 

about the costs and benefits of an action, which is executed only when the accumulating 108 
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evidence reaches a given threshold. From a mathematical point of view, the dynamic of 

decision making can be described as a random-walk process in the two-dimensional 110 

informational plane, with transition probabilities that depend only on the type of stimulus 

processed (Forstmann, Ratcliff and Wagenmakers 2016, Ratcliff et al. 2016). Depending on 112 

the choice context, the insect can assess a single option at a time (sequent99ial choice) or 

process simultaneously and in a parallel fashion several options (simultaneous choice).  114 

First, I consider the dynamic of the decision making in a sequential-choice context, for 

example, when the insect spots the brightly coloured flowers on its left and decides to visit 116 

them. During the evaluation of action A (to visit the flowers), the insect is assumed to collect 

a sequence of noisy information about the amount of energy it is expected to obtain from the 118 

flowers �𝑄𝑄𝐴𝐴 (1),𝑄𝑄𝐴𝐴 (2), …𝑄𝑄𝐴𝐴 (𝑛𝑛)� and the amount of time it is expected to spend for 

handling them �𝐻𝐻𝐴𝐴(1),𝐻𝐻𝐴𝐴(2), …𝐻𝐻𝐴𝐴(𝑛𝑛)�.  Since information is noisy, Q and H are assumed 120 

to be two normally-distributed stochastic variables with parametric means 𝑞𝑞𝐴𝐴 and ℎ𝐴𝐴 and 

covariance matrix 𝐺𝐺 = �𝜎𝜎
2 0

0 𝜎𝜎2
�. By transforming and integrating over time each piece of 122 

sensory information, the insect obtains a sequence of accumulating evidence for the benefits 

and the costs of the evaluated action. After n samples, the evaluated action will be 124 

represented in the informational plane by a point with coordinates �𝐵𝐵𝐴𝐴(𝑛𝑛),𝐶𝐶𝐴𝐴(𝑛𝑛)�, where 

𝐵𝐵𝐴𝐴(𝑛𝑛) = 𝐵𝐵𝐴𝐴(𝑛𝑛 − 1) + 𝑏𝑏�𝑄𝑄𝐴𝐴 (𝑛𝑛)� represents the amount of evidence for choosing the option 126 

and 𝐶𝐶𝐴𝐴(𝑛𝑛) = 𝐶𝐶𝐴𝐴(𝑛𝑛 − 1) + 𝑐𝑐�𝐻𝐻𝐴𝐴(𝑛𝑛)� represents the amount of evidence for rejecting it. In 

Appendix 1, I provide a formal description of the functions 𝑏𝑏(𝑄𝑄) and 𝑐𝑐(𝐻𝐻), that is, of how 128 

sensory information is converted into the perceived benefits and the perceived costs of an 

action. 130 
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Further and most important, the model assumes that the benefits and the costs of an action 

interact additively in determining its overall value (see Appendix 1). Suppose that, under 132 

certain conditions, there exist two optimal decision thresholds, 𝑇𝑇* and 𝐿𝐿* (with both T > 0 and 

L > 0), so that the insect would maximize its long term rate of energy intake by exploiting the 134 

resource if the amount of supporting evidence is larger than 𝑇𝑇* or by rejecting the resource if 

it is lower than −𝐿𝐿*. One decision mechanism could be simply to compute the difference 136 

between benefits and costs and to use this new variable as the decision variable: the insect 

would exploit the resource if 𝐵𝐵𝐴𝐴(𝑛𝑛) − 𝐶𝐶𝐴𝐴(𝑛𝑛) ≥ 𝑇𝑇*, it would reject the resource if 𝐵𝐵𝐴𝐴(𝑛𝑛) −138 

𝐶𝐶𝐴𝐴(𝑛𝑛) ≤ −𝐿𝐿*, or it would continue the assessment if none of the two previous conditions is 

satisfied. From a mathematical point of view, the decision mechanism is a 1-dimensional 140 

random walk (1-DRW), because for each time step of equal length, the decision variable can 

only increase (if the perceived benefits overcome the costs) or decrease (if the perceived costs 142 

overcome the benefits).  

There exists, however, an alternative and functionally equivalent mechanism that saves the 144 

computational costs of computing the difference between benefits and costs. Mathematically 

speaking, the alternative mechanism is a 2-Dimension Random Walk (2-DRW). Each 146 

dimension has a lower (𝜃𝜃𝐶𝐶𝑙𝑙 ,𝜃𝜃𝐵𝐵𝑙𝑙 ) and an upper (𝜃𝜃𝐶𝐶𝑢𝑢 ,𝜃𝜃𝐵𝐵𝑢𝑢) threshold, which is dynamically adjusted 

during the evaluation of an option according to the following rules: 148 

𝜃𝜃𝐵𝐵𝑢𝑢(𝑛𝑛) = 𝑇𝑇 + 𝐶𝐶𝐴𝐴(𝑛𝑛)
𝜃𝜃𝐶𝐶𝑙𝑙 (𝑛𝑛) = −𝑇𝑇 + 𝐵𝐵𝐴𝐴(𝑛𝑛)
𝜃𝜃𝐵𝐵𝑙𝑙 (𝑛𝑛) = −𝐿𝐿 + 𝐶𝐶𝐴𝐴(𝑛𝑛)
𝜃𝜃𝐶𝐶𝑢𝑢(𝑛𝑛) = 𝐿𝐿 + 𝐵𝐵𝐴𝐴(𝑛𝑛)

.   Eq. 1 
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The insect would execute the action when BOTH 𝐵𝐵𝐴𝐴 (𝑛𝑛) ≥ 𝜃𝜃𝐵𝐵𝑢𝑢(𝑛𝑛) and 𝐶𝐶𝐴𝐴(𝑛𝑛) ≤ 𝜃𝜃𝐶𝐶𝑙𝑙 (𝑛𝑛), that is, as 150 

soon as the random walk reaches the threshold line 𝑏𝑏 = 𝑇𝑇 + 𝑐𝑐.  The insect would reject the 

resource when BOTH 𝐵𝐵𝐴𝐴 (𝑛𝑛) ≤ 𝜃𝜃𝐵𝐵𝑙𝑙 (𝑛𝑛) and 𝐶𝐶𝐴𝐴(𝑛𝑛) ≥ 𝜃𝜃𝐶𝐶𝑢𝑢(𝑛𝑛) (Fig. 1a, see also the Jupyter notebook 152 

in the supplementary materials). The two parameters (𝑇𝑇, 𝐿𝐿) of Eq. 1 describe the insect’s 

decision strategy and directly affect its fitness, by influencing both the response times and the 154 

error probabilities.  

Now, let us consider the decision process when the insect has to choose between two (k = 2) 156 

or more (k>2) alternative actions. For example, suppose the insect has to decide whether to 

land on the yellow daisy or on the purple poppy (Fig. 3a and the Jupyter Notebook in the 158 

supplementary materials). In this case, the 1-DRW assumes, first, that the insect computes, 

for each option, the difference between benefits and costs; then, that it integrates over time 160 

these differences into two decision variables; and, finally, that it chooses the resource, whose 

decision variable first reaches the acceptance threshold T. Unlike the 1-DRW, the 2-DRW 162 

assumes that evidence for either the D-action (approach the daisy) or the P-action (approach 

the poppy) is accumulated in two decision vectors, [𝐵𝐵𝐷𝐷 ,𝐶𝐶𝐷𝐷] and [𝐵𝐵𝑃𝑃 ,𝐶𝐶𝑃𝑃], and that the decision 164 

depends on which of them first enters the “consensus” area, where 𝐵𝐵 ≥ 𝜃𝜃𝐵𝐵𝑢𝑢 and  𝐶𝐶 ≤ 𝜃𝜃𝐶𝐶𝑙𝑙 . While 

in one-choice context, the thresholds defining the consensus area are a function of the 166 

accumulating benefits and costs of the single assessed resource (Eqn. 1), in two- (k = 2) and 

in multiple-choice contexts (k > 2), the thresholds are assumed to be a function of the average 168 

benefits and costs of all the assessed resources. Specifically, the insect is assumed to 

dynamically adjust the four thresholds according to the following set of equations: 170 
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𝜃𝜃𝐵𝐵𝑢𝑢 = 𝑇𝑇 + 𝐶𝐶̅(𝑛𝑛)
𝜃𝜃𝐶𝐶𝑙𝑙 = −𝑇𝑇 + 𝐵𝐵�(𝑛𝑛)
𝜃𝜃𝐵𝐵𝑙𝑙 =.−𝐿𝐿 + 𝐶𝐶̅(𝑛𝑛)
𝜃𝜃𝐶𝐶𝑢𝑢 = 𝐿𝐿 + 𝐵𝐵�(𝑛𝑛)

        Eq. 2 

Where 𝐵𝐵�(𝑛𝑛) =
1

𝑘𝑘
∑ 𝐵𝐵𝑖𝑖 (𝑛𝑛)𝑘𝑘
𝑖𝑖  and 𝐶𝐶̅(𝑛𝑛) =

1

𝑘𝑘
∑ 𝐶𝐶𝑖𝑖 (𝑛𝑛)𝑘𝑘
𝑖𝑖   are the average benefits and costs after 172 

having processed n samples of the k resources. 

Results 174 

In one-choice decision tasks, the 1-DRW and 2-DRW are mathematically equivalent, because 

a 2-dimensional random-walk described by two vectors 𝑋𝑋 and 𝑌𝑌, with threshold line 𝑦𝑦 = 𝑇𝑇 + 𝑥𝑥 176 

can be reduced to a 1-dimensional random walk, described by the vector 𝑍𝑍 = (𝑋𝑋 − 𝑌𝑌) √2⁄ , with 

threshold 𝑇𝑇′ = 𝑇𝑇 √2⁄  . From a computational point of view, this means that 1-DRW and DCM 178 

are equivalent both in terms of error probabilities and of average number of observations 

needed to make a decision (Fig. 1b).  180 

In contrast, in two-choice tasks, the 2-DRW is less efficient than the 1-DRW, because, for a 

given level of accuracy, it takes longer to make a decision. Fig. 2 shows results of two series 182 

of simulations, which use the 1-DRW and the 2-DRW to choose between a high- and a low-

quality resource. Both the 1-DRW and the 2-DRW simulations predict preferences for the 184 

high-quality option to increase asymptotically with the increase of T and, consequently, with 

the increase of the decision time. However, the 1-DRW performs better than the 2-DRW, 186 

because at any decision time, it predicts stronger preferences and, thus, more accurate 

decisions. Furthermore, in two-choice contexts, the 2-DRW introduces a weak bias in the 188 

pattern of choice, as shown by the divergent pattern of the iso-probability lines of Figure 3b. 
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When a focal option (i.e. the poppy, represented by the star marker of Fig. 3b, with Benefits 190 

𝑏𝑏(𝑞𝑞𝑃𝑃) =  5 and Costs 𝑐𝑐(ℎ𝑃𝑃)  =  −1) is compared against an alternative of equal overall value 

(i.e. the daisy, with 𝑏𝑏(𝑞𝑞𝐷𝐷) − 𝑐𝑐(ℎ𝐷𝐷) =  6), the 2-DRW algorithm predicts always random 192 

choice (i.e. the slope of the 0.5 iso-probability line of Fig. 3b is 1). However, when the 

alternatives show different overall values (𝑏𝑏(𝑞𝑞𝐷𝐷)− 𝑐𝑐(ℎ𝐷𝐷) ≠  6), preferences depend on the 194 

𝑏𝑏(𝑞𝑞𝐷𝐷) and 𝑐𝑐(ℎ𝐷𝐷) and not just on their sum. For example, in the simulations of Fig. 3b, when 

the alternative option has 𝑏𝑏(𝑞𝑞𝐷𝐷) = 0 and 𝑐𝑐(ℎ𝐷𝐷) = −4, the probability that it is chosen is 196 

0.13, but it is twice as large (preference = 0.26) when it has 𝑏𝑏(𝑞𝑞𝐷𝐷) = 4 and 𝑐𝑐(ℎ𝐷𝐷) = 0.  

The performance of 2-DRW decreases even more when the number of items to choose among 198 

increases. Fig. 4a, b show what happens when a third option, a lily (L), is added to the choice 

set. In this example, the poppy and the daisy differ in both benefits and costs, but have the 200 

same economic value (i.e. the same difference between benefits and costs): 𝑏𝑏(𝑞𝑞𝑃𝑃) =

−𝑐𝑐(ℎ𝐷𝐷) = 5 and 𝑏𝑏(𝑞𝑞𝐷𝐷) = −𝑐𝑐(ℎ𝑃𝑃) = 1. For this reason, in a dyadic choice, the insect does 202 

not show any preference either for the poppy or for the daisy. To simulate the decoy effect, I 

further assume the lily to be asymmetrically dominated by the daisy, that is, 𝑐𝑐(ℎ𝐿𝐿) =204 

𝑐𝑐(ℎ𝐷𝐷) − 𝛿𝛿, with 0 < 𝛿𝛿 ≪ 𝑐𝑐(ℎ𝐷𝐷), and 𝑏𝑏(𝑞𝑞𝐿𝐿) = 𝑏𝑏(𝑞𝑞𝐷𝐷).  

When the lily is introduced in the set of the available options, the positions of both the 206 

decision thresholds and the consensus area change. In the two-choice test, the accumulating 

evidence for either the daisy or the poppy causes the benefit threshold to decrease and the 208 

cost threshold to increase at a similar rate. As a consequence, during the process, the 

minimum distance between the consensus area and either the poppy or the daisy was similar, 210 

and the two options had the same probability of winning the race. With the lily, however, the 

two thresholds no longer change at similar rates and the consensus area no longer maintains 212 
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the same minimum distance from the options (see also the Jupyter notebook in the 

supplementary materials). In fact, since the lily has very low costs and moderate energetic 214 

benefits, during the assessment, the benefit threshold (𝜃𝜃𝐵𝐵𝑢𝑢) decreases faster than the cost 

threshold (𝜃𝜃𝐶𝐶𝑢𝑢), because 𝑇𝑇 + 𝐶𝐶̅(𝑛𝑛) < 𝑇𝑇 − 𝐵𝐵�(𝑛𝑛). For this reason, with the lily, the option with 216 

the lowest costs (the daisy) is closer to and more likely to enter the consensus area than the 

option with the highest benefits and costs (the poppy) (Fig. 4a).  218 

Discussion 

This model follows the long tradition of sequential-sampling models in theoretical 220 

psychology (Busemeyer and Townsend 1993, Ratcliff  et al. 2016, Vickers 1970), in that it 

views decision making as a process of noisy accumulation of evidence over time. According 222 

to these models, decision makers use sensory information of the available options to build a 

dynamic internal representation of their perceived value (i.e. economic “utility”). They make 224 

options to compete against each other and choose the option whose perceived value first 

reaches a strategically-set decision threshold. The competition can be in the form of either a 226 

“race” (if options are valued independently of the others) or a “tug-of-war” (if options are 

valued relatively to the others) (Kacelnik et al. 2011). In both types of models, the perceived 228 

values are assumed to be one-dimensional and the decision rules to be context-independent, 

in that they are strategically adjusted before the process, but kept fixed throughout. The one-230 

dimension assumption is a sufficient (but not necessary) condition for economic rational 

choices and for the two axioms of rationality, transitivity and regularity. Since humans and 232 

other animals (both vertebrates and invertebrates) often choose irrationally, some authors 

have proposed modified versions of the “tug-of-war” model, with ad-hoc (non-linear) 234 
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computational mechanisms that could reconcile the one-dimension assumption with the 

reversal effects in multi-alternative, multi-attribute choice (review in Tsetsos et al. 2010).  236 

Although my model shares some similarities with the “race” models, in that it assumes the 

perceived values to be context independent, it shows two important differences.  First, the 238 

decision rules are context-dependent, because the thresholds are dynamically adjusted during 

the decision process. Second, the internal representation is multi-dimensional, because 240 

decision makers are not assumed to integrate the option attributes into a one-dimension 

representation of its value, but to accumulate different kinds of evidence along different 242 

levels of representations. For these reasons, the decision process might be no longer viewed 

as a one-direction race against a fixed finish line, but as a multi-direction race towards a 244 

consensus area, whose boundaries vary dynamically during the process. This view is 

consistent with some recent findings in the neurophysiology of decision making: for example, 246 

Cisek (2012) reviews neurophysiological evidence that sensorimotor neurons are not simply 

the executors of a command, but the main actors of the deliberative process of decision 248 

making. According to this view, alternative actions are simultaneously represented in the 

sensorimotor regions of the brain and compete against each other for execution (Gallivan et 250 

al. 2015). The competition occurs at multiple levels and involves the parallel processing of 

different types of information, such as the subjective benefits and costs of the options, the 252 

biomechanical costs of actions, and the geometric relationships between the options (Cisek 

and Pastor-Bernier 2014). The competition terminates when the different levels of 254 

representations (i.e. different axes of the decision plane) reach a consensus. 

A distributed-consensus mechanism of decision-making requires thresholds to be 256 

dynamically adjusted during the decision process. In one-choice decision tasks, where the 



13 

options are assessed in terms of their intrinsic perceived benefits and costs, the optimal  258 

calibration can be achieved by simple inhibitory mechanisms (see eq. 1), which  guarantee 

that decision is made as soon as the difference between benefits and costs is greater than a 260 

given (optimal) threshold. This independent dynamic adjustment of thresholds makes the 2-

DRW functionally equivalent to the 1-DRW model, because it requires the same amount of 262 

evidence to make a decision. From a computational point of view, however, the two models 

are not equivalent, because the 2-DRW model is fully described by two variables (B, benefit, 264 

and C, costs), whereas the 1-DRW requires a third variable, which is the difference of the 

other two. One may be tempted to speculate that the 2-DRW algorithm might have been 266 

favoured by natural selection over the 1-DRW alternative, because of its greater 

computational (and neuro-anatomical) parsimony: in fact, the 2-DRW can works as 268 

efficiently as the 1-DRW, but with fewer computational units (i.e. neurons).  

In this paper, I have explored the hypothesis that the 2-DRW model, which performs 270 

optimally in one-choice decision tasks, might have been co-opted in two-choice contexts, 

where it still works satisfactorily, and in multiple-choice contexts, where it sometimes causes 272 

irrational behaviour. According to this hypothesis, thus, there exists a single, general 

mechanism of decision making. Sequential and simultaneous choice are not the expression of 274 

different heuristics, but of the same flexible mechanism, used under different contexts. This 

mechanism is not merely computational, but psychological, because it describes the process 276 

of decision making. If we are to understand the functional role of flexible behaviour, in fact, 

we need to study the evolution of the psychological mechanisms that control behavioural 278 

flexibility (McNamara and Houston 2009, Castellano 2015, Castellano and Cermelli 2011, 

2015). I argue that heuristic theories are limited in this respect, because they neglect the 280 
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mechanisms underlying the decision process. Although heuristics have inspired much 

theoretical and empirical work on the rules that govern behavioural flexibility, it is time to 282 

move on. Heuristics describe the decision rules, but not their underlying computational 

mechanisms. They are in the mind of the beholder, not in the mind of the decision maker. In 284 

the recent years, our understanding of the neurophysiology of decision making has advanced 

to the point where evolutionary theories can be extended beyond the normative models of 286 

optimal behaviours (Barron et al. 2015, Mobbs et al. 2018). We are now at the point where 

we can address questions about the optimal mechanisms of information processing and, in the 288 

process, achieve a much deeper understanding of the evolution of behavioural flexibility. 
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Appendix 1 364 
 
The insect decides to exploit a resource if the perceived benefits are greater than the 366 

perceived costs. Here I explain how sensory information about a flower is converted into the 

perceived benefits and costs of an action (i.e. exploiting or avoiding the resource).  368 

Within the inspecting patch, the predation risk is assumed to be independent of the types of 

flower. It follows, thus, that the costs of a resource are only due to the loss of opportunities. 370 

Suppose that the insect can assess the energetic value of a resource (𝑞𝑞𝑖𝑖) and its handling time 

(ℎ𝑖𝑖) and that it knows which is the average quality (𝑞𝑞�), the average handling time (ℎ�), and the 372 

average searching time (𝑠̅𝑠) of the resources within the patch. Under these assumptions, the 

insect is assumed to exploit a resource i if its rate of energy intake (𝑞𝑞𝑖𝑖 ℎ𝑖𝑖⁄  ) is greater than that 374 

expected if it decided to reject it and to search for the next resource.  

𝑞𝑞𝑖𝑖
ℎ𝑖𝑖

> 𝑞𝑞�−𝛾𝛾𝑠̅𝑠
𝑠̅𝑠+ℎ�

           Eq. A1 376 

The right hand side of the inequality represents the opportunity costs: in the numerator, there 

is the expected quality of the (i +1) resource (that is, 𝑞𝑞�, the average quality of the patch), 378 

discounted by the average cost of searching (𝛾𝛾𝑠̅𝑠) (where 𝛾𝛾, a constant, is the cost of searching 

per unit time). In the denominator, there is the expected time for exploiting the (i +1) 380 

resource, which is the sum of the average searching (𝑠̅𝑠) and handling (ℎ�) times.  

From Eq. A1, it derives that the expected value (in units of energy) of the i resource is the 382 

difference between what the insect is expected to gain and to lose if it decided to exploit the 

resource: 384 

𝑒𝑒𝑖𝑖 = 𝑞𝑞𝑖𝑖 −
(𝑞𝑞�−𝛾𝛾𝑠̅𝑠)
𝑠̅𝑠+ℎ�

ℎ𝑖𝑖         Eq. A2 
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Eqn. A2 can be rescaled in order to obtain an a-dimensional representation of the perceived 386 

economic value of the i resource: 

𝑢𝑢𝑖𝑖 = 𝑒𝑒𝑖𝑖
(𝑞𝑞�−𝛾𝛾𝑠̅𝑠) = 𝑞𝑞𝑖𝑖−(𝑞𝑞�−𝛾𝛾𝑠̅𝑠)

(𝑞𝑞�−𝛾𝛾𝑠̅𝑠) − ℎ𝑖𝑖−(𝑠̅𝑠+ℎ�)
𝑠̅𝑠+ℎ�

.      Eq. A3 388 

The 1-DRW and the 2-DRW assume that the noisy sensory information about the energetic 

quality and the handling time of a resource is converted into the perceived benefits and costs 390 

by two linear filters, 𝑏𝑏(𝑄𝑄) and 𝑐𝑐(𝐻𝐻):  

𝑏𝑏(𝑄𝑄) = 𝑄𝑄−(𝑞𝑞�−𝛾𝛾𝑠̅𝑠)
(𝑞𝑞�−𝛾𝛾𝑠̅𝑠)  ,        Eq. A4a 392 

𝑐𝑐(𝐻𝐻) = 𝐻𝐻−(𝑠̅𝑠+ℎ�)
𝑠̅𝑠+ℎ�

 ,        Eq. A4b 

where Q and H are the two normally-distributed stochastic variables with expectations 𝑞𝑞  and  394 

ℎ, and standard deviation σ (see main text). Notice that from Eqn. A1 it derives that b and c 

are linear functions of the incoming sensory information, It might be emphasized, however, 396 

that linearity between sensation and perception is by no means a necessary condition of the 

model (see for example Castellano 2015) The b and the c functions convert different types of 398 

sensory information into the same currency (patterns of neural stimulation) and it is on this 

common ground that different features of one, or more than one, option can be compared. 400 
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FIGURE CAPTIONS 402 

Figure 1. (a) Graphical representations of the two-dimension random-walk process of 

decision making (2-DRW) under a one-choice decision task. Noisy information about the 404 

expected benefits and the costs of an action is accumulated over time into two separate 

counters, which describe the position of the action in the informational plane. The action is 406 

executed when it enters the green zone and discarded when it enters the red zone. During the 

assessment, the thresholds that define the acceptance (𝜃𝜃𝐶𝐶𝑢𝑢, 𝜃𝜃𝐵𝐵𝑢𝑢) and the rejection (𝜃𝜃𝐶𝐶𝑙𝑙 , 𝜃𝜃𝐵𝐵𝑙𝑙 ) areas 408 

are dynamically adjusted, as described by Eqn. 1 (see main text). The plot shows the 

acceptance/rejection areas in three moments of the decision process, which terminates with 410 

the execution of the action (when the random walk enter the green area). The dynamic 

adjustment of the two thresholds minimizes the response time, because it forces the process 412 

to stop as soon as the blue path touches the black threshold. (b) A contour plot of the 

preferences for a resource as a function of its costs and the benefits. Costs and benefits 414 

interact additively on the preferences. If the benefits are greater than the costs, the option 

would be positively selected (P > 0.5). If costs are greater than benefits, the option would be 416 

negatively selected (P < 0.5). The strength of selection is predicted to depend on only the 

difference between benefits and costs and to be independent of their absolute values. 418 

 

Figure 2. A comparison of the speed-accuracy trade-offs in the one- (1-DRW, filled circles) 420 

and in the two-dimension random walk models (2-DRW, open circles), during a series of 

two-choice discrimination tests between a high-quality (𝑐𝑐(ℎhigh) = 0.5, b�𝑞𝑞high� = 0.5) and 422 

a low-quality resource (𝑐𝑐(ℎlow) = 0.0, 𝑏𝑏(𝑞𝑞low) = 0.0), in which the acceptance (𝑇𝑇 = 𝜃𝜃𝐵𝐵𝑢𝑢 − 𝜃𝜃𝐶𝐶𝑢𝑢) 

and the rejection (𝐿𝐿 = 𝜃𝜃𝐵𝐵𝑙𝑙 − 𝜃𝜃𝐶𝐶𝑙𝑙 = −𝑇𝑇) decision thresholds were let to vary between 0.1 and 3 by 424 
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steps of 0.05. Each point is associated to a threshold value and shows the average decision 

latency and the preference for the high-quality option after running 10,000 random-walk 426 

simulations. Preferences for the high-quality option increase with the increasing latencies 

(that is, with the increasing T), but, at any decision latency, 1-DRW performs better than 2-428 

DRW. 

 430 

Figure 3. (a) A graphical representation of the bi-dimension random-walk process of 

decision making in a two-choice decision task. The process is the same as in Fig.1, but now it 432 

is run in parallel on the star and the black-circle options. The black-circle option (D, the 

daisy) has lower expected costs and lower perceived benefits ([𝑐𝑐(ℎ𝐷𝐷) = −5, 𝑏𝑏(𝑞𝑞𝐷𝐷) = 1]) 434 

than the star option (P, the poppy) ([𝑐𝑐(ℎ𝑃𝑃) = −1, 𝑏𝑏(𝑞𝑞𝑃𝑃) = 5]), so that their overall values 

(the difference between benefits and costs) are the same. Since the acceptance thresholds 436 

along the cost and benefit axes increase with the increase, respectively, of the average costs 

(𝐶𝐶̅(𝑛𝑛)) and the average benefits (𝐵𝐵�(𝑛𝑛)),  they oscillate midway between the optimal values of 438 

the two conflicting options. As a consequence, the 2-dimension random walk needs a larger 

amount of evidence and much more time to enter the consensus area. (b) Contour plot of the 440 

two-choice preference for an option, when compared against the poppy (star). The 2-DRW 

introduces a slight bias in the preference pattern. In fact, the slope of the iso-probability lines 442 

is one only when the difference between the benefits and costs of an option equals that of the 

poppy, as shown by the daisy (black circle). 444 

 

Figure 4. (a) A bi-dimension random-walk process in a three-choice decision task. The third 446 

option (the lily, grey circle, 𝑐𝑐(ℎ𝐿𝐿) = −4.8, 𝑏𝑏(𝑞𝑞𝐿𝐿) = 1) is asymmetrically dominated by the 
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daisy, (the black-circle option, 𝑐𝑐(ℎ𝐿𝐿) = −5, 𝑏𝑏(𝑞𝑞𝐿𝐿) = 1). Its introduction modifies the 448 

position of the consensus areas, biasing the preferences to the advantage of those items that 

have the lowest costs. While in two-choice test, the daisy is as likely as the poppy to be 450 

chosen by the insect, in the three-choice context, the daisy is strongly preferred over the 

poppy. (b) Contour plot of the preferences in three-choice discrimination tests. The iso-452 

probability lines show the preferences for a given option (for example, the daisy, represented 

by the black circle) with respect to a fixed alternative (the poppy, represented by the star 454 

marker), when a third alternative (the decoy represented by the grey circle) is also present. 

Due to the characteristics of the decoy (very low costs and moderate benefits), small changes 456 

along the cost dimension have stronger effects on the preferences than changes of similar 

magnitude along the benefit dimension. 458 
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