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and its use in Program Termination
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Abstract. Ramsey Theorem for pairs is a fundamental result in com-
binatorics which cannot be intuitionistically proved. In this paper we
present a new form of Ramsey Theorem for pairs we call H-closure The-
orem. H-closure is a property of well-founded relations, intuitionistically
provable, informative, and simple to use in intuitionistic proofs. Using
our intuitionistic version of Ramsey Theorem we intuitionistically prove
the Termination Theorem by Poldenski and Rybalchenko. This theorem
concerns an algorithm inferring termination for while-programs, and was
originally proved from the classical Ramsey Theorem, then intuitionis-
tically, but using an intuitionistic version of Ramsey Theorem different
from our one.

Keywords: Intuitionism, Ramsey Theorem, inductive definitions,
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1 Introduction

In computer science deciding whether a program is terminating on a given input
is one of the most studied topics. In general it is a famous undecidable problem,
but in some particular case it can be solved. In [1] Podelski and Rybalchenko
defined a condition on well-founded relations and they proved that it is equiv-
alent to the termination of transition-based programs. From this result, called
Termination Theorem, Cook, Podelski, and Rybalchenko extracted an algorithm
taking in input an imperative program made with the instructions while, if and
assignment, and able to decide in some case whether the program is terminating
or not, and in some other cases leaving the question open. The authors used
in their proof of the Termination Theorem Ramsey Theorem for pairs [2], from
now on called just “Ramsey” for short. Ramsey is a classical result that cannot
be intuitionistically proved: we refer to [3] for a detailed analysis of the minimal
classical principle required to prove Ramsey. According to the IT9-conservativity
of Classical Analysis w.r.t. Intuitionistic Analysis [4], the proof of Termination
Theorem hides some effective bounds for the while program which the theorem
shows to terminate. Our long-term goal is to find them, by first turning the proof
of Termination Theorem into an intuitionistic proof. For instance, by using this



proof, we can characterize the class of the primitive recursive functions in term
of Podelski and Rybalchenko Termination Theorem [5].

Our first step is to formulate a version of Ramsey which has a purely intu-
itionistic proof, that is, a proof which does not use Excluded Middle, nor Brouwer
Thesis. Our version of Ramsey is informative, in the sense that it has no nega-
tion, while it has a disjunction. We say that a relation R is H-well-founded
if the tree of all R-decreasing transitive sequences is well-founded (w.r.t. the
inductive definition of well-foundedness). We express Ramsey as a property of
well-founded relations, saying that H-well-founded relations are closed under fi-
nite unions. For short we will call this statement the H-closure Theorem. Thus,
we are able to split the proof of Ramsey into two parts: the intuitionistic proof
of the H-closure Theorem, followed by an “easy” (in the sense of the Reverse
Mathematics, see [6]) classical proof of the equivalence between Ramsey and the
H-closure Theorem.

The result closest to H-closure we could find is by Coquand [7]. Coquand, as
Veldman and Bezem did before him [8], considers almost full relations (a kind of
dual of H-closed relations) and proves that they are closed under finite intersec-
tions. Veldman and Bezem use Choice Axiom of type 0 (if Vz € N.3y € N.C(z, y),
then 3f : N — N.Vz € N.C(z, f(x))) and Brouwer’s thesis. Coquand’s proof,
instead, is purely intuitionistic, and it may be used to give a purely intuition-
istic proof of the Termination Theorem [9]. However, it is not evident what are
the effective bounds hidden in Coquand’s proof of Termination Theorem. If we
compare H-closure with the Almost Full Theorem, in the most recent version
by Coquand [7], we find no easy way to intuitionistically deduce one from the
other, due to the use of de’ Morgan laws to move from the definition of almost
full to the definition of H-closure. H-closure is in a sense more similar to the
original Ramsey theorem, because it was obtained from it with just one classical
step, a contrapositive (see §2), while almost fullness requires one application of
de’ Morgan Law, followed by a contrapositive. We expect that H-closure, hiding
one application less of de’” Morgan laws, should be a version of Ramsey simpler
to use in intuitionistic proofs and for extracting bounds.

Another motivation for our work is the following. In [10] Lee, Jones and
Ber-Amram introduced the notion of size-change termination and they proved
the Size-Change Termination Theorem which states that a first order functional
program is terminating if and only if it satisfies a property which can be statically
verified from the recursive definition of the program. Also in this proof the
authors used Ramsey Theorem for pairs. By using Almost Full Theorem in [9]
the authors provided an intuitionistic proof of it. In [11] there is a very different
proof of it which used H-closure.

Our motivation for producing a new intuitionistic version of Ramsey is to pro-
vide a new intuitionistic proof of the termination theorems. We expect that, by
analysing these new proofs, we will be able to extract effective bounds from the
termination theorems, and possibly, from other concrete applications of Ramsey.

This is the plan of the paper, which is an expanded version of the conference
paper [12]. In section 2 we present Ramsey Theorem for pairs and we informally



introduce H-closure. In section 3 we formally define inductive well-foundedness
and H-well-foundedness, whose main properties are stated in section 4. The
goal of section 5 is to present what we call Intuitionistic Nested Fan Theorem,
which is a part of the proof of the H-closure Theorem, as shown in section 6.
In section 7 we intuitionistically prove the Termination Theorem. In section 8
we compare our result with the previous works along the same line and we draw
some conclusions. Unless explicitly stated, our proofs use intuitionistic second
order arithmetic, without Choice Axiom, Brouwer Thesis, Bar-Induction.

2 From Ramsey Theorem to H-closure

In this section we introduce and discuss a property of well-founded relations we
call H-closure. Classically, H-closure is but a variant of Ramsey Theorem for
pairs, and therefore it is classically provable. In the rest of the paper we will show
that H-closure has an intutionistic proof, and that by using H-closure instead
Ramsey Theorem, the Termination Theorem of Podelski and Rybalchenko [1]
turns out to be intuitionistic provable.

We first recall the statement of Ramsey Theorem for pairs, just Ramsey
for short. Assume given an infinite coloring over the edges of a complete graph
with countably many nodes G; i.e. a partition of the edges of G into n-many
sets. Then Ramsey says there is an infinite homogeneous set; i.e. there exists an
infinite subset of the nodes X such that all the edges between any two different
x,y € X have the same color k, for some k < n.

Assume {x; : i € N} is an injective enumeration of the elements of G. We
arbitrarily represent a non-oriented edge between two points x;, x; in G with
J < i by the pair (4, 7). Edges of G are not oriented, therefore the opposite edge
from z; to x; is the same edge of G, and it is again represented with (¢, 7). Thus,
a partition of edges in n sets Sy, ..., S,—1 may be represented by a partition
of the set {(x;,z;) : j < i} into n binary relations Sy, ..., S,—1. Therefore one
possible formalization of Ramsey is the following.

Theorem 1 (Ramsey for pairs [2]). Assume I is a set having some injective
enumeration I = {(x; : i € N). Assume Sy, ...,Sn—1 are binary relations on I
which are a partition of {(x;,x;) € I x I :j <i}, that is:

1. SQU“'USn_l:{(l‘i,l‘j)GIXI:j<i}
2. forallk < h <n:S,NS,=40.

Then for some k < n there exists a set Y C N, such that: Vi,j € Y.(j <i =
i Sk;).

Then the set X = {z; : i € Y} is the infinite homogeneous set for the graph.
In the statement above three assumptions may be dropped.

1. First of all, we may drop the assumption that Sy, ..., S,_1 are pairwise
disjoint. Suppose we do. Then, if we put S! = S; \ U {S; 1< z} for any
i < n we obtain a partition S, ..., S,,_; of {(z;,z;) : j < i}. Therefore by



applying Theorem 1 to the coloring given by the relations S} for ¢ < n, there
exists a k < m and an infinite Y C N, such that Vi, j € Y.(j < i = x;5,z;),
and with more reason, Vi,j € Y.(j < i = ;S,z;).
2. Second, we may drop the assumption “the enumeration is injective” (in this
case, X = {x; : i € Y}, may be a finite set). Assume we do. Then, if we set
e = 1(i,J) : x;Ska;} for any k < n, we obtain n relations Sp, ..., S;,_;
on N, whose union is the set {(¢,j) € Nx N:j < i}. Therefore, thanks to
Theorem 1, there exists a k < n and an infinite Y C N, such that Vi,j €
Y.(j <t = iS5}j), and with more reason, Vi,j € Y.(j <i = z;5kx;).
3. Third, we may drop the assumption that (x; : ¢ € N) is an enumeration of
I. Suppose we do. Then, if we restrict Sg, ..., Sp—1 to I' = {x; : i € N},
we obtain some binary relations S), ..., S/,_; on I’ such that SjU...U
Sl_1 = A{(xs,x;) € I' x I' : j < i}. Again, we conclude by Theorem 1 that
there exists some k < n and some infinite Y C N such that Vi,j € Y.(j <
i = x;5,x;), and with more reason, Vi,j € Y.(j <i = x;Skz;).

Summing up, we showed that, classically, we may restate Ramsey Theorem as
follows:

For any infinite sequence (x; : i € N) of elements of I, ifVi,j e N.(j <i =
zi(SoU...USp_1)x;), then for some k < n there is some infinite Y C N, such
that Vi, j € Y.(j <i = x;5kx;).

It is likely that even this statement cannot be intuitionistically proved, be-
cause Y is akin to an homogeneous set, and there is no effective way to produce
homogeneous sets (see for instance [3]). By taking the contrapositive, we obtain
the following corollary:

If for all k < n, all the sequences {y; : i € N) such that Vi,j € N.(j <i =
y;:Sky;) are finite, then all sequences (x; : 1 € N) such that Vi,j e N.(j <1 =
z;(SoU...USp_1)x;) are finite.

It is immediate to check that, classically, this is yet another version of Ramsey.
We call this property classical H-closure.

Given a relation S over I, let H(S) be the set of all finite lists (z; : i < I)
of elements of I such that j < ¢ < [ implies x;5z;. Then classical H-closure
may be restated as follows: if Sy, ..., S,_1 are binary relations over some set
I, and H(Sp), ..., H(S,—1) are sets of lists well-founded by one-step extension,
then H(SpU...US,_1) is a set of lists well-founded by one-step extension as
well. Thus, classical H-closure is a property classically equivalent to Ramsey
Theorem, but which deals with well-founded relations. In Proof Theory, there is
plenty of examples of classical proofs of well-foundedness which are turned into
intuitionistic proofs, and indeed from H-closure we will obtain an intuitionistic
version of Ramsey.

There is a last step to be done. We call intuitionistic H-closure, or just H-
closure for short, the statement obtained by replacing, in classical H-closure, the
classical definition of well-foundedness (all decreasing sequences are finite) with
the inductive definition of well-foundedness, which is customary in intuitionistic



logic. We will recall the inductive definition of well-foundedness in §3.1: thus, for
the formal definition of H-well-foundedness we have to wait until §3.3.

For us, the interest of an intutionistic proof of H-closure lies in the fact that
it is the combinatorial fragment of Ramsey required in order to intuitionistically
prove some results about termination. In the proof of the Termination Theorem
by Podelski and Rybalchenko [1], the part of Ramsey which is actually used is
H-closure. In §7, by replacing Ramsey Theorem with H-closure, we will obtain
an intuitionistic proof of the Termination Theorem. Moreover in [11] by using
H-closure we can intuitionistically prove the size-change-termination Theorem (
Lee, Jones and Ben-Amram [10]).

3 Well-founded relations

In this section we introduce the main objects we will deal with in this paper:
well-founded relations.

We will use I, J, ... to denote sets, R, S, T, U will denote binary relations,
X, Y, Z will be subsets, and z, vy, z, t, ... elements. We identify the properties
P(-) of elements of T with their extensions X = {x € I : P(x)} C I.

Let R be a binary relation on I. Classically « € I is R-well-founded if there
is no infinite decreasing R-chain {z; : ¢ € N} from z in I; i.e.

co.xpRry 1R...x1Rxg =2

Classically R is well-founded if and only if every x € I is R-well-founded. Equiv-
alently we say that R is well-founded if and only if every non-empty subset of I
has a minimal element with respect to R.

The inductive definition of well-founded relations is more suitable than the
classical one in the intuitionistic proofs. In the first subsection we introduce this
definition; in the second one we provide some examples; in the last subsection we
present the definition of H-well-foundedness, which is fundamental to state the
new intuitionistic form of Ramsey Theorem, as seen in the previous section. For
short we write that a relation is “well-founded” to say that it is intuitionistically
well-founded.

3.1 Intuitionistic well-founded relations

The intuitionistic definition of well-founded relation is based on the definition of
inductive property. Let R be a binary relation on I. A property is R-inductive if
whenever it is true for all R-predecessors of a point it is true also for the point.
x € I is R-well-founded if and only if it belongs to every R-inductive property;
R is well-founded if every « in I is R-well-founded. Formally:

Definition 1. Let R be a binary relation on I.
— A property X C I is R-inductive if and only if IND§ ; where

INDE :=Vy. (V2. 2Ry = 2€ X) = y<€ X).



— An element x € I is R-well-founded if and only if WFR(x); where
WFf(z) :== VX. (INDY = z€X).
— R is well-founded if and only if WF(R); where
WF(R) := Yz. WF(z).

A binary structure, just a structure for short, is a pair (I, R), where R is a
binary relation on I. We say that (I, R) is well-founded if R is well-founded.

We need also the notion of co-inductivity. A property X is R-co-inductive in
y € I if it satisfies the inverse property of R-inductive: if the property X holds
for a point, then it holds also for all its R-predecessors. Formally:

Definition 2. Let R be a binary relation on I.
— A property X is R-co-inductive in y € I if and only if CoINDE (y); where
CoINDE (y) :=Vz. (zRy = z € X).
— A property X is R-co-inductive if and only if COINDQ; where

CoIND% :=Vy.(y € X = Vz.(2Ry = z € X)).

3.2 Some examples of intuitionistic proofs of well-foundedness

The simplest non-trivial example is the intuitionistic proof that (N, <) is well-
founded, where < is the classical order of the natural numbers. Recall that,
through this paper, “well-founded” is short for “inductive well-founded”.

Ezample 1. (N, <) is well-founded.

Proof. In order to prove WF(<) we need to show that for every z € N and for
every <-inductive property X, z € X. By definition the following holds:

Yy (Vzz<y = z2€X) = yeX.

So it is sufficient to show that [0, 2] C X, for every 2 € N. We prove it by Peano
induction:

0e X AV2.[0,z] CX = [0,z+1]C X) = Vz.[0,z] C X.

We have 0 € X, since 0 has no predecessor and X is <-inductive. Moreover if
[0,2] C X, then for every y <  + 1 we have y € X. Since X is <-inductive,
x+1eX.So[0,z+1] CX.

Now let < be the classical order in Z and let now consider the following set:

Z” ={2€Z:2<0}.



Ezample 2. Every z € Z~ is not <-well-founded in Z~.

Proof. Let X = (). Then X is <-inductive for every z € Z~, since the inductive
hypothesis
Vz.(z <2z = z€X)

is false for z = ¢z — 1. So 2z € Z~ is not <-well-founded since X is <-inductive
and z ¢ X.

In general we will intuitionistically prove that if there exists an infinite de-
creasing R-chain from z then « is not R-well-founded. Classically, and by using
the Axiom of Choice, = is R-well-founded if and only if there are no infinite
decreasing R-chains from z, and R is well-founded if and only if there are no
infinite decreasing R-chains in I.

3.3 H-well-founded relations

In order to define H-well-foundedness we need to introduce some notations. We
denote a list on I with (zg,...,%,—1) where n € N and x; € I for any ¢ < n; ()
is the empty list. We define the operation of concatenation of two lists on [ in
the natural way as follows:

<x0) e 7xn71>*<y0) . )y’rI'L71> = <x07 et 7xn717y07 st )y’rI’L71>

We define the relation of one-step expansion > between two lists L, M on the
same I, as L > M <= L = M=x(y), for some y.

Definition 3. Let R be a binary relation on I.
— H(R) is the set of the R-decreasing transitive finite sequences on I:
(o, ..., &n—1) € HR) <= Vi,j<n.(i<j = z;Rz;).
— R is H-well-founded if H(R) is >=-well-founded.

Well-founded relations are H-well-founded relations, and the converse holds
for transitive relations, as proved by the next result. Later on, we will provide
examples of H-well-founded relations which are not well-founded.

Proposition 1. 1. R well-founded implies that R H -well-founded.
2. R H-well-founded and R transitive imply that R well-founded

Proof. 1. We will prove that
X :={y: each L € H(R) that ends in y is =-well-founded}

is R-inductive. This guarantees that Vz(xz € X), that is, all non-empty lists
are »—-well-founded. It will follow that the empty list is >-well founded and
that H(R) is =-well-founded.



Now, assume that
Vz.(zRy = z€ X)

in order to prove that VL € H(R) such that L ends in y, L is >=-well-founded.
By unfolding definition, it means that VL € H(R)

VY. (INDy — LeY).
Let L € H(R) and Y ~-inductive, then we need to prove
YM.(M = L = M€Y).

If M > L then the last element z of M is such that zRy. This guarantees that
M is =-well-founded, by inductive hypothesis. So M € Y since M belongs
to any inductive property.
2. Assume that H(R) is >=-well-founded and R is transitive. We have to show
that
Vz e IVX CI.(INDY = z€X).

Assume that x € I and X is R-inductive, let
Y :={()}U{L: the last element z of L is in X}.

If we prove that Y is >-inductive, then Y = H(R) by H(R) »-well-founded,
therefore Vo € I.x € X. Hence we will show that Y is >-inductive.

Assume that VM(M - L = M €Y) in order to prove L € Y. If L = ()
then L € Y. Assume L # () and let y be the last element of L, so L € X if
and only if y € X. We use the R-inductivity of X:

Vz.(:Ry = z2€ X)) = yeX.

Let zRy then, by y last element of L and transitivity of R, the list Lx(Z)
is R-decreasing and transitive, that is, Lx(z) € H(R). Then by inductive
hypothesis on Y, L«(z) € Y, this guarantees z € X. So by R-inductivity of
X, ye X; hence LeY.

4 Basic properties of well-founded relations

There are several folk-lore methods to intuitionistically prove that a binary rela-
tion R is well-founded by using the well-foundedness of another binary relation
S. The most prevalent ones are the followings:

— a subset of a well-founded relation is well-founded;

— if there exists a morphism from a relation R to a relation S and S is well-
founded then R is well-founded;

— if there exists a “simulation” relation from R to .S, then each point “simula-
ble” in a S- well-founded point is R-well-founded.

The goal of this section is to recall the proofs of these results. In §4.1 we
are going to define simulation relations, in §4.2 we introduce some operations
which preserve well-foundedness, while in §4.3 we will show the main properties
of well-foundedness.



4.1 Simulation relations

A simulation relation is a binary relation which correlates two other binary
relations.

Definition 4. Let R be a binary relation on I and S be a binary relation on J.
Let T be a binary relation on I x J.

— Domain of T. dom(T) ={xz € I:3y € JaTy}.

— Morphism. f : (I,R) — (I,S) is a morphism if f is a function such that
Va,y € L.aRy = f(x)Sf(y).

— Simulation. T is a simulation of R in S if and only if it is a relation and

Ve, z € INVy € J. ((¢Ty A zRz) = 3t € J. (tSy A 2Tt))

— Total simulation. A simulation relation T of R in S is total if dom(T) = I.
— Simulable. R is simulable in S if there exists a total simulation relation T
of R in S.

We may describe the behaviour of a simulation T of R in S by filling the
lower right angle of the following diagram.

8~

T
e

R

;@
0

T
zZ —

If we have a simulation T" of R in S and zTy holds, we can transform each
finite decreasing R-chain in [ from z in a finite decreasing S-chain in J from y.

In fact it suffices to complete the lower right angle by following the order
y/, y//7 cet

By using the Axiom of Choice this result holds also for infinite decreasing
R-chains from a point in dom(7"). Then if there are no infinite decreasing S-
chains in J there are no infinite decreasing R-chains in dom(7T'). If, furthermore,



the simulation is total there are no infinite decreasing R-chains in I. By using
classical logic and the Axiom of Choice we may conclude that if S is well-founded
and T is a total simulation relation of R in S then R is well-founded. In the last
subsection of this section we will present an intuitionistic proof of this result
which does not use the Axiom of Choice.

We recall some trivial examples of simulation relations.

Ezample 3. Let R be a binary relation on I, and let S be a binary relation on
J. If there exists a morphism f : (I, R) — (J,5), then

T={(z, f(a) s x € I}
is a total simulation of R in S.

In fact if zRz, then f(z)Sf(x) thanks to the definition of morphism. This
guarantees that we may complete the diagram by choosing ¢t = f(z).

Ezxample 4. Let R, S be binary relations on [ such that R C S. Then
T={(z,z):z€l}
is a total simulation of R in S.
In this case it suffices to complete the diagram by putting
t=y=uw.

We may see binary relations as abstract reduction relations. From now on,
by an abstract reduction relation we simply mean a binary relation (for example
a rewriting relation). Classically, a reduction relation R is said to be terminating
or strongly normalizing if and only if there are no infinite R-chains [13]. Intu-
itionistically, we require that R is well-founded. Observe that we use simulation
to prove well foundedness and this is the same method used for labelled state
transition systems [14], except that, for us, the set of labels is always a singleton.

4.2 Some operations on binary structures

In this subsection we introduce some operations mapping binary structures
into binary structures. In §4.3 we prove that these operations preserve well-
foundedness.

The first operation is the successor operation (adding a top element).

Definition 5. Let R be a relation on I and let T be an element not in I. We
define the relation R+1=RU{(x, T):x €I} on I+1=TU{T}. We define
the successor structure of (I,R) as (I, R)+1= I+ 1,R+1).

Another operation on binary structures is the relation defined by components,
inspired by the order by components.



Definition 6. Let R be a binary relation on I, and let S be a binary relation
on J. The relation R® S of components R, S is defined as below:

R® S := (R x Diag(J)) U (Diag(I) x S)U (R x 5),

where Diag(X) = {(z,z) : x € X}.

Equivalently R ® S is defined for all 2,2’ € I and for all y,y’ € J by:

(v,y)R® S(x',y) <
(R )N (y=1"))V ((z =2") A(ySy") V ((xRz") A (ySy")) -

If R, S are orderings then R ® S is the componentwise ordering, also called the
product ordering. In this case R® .S = R x S, while in general R® S O R x S.

4.3 Properties of well-foundedness

Now we may list the main intuitionistic properties of well-founded relations.
Proofs are folk-lore.

Proposition 2. Let R be a binary relation on I, and let S be a binary relation
on J.

1.

7.

Well-foundedness is both an inductive and a co-inductive property:
x 1s R-well-founded <= Vy.(yRx = y is R-well-founded ).

If R, S are well-founded, then R® S is well-founded.

If T is a simulation of R in S and if 2Ty and y is S-well-founded, then x
is R-well-founded.

If T is a simulation of R in S and S is well-founded, then dom(T) is R-
well-founded.

If R is simulable in S and S is well-founded, then R is well-founded.
Assume that f : (I,R) — (J,S) is a morphism. If x € I and f(zx) is S-
well-founded, then x is R-well-founded. If S is well-founded, then R is well-
founded.

If R is included in S and S is well-founded then R is well-founded.

Proof. 1. — Well-foundedness is inductive. Assume that

Vy.(yRx = y is R-well-founded),

in order to prove
VX.(INDY = z€X).

Let X be such that IND§ holds. Then our thesis follows by proving
Vz.(2Rx = z € X).

In order to prove it, let z be such that zRx, then by hypothesis z is
R-well-founded, hence, by unfolding definition, z € X.



— Well-foundedness is co-inductive. It suffices to show that the set
X :={y:Vw € L.wRy = w is R-well-founded}

is R-inductive. In fact if we prove it then the property X will hold for
any x R-well-founded.
In order to show that X is R-inductive, assume that

Vz.(zRy = z € X).
Then, thanks to the previous point for any z:
z€ X = zis R-well-founded,

therefore
Vz.(zRy = z is R-well-founded).

So y € X and we are done.
2. In order to prove that R ® S is well-founded, it is enough to prove that

X ={z:Vy e J(z,y)is R® S-well-founded }
is R-inductive. Assume that
Vz. (2R = z€ X),

we will show that z € X. In order to do it we are going to verify that Y, is
S-inductive; where

Y, :={y: (z,y) is R® S-well-founded} .

Assume that
Vw.(wSy = w e Yy),

to show y € Y, that is, that (z,y) is R® S-well-founded. By point 1, this is
equivalent to

V(z,w).((z,w)R® S(z,y) = (z,w) is R® S-well-founded).
Recall that
(z,w)R® S(z,y) < (zRz A (w=yVwSy))V (z=1zAwSy).

If zRx then 2z € X by inductive hypothesis on X. Then (z,w) is R® S-well-
founded. If 2 = z A wSy then w € Y,, by inductive hypothesis on Y;. This
implies that (z,w) is R ® S-well-founded and we are done.

3. In order to prove that dom(7T) is R-well-founded, it is enough to prove that

Y:={yeJ:VeelaTy = =z is R-well-founded}



is S-inductive. Assume that
Vw(wSy = weY)

in order to prove y € Y. Let 2Ty, we need to show that z is R-well-founded.
Thanks to the point 1 above, it suffices to verify that

Vz € [.zRx = 2z is R-well-founded.
If zRx A 2Ty, then by definition of simulation,
Jt € J.(tSy A zTy).
By the inductive hypothesis
teY NIt = zis R-well-founded.

4. If © € dom(T), then there exists y € J such that Ty. Moreover y has to
be S-well-founded, since S is well-founded. By point 3 above z is R-well-
founded.

5. By definition of simulable, there exists a simulation 7" of R in S such that
dom(T') = I. Thanks to point 4 above, each = € I is R-well-founded.

6. It holds thanks points 3 and 5 above, since T' = {(z, f(z)) : € I} is a total
simulation of R in S.

7. It holds thanks point 5 above, since T' = {(x,z) : « € I} is a total simulation
of Rin S.

The next remark requires the notion of R-minimal.

Definition 7. Let R be a binary relation on I. An element x € I is R-minimal
if and only if there are no y such that yRzx.

We may observe that if « is R-minimal then x is R-well-founded by Propo-
sition 2.1: trivially, since it has no R-predecessors.

Ezxample 5. The empty relation V is well-founded, since every element is V-
minimal.

Definition 8. Let R be a binary relation on I, let x € I and let n € N. We say
that © has R-height n if the longest decreasing R-chain from x has n+ 1 points.

Corollary 1. Let R be a binary relation on I, n € N, and x € I. If x has
R-height n then it is R-well-founded.

Proof. By induction on n. If n = 0 then z is R-minimal, so it is R-well-founded.
Assume that it holds for any m < n, we will prove it for n. If x has R-height
n + 1, then every y such that yRz has R-height < n, so y is R-well-founded by
inductive hypothesis. By applying Proposition 2 x is R-well-founded.

Corollary 2. Let R be a binary relation on I. (I, R) well-founded implies that
(I, R) + 1 well-founded.



Proof. T = {(x,x) : x € I} is a total simulation of (I, R) + 1 in (I, R). In fact
if x € I and y(R + 1)z, then yRx by definition of R + 1. So if (I, R) is well-
founded, then any x € [ is also R+ 1-well-founded by Proposition 2.4. Moreover
T is well-founded in (I, R) + 1 by Proposition 2.1; since (R + 1) T implies that
x € I, therefore x is well-founded.

Corollary 3. Let R be a binary relation on I and x € I. If there exists an
infinite decreasing R-chain from x, then x is not R-well-founded.

Proof. Assume that there exists an infinite decreasing R-chain from x:
...RxoRx1Rxg = ,
then there exists a morphism

f:(Z7,<)—=(,R)

—N > Xy

Suppose by contradiction that x is R-well-founded, then (by Proposition 2.6) 0
should be <-well-founded. Contradiction (see Example 2).

So the intuitionistic definition of well-founded intuitionistically implies the
classical definition; while the other implication is purely classical.
Now we may see an example of not intuitionistically well-founded set.

Ezample 6. Each element of (R, <) is not well-founded, since there exists an
infinite decreasing <-chain from any real.

Since (N, <) is well-founded, we may observe that well-foundedness is not
preserved by adding elements. Well-foundedness is not preserved also by adding
relations over the existing elements. Trivially, (R, @), where ) is the empty binary
relation, is well-founded, while (R, <) is not, and ) C<.

When I and R are finite, we may characterize the well-foundedness and the
H-well-foundedness in an elementary way.

Definition 9. Let R be a binary relation on I and x € I. A finite sequence
(x0,...,Zn) 18 an R-cycle from x if n > 0 and

r=x,Rr, 1Rx, sR... Rxy = .
Ifn =1 (that is, if xRx), we call the R-cycle an R-loop.

Proposition 3. Assume I = {x1,..., 2z} for some k € N. Let R be any binary
relation on I.

1. R is well-founded if and only if there are no R-cycles.
2. R is H-well-founded if and only if there are no R-loops.



Proof. 1. Suppose that there are no R-cycles. In no R-chain {yo,...,Ym—1} we
may have i < j < m and y; = y; otherwise there exists an R-cycle in I.
By the Finite Pigeonhole principle (which is intuitionistically derivable), if
it were m > k we would have i < j < m and y; = y; contradiction. We
deduce that every R-chain has at most k-many points. Then each x € I has
height less than k. Thanks to Corollary 1 R is well-founded.

Now suppose that R is well-founded, in order to prove that there exists no
R-cycle from z. If there were an R-cycle from x, there exists an infinite
decreasing R-chain from x, hence, by Corollary 3, x is not well-founded.

Contradiction.
2. On the one hand, if there exist no R-loops, then there is no decreasing
transitive R-chain (zg, ..., z,) such that zy = z,, and n > 0, since this would

imply that z, Rxg = x,. Then H(R) has no R-cycles, hence the number of
the elements in H(R) is at most the number of permutations on I. Then
(H(R), ) is well-founded since it is a finite structure without >~-cycles.

On the other hand, assume that H(R) is well-founded, in order to prove
that there exists no R-loop for x. If there were an R-loop from z, then for
every n € N, the list composed by x repeated n times is transitive and
R-decreasing. Hence H(R) is ill founded, contradiction.

Thanks to Proposition 3 we may prove H-closure Theorem if Ry, ..., R, are
relations over a finite set I. In fact R = (R U Ry U---U R,,) is H-well-founded
if and only if there are no R-loops. This is equivalent to: there are no R;-loops
for any i € [1,n]. Hence R is H-well-founded if and only if for each i € [1,n], R;
is H-well-founded.

Now we want to prove H-closure Theorem for any set I.

5 An intuitionistic version of Konig

In this section we deal with binary trees. In the first part we introduce binary
trees, while in the second part we use binary trees to prove an intuitionistic
version of Koénig Lemma for nested binary trees (binary trees whose nodes are
themselves binary trees), which we call Nested Fan Theorem. As in the classical
case [3], there is a strong link between intuitionistic Ramsey Theorem and Nested
Fan Theorem.

5.1 Binary trees

Let R be a binary relation. Then we can define the set of all binary trees where
each child node is in relation R with its father node. If R is well-founded, this set
will be well-founded with respect to the relation “one-step extension” between
trees.

A finite binary tree may be defined in many ways, the most common runs as
follows.



Definition 10. A finite binary tree on I is defined inductively as an empty
tree, called Nil, or a triple composed by one element of I and two trees, called
immediate subtrees: so we have Tr = Nil or Tr = (x, Trg, Try).

BinTr = {Tr : Tr is a binary tree }

Let Tr = (x, Trg, Tr1), then we say that

Tr is a tree with root x;

— if Trg = Try = Nil, Tr is a leaf-tree;

if Trg # Nil and Tr; = Nil, Tr has exactly one left child;

— if Trp = Nil and Tr; # Nil, Tr has exactly one right child;

if Trg # Nil and Tr; # Nil, Tr has two children: one right child and one left
child.

The universe | Tr| of a binary tree on I is the set of the elements of I in Tr,
formally:

Definition 11. Let Tr be a binary tree. The universe | Tr| is defined by induc-
tion on BinTr:

— |Nil| = 0;
— |(x, Tro, Try)| = {z} U| Tro | U | Tty |.

If L = (xg,...,xn—1) is a list on I, we define the universe of L as |L| =
{.’I}0, ce ,xn_l}.

Definition 12. Let L be a list on I and Tr be a binary tree on I. L is covered
by Tr if and only if |L| = |Tr]|.

The covering relation will be useful in order to simulate a set of lists in a set
of trees. Each list will be associated with a tree with the same universe.

A binary tree may also be define as a labelled oriented graph on I, empty
(if Tr = Nil) or with a special element, called root, which has exactly one path
from the root to any node. Each edge is labelled with a color ¢ € C' = {0, 1} in
such a way that from each node there is at most one edge in each color.

Equivalently we may define firstly colored lists and then the binary trees as
sets of some colored lists.

Definition 13. A colored list (L, f) is a pair, where L = {(xq,...,xn_1) s a list
on I equipped with a list f = {(co,...,cn—2) on C = {0,1}. nil = ({),()) is the
empty colored list and ColList(C') is the set of the colored lists with colors in C.

We should imagine that the list L is drawn as a sequence of its elements and
that for each ¢ < n—1 the segment (x;, z;4+1) has color ¢;. Observe that if L = ()
or if L = (), then f = (): if there are no edges in L, then there are no colors in
(L. f).

We use A, 1, ... to denote colored lists in ColList(C). Let ¢ € C. We define
the composition of color ¢ of two colored lists by connecting the last element of



the first list (if any) with the first of the second list (if any) with an edge of color
c. Formally we set nil*.\ = Ax.nil = A, and (L, f)*.(M, g) = (L*M, fx(c)xg)
whenever L, M # nil.

We can define the relation one-step extension on colored lists: . is the one-
step extension of color ¢ and >, is the one-step extension of any color. Assume
C ={0,1} and z € I and A, 1 € ColList(C'). Then we set:

= Mc((x), () =e A
— Ao o if A= p for some ¢ € C.

Now we can equivalently define a binary tree on I as a particular set of some
colored lists.

Definition 14. A binary tree Tr is a set of colored lists on I, such that:

1. nil 4s in Tr;
2. If x € Tr and A >, p, then p € Tr;
3. Fach list in Tr has at most one one-step extension for each color ¢ € C': if

Aos A1, A € Tr and Ao, A1 =c A, then Ao = \1.

For all sets £ C ColList(C) of colored list, BinTr(L) is the set of binary trees
whose branches are all in L.

For instance the empty tree is the set Nil = {nil}. From ((x), ()) > nil we
deduce that there is at most one ((z),()) € Tr: z is root of Tr. The leaf-tree of
root x may be represented as {({z), ()),nil}. The tree with only one root = and
two children y, z may be represented as

{((2,9),(0)), ({z, 2), (1)), ({x), (), il } .

The last definition we need is the one-step extension > between binary tree;
T > Tr if T’ has one leaf more than Tr.

Definition 15 (One-step extension for binary trees). If Tr is a binary tree
and A € Tr and pp . X and N >, X for no X € Tr, then

TrUu{u} >=r Tr

5.2 Nested Fan Theorem

Konig Lemma is a result of classical logic which guarantees that any infinite
binary tree has some infinite branch. By taking the contrapositive, this result
has the classically equivalent form: if every branch of a binary tree is finite then
the tree is finite. This version is called the Fan Theorem.

There exists a corresponding intuitionistic result, intuitionistically weaker
than the original one that we may state as follow.

Lemma 1 (Intuitionistic Fan Theorem). Fach well-founded binary tree is
finite.



Here we are interested to an intuitionistic version of Fan Theorem for nested
trees (trees whose nodes are trees), that we will call Intuitionistic Nested Fan
Theorem, just Nested Fan Theorem for short.

Let consider a tree Tr whose nodes are finite binary trees, and whose fa-
ther/child relation between nodes is the one-step extension »r. Classically we
may say: if for each branch of Tr the union of the nodes in this branch is a binary
tree with only finite branches, then each branch of Tr is finite: that is, the tree
of trees Tr is classically well-founded.

In the intuitionistic proof of the intuitionistic Ramsey Theorem we will use an
intuitionistic version of this statement, in which the finitess of the branches is re-
placed by inductive well-foundedness of branches. Intuitionistic Nested Fan The-
orem states that if a set of colored lists £ is well-founded then the set BinTr(L),
of all binary trees whose branches are all in £, is well-founded.

In this subsection < will denote the usual relation of prefix between lists on
I L<M <= 3N e{listson I} .LxN = M.

Lemma 2 (Intuitionistic Nested Fan Theorem). Let C' = {0,1} be a set
of colors and let L C ColList(C) be any set of colored lists with all colors in C.
Then

(L, =..) is well-founded = (BinTr(L), 1) is well-founded.

Proof. Assume Tr is any binary tree of root « € I. Let ¢ € C. We define 7.(Tr)
as the immediate subtree number ¢ of Tr (the unique subtree connected to the
root of Tr by an edge of color ¢). Formally we set 7.(Tr) = {A € ColList(C) :
({x), ())*cA € Tr}. 7w (Tr) is undefined when Tr = Nil.

If c € C, X € ColList(C) and Tr € BinTr(C), we denote with Ax. Tr the set
{A#cp o p € Tr}. For instance nil x, Tr = Tr.

Let ¢ € C, X € ColList(C'). We define BinTr(L, A, ¢) as the set of binary trees
{Tr € BinTr(C) : A+, Tr C L}. BinTr(L, A, ¢) is the set of trees occurring in
some tree of BinTr(L£), as immediate subtree number ¢ of the last node of the
branch A. For instance, BinTr(£, nil, ¢) = BinTr(L).

We will prove that (BinTr(L, A, ¢), >7) is well-founded for all A € £. The
thesis will follow if we set A = nil; ¢ = 1 (a dummy value). Since L is well-
founded, we argue by induction over \.

Let us abbreviate B = BinTr(L, A, ¢). Assume that Tr € B. We have to prove
that Tr is well-founded in (B, >=7). We distinguish two cases.

1. Assume Tr has root some x € I. Let us abbreviate A, = Ax.((z), ()) and
B, = BinTr(L, A, ¢) for all ¢ € C. We define a simulation S from (B, >r)
to (Bg,>1) ® (B1,>r) such that Tr € dom(S). Since by inductive hy-
pothesis on A, both (By, 1) and (Bi,>7) are well-founded, the thesis
will follow by Proposition 2.2 and Proposition 2.3. The simulation is de-
fined by Tt S(mo(Tr'), m1(Tt’)) whenever Tr’ has root z. S is well-defined
because Tt' # Nil, hence o (Tr"), 71 (Tr") are well-defined. We have Tr €
dom(S) because Tr has root x. We have 7.(Tr") € B, by definition. When-
ever Tr' =7 Tr”, then Tr” is obtained from Tr’ adding one node either



in the first or in the second immediate subtree of Tr’. In the first case we
have mo(Tr") =7 mo(Tr") and m(Tr') = 7 (Tr”), in the second case we
have mo(Tr') = mo(Tr”) and 7 (Tr') =7 71 (Tr”). In both cases, the pair
(mo(Tr"), w1 (Tx")) is related to (mo(Tx”), 71 (Tx”)) by =7 ® =7. Thus, S is a
simulation such that Tr € dom(S), as we wished to show.

2. Assume Tr = Nil. Then all one-step extensions of Tr in B are not empty,
therefore they are well-founded by point 1 above. Thus, Tr is well-founded
by Proposition 2.1.

6 An intuitionistic form of Ramsey Theorem

In this section we present a new intuitionistic version of Ramsey Theorem, the
H-closure Theorem. In the first part of the section we state it and we prove the
easy classical equivalence between it and Ramsey Theorem, in the second part
we prove the H-closure Theorem.

6.1 Stating an intuitionistic form of Ramsey Theorem

In [3] we proved that the first order fragment of Ramsey Theorem is equivalent to
the purely classical principle X9- LLPO [15], so it is not an intuitionistic result.
The H-closure Theorem is a version of Ramsey Theorem intuitionistically valid.

Theorem 2. [H-closure Theorem] The H-well-founded relations are closed un-
der finite unions:

(Ry,..., Ry H-well-founded) = ((RyU---UR,) H-well-founded).

H-closure Theorem is classically true, because there exists a simple classical
proof of the equivalence between Ramsey Theorem and H-closure Theorem. This
is one reason for finding an intuitionistic proof of H-closure Theorem: it splits
the proof of Ramsey Theorem into two parts, one intuitionistic and the other
classical but simple (where simple means it could be provable in RCAg [6], and
it could be proved using the sub-classical principle LLPO-3 [3]). Let us see a
short classical proof of this equivalence.

Proposition 4. Classically:
Ramsey Theorem <= H-closure Theorem.
Proof. = Let Sp,...,S,_1 be symmetric relations on N such that
SoU---USp_1={(z,y) e Nx N:x #y}.

We need to prove that there exists an infinite homogeneous set X C N. For
any k < n, put
Ry = {(2,y) : aSy Nw >y}



Then
ROU'“UR”—lz{(I7y):‘T>y}a

and {n :n € N} is an infinite transitive decreasing (Ro U - -+ U R,,_1)-chain.
By applying H-closure Theorem we obtain there exists an infinite transitive
chain X = {z,, : n € N} CN for H(R},) for some k < n. Hence for any i < j
in N z;Rpx; and by definition this implies that z;Six; and x;Skx; by S
symmetric. X is an infinite homogeneous subset of N.

< Suppose that there exists an infinite transitive decreasing (RoU---URy,—1)-
chains:

C:={x, :neN}.

For any k < n, put
Sk ={(,7) : (i <jAzjRpx;) V (j <iAziRpzxj)},
Since C' is transitive for any i, j € N we have
i1<j = z;(RoU---URp_1)zs,

then (SpU---USp—1) = {(4,4) € N x N: i # j}. Thanks to Ramsey Theorem
we have there exists an infinite homogeneous set X C N for some S, for
some k < n. Then

Vi, j € X(’L <j = .’L‘jS}C.’Ei),

S0, by definition of S, X is an infinite transitive decreasing Rj-chain. Hence
H(Ry,) is ill founded.

6.2 Proving the Intuitionistic form Ramsey Theorem

We introduce a particular set of colored lists: the (Rg, Ry)-colored lists. This set
will be well-founded if Ry, Ry are H-well-founded. Let (L, f) be a colored list.
We say that (L, f) is a (Ro, R1)-colored list if for every segment (z;,x;41) of
(L, f), if it has color k € {0,1} then z; is Ry-greater than all the elements of L
that follows it. Informally, a sequence is a (Rg, Ry)-colored list if whenever the
sequence decreases w.r.t. R;, then it remains smaller w.r.t. to R;. Formally:

Definition 16. (L, f) € ColList(C') is a Ro, R1-colored list if either L = () and
f=( orL={(x0,...,2n-1), f = {(cos-..,Cn—2), and

Vi<n—1( =k = (Vj<ni<j = (z;jRpz;))).
ColList(Rg, R1) C ColList(C) is the set of (Ro, R1)-colored lists.

We may think of a (R, Ry)-colored list as a simultaneous construction of
one Ry-decreasing transitive list and one R;-decreasing transitive list. We call an
Erdds-tree over Ry, Ry, a (Ry, Ry)-tree for short, any binary tree whose branches
are all in ColList(Rg, R1). Erdds-trees are inspired by the trees used first by
Erdds then by Jockusch in their proofs of Ramsey [16], hence the name. We may



think of a (Ry, R1)-tree as a simultaneous construction of many Ry-decreasing
transitive lists and many R;-decreasing transitive lists.

BinTr(ColList(Ro, R1)) is the set of all (R, Ry)-trees. We will considering
the one-step extension .., on colored lists in ColList(Ry, R;), and the one-step
extension »r on binary trees in BinTr(ColList(Rg, R1)).

Now the crucial remark is that each one-step step extension in a Ry U
R;-decreasing transitive list may be simulated as a one-step step extension of
some Erdds-tree on (Ry, R1), that is, as a one-step extension either of one Ry-
decreasing transitive list or of one R;-decreasing transitive list, among those
associated to the branches of the (R, Ry )-tree. From the well-foundedness of Ry
and R; we prove the well-foundedness of (H(Rp) x H(Ry), = ® »), then of the
set of (Rp, Ry )-colored lists (as shown in the first part of next lemma), and so of
the set of (Rg, R1)-Erd&s-trees as well. Hence, by using the second part of the
next lemma, we will also derive the H-well-foundedness of Ry U Ry, getting our
intuitionistic version of Ramsey Theorem.

Lemma 3. (Simulation) Let Ry, Ry be binary relations on a set I.

1. (ColList(Rg, R1), =) is simulable in (H(Rp) x H(Ry),> ® ») + 1.
2. H(RoU Ry, >) is simulable in (BinTr(ColList(Ro, R1)), >7)-

Proof. 1. Define the relation S on ColList(Rg, R1) X (H(Ry) x H(R1)) + 1 as
follows:

(0, 0)ST:

—If L = (xo,...,2n) and f = {co,...,Cn-1), then (L, f)S(Lo, L) if for
any ¢ < 2 L; is the sublist of L composed by all the z; € L such that
Cj =1.

We need to prove that S is a total simulation.

— S is a relation on ColList(Ry, R1) x (H(Rp) x H(R1)) + 1. In fact, since
(L, f) is a (Ro, R1)-colored list, if j* < j are indexes of L;, then ¢; = i,
and then zj R;x; by definition of (R, R1)-colored list. Thus, L; is an
R;-decreasing transitive list.

— S is a total relation by definition.

— S is a simulation. Let £ € (H(R1) x H(R2)) + 1.

e Assume that (L', f) »=.. ({),{)) and ({),())S6: then § = T. Since
L’ (), then L’ has an element. Hence there exist Lo, L1, such that
(L', f")S(Ly, LY}). Trivially, by definitions of T and of ((> ® »)+1),
(Ly, L)((- @ =)+ 1)T.

e Suppose (L', ') ».a (L, f) and (L, f)S8 for some L # (). By defini-
tion of >, and by L # () we get (L', f') = (L (y), f x (c)) for some
y € I and some ¢ € C' = {1,2}. Moreover 6 = (Lo, L1), with Lo, L;
defined as above. Thanks to the definition of S there exists Lj, and
L such that (Lx(y), f*(c))S(Ly, L}). By definition of L{, and L}, if
¢=0then Ly = Loy % (y) and L} = Ly, otherwise (if c = 1) L{ = Lo
and L} = L1 * (y). In both the cases (L, L)) (> ® =)(Lo, L1), then
it holds also (L{, L})(> ® =) + 1(Lo, L1).



2. Define S on H(Rg U Ry) x BinTr(ColList(Ry, R1)) as LS Tr if and only if
|L| = |Tr|. We need to prove that S is a total simulation. We will show
it by induction on the length of the list. Firstly observe that ()Snil, since
[(})] =0 = |nil|. Now assume that L = (xg,...,zp_1), L*(y) € H(RyU Ry)
and that there exists Tr € BinTr(ColList(Rp, R1)) such that |L| = |Tr|
(induction hypothesis). We want to prove that there exists Tr’ =7 Tr such
that

L« ()] = | T | = | Tr Ufy).

If Tr = nil, then Tt’ will be the leaf-tree with root y. Otherwise, if Tr # nil,
then n > 1. Let xo be the root of Tr. Observe that, since L € H(Ro U Ry),

Vi < ndi < 2yR1£I}J
Hence there exists h : n — 2 such that
Vj < n.th(j)xj.

Now we define a set J C ColList(Rg, R1) which contains many lists with last
element y. We will prove that there is some list in J which we may add to
Tr in order to obtain some Tr’ -7 Tr. J contains colored lists of the form

(M * <y>7g * <h(jm*1)>) = (<xj07 s 7xjm*1>y>7 <h(30)7 LR h(jmfl»)v

for some jo, ..., Jjm—1 < n (even with repetitions) and such that

(Mv g) = (<xj0’ s 7:I:j7n71>7 <h<.71)v SR h(jmf2)>) €Tr.

Observe that

— J is not empty since ((xo,y), (h(zq)) € J.

— J C ColList(Ro, R1). Let (M * (y), g * (h(jm-1))) € J, then (M,g) € Tr
and so (M, g) € ColList(Ry, R1). Moreover Vk < m. YRu(z;,)%j,, by the
choice of h.

— Given any (M*(y), g*(h(jm—-1))) € J, then we may find some

(M"x (y),g" * (h(41))) € J

such that
T = TeU{(M' * (y),g" * (h(j1)))} =7 Tr

and Tr" € BinTr(ColList(Ry, R1)). We prove it by inverse induction on
the length of (M, g) € Tr. In fact Tr is finite then there is a finite maximal
length.

Let (M = (y),g * (h(jm-1))) € J. If (M,g) has no extension in color
h(jm—1) in Tr, then we may extend Tr with (M * (y), g * (h(jm—-1))).
Otherwise, (M, g) has some extension (M * (x;,,), g * (R(jm—1))) in Tr.
In this case J contains

(M (y), g"* (h(Gm))) = (M * (25, ), [+ (h(Gm=1), h(Gm)))-



Since (M’ * (y), g" * (h(jm))) is associated to the list
(M s (xj,,), g (h(jm-1))) € Tr

that is longer than (M, g), we may apply the inductive hypothesis and
we are done.
So we may consider an element in J, which exists by the first observation;
then we find, thanks to the last observation, a Tr’ € BinTr(ColList(Rg, R1))
such that Tr' =7 Tr and |T7'| = |Tr| U {y}.

Corollary 4. Let Ry, Ry be binary relations H-well-founded on a set I.

1. The set (ColList(Rg, R1), >..) of Ro, R1-colored lists is well-founded.
2. The set (BinTr(ColList(Ry, R1)), >7) is well-founded.

Proof. 1. (H(Ro)x H(Ry1),> ® >) is well-founded by Proposition 2.2, since its
components are. By Corollary 2, (H(Ry)x H(Ry), > ® »)+1 is well-founded.
Since (ColList(Ry, R1), =) is simulable in (H(Ry) x H(R1),> ® »)+1 by
Lemma 3, then it is well-founded by Proposition 2.5.

2. Since (ColList(Ro, R1), >.o) is well-founded thanks to the previous point,
(BinTr(ColList(Ro, R1)), >7) is well-founded by Lemma 2.

Let ) be the empty binary relation on I. Then H(f)) does not contain lists
of length greater or equal than 2. Hence H(0) = {(z) : x € I} U{()}. H(V) is
—-well-founded since each (x) is >=-minimal, and () has height less or equal than
1. Thus, the empty relation is H-well-founded.

Theorem 3. Letn € N. If Ry, ..., R,_1 H-well-founded then (RgU---UR,_1)
is H-well-founded.

Proof. We may prove it by induction on n € w. If n = 0 we need to prove the
empty relation is H-well-founded: we already considered this case. Assume that
n > 0, and that the thesis holds for any m < n. Then Ry U---U R, _5 is H-
well-founded. Thus, in order to prove that (RoU---U R,_1) is H-well-founded,
it is enough to consider the case n = 2.

By Corollary 4.2, (BinTr(ColList(Rg, R1)), ) is well-founded. Then, by
Lemma 3, (H(Ro U Ry),>) is simulable in (BinTr(ColList(Rg, R1)), =), then
well-founded by Proposition 2.5.

Corollary 5. Let n € N. Ry, ..., R,,—1 are H-well-founded if and only if (Ry U
-+ URy—1) s H-well-founded.

Proof. = Theorem 3.

< If R and S are binary relations such that R C S, then S is H-well-founded
implies that R is H-well-founded. In fact we have H(R) C H(S); so by
Proposition 2.7, if (H(S), =) is well-founded then (H(R), >) is well-founded.
Since Vi < n.R; C Ry U---U R,,_1, then R; is H-well-founded.



7 Podelski and Rybalchenko’s Termination Theorem

H-closure Theorem is useful in order to intuitionistically prove some results
about termination, since it contains the combinatorial fragment of Ramsey The-
orem required to prove them. In this last section we prove that the Termination
Theorem [1, Theorem 1] is intuitionistically valid. For all details we refer to this
paper: here we only include the definitions of program, computation, transition
invariant and disjunctively well-founded relations that Podelski and Rybalchenko
used.

Definition 17 (Transition Invariants). As in [1]:

— A program P = (W, 1, R) consists of:

o W: a set of states,

e [: a set of starting states, such that I C W,

e R: a transition relation, such that R C W x W.
A computation is a mazximal sequence of states Sg, S1,... such that

e s59€l,

L] (5i75i+1) €ER fOT all i Z 0.
The set Acc of accessible states consists of all states that appear in some
computation.
A transition invariant T is a superset of the transitive closure of the transi-
tion relation R restricted to the accessible states Acc. Formally,

R N (Acc x Acc) C T.

The program P is terminating if and only if RN (Acc x Acc) is well-founded.
— A relation T is disjunctively well-founded if it is a finite union T = Ty U
-+ UT,_1 of well-founded relations.

Lemma 4. If T = RN (Acc x Acc) is well-founded then U = R N (Acc x Acc)
1s well-founded.

Proof. Assume that T is well-founded, we will prove that
(y is T-well-founded) = (y is U-well-founded)

by induction on y, T
Recall that (y is U-well-founded) <= Vz(2Sy = z is U-well-founded).
Assume that zUy, then we have two possibilities:

— 2Ty, then z is T-well-founded, hence by inductive hypothesis z is U-well-
founded.

— zUx A 2Ty for some z € Acc. In fact x has to be in Acc since it can be
reached after some R-steps from z € Acc. So x is T-well-founded and, by
inductive hypothesis, it is U-well-founded. This implies that (since zUx) also
z is U-well-founded.

So for each zUy , z is U-well-founded. This implies that y is U-well-founded.



Theorem 4 (Termination). The program P is terminating if and only if there
exists a disjunctively well-founded transition invariant for P.

Proof. < Let T =TyU---UT,_1 2 R" N (Acc x Acc) with Ty, ..., T,_1 well-
founded. Then T; is H-well-founded by Proposition 1 and by H-closure The-
orem 3 also T is H-well-founded. Therefore, since H-well-foundedness is
preserved between subsets, R N (Acc x Acc) is H-well-founded. Moreover it
is transitive then, thanks to the Proposition 1, we obtain RT N (Acc x Acc)
is well-founded, so P is terminating.

= Let P be terminating then R N (Acc x Acc) is well-founded. By Lemma 4
R* N (Acc x Acc) is well-founded. Then we are done.

Another Termination Theorem which turns out to be provable by using H-
closure [11] is the one by Lee, Jones and Ben-Amram [10].

8 Related works and conclusions

In [3] we studied how much Excluded Middle is needed to prove Ramsey Theo-
rem. The answer was that the first order fragment of Ramsey Theorem is equiv-
alent in HA to X9-LLPO, a classical principle strictly between Excluded Middle
for 3-quantifiers arithmetical formulas and Excluded Middle for 2-quantifiers
arithmetical formulas [15]. X$-LLPO may be interpreted as Kénig’s Lemma re-
stricted to trees definable by some A$-predicate (see again [15]).

However, Ramsey Theorem in the proof of the Termination Theorem [1] may
be replaced by H-closure, obtaining a fully intuitionistic proof. It is worth notic-
ing that we obtained the result of H-closure by analyzing the proof of Termina-
tion Theorem, not by building over any existing intuitionistic interpretation.

We could not find any evident connection with the intuitionistic interpre-
tations by Bellin, Oliva and Powell. Bellin [17] applied the no-counterexample
interpretation to Ramsey theorem, while Oliva and Powell [18] used the dialec-
tica interpretation. They approximated the homogeneous set by a set which may
stand any test for some initial segment (a segment dependent by the try itself).
Instead we proved a well-foundedness result.

Instead, we found interesting connections with the intuitionistic interpre-
tations expressing Ramsey Theorem as a property of well-founded relations.
This research line started in 1974: the very first intuitionistic proof used Bar
Induction. We refer to §10 of [8] for an account of this earlier stage of the re-
search. Until 1990, all intuitionistic versions of Ramsey were negated formulas,
hence non-informative. In 1990 [8] Veldman and Bezem proved, using Choice
Axiom and Brouwer thesis, the first intuitionistic negation-free version of Ram-
sey: almost full relations are closed under finite intersections, from now on the
Almost-Full Theorem.

We explain the Almost-full theorem. Brouwer thesis says: a relation R is
inductively well-founded if and only if all R-decreasing sequences are finite.
Brouwer thesis is classically true, yet it is not provable using the rules of in-
tuitionistic natural deduction. In [7] (first published in 1994, updated in 2011)



Coquand showed that we may bypass the need of Choice Axiom and Brouwer
thesis in the Almost Full Theorem, provided we take as definition of well-founded
directly the inductive definition of well-founded (as we do in this paper).

In [8], a binary relation R over a set is almost full if for all infinite sequences
20, %1,%2,...,Tn,...on I there are some i < j such that x;Rx;. We claim that,
classically, the set of almost full relations R is the set of relations such that
the complement of the inverse of R is H-well-founded. Indeed, let ~R~! be the
complement of the inverse of R: then, classically, ~R~! almost full means that in
all infinite sequences we have z;—~R~'z; for some i < j, that is, z;—Ra; for some
i < j, that is, all sequences such that z;Rxz; for all ¢ < j are finite. Classically,
this is equivalent to H-well-foundedness of R. The fact that the relationship
between H-well-founded and almost full requires a complement explains why we
prove closure under finite unions, while Veldman, Bezem and Coquand proved
the closure under finite intersections.

For the future, we plan to use our proof to extract some effective bounds
for the Termination Theorem. For example, in [19] the proof of the Termination
Theorem presented paper is used in order to prove that a program has a transi-
tion invariant of height whose relations are primitive recursive and have height
w then it computes a primitive recursive function. Moreover, as already proved
in [20] by using a miniaturization of the Dickson Lemma, by using an argument
based on H-closure Theorem we have that if a program has a transition invari-
ant composed of k-many relations of height w, then the transition relations is in
Ack(k + 1) [6]. Where Ack(k) represents the level k of the primitive recursive
hierarchy.

Another possible challenge is to extract the bounds implicit in the intuition-
istic proof [9], which, as we said, uses Ramsey Theorem in the form: “almost full
relations are closed under intersection”, and to compare the two bounds.
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