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Abstract

We present a detailed study of the collapse of a spherical matter overdensity and the non-linear growth of large scale structures in
the Galileon ghost condensate (GGC) model. This model is an extension of the cubic covariant Galileon (G3) which includes a
field derivative of type (∇µφ∇µφ)2 in the Lagrangian. We find that the cubic term activates the modifications in the main physical
quantities whose time evolution is then strongly affected by the additional term. Indeed, the GGC model shows largely mitigated
effects in the linearised critical density contrast, non-linear effective gravitational coupling and the virial overdensity with respect to
G3 but still preserves peculiar features with respect to the standard ΛCDM cosmological model, e.g., both the linear critical density
contrast and the virial overdensity are larger than those in ΛCDM. The results of the spherical collapse model are then used to
predict the evolution of the halo mass function, non-linear matter and lensing power spectra. While at low masses the GGC model
presents about 10% fewer objects with respect to ΛCDM, at higher masses for z > 0 it predicts 10% (z = 0.5)-20% (z = 1) more
objects per comoving volume. Using a phenomenological approach to include the screening effect in the matter power spectrum, we
show that the difference induced by the modifications of gravity are strongly dependent on the screening scale and that differences
can be up to 20% with respect to ΛCDM. These differences translate to the lensing power spectrum where qualitatively the largest
differences with respect to the standard cosmological model are for ` < 103. Depending on the screening scale, they can be up to
25% on larger angular scales and then decrease for growing `. These results are obtained for the best fit parameters from linear
cosmological data for each model.

Keywords: modified gravity, Vainshtein mechanism, spherical collapse, mass function, matter & lensing power spectra

1. Introduction

The late-time acceleration of the Universe has been con-
firmed by several cosmological observations [1–8]. Its mod-
elling within General Relativity (GR) is done through the cos-
mological constant Λ which counteracts the attractive force of
gravity realising the desired acceleration. The resulting model
is the Λ-cold-dark-matter (ΛCDM) which provides an accurate
picture of the Universe. However, it still contains a number of
open theoretical issues [9] which might signal the breakdown
of GR. Alternative proposals, known as modified gravity the-
ories (MG), suggest to modify the gravitational interaction on
cosmological scales. The latter usually foresee the inclusion of
additional degrees of freedom (dofs) [9–20]. Among these pro-
posals, scalar-tensor theories of gravity have played a promi-
nent role as they simply add a scalar dof to the usual tensor
modes of GR [9, 14–16, 18, 20–25]. For example, Horndeski
theory (or Galileon theory) [21, 23, 26], is described by an ac-
tion characterized by four free functions of the scalar field φ and
its kinetic energy X = ∇µφ∇

µφ. In this theory, the scalar field

Email addresses: nfrusciante@fc.ul.pt (Noemi Frusciante),
francesco.pace@manchester.ac.uk (Francesco Pace)

obeys a second order Euler-Lagrange equation and a fixed form
for these functions defines a model. In the last decade several
Galileon models have been proposed [27–34] and some of them
have been tested against cosmological data at linear level [35–
42]. The so-called Galileon ghost condensate model (GGC)
[28, 31] is of particular interest as it is the first Galileon model
to be statistically preferred by data over ΛCDM [40]. This is
due to a suppression in the low-` tail of the Cosmic Microwave
Background (CMB) temperature-temperature power spectrum
with respect to ΛCDM and a peculiar evolution of the expan-
sion history, characterised by a dark energy (DE) equation of
state wDE entering the region (−2,−1) during the matter era
without ghosts.

The GGC model possesses a screening mechanism, dubbed
Vainshtein mechanism [9, 43–46], which suppresses the modi-
fications to gravity on Solar-System scales where GR is tested
with exquisite precision [47, 48]. The Vainshtein mechanism
operates through the second derivative of the scalar field ∂2φ,
dropping the modification to the gravity force in high-density
environment. Screening mechanisms play a very important role
when considering the formation of gravitationally bound struc-
tures: indeed, during the collapse phase the density of the re-
gion can be sufficiently high to significantly modify the dynam-
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ics of the scalar field. Analysis in this direction have been per-
formed using the spherical collapse model for Galileon models
[49–52]. For example, in DGP braneworld gravity, the Vain-
shtein mechanism affects both force and energy conditions dur-
ing collapse, in particular the conservation of the Newtonian to-
tal energy is violated [49] and in both DGP and cubic Galileon
models an enhancement of structure formation is found due to
a screening mechanism which is not effective until late time in
the collapse [49, 52]. Hence, in order to properly constrain any
MG model, it is important to fully understand the impact the
screening mechanism has on the dynamics of the scalar field
at non-linear scales. This investigation is timely and relevant
in light of new and high quality data in the non-linear regime
of weak lensing and galaxy clustering from upcoming surveys,
e.g., LSST1 [53, 54], DESI2 [55], Euclid3 [56, 57], SKA4 [58].

In this paper we aim at investigating how the effects of non-
linearities in the GGC scenario change the collapse process of a
spherical overdensity and what the role of the Vainshtein mech-
anism is. We will then use the results of the analysis of the
spherical collapse model to make theoretical predictions on the
abundances of halos and discuss the non-linear matter and lens-
ing power spectra.

The work is organised as follows. In Section 2 we intro-
duce the GGC model and give an overview of the background
equations. In Section 3 we present the linearly perturbed equa-
tions and the evolution of the linear matter density perturbation
and its growth rate. Then, in Section 4 we derive the non-linear
corrections to the equations for both the scalar field and mat-
ter perturbations. The spherical collapse is then studied in Sec-
tion 5. In Section 6 we present the theoretical predictions for the
non-linear matter and lensing power spectra, and in Section 7
the effects of the GGC model on the abundances of halos. We
finally conclude in Section 8.

2. The model

The Galileon ghost condensate (GGC) model is defined by
the following action [28, 31]

S =

∫
d4x
√
−g

 M2
pl

2
R + a1X + a2X2 + 3a3X�φ

 , (1)

where Mpl is the Planck mass, g is the determinant of the metric
gµν, R is the Ricci scalar, X = ∇µφ∇

µφ with φ being the scalar
field and ∇µ the covariant derivative. a1,2,3 are constants and
�φ = ∇µ∇

µφ. To the action in (1) we add the matter action
SM, for which we consider perfect fluids minimally coupled to
gravity.

Varying the total action with respect to the metric and φ,
we obtain the corresponding field equations. We consider for

1https://www.lsst.org/
2desi.lbl.gov
3https://www.euclid-ec.org
4https://www.skatelescope.org/

the background the flat Friedmann-Lemaître-Robertson-Walker
(FLRW) line element, given by

ds2 = −dt2 + a2(t)γi jdxidx j , (2)

where a(t) is the scale factor and γi j is the spatial metric. Fol-
lowing Ref. [31], we introduce the dimensionless variables

x1 = −
a1φ̇

2

3M2
plH

2
, x2 =

a2φ̇
4

M2
plH

2
, x3 =

6a3φ̇
3

M2
plH

, (3)

where H = ȧ/a, and a dot represents the derivative with respect
to the cosmic time t. Using these definitions we can write the
field equations in the background as a dynamical system:

x′1 = 2x1(εφ − h) , x′2 = 2x2(2εφ − h) , (4)
x′3 = x3(3εφ − h) , Ω′r = −2Ωr(2 + h) , (5)

where Ωr = ρr/(3M2
plH

2) is the dimensionless density param-
eter for radiation, εφ = φ̈/(Hφ̇), h = Ḣ/H2, and a prime is
defined as the derivative with respect to N = ln a. Given the
length of the expressions for εφ and h we refer the reader to
Eqs. (4.16) and (4.17) in Ref. [31] (with x4 = 0). From the
Friedmann equation we also have

Ωc + Ωb + Ωr + ΩDE = 1 , (6)

where Ωb,c = ρb,c/(3M2
plH

2) are the density parameter for the
baryons (b) and cold dark matter (c), respectively, and

ΩDE = x1 + x2 + x3 , (7)

is the DE density parameter. Eq. (7), evaluated today, can be
used to reduce the number of free parameters of the model,
leaving the model with two additional parameters out of three
compared to ΛCDM, i.e.,

x(0)
2 = Ω

(0)
DE − x(0)

1 − x(0)
3 . (8)

The GGC model allows for a de Sitter fixed point free from
ghost instability. The presence of x2 , 0 prevents the model
from reaching a tracker solution. The latter would be charac-
terised by wDE = −2 during the matter era, while the X2 term
allows to temporally enter the region −2 < wDE < −1 [31]. This
property allows the model to be observationally favoured over
ΛCDM [40].

3. Linear density perturbations

Let us consider the linear perturbed line element on the flat
FLRW background:

ds2 = − (1 + 2Ψ) dt2 + a2(t) (1 − 2Φ) γi jdxidx j , (9)

where Ψ(t, xi) and Φ(t, xi) are the gravitational potentials. In
Fourier space, for MG models with one extra scalar dof we
can write the following equations which generalise the standard
general relativistic Poisson and lensing equations [59–61]:

−k2Ψ = 4πGNa2µL(a, k)ρmδm , (10)
−k2(Ψ + Φ) = 8πGNa2ΣL(a, k)ρmδm , (11)

2
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where G−1
N = 8πM2

pl is the Newtonian gravitational constant, k
is the comoving wavenumber, ρmδm =

∑
i ρiδi is the total mat-

ter density perturbation (where i ∈ [r, b, c]). The dimension-
less quantities µL and ΣL characterise the effective gravitational
couplings at linear order felt by matter and light, respectively.
The GR limit is recovered when both µL = ΣL = 1. Applying
the quasi-static approximation (QSA) 5 [64, 65] for perturba-
tions inside the scalar field’s sound horizon [66] to the model in
action (1), it follows that [31]

µL(a) = ΣL(a) = 1 +
x2

3

Qsc2
s (2 − x3)2

, (12)

where

Qs =
3(4x1 + 8x2 + 4x3 + x2

3)
(2 − x3)2 , (13)

c2
s =

2(1 + 3εφ)x3 − x2
3 − 4h − 6(Ωc + Ωb) − 8Ωr

3(4x1 + 8x2 + 4x3 + x2
3)

. (14)

To avoid ghosts and Laplacian instabilities, we require that both
Qs and the speed of propagation of the scalar modes c2

s are pos-
itive. Then, for x3 , 0, µL and ΣL are larger than 1. Since
µL = ΣL, there is no gravitational slip (Ψ = Φ).

For sub-horizon perturbations, the matter density δm ap-
proximately obeys the linear equation

δ′′m +

(
2 +

H′

H

)
δ′m −

3
2

Ωmµ
L(a)δm = 0 , (15)

where we have used Eq. (10) to replace Ψ in favour of δm.
We solve the equation above by setting the initial condi-

tions (ICs) as follows: ai = 0.01, δm,i = ai and δ′m,i = ai, which
correspond to the matter dominated era solution. The model
and cosmological parameters of GGC are listed in Tab. 1 and
they correspond to the cosmological constraints obtained with
Planck data [40]. For reference we also include the parameters
for other two models: the ΛCDM model (for the constraints
we refer to [40]) and the Cubic Galileon model (G3) [27]. We
decided to use this model for comparison because it can be ob-
tained from GGC by setting x2 = 0 6. Given this property,
the G3 model shows a tracker solution H2φ′ =const [67]. The
values of the cosmological parameters we use for G3 are from
the constraints in Ref. [39]. In this work we decided to use the
constrain values of the cosmological/model parameters for each
model because we want to make theoretical predictions that are
as close as possible to what we can actually expect from obser-
vations.

5In the QSA, time derivatives of the perturbed quantities can be neglected
compared with their spatial derivatives. We note that the validity of the QSA
for the Horndeski class of models has been proved to be a valid assumption
within the scalar field’s sound horizon for k > 0.001 h/Mpc [62, 63]. We have
verified that indeed this is the case for the GGC model.

6Let us note that the analysis for G3 we show in this work has been the
subject of several papers in the past [50–52]. That is why we do not explicitly
rewrite the corresponding equations but we prefer to refer the reader to these
papers for a detailed discussion.

Model σ(0)
8 H0 Ω

(0)
m x(0)

1 x(0)
2 x(0)

3
ΛCDM 0.83 70 0.31 – – –

G3 0.93 73.9 0.27 – – –
GGC 0.87 70 0.28 -1.26 1.64 0.34

Table 1: Present day values for the amplitude of the linear matter power spec-
trum at 8 h−1Mpc, σ(0)

8 , the Hubble parameter H0 in units of km s−1Mpc−1, the
matter density Ω

(0)
m and the x(0)

i parameters. They correspond to the maximum
likelihood values obtained with Planck data for ΛCDM and GGC in Ref. [40],
and the mean values of G3 obtained with Planck data in Ref. [39].

In the top panel of Fig. 1, we show the relative difference in
the evolution of the linear matter density perturbation δm with
respect to ΛCDM for both the GGC and the G3 models. The
relative difference is very small at early times for both models.
In the case of GGC, it remains smaller than 1% throughout its
growth history, while for G3 it reaches 11% at present. Such
modifications with respect to the ΛCDM model are due in both
cases to a modified expansion history and to µL , 1 at later
times, while the large difference between the GGC and the G3
is only due to the presence of x2 , 0 in GGC.

Modifications with respect to ΛCDM can be also spotted in
the linear growth rate f (a), which is a derived quantity defined
as

f (a) =
d ln δm

d ln a
. (16)

We show its evolution in the bottom panel of Fig. 1 for the two
Galileon models and we compare them to ΛCDM. The growth
rates in both Galileon models become larger than ΛCDM as
soon as the Universe exits the matter dominated era. Appre-
ciable differences in the case of GGC are around a = 0.2, be-
ing the time at which δm(GGC) starts to be larger than that of
ΛCDM. For GGC, the linear growth rate f is enhanced with re-
spect to the standard model until a & 0.6, while at earlier times
the difference is negligible. In G3 differences arise a bit earlier
because a 0.5% difference in δm is already present (see upper
panel). A large enhanced modification is then present up to the
present time.

4. Non-linear perturbations

We will now investigate the evolution of the metric and the
scalar field perturbations on small scales, where second order,
non-linear perturbations are no longer negligible. Let us con-
sider the perturbation of the scalar field: φ(t, xi) = φ(t)+δφ(t, xi)
and along with the QSA we will also neglect terms that are
suppressed by the Newtonian potentials and their first spatial
derivatives.

Then, the time-time component of the GGC equation gives

∂2Φ

a2 = 4πGNρmδm + 24πGNa3X
∂2δφ

a2 , (17)

where the derivatives are with respect to spatial components,

3
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Figure 1: Top panel: Time evolution of the relative difference in percentage
of the linear matter density perturbation in the GGC (blue solid line), G3 (red
dot-dashed line) with respect to the ΛCDM. Bottom panel: Evolution of the
linear growth rate for GGC, G3 and ΛCDM (black dashed line). The model
and cosmological parameters are shown in Tab. 1.

and the equation for the scalar field reads

−3a3φ̇
2 ∂

2Ψ

a2 =
[
−a1 − 2a2X + 6a3(φ̈ + 2Hφ̇)

] ∂2δφ

a2

+ 3a3

(∂2δφ

a2

)2

−

(
∂i∂ jδφ

a2

)2 , (18)

where
(
∂i∂ jδφ

)2
= (∂i∂ jδφ)(∂i∂ jδφ) and indexes are raised with

the metric γi j: ∂i = γi j∂ j.
At the non-linear level, the relation Φ = Ψ is still valid, so

we can combine the above equations to get

∂2δφ

a2 + λ2

(∂2δφ

a2

)2

−

(
∂i∂ jδφ

a2

)2 = −4πGNζρmδm , (19)

where

λ2(a) =
12a3φ̇

2

M2
plH

2c2
s Qs(2 − x3)2

, ζ(a) = λ2φ̇2 . (20)

Let us consider a spherically symmetric density perturba-
tion. Then, Eq. (19) becomes

1
r2

d
dr

(
r2 dδφ

dr

)
−

2λ2

r2

d
dr

r (
dδφ
dr

)2 = −4πGNζρmδm . (21)

Defining the mass enclosed in a sphere of radius r as

m(r) = 4π
∫ r

0
r′2ρm(r′)δm(r′)dr′ , (22)

we can integrate Eq. (19) and obtain

r2 dδφ
dr
− 2λ2r

(
dδφ
dr

)2

= −GNζm(r) . (23)

We can now evaluate its solution, which reads

dδφ
dr

=
rV

4λ2

 r
rV

1 −
√

1 +
r3

V

r3


 , (24)

where rV is the Vainshtein radius of the enclosed mass pertur-
bation and it is defined as

r3
V = 8GNm(r)λ2ζ =

32GNm(r)x2
3

[Hc2
s Qs(2 − x3)2]2

. (25)

It then depends on the mass distribution in the sphere and on
the parameters of the model. In particular, it is non-vanishing
as long as x3 , 0. For a point source, rV = 2.07×102(M/M�)1/3

pc, where we have used the maximum likelihood values for
the present day parameters H0, x3, x2, x1 obtained in [40] with
Planck data. The corresponding Vainshtein radius for G3 is
rV = 2.24 × 102(M/M�)1/3 pc where we have used the con-
straints obtained in [39] (see Tab. 1). We note that the Vain-
shtein radius at the present time for the GGC is smaller than
the one for the G3. In Fig. 2 we compare the time evolution of
the Vainshtein radius for both the GGC and the G3 models. For
both models, at early times, its value is very small which means
that the screening mechanism works only on very small scales.
At this time the Vainshtein radius for the GGC is slightly larger
than the G3 one and afterwards they become equal. As the Uni-
verse expands, the GGC radius increases and its value is higher
if compared to G3 in the time range 0.07 < a < 0.9. Only at
present time we notice a change of trend, the Vainshtein radius
of the GGC decreases with respect to the G3 according to the
estimated values we presented before.

According to Eq. (24), well outside the Vainshtein radius,
the derivative of the scalar field perturbation is proportional to
the Newtonian potential and it corresponds to the linear solu-
tion.

If we consider a top-hat profile for the density field, we get
that dδφ/dr ∝ r for r < R where R is the radius of the sphere of
mass m(R) = M. Then, Eq. (19) reduces to

∂2δφ

a2 −
2λ2

3

(
∂2δφ

a2

)2

= −4πGNζρmδm . (26)

At r = R the equation above can be solved for ∂2δφ/a2 and we
find

∂2δφ

a2 = 8πGNρmζ

(
R

RV

)3
1 −

√
1 +

R3
V

R3

 δm , (27)

4
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Figure 2: Time evolution of the Vainshtein radius for the GGC (blue solid line)
and G3 (red dot-dashed line) models. We have defined rs = 2GN M as the
Schwarzschild radius. The parameters for the GGC and the G3 models have
been chosen according to the cosmological constraints in [40] and [39], respec-
tively.

where R3
V = 8GNλ

2ζδM and δM is the total mass of the density
perturbation ρmδm. Now we can compute a modified Poisson
equation from Eq. (17) which includes non-linear corrections
and it reads

∂2Ψ

a2 = 4πGNµ
NL(a,R) ρmδm , (28)

where the non-linear effective gravitational coupling is

µNL(a,R) = 1 + 2
(
µL − 1

) ( R
RV

)3

√

1 +
R3

V

R3 − 1

 . (29)

In the limit R → 0 the above expression reduces to unity ap-
proaching GR, while for R � RV we recover the linear result
µNL → µL, showing how the Vainshtein screening mechanism
works.

In the next Section we will show the evolution of µNL for a
collapsing sphere and we will compare it with the linear effec-
tive gravitational coupling. Finally, because in the non-linear
regime Φ = Ψ is still valid, we can deduce ΣNL = µNL. This in-
formation will be used when computing the non-linear lensing
power spectrum.

5. Spherical collapse model

The spherical collapse process is the simplest model for the
formation of non-linear gravitationally bound structures. It is
characterised by the turnaround phase, during which the ampli-
tude of the spherical perturbation in the expansion phase reaches
a sufficient large value such that the gravitational force prevents
the sphere from an infinite expansion. It is then followed by the
proper collapse phase, i.e., when the sphere reaches its max-
imum radius at the turnaround, Rta, the overdensity starts to
collapse. While the mathematical model implies the collaps-
ing sphere to reduce to a point, in reality this does not happen,
as virialization takes place [68, 69] and the system satisfies the
Virial theorem. In the following we assume that during the evo-
lution the matter distribution remains with a top-hat profile.

The non-linear evolution equation for the matter overden-
sity is [70, 71]

δ̈m + 2Hδ̇m −
4
3

δ̇2
m

1 + δm
= (1 + δm)

∂2Ψ

a2 . (30)

We can use Eq. (28) to eliminate the metric potential. Thus it is
clear that the evolution of δm is modified with respect to GR by
µNL.

Assuming that the total mass inside R is conserved during
the collapse, we have

M =
4π
3

R3ρm(1 + δm) = const , (31)

from which we can derive the equation of the evolution of the
radius after differentiating it with respect to time and using
Eq. (30). Then, we have

R̈
R

= H2 + Ḣ −
4πGN

3
µNL ρmδm , (32)

which is composed by a background term (H2 + Ḣ) and a gravi-
tational one (∝ µNLρmδm). We can numerically solve the above
equation as follows. As standard procedure, we introduce the
variable

y =
R
Ri
−

a
ai
, (33)

where Ri is the initial radius of the perturbation and ai is the
initial scale factor. Thus Eq. (32) reads

y′′ = −
H′

H
y′ +

(
1 +

H′

H

)
y −

Ωm

2
µNLδm

(
y −

a
ai

)
. (34)

In order to specify the evolution of µNL(a,R), we also use(
R

RV

)3

=
1

4ΩmH2λ2ζ

1
δm

=
x2

3

16Ωm(µL − 1)2

1
δm

, (35)

which can be easily computed from the mass conservation and
the definition of Vainshtein radius. Eq. (35) thus shows the rela-
tion between the Vainshtein radius and the collapsing overden-
sity, which holds as long as x3 , 0.

In order to solve Eq. (34) numerically, we consider the ini-
tial conditions such that the collapse time is acollapse = 1. It
follows7: ai = 6.66 × 10−6, yi = 0 and y′i = −δm,i/3, where δm,i
is the initial density obtained from linear theory in the matter
dominated era assuming the collapse (R = 0) at acollapse = 1.
Finally, we write the overdensity as

δm = (1 + δm,i)
(
1 +

ai

a
y
)−3
− 1 , (36)

which follows from matter conservation.
In Fig. 3 we show the solution of Eq. (32) for the three mod-

els when the collapse time is set at the present time. We note

7From Eq. (33) at initial time one gets yi = 0 and y′i = −δ′m,i/(3(1 + δm,i)).
Assuming that the density perturbation grows linearly during matter dominated
era, we can use δm ∝ a and δ′m ∝ δm, thus one gets y′i = −δm,i/3 (see Ref. [51]).

5
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Figure 3: Time evolution of R/Ri for the GGC (blue solid line) and G3 (red dot-
dashed line) and ΛCDM (black dashed line) models. The initial overdensity
δm,i for the models are: δm,i(ΛCDM) = 12.3 × 10−5, δm,i(GGC) = 13.2 × 10−5

and δm,i(G3) = 7.3 × 10−5. The model and cosmological parameters are shown
in Tab. 1.

ΛCDM G3 GGC
δc 1.675 1.738 1.708

∆vir 333.1 317.6 342.8
ata 0.563 0.558 0.558
avir 0.922 0.916 0.919

Rta/Ri 44621.5 45583.9 44114.4
Rvir/Ri 21639.3 22285.0 21434.5

Table 2: Physical quantities characterising the spherical collapse at the present
time for the GGC model in comparison with ΛCDM and G3. The parameters
of the models used to obtain these results are in Tab. 1.

that modifications with respect to the ΛCDM model are present
during the collapse phase for both Galileon models. However,
the modification introduced by x2 makes the dynamics of the
collapse for the GGC quite different from that of the G3. The
ΛCDM model indeed is in between the two Galileon models.
This is understood by noticing that there is the following hi-
erarchy for the initial overdensities: δm,i(G3) < δm,i(ΛCDM) <
δm,i(GGC). This translates to an opposite hierarchy for the radii,
as a larger overdensity implies an earlier collapse and there-
fore a smaller radius. The GGC model has a turn-around radius
smaller than both the ΛCDM and the G3 as shown in Tab. 2.
The latter, instead, shows the larger one. The turn-around phase
takes place at the same time for both the Galileon cosmologies,
ata ≈ 0.558 while in ΛCDM it is slightly delayed, ata ≈ 0.567.

In Fig. 4, we show the time evolution of the non-linear ef-
fective gravitational coupling compared to the linear one for
both the GGC and the G3 models. We note that the matter
overdensity for the GGC case enters the Vainshtein radius ap-
proaching the GR solution before the G3 model does. The
crossing time of the Vainshtein radius can be extrapolated from
Fig. 5 where we show the evolution of (R/RV)3. It occurs when
R/RV = 1 and for the GGC it is at a = 0.24 and for the G3 at
a = 0.47.

The final stage of the collapse is virialization. The collapse
stops when the system reaches the equilibrium and thus satis-
fies the Virial theorem. The latter states that, for a stable, self-

μL(G3)

μNL(G3)

μL(GGC)

μNL(GGC)

0.0 0.2 0.4 0.6 0.8 1.0
1.00

1.05

1.10

1.15

1.20

1.25

1.30

a

Figure 4: Time evolution of µL (solid lines) and µNL (dashed lines) for the GGC
(blue) and the G3 (red) models. The models’ parameters for the GGC and the
G3 have been chosen according to the cosmological constraints in Refs. [40]
and [39], respectively.
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GGC
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Figure 5: Time evolution of R/RV for the GGC (blue solid line) and the G3 (red
dot-dashed line) models for a matter overdensity collapsing at the present time.
The models’ parameters for the GGC and the G3 have been chosen according
to the cosmological constraints in Refs. [40] and [39], respectively.

gravitating, spherical distribution, the total kinetic energy of the
object (T ) and the total gravitational potential energy (U), sat-
isfy the relation:

T +
1
2

U = 0 , (37)

where the kinetic energy during the collapse for a top-hat profile
is

T ≡
1
2

∫
d3x ρmv2 =

3
10

MṘ2 , (38)

and the total potential energy is [50]

U ≡ −

∫
d3x ρm(x) x · ∇Ψ

=
3
5

(
Ḣ + H2

)
MR2 −

3
5

GNµ
NL M

R
δM . (39)

Let us note that the energy conservation is not strictly satis-
fied for a time-dependent dark energy or modified gravity model
[49]. Thus, we choose the virialization time avir such that the
conservation relation (37) is satisfied. We can then define the
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virial overdensity as

∆vir ≡
ρvir

ρcollapse
= [1 + δm(Rvir)]

(
acollapse

avir

)3

. (40)

In Tab. 1 we list some relevant physical quantities such as
avir, Rvir/Ri, ∆vir and δc for a matter overdensity collapsing at
the present time. δc is the linear critical density contrast de-
fined as the value of the linear δm at the collapse when initial
conditions are assumed such that the non-linear equation di-
verges at the collapse time. Knowing the initial overdensity δi
and its time derivative δ̇i leading to collapse at a given time,
one solves the linearised version of Eq. (30) to obtain the lin-
ear critical overdensity δc. This is mathematically equivalent to
solve Eq. (15) and to rescale δi by the linear growth factor of
the corresponding cosmological model.

In Figs. 6 and 7 we show the evolution of δc and ∆vir re-
spectively as function of the scale factor. The critical density at
early times approaches the value of the Einstein-de Sitter Uni-
verse, and for a > 0.2 its time evolution differs in the three
cosmological models, as the contribution of the cosmological
constant and of the modifications of gravity become more im-
portant with time. In detail, while δc(ΛCDM) decreases ap-
proaching the collapse at a = 1, in the Galileon cosmologies
the late time values of δc are larger: δc(GGC) increases up to
1.708 while δc(G3) is rather constant till a ≈ 0.4 and then it
rapidly grows up to 1.738. From Fig. 7 we see that the evo-
lution of the virial overdensity for the ΛCDM and the GGC is
approximately the same and ∆vir(GGC) prefers slightly larger
values for a > 0.5. ∆vir(G3) remains constant (≈ 177.8, the
Einstein-de Sitter value) up to a ≈ 0.4 and then increases re-
maining always smaller than ΛCDM and GGC.

We note that both the GGC and the G3 share in the La-
grangian the same form for the cubic term (∝ X�φ), but in
the latter the ghost condensate term ∝ X2 is not present. Al-
though the modifications at both linear and non-linear regimes
are driven by the cubic term, the inclusion of the X2 term changes
the evolution of the scalar field and that of the background
quantities in such a way that all the relevant physical quantities
we have investigated in this section show a significant modifica-
tion with respect to the G3 model. Finally, we recall that these
results are obtained using the best fit values for the parameters
of each model from cosmological data on linear scales, thus ac-
cording to data, the theoretical predictions we obtain are very
close to what we can actually expect at non-linear level.

6. Non-linear matter and lensing power spectra

Matter and lensing auto-correlation power spectra are two
powerful tools to investigate the deviations from GR. One can
resort to Einstein-Boltzmann codes to compute their predictions
at linear scales [72] (see Ref. [40] for GGC). In order to extend
such predictions on smaller scales one has to include non-linear
corrections and screening mechanisms effects. These usually
require a model by model implementation of the relevant equa-
tions in N-body codes [52, 73–87].

ΛCDM

G3

GGC

0.1 0.2 0.5 1
1.66

1.68

1.70

1.72

1.74

a

δ
c

Figure 6: Time evolution of δc as function of the scale factor for the three
cosmological models: ΛCDM (black dashed line), GGC (blue solid line) and
G3 (red dot-dashed line).
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Figure 7: Time evolution of ∆vir as a function of the scale factor for ΛCDM
(black dashed line), GGC (blue solid line) and G3 (red-dot dashed line).

Analytically, a formalism to calculate the non-linear matter
power spectrum for wider classes of gravity models has been
developed [88] considering the closure approximation [89] with
applications to DGP and f (R) gravity models; or another ap-
proach [90] is the one which extends the reaction method [91]
using the halo model. Alternatively, a parameterization based
on spherical collapse computations capturing the non-linear MG
effects on structure formation has been recently proposed and
implemented in an N-body code [92].

In this work the goal is to have a glimpse into the phe-
nomenology associated with the screening effects on the matter
and lensing power spectra, leaving for a future work a more de-
tailed investigation. In this regard, we will use the predictions
from linear cosmological perturbation theory and incorporate
the screening effects in a phenomenological fashion [93–95].
We will model the small-scale limit to GR through a direct de-
pendence on the screening scale in the matter power spectrum,
as follows:
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PNL
GGC(k, z) =

PNL
ΛCDM(k, z)

PL
ΛCDM(k, z)

{
PL

ΛCDM(k, z)

+ [PL
GGC(k, z) − PL

ΛCDM(k, z)]e−
(

k
ks

)2}
,(41)

where ks is the screening scale. The linear power spectrum of
ΛCDM and GGC are respectively obtained from the Einstein-
Boltzmann solver CAMB [96] and EFTCAMB [97, 98]. The
non-linear matter power spectrum for ΛCDM is obtained using
the prescription in Ref. [99]. The cosmological parameters are
the same for ΛCDM and GGC in Eq. (41), in particular they
are those of GGC. The Eq. (41) recovers PL

GGC(k, z) in the limit
k � ks and PNL

ΛCDM(k, z) in the regime k � ks.
The value of the screening scale is strictly related to the

specific model under consideration. From N-body cosmologi-
cal simulations in the G3 model one finds that ks = 0.1 h Mpc−1

at the present time [52]. For the GGC model, N-body simula-
tions do not exist, therefore we will present our results for four
values of ks in order to quantify the relevance of this parameter.
They are ks = 0.05, 0.1, 0.5, 1 h Mpc−1 and will serve to show
the phenomenology of GGC at these scales and provide theoret-
ical predictions to be then compared to accurate N-body simu-
lations once they are available. We guess that the more reliable
results for the GGC will be those with a screening scale larger
than that of the G3 at the present time. That is because we find
that the Vainshtein radius at the present time for a point source
for GGC is slightly smaller than that in the G3 model, there-
fore we expect ks(GGC) > ks(G3) at z = 0. Note, though, that
ks(GGC) & ks(G3) only very recently, while for the majority of
the cosmic history, ks(GGC) . ks(G3), as it can be easily seen
from the evolution of the Vainshtein radius in Figs. 2 and 5.
However, determining the time evolution of ks is not an easy
task and it is necessary to use N-body simulations for its accu-
rate determination. Its time dependence is further confirmed in
the case of the G3 model in Ref. [52] using N-body simula-
tions. For the G3 model the screening scale is ks ' 0.1 h Mpc−1

at a = 1 and ks ' 0.3 − 0.4 h Mpc−1 at a = 0.6. This is a clear
indication that a constant ks might just be a first approxima-
tion. Therefore to avoid introducing further phenomenological
approaches, we prefer to consider the screening scale ks con-
stant in time, in agreement with current literature on the subject
[93–95]. While this approach does have a marginal effect on
the study of the matter power spectrum, it might have relevance
in the computation of the lensing power spectrum, as it requires
the knowledge of the time evolution of both the matter power
spectrum and the screening scale.

In Fig. 8 we present the non-linear matter power spectrum
at z = 0 for ΛCDM and the GGC model for the four screen-
ing scales discussed above and the relative difference ∆P/P
in the bottom panel, where ∆P = PGGC(k) − PΛCDM(k) and
P = PΛCDM. The top figure compares the two models hav-
ing their best-fit parameters, while the bottom figure compares
the GGC with the ΛCDM having the same cosmological pa-
rameters of the GGC. When comparing the two models with
their best-fit parameters, on large scales, k . 10−3 h Mpc−1, the

10−2

10−1

100

101

102

103

104

105

P
(k

)
[M

p
c/
h

]3

ΛCDM (best-fit)
GGC, ks = 0.05 hMpc−1

GGC, ks = 0.1 hMpc−1

GGC, ks = 0.5 hMpc−1

GGC, ks = 1 hMpc−1

10−4 10−3 10−2 10−1 100 101

k [h/Mpc]

0

10

20

∆
P
/P

[%
]

10−2

10−1

100

101

102

103

104

105

P
(k

)
[M

p
c/
h

]3

ΛCDM
GGC, ks = 0.05 hMpc−1

GGC, ks = 0.1 hMpc−1

GGC, ks = 0.5 hMpc−1

GGC, ks = 1 hMpc−1

10−4 10−3 10−2 10−1 100 101

k [h/Mpc]

0

5

∆
P
/P

[%
]

Figure 8: Non-linear matter power spectra as a function of k at z = 0 of the
ΛCDM model (solid black line) and of the GGC model, and non-linear matter
power spectra percentage relative difference of the GGC model with respect
to ΛCDM. For the GGC we show the results for different screening scales ks:
0.05 h Mpc−1 (dashed blue line), 0.1 h Mpc−1 (solid red line), 0.5 h Mpc−1 (dot-
dashed orange line) and 1 h Mpc−1 (dashed-dot-dotted green line). The top fig-
ure compares the ΛCDM and the GGC models with the respective best-fit pa-
rameters (Tab. 1), while the bottom one compares the GCC model with ΛCDM
having the same cosmological parameters of GGC.

difference is smaller than 20% between the two models due
to the different normalizations of the spectra and a different
behaviour of linear perturbations. The difference slightly in-
creases on intermediate scales, up to 20% and then decreases to
approximately 5% on small scales where the Vainshtein screen-
ing takes place. The exact scale depends on the value of the
screening scale, ks. A small value of the latter induces a sup-
pression of power on larger scales (small k) with respect to a
larger value of ks. This is indeed evident when comparing the
results for ks = 0.1 h Mpc−1 and ks = 0.5 h Mpc−1: a factor of
5 in the screening scale translates into about a factor of two in
the scale where one would approximately recover the ΛCDM
limit. The main difference in changing the screening scale is
given by the scale at which the screening starts to be important.
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After reaching the maximum, for small values of the screening
scale, the model looses power relatively fast, while large val-
ues of the screening scale lead to a slower decline of the power.
All the GGC models, by construction, lead to the same plateau,
which differs from zero as the GGC and ΛCDM models do
not share the same cosmological parameters and as such it is
not expected that the ΛCDM limit of the GGC power spectrum
at non-linear scale coincides with that of ΛCDM with best-fit
parameters. Because of this we also note that oscillations in
the relative difference appear which originate from the baryon
acoustic oscillations (BAO) signature imprinted on the matter
power spectrum.

We recall that we made the comparison between GGC and
ΛCDM respectively with their best-fit parameters with the pur-
pose of spotting differences which can be closer to what we can
actually observe. On the contrary in the bottom panel of Fig. 8,
we compare the GGC model with the ΛCDM one having the
same cosmological parameters of the GGC. In this case any
difference we spot can be traced back to modified gravity only.
The GGC model is slightly suppressed with respect to ΛCDM
on very large scales k < 10−3 h/Mpc. This is due to modifi-
cations in the evolution of the linear perturbations. Then, on
intermediate scales (10−3 h Mpc−1 < k < ks) we see an increase
of power of about 7%-8%. This is a consequence of a stronger
gravity force in the GGC model which is given by Eq. (12). Ap-
proaching ks the GGC matter power spectrum declines due to
the screening effect. The larger is the screening scale, the longer
is the plateau. For k ≈ 2ks the model is fully screened reaching
the ΛCDM limit, as expected. Note that when comparing mod-
els with the same cosmological parameters, the wiggles in the
ratio disappear, as the position of the BAO wiggles coincide.

We now investigate the effects of the GGC signatures on
the lensing power spectrum. The latter is defined as the integral
along the line of sight of the matter power spectrum. As for the
matter power spectrum, we need to take into account the effects
of modifications to gravity and on smaller scales we have to
include those of the screening mechanism. The lensing effect
depends on the sum of the two gravitational potentials, Φ + Ψ,
and as discussed in Sections 3 and 4 any departure form GR in
the lensing equation can be included in the phenomenological
function Σ. For GGC Φ = Ψ even on non-linear scale, so that
Σ = µ. In the following analysis we assume for Σ the functional
form [93–95]

Σ(k, z) = 1 +
(
ΣL(z) − 1

)
exp

− (
k
ks

)2 . (42)

The expression used to evaluate the lensing power spectrum
is [100]8

Pκ(`) =
9H4

0Ω
(0)
m

2

4c4

∫ χH

0

W(χ)2Σ(χ, k)2

a2(χ)
PNL

[
` + 1/2
χ

, χ

]
dχ ,

(43)

8 With respect to Ref. [100], in Eq. (43) we include the modification to
gravity with the function Σ.
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Figure 9: Non-linear lensing power spectra as a function of the multipole `
for sources at zs = 2 for ΛCDM (solid black line) and for the GGC model;
and non-linear lensing power spectra percentage relative difference of the GGC
model with respect to ΛCDM. For the GGC, we show the results for different
screening scales, ks = 0.05, 0.1, 0.5, 1 h Mpc−1 using the same colour- and line-
style of Fig. 8. The top figure considers the ΛCDM and the GGC models with
the respective best-fit parameters (Tab. 1), while the bottom one assumes that
the ΛCDM model has the same cosmological parameters of the GGC model.

where W(χ) is a kernel describing the distribution in redshift of
the sources, P(k) is the matter power spectrum evaluated at the
wave-number k = (` + 1/2)/χ [101], being χ the comoving dis-
tance. Finally, χH represents the comoving distance of the hori-
zon. The function Σ depends on the scale k and the time (here
parameterized via χ). Assuming there is no scale-dependent
screening, the expression in Eq. (43) reduces to Eq. (47) of
Ref. [102] upon the following identification Σ = 1/F(a). Also
note that, for simplicity, we assumed the sources to be fixed in
redshift at zs = 2. Distributing the sources in redshift will not
change our conclusions qualitatively, but only slightly decrease
the impact of the modifications.

We show in Fig. 9 the results for the non-linear lensing
power spectrum in both the ΛCDM and the GGC scenarios.
The latter is given for different screening scales. As for the mat-
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ter power spectrum, we compare the two models considering
both their best-fit parameters (upper figure) or when they have
the same cosmological parameters (lower figure). Because the
screening affects small scales (high-`), both models look almost
the same in this regime and the multipole where this happen de-
pends, obviously, on the screening scale ks. Larger differences
are restricted to small-`.

Let us start discussing the case in which the two models
are characterized by their best-fit parameters (upper panel in
Fig. 9). The GGC lensing power spectrum is enhanced at ` = 10
with respect to ΛCDM up to 25% depending on the particular
screening scale. This originates from the parameter Σ(k, z) in
Eq. (43). Due to the screening, the power decreases linearly
until it reaches a plateau for large `. The rate at which the GGC
approaches the plateau is faster for smaller ks, as the screening
takes place at larger scales. For the smaller values of the screen-
ing scale, it is reached at ` ≈ 200, while for ks = 1 h Mpc−1

it is at ` & 3000. For the lensing power spectrum, a change
in ks of a factor of ten changes the scale at which the spec-
trum of the GGC approaches the plateau roughly by the same
amount (see, for example, the behaviour for ks = 0.1 h Mpc−1

and ks = 1 h Mpc−1). The 5% suppression in the plateau is due
to the different cosmological parameters mostly related to the
Ω

(0)
m pre-factor in Eq. (43) which is higher in the ΛCDM best-

fit case.
Let us now consider the case in which both ΛCDM and

GGC share the same cosmological parameters (bottom panel in
Fig. 9). The effects of modified gravity are more pronounced at
small ` and this is due to an higher difference in Σ with respect
to the previous case and it can be up to 35%, a ∼ 10% larger
than the best-fit case. At intermediate scale the ripples disap-
pear as expected due to the fact that the matter power spectrum
does not show them any more. Finally, when the power spec-
trum reaches the plateau the discrepancy observed in the pre-
vious case disappears as both the power spectrum and Σ are in
the ΛCDM limit and the pre-factor in Eq. (43) (i.e. Ω

(0)
m ) is the

same.

7. Mass function

In this section we investigate the effects of the GGC model
on the abundance of halos. To this purpose we use the Sheth &
Tormen mass function [103–106]

dn
dM

= −

√
2ã
π

A
1 +

 ã δ2
c

D2σ2
M

−p ρm

M2

δc

DσM

×
d lnσM

d ln M
exp

− ã δ2
c

2D2σ2
M

 , (44)

where ã = 0.707 9, p = 0.3, A = 0.2162, δc is the linear critical
density contrast derived in Section 5, D = δL

m/δ
L
m(a = 1) is the

linear growth factor, and σM is the variance of the linear matter

9We changed the commonly adopted notation to avoid confusion with the
scale factor a.
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Figure 10: Top panel: differential mass function as a function of the halo mass
M at z = 0, 0.5, 1, as shown in the labels. Solid lines refer to the GGC model,
while dashed lines to ΛCDM. Bottom panel: cumulative mass function as a
function of the halo mass for the same set of redshifts. The cosmological and
models parameters of ΛCDM and GGC models are the best-fit ones in Tab. 1.

power spectrum defined as [107]

σ2
M =

1
2π2

∫ ∞

0
dk k2W2(kR) PL(k) , (45)

where the window function is defined as

W(kR) = 3
sin(kR) − kR cos(kR)

(kR)3 , (46)

being R the comoving radius enclosing the mass M = 4π
3 ρmR3.

The window function represents the Fourier transform of the
top-hat function in the space configuration. We also compute
the number density of objects above a given mass at a chosen z
as:

n(> M) =

∫ ∞

M

dn
dM′

dM′ . (47)

In the expression for the mass function, whilst we keep the
same constants (A, ã and p) for both the GGC and ΛCDM, the
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Figure 11: Same as in Fig. 10, but now the ΛCDM shares the same cosmologi-
cal parameters of the GGC model.

physical parameters (δc, σM , D) are consistently computed for
each model.

We present the results in Fig. 10 and in Fig. 11, where we
show the differential and the cumulative mass functions. We
also consider the relative difference of the GGC model with
respect to ΛCDM, i.e. ∆n/n = (nGGC − nΛCDM)/nΛCDM. We
select three redshifts z = 0, 0.5, 1 and we consider halo masses
ranging from 1012 M� h−1 (galactic scales), until 1015 M� h−1

(cluster scales) to better assess the effects of GGC at different
mass scales and redshifts. In Figs. 10 and 11 we compare GGC
and ΛCDM having their best-fit parameters and the same cos-
mological parameters, respectively.

When comparing the models using their best-fit parameters,
for low masses we observe a decrease of about 10% in the GGC
model with respect to ΛCDM, regardless of the chosen redshift.
At z = 0, the lack of objects is rather constant over two orders of
magnitudes in mass in the two models. The number of objects
become more similar towards high masses, but the GGC model
still shows a few percent less objects than ΛCDM. At higher
redshifts, the differences observed at low masses get smaller
going towards M ≈ 1014 M� h−1 for z = 0.5 and M ≈ 3 ×

1013 M� h−1 for z = 1, respectively, but for higher masses they
become more prominent and it is where the two models differ
the most in the predictions of the number of halos.

What noticed is the typical behaviour of models beyond
ΛCDM. The reason is that the exponential suppression in the
halo mass function (and, as a consequence, also in the cumula-
tive mass function) is more important at high masses and red-
shifts [103–105]. The GGC model predicts an excess of objects
in the high-mass tail: for z = 0.5 and z = 1 we find, respec-
tively, up to 10% and 20% more objects. The differences be-
tween GGC and ΛCDM models using the best-fit parameters
are caused by the substantially different evolution of the linear
critical overdensity δc (see Fig. 6) and of the mass variance σM

as the linear matter power spectra in the two cosmological mod-
els differ by almost 20% on large scales (k ≈ 10−4 h Mpc−1)
and 5%-7% on small scales (k ≈ 2 h Mpc−1). More in detail,
the matter power spectrum in the GGC model is higher than the
ΛCDM one, and the same happens for the variance σM . This
implies that while a higher value of δc leads to a suppression
in the mass function, a higher value of σM instead leads to an
enhancement. At low redshifts, as the differences due to δc
are bigger than those of σM and δc(GGC) > δc(ΛCDM), we
have a suppression in the number of objects; at high redshifts
δc(GGC) & δc(ΛCDM) and the major effect is due to the mass
variance σM , hence we observe an increase of the relative mass
function at high masses. At low masses, the exponential term
contributes less to the overall picture with respect to the other
terms and the decrease in the number of objects is due to the
latter.

Instead, when we compare the two models using the same
cosmological parameters, they have the same behaviour on small
masses and the GGC, due to a higher clustering, predicts more
massive halos than the ΛCDM. With respect to the best-fit case,
differences are slightly smaller (up to 10%) and we do not find a
significant dependence with redshift. This is in agreement with
our previous findings about the matter and lensing power spec-
tra, as small masses pick up the linear part of the matter power
spectrum.

From the observational side it would be of interest to com-
pare the predicted halo mass function for the GGC model with
the data obtained in Ref. [108] from a sub-sample of 843 clus-
ters (SelFMC) in the redshift range 0.01 ≤ z ≤ 0.125 with virial
masses of M ≥ 0.8 × 1014 h−1 M� from the GalWCat19 cata-
logue [109]. As the catalogue is complete in the mass range of
1014 < M/M� < 1015, where the GGC predictions largely dif-
fer from ΛCDM, it is possible to better assess the influence of
modifications of gravity. An extension of the analysis to smaller
masses or different redshift ranges, would require to weigh the
observed mass function with a selection function S (D), where
D is the comoving distance of the cluster. For more details
about the procedure, we refer the reader to [108]. Let us open
a parenthesis about the impact of any assumption on the un-
derlying cosmological model made to derive the data. For ex-
ample, since the catalogue includes only objects at small red-
shift, any influence due a different background evolution can be
safely neglected when considering the distance of the clusters
and the cosmic volume spanned by the survey as they can be
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approximated with c/H0 and (c/H0)3, respectively, where c is
the speed of light. However, in the process of mass calibration
modifications of gravity might play a role. To this purpose, we
can consider, for example, the mass-temperature relation used
in [110–112] which reads

M̃ = 1.5 × 1014 h−1 M�κ∆

TX

keV
1

1 + z
, (48)

where M̃ is the virial mass contained in a comoving radius
R′0 = 1.5 h−1 Mpc and TX the cluster X-ray temperature. The
quantity κ∆ depends on the virial overdensity ∆vir which can
change in modified gravity cosmologies. In Fig. 7 we showed
that ∆GGC

vir ' ∆ΛCDM
vir for the best-fit parameter values over all the

cosmic history relevant to this work. Hence, the dependence on
the modified cosmological model is removed in the case under
analysis. On the contrary this will not be the case for G3.

8. Conclusions

In this work we studied the impact of non-linearities in the
Galileon ghost condensate (GGC) model [31] on the formation
of spherical gravitationally bounded objects and we made theo-
retical predictions on the abundances of halos, non-linear mat-
ter and lensing power spectra. To spot key features we have
compared the results with the standard cosmological scenario
ΛCDM and another Galileon model, the cubic Galileon (G3)
[27] which shares with the GGC the term in the Lagrangian
∝ X�φ + X but differs for the X2 term which is not present in
the G3. The results presented in the analysis used the maximum
likelihood values for the cosmological and model parameters
obtained with Planck data in previous works. This is because
we wanted to show the difference between the predictions of ev-
ery model as close as possible to what we actually expect from
observations.

We found that the predictions on the growth of structures
and spherical collapse of the GGC model are quite different
from those of the G3 and are closer to the ΛCDM ones but still
with some peculiarities. To start with, the linear growth rate in
G3 presents large enhancements with respect to the GGC, be-
ing the latter very close to ΛCDM. On non-linear scales, the
presence of the Vainshtein screening mechanism which char-
acterises both Galileon models changes the gravitational cou-
pling felt by matter which, in both cases, is larger than that in
ΛCDM. We noted that for a collapse taking place at the present
time in the GGC model such gravitational coupling stays closer
to ΛCDM than the G3 one. This is due to the fact that the for-
mer enters in the Vainshtein radius before. Indeed, during the
collapse process, the Vainshtein radius of the GGC is always
larger than that in the G3. Furthermore, we found that the turn-
around phase for both Galileon models takes place slightly be-
fore than for ΛCDM and the virialization time follows the order
G3, GGC and ΛCDM. Being G3 the first to reach virialization,
the evolution of the virial overdensity for the Galileon models
is completely different: while G3 stays always below ΛCDM,
the GGC closely follows the ΛCDM one and after a ≈ 0.5 it is

slightly enhanced. The evolution of the linear critical overden-
sity δc shows again key features after z ≈ 2: in the ΛCDM sce-
nario it decreases from the de-Sitter value to ≈ 1.675 at present
time; in the GGC, instead, it has the opposite behaviour, in-
creasing its value up to 1.708; finally the G3 grows as well but
up to a ≈ 0.7 it stays below the GGC and after it overcomes the
GGC, reaching the present day value of ≈ 1.74. These new fea-
tures of the GGC can be addressed considering the inclusion of
the X2 term in the Lagrangian which makes the difference with
respect to G3. This term changes remarkably the evolution of
the Vainshtein radius and as such the physics associated to the
formation of (non-linear) structures.

We employed a phenomenological approach to incorporate
the screening mechanism in the computation of the non-linear
matter and lensing power spectra. This is done by consider-
ing the gravitational couplings felt by matter and light, respec-
tively, to have an explicit dependence on the screening scale, ks
such that when k < ks it reduces to the linear GGC spectrum
while when k > ks they approach the ΛCDM behaviour. Be-
cause we do not know the screening scale of the GGC model in
Fourier space, we computed the predictions for matter and lens-
ing power spectra for four scales. This approach led us to show
the phenomenology of GGC and provide theoretical predictions
which, in the future, can be compared to accurate N-body simu-
lations once they are available. We found that when comparing
the models characterized by their best-fit parameters, the mat-
ter power spectrum on linear scales for GGC shows a difference
with respect to ΛCDM smaller than 20% and it decreases to a
few percent on the smaller scales. The scale at which the mat-
ter power spectrum approaches a plateau on large k depends
on the screening scale. As expected, smaller screening scales
suppress the matter power spectrum at larger scales. When we
compare the models using the same base cosmological param-
eters the difference in the matter power spectrum persists only
on intermediate scales 10−3 h Mpc−1 < k < ks (up to 7% − 8%).
In the lensing power spectrum, the relative difference between
GGC and ΛCDM for the best-fit case, exceeds 20% at small-`
and decreases at larger-`. The values of ks we chose show that
for the smaller value of ks = 0.05 h Mpc−1, the ΛCDM limit is
reached at ` ≈ 200 and for the larger ks = 1 h Mpc−1 we found
` ≈ 3000. A similar behaviour characterizes the comparison
when the same cosmological parameters are employed, but in
this case the difference at small ` is 10% larger. We then com-
puted the mass function as a function of the halo mass following
the Sheth & Tormen model. We found that for the best-fit case
at low masses the GGC model provides about 10% less objects
with respect to ΛCDM, while at higher masses and higher red-
shift (z > 0.5) it predicts about 10%-20% more objects. This
can be explained by the fact that the critical linear overdensity
for GGC is larger than in ΛCDM and by a larger mass variance
in the former. When the difference due to the different cosmo-
logical parameters is removed we found that at small masses
both models predict the same number of objects but at larger
masses GGC predicts up to 10% more objects than ΛCDM re-
gardless of the redshift.

Finally, given the results presented in this paper, the GGC
model shows very peculiar and measurable features which can
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definitely help in discriminating between GGC and ΛCDM.
Whilst this work provides only a glimpse into the phenomenol-
ogy of non-linear matter and lensing power spectra, less simpli-
fied methods can be employed, such as those in Refs. [88, 90,
92], which we will consider in an upcoming work.

We further stress that a proper assessment and validation of
our results can come with realistic N-body simulations, which
are not affected by the necessary simplifications required for
an analytical evaluation. Simulations will also allow to produce
fitting formulae for the evolution of the non-linear matter power
spectrum and improve the formalism of the spherical collapse
model.
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