
10 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Optimal resilient distributed data collection in mobile edge environments

Published version:

DOI:10.1016/j.compeleceng.2021.107580

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1832744 since 2022-01-15T16:14:55Z

Optimal Resilient Distributed Data Collection in Mobile Edge
Environments ⋆

Giorgio Audritoa, Roberto Casadeib, Ferruccio Damiania, Danilo Pianinib, Mirko Virolib

aUniversità di Torino, Italy, {giorgio.audrito,ferruccio.damiani}@unito.it
bAlma Mater Studiorum—Università di Bologna, Italy, {roby.casadei,danilo.pianini,mirko.viroli}@unibo.it

Abstract

A key goal of edge computing is to achieve “distributed sensing” out of data continuously generated from a

multitude of interconnected physical devices. The traditional approach is to gather information into sparse

collector devices by relying on hop-by-hop accumulation, but issues of reactivity and fragility naturally arise

in scenarios with high mobility. We propose novel algorithms for dynamic data summarisation across space,

supporting high reactivity and resilience by specific techniques maximising the speed at which information

propagates towards collectors. Such algorithms support idempotent and arithmetic aggregation operators

and, under reasonable network assumptions, are proved to achieve optimal reactivity. We provide evaluation

via simulation: first in multiple scenarios showing improvement over the state of art, and then by a case

study in edge data mining, which conveys the practical impact in higher-level distributed sensing patterns.

Keywords: Data Aggregation, Adaptive Algorithm, Aggregate Programming, Computational Field

1. Introduction

A key computational task in the Internet of Things (IoT) is extraction of valuable information from

contextual data continuously generated by the multitude of smart sensors pervasively deployed in the physical

environment [1], a problem made hard by requirements such as scalability, low-latency, adaptivity, and

privacy. Altogether, they foster decentralised solutions at the edge of the network, complementing cloud-5

based solutions [2]: namely, as anticipated in contexts like Wireless Sensor Networks (WSNs) and spatial

computing [3], forms of distributed sensing [4] are carried out through continuous cooperation and interaction

among nearby devices, defining so-called “virtual macro sensors”. In this view, devices are required to emit,

process, and route information according to local knowledge, by collectively working as a self-organising

system [5], i.e., a system sustaining its goal (order, structures, behaviour) – withstanding changes and10

environmental perturbations – by the continuous activity and local interaction of its internal components.

⋆This work has been supported by the MIUR PRIN 2017 Project N. 2017KRC7KT “Fluidware”. The editorial version is
avalable at https://doi.org/10.1016/j.compeleceng.2021.107580

Preprint submitted to Journal of Computers & Electrical Engineering January 15, 2022

https://doi.org/10.1016/j.compeleceng.2021.107580

A fundamental pattern in such “cooperative” distributed sensing is data summarisation, by which the

information dynamically sensed or produced by devices situated in a spatial region is aggregated into new

information, to be updated continuosly and automatically. This is at the basis of several higher-level

tasks including counting items, measuring space, averaging environmental values, assessing the minimum or15

maximum levels of a physical quantity, tracking history, aggregate logging, and so on [6]. Notice that since

sensing is distributed, it is generally not possible to compute “instantaneous” exact summaries: so, emphasis

moves to so-called self-stabilising computations [7], which ensure to eventually produce correct results when

inputs and perturbations stabilise, and to quickly produce “reasonable” approximations (where what is

reasonable depends on the particular application).20

Data summarisation can be implemented by algorithms of distributed collection, which instruct devices

to progressively combine from (and propagate information to) neighbour devices, along the path (single-

path collection) or paths (multi-path collection) towards the nearest collector device (also known as sink).

They can hence be seen as a cooperative behaviour which takes as input: (i) the devices that must receive

the collection result; (ii) the values produced by devices (sensors) that must be summarised; and (iii) the25

aggregation operator that must be used to combine the individual contributions with the partial collection

result. At the implementation level, this algorithm typically requires a potential field [7, 8] used to give

directions from sensors to the collectors, and progressively move information chunks toward it, and combine

them (with an associative and commutative aggregation operator).

Existing solutions to the problem, however, assume devices are stationary or move very slowly, and hence30

are fragile to network dynamics [7], or deal with mobility using heuristics that might be partly effective [9],

limiting their applicability in practice. To support effectiveness in mobile edge computing applications [2]

(swarm robotics, crowd monitoring and control, vehicular networks), we propose novel algorithms specifically

designed to address high variability, there including high speed mobility of devices and data loss. We focus on

idempotent aggregation (e.g., minimum value computation, or union of sets) and arithmetic aggregation (e.g.,35

sum computation), and achieve optimal reactivity to changes through the maximisation of information speed

by choosing the “best” path selection strategies (encompassing both single-path and multi-path solutions).

As such, we shall design our algorithms to be optimal.

In summary, we provide the following contributions (see also Table 1): (1) design Cblist algorithms for

idempotent and arithmetic aggregations, which optimise under a statistical bounded-loss constraint; (2) eval-40

uate them in synthetic scenarios varying relevant characteristic parameters (diameter, density, mobility);

(3) demonstrate applicability on a realistic case study in edge data mining.

The rest of the manuscript is organised as follows: Section 2 provides background and state of the art

in distributed data collection algorithms; Section 3 is the core of the contribution, describing the proposed

algorithms; Section 4 provides a simulation-based evaluation of performance against state-of-the-art collec-45

tion algorithms; Section 5 presents a realistic case study demonstrating applicability to edge data mining

2

Assumptions State of the art (Sec. 2) Proposed (Sec. 3)

Csp Cmp Cwmp Clist Cblist

Underlying model of computation (Section 2.2) • • • • •

Based on a potential field (Section 2.3.1) • • • • •

Basic assumptions (Section 3.1) • •

Assumption: sure connection (Section 3.1) •

Constraints (Section 3.2)

Scalability • • • • •

No data loss •

Bounded loss • •

Evaluation (Section 4)

Best results (idempotent aggr., low mobility) • •

Best results (idempotent aggr., high mobility) ◦ ◦ •

Best results (arithmetic aggr., static scenarios) • ◦

Best results (arithmetic aggr., non-static scenarios) •

Table 1: Comparison of the proposed collection algorithms (Clist, Cblist) w.r.t. state-of-the-art algorithms (Csp, Cmp, Cwmp).

Notation: • denotes a match; ◦ denotes a close match.

scenarios; and finally, Section 6 provides a wrap-up and points out opportunities for future work.

2. Background and Related Work

We start defining background for the problem of collecting information available in spatially-distributed

networks: Section 2.1 briefly recalls the mathematical fundamentals of distributed data collection; Section 2.250

presents the proximity-based interaction model we shall assume; and Section 2.3 exploits this model to

illustrate state-of-the-art distributed data collection algorithms.

2.1. Mathematical Fundamentals of Distributed Data Collection

Data summarisation is a cornerstone routine of many distributed applications. As such, several al-

gorithms realising it have been proposed for different scenarios like spatial computing, high-performance55

computing, and WSNs [3]. Despite differences in implementation details, every such algorithm is based on

the same mathematical characterisation of the problem. Namely, distributed values are to be combined via

an aggregation operator ⊕ for which the following properties hold: (1) associativity : u⊕(v⊕w) = (u⊕v)⊕w;

(2) commutativity : u ⊕ v = v ⊕ u. If
⊕

enjoys such properties, then the aggregation of a multi-set C, i.e.⊕
C, is well-defined (i.e., the order in which the elements of C are considered for the aggregation is not sig-60

nificant). Common aggregation operators include the idempotent operators of minimum and maximum as

3

well as the arithmetic operators of multiplication and addition. Also, in scenarios characterised by frequent

changes in inputs and data transmission issues (e.g., delays, packet drops) like WSNs and mobile computing,

an additional property is often needed: (3) continuity : the effect of considering a percentage p of errors

in the aggregation tends to zero as p → 0. The aforementioned operators (for idempotent and arithmetic65

aggregation) also enjoy such a property, which however does not hold, e.g., for operators like modular sum

(where even a single erroneous contribution could disrupt the whole aggregation result).

2.2. An Abstract Model of Computation for Proximity-based Interaction Networks

To raise the abstraction level when designing and reasoning about algorithms for distributed data collec-

tion, we shall adopt a so-called aggregate programming stance [10]. On the one hand, we see the distributed70

system as a network of (possibly mobile) devices with a dynamic topology, induced by the proximity (physi-

cal or logical) of devices, where each device can send/receive messages to/from devices in the neighbourhood.

On the other hand, we shall specify an adaptive system for such networks in terms of a “global program”,

intended as single specification that each device repetitively execute, until the expected global result is

reached. Namely, we assume an underlying model of computation where each device of the network asyn-75

chronously and periodically executes a task comprising the following steps: (1) collection of status of its

sensors and messages received (to be used as input for the next step); (2) execution of a program (the same

for all devices) yielding a value and messages to be sent; and (3) transmission of messages to neighbours.

We say that a device fires to mean that it performs an execution of this task. A situation in which the task

is not completed (e.g., the execution of the program in step 2 does not terminate) is not considered a firing.80

The time and location of a firing is called an event, i.e., each event ϵ uniquely identifies the time instant

t(ϵ), position in space l(ϵ), and the device δ(ϵ) where a firing starts. For a set E of events, we write δ(E) as

short for {δ(ϵ) | ϵ ∈ E}. Events are related by message-passing, as described by the following definition.

Definition 1 (supplier events). An event ϵ′ is a supplier of an event ϵ, written ϵ′ ⇝ ϵ, if a message sent

by ϵ′ was the last from δ(ϵ′) able to reach δ(ϵ) before ϵ occurred (and has not been dumped as obsolete since).85

In a real distributed system with asynchronous scheduling, a device could fire at a slower rate than another,

thus receiving multiple messages from it during a single round: Definition 1 states that only on the last

received may be considered. Conversely, no message from a “slow” device could reach a “fast” target during

a round: according to Definition 1, devices may retain messages from neighbours across fires, increasing the

computation stability (details on if and when messages are kept or discarded are system design choices).90

In the remainder of this paper, we assume availability of the following quantities during each event ϵ

on a device δ(ϵ): (1) The radius R within which communication succeeds.1 (2) The time difference (lag)

1In reality, the communication range of a node is very irregular. As suggested by Zhou et al. [11], such an irregular radius

can be bounded below, justifying the usage of a fixed quantity.

4

with respect to each supplier event ϵ′: lag(ϵ′, ϵ) = t(ϵ) − t(ϵ′).2 (3) The measured distance with respect to

each supplier event ϵ′: dist(ϵ′, ϵ), possibly affected by errors. The latter quantity can be computed in three

main different ways: (1) in GPS-based systems, dist(ϵ′, ϵ) is (an approximation of) the distance between the95

positions l(ϵ′) (referred to time t(ϵ′)) and l(ϵ) (referred to time t(ϵ)); (2) if distance is sensed at message

receipt, it is an approximation of the distance between devices δ(ϵ′) and δ(ϵ) at time t(ϵ′); (3) if distance

can be sensed in every moment, then it is an approximation of the distance between devices at time t(ϵ).

The values manipulated by an aggregate program, which arise on each firing, can be modelled as functions

of events: we will use X(ϵ) to denote such a distributed value X, and Xϵ′(ϵ) to denote a value depending100

on supplying relationships ϵ′ ⇝ ϵ, that is, a quantity computed in ϵ with respect to a supplier event ϵ′.

2.3. State-of-the-art Distributed Data Collection Algorithms for Proximity-based Interaction Networks

In a proximity-based interaction network, given a commutative and associative operator, data collection

algorithms asynchronously combine input values x(ϵ) from different devices into a single value in a selected

source (or collector) device, managing data flow in order to avoid multiple aggregation of a same value. Such105

algorithms hence need to ensure that flows are acyclic and directed towards the source. This is achieved

by relying on a potential field P (ϵ) approximating a measure of distance from the source: as information

descends the potential field, cyclic dependencies are prevented and the source is eventually reached.

For each event ϵ, potential descent is enforced by splitting the set of supplier events Eϵ = {ϵ′ | ϵ′ ⇝ ϵ}

into two disjoint sets E−
ϵ = {ϵ′ ∈ Eϵ | P (ϵ′) < P (ϵ)} and E+

ϵ = {ϵ′ ∈ Eϵ | P (ϵ′) > P (ϵ)} of events with110

respectively lower and higher potential, while ensuring that values are received only from events in E+
ϵ .

In the following, we survey algorithms for potential field computation (Section 2.3.1) and present the

three main proximity-based interaction distributed collection algorithms: single-path (Section 2.3.2), multi-

path (Section 2.3.3) and weighted multi-path (Section 2.3.4). All three algorithms scale to arbitrarily large

systems, by requiring computational resources per device proportional to neighbourhood size. The second115

and third also address scenarios with ephemeral devices, while only the third addresses the issue of mobility.

2.3.1. Potential Field

A potential field P (ϵ) of distances from a source (or sink) node is a main input of every data aggregation

algorithm, used to guide the collection flow towards that source. Accurately computing distances in a

dynamic network is a demanding task, which can be tackled differently depending on the application scenario.120

In particular, it can be done in a decentralised, self-healing fashion using a so-called gradient computation [7],

an algorithmic scheme (with various implementations) where devices compute and adaptively correct local

distance estimates by combining neighbours’ estimates with corresponding node-to-neighbour distances.

2This quantity can be calculated with reasonable precision even without a global clock [12].

5

These can be obtained by sensors (cf. Sec. 2.2) if available, or the basic hop-count gradient based on

unit-distances can be used instead, possibly improved via statistical tools [13]. However, also when precise125

proximity estimates can be obtained, the correction of gradient estimates as sources change (input variability)

or nodes move (network variability) can be hindered by the rising value problem, whereby the system does

not promptly react to changes causing distances to rise. To address this and other issues, various solutions

have been suggested in literature: recent reviews [14, 15] point out three state-of-the-art solutions.

The FLEX algorithm [7] aims at maximising stability of distance estimates while bounding the error; and130

handles the rising value problem via metric distortion. The BIS algorithm [15] leverages time information

to enforce a minimum information speed, hence achieving optimal single-path reactivity to input changes,

including those causing values to rise. The ULT algorithm [14] builds on BIS by adding a detector for obsolete

values operating at multi-path speed (i.e., faster), and by dealing with estimate stability via dampers and

filters. Since it integrates many techniques, it also depends on many parameters which need to be tuned:135

depending on those, ULT behaviour can range from being closer to BIS to being closer to FLEX.

2.3.2. Single-path Collection

In the single-path algorithm Csp, at each event ϵ, the firing device sends the partial aggregate Csp(ϵ)

just computed to a single device: the one that fired at the supplier event m(ϵ) = ϵ′ with minimum potential

P (ϵ′) among all supplier events in Eϵ. In formulas, assuming that x(ϵ) is the value to be collected:

Csp(ϵ) = x(ϵ)⊕
⊕

ϵ′∈E+
ϵ ∧ δ(m(ϵ′))=δ(ϵ)

Csp(ϵ
′) (1)

Equation 1 specifies that the partial aggregate in ϵ must be computed by combining the local input value x(ϵ)

and the partial aggregates from supplier events ϵ′ with higher potential for which δ(ϵ) is the selected device

δ(m(ϵ′)). This ensures that information flows through a forest in the network. A screenshot illustrating, for140

each device, the value computed by this algorithm after convergence is shown in Figure 1.

As information descends the potential with maximal flowing speed, single-path aggregation achieves op-

timal reactivity to input changes for networks with static topology [9]. However, in networks with ephemeral

devices and high variability, the potential loss of the message from ϵ to m(ϵ) can cause the whole branch of

the forest rooted at ϵ to be ignored by the algorithm, resulting into poor performances.145

2.3.3. Multi-path Collection

The multi-path algorithm Cmp prescribes that, at each event ϵ, the firing device divides the partial

aggregate Cmp(ϵ) equally among every device that fired at a supplier event ϵ′ with lower potential. Thus,

data flows through every path compatible with the given potential field. This is achieved by computing:

Cmp(ϵ) = x(ϵ)⊕
⊕

ϵ′∈E+
ϵ

{Cmp(ϵ
′)⊘N(ϵ′)} (2)

6

Figure 1: Result after convergence of a Csp algorithm counting the number of blue nodes in the red sink node. Each node

keeps a partial result of the process, achieved by aggregating data from the “single-path data flows” (from blue nodes to the

red node) that pass through the node. Communication is bidirectional and the aggregation outcome grows towards the sink.

where N(ϵ) = |E−
ϵ | and v⊘n corresponds to the “division of v by n”: it yields the element such that, when

aggregated n times with itself, produces v. Operator ⊘ can only be defined for “divisible” data, which may

be of two main kinds: (1) idempotent operators, such as those computing the minimum or maximum of

a partially ordered set (for which ⊘ is the identity function); (2) arithmetic operators, such as point-wise150

multiplication and addition of vectors of real numbers (where ⊘ is division and root extraction, respectively).

This requirement restricts the scope of multi-path aggregation, however, most operators recurring in practice

can be expressed in terms of idempotent or arithmetic operations. For instance, idempotent operators

combined with statistical tools can be used to emulate various kinds of aggregations including count of

distinct values, addition, uniform sampling, frequent values selection, and order statistics [16].155

As information flows through every path, devices are unlikely to be excluded from the aggregation,

reducing data loss in presence of ephemeral devices. However, this also impairs reactivity to input changes:

even assuming a static topology, data flows on every path including the longest, delaying the reaction until

all paths have been considered (especially for idempotent operations), scoring a reaction speed inversely

proportional to network density. In presence of mobile devices, the issue is made worse by the formation of160

information loops, occurring when devices of similar potential invert (by moving) their relative ordering in

subsequent firings, causing information from a device to return to itself. This phenomenon further reduces

the reactivity of the algorithm, and induces exponential overestimations in arithmetic data collection.

2.3.4. Weighted Multi-path Collection.

In the weighted multi-path algorithm Cwmp [9], at each event ϵ, the firing device divides unevenly the

partial aggregate Cwmp(ϵ) among devices that fired at a supplier event ϵ′ with lower potential, by assigning

them weights designed to penalise devices that are likely to lose their “receiving” status. This can occur

7

either: (1) if the “recipient” is far from the “sending” device, so that their connection can soon break; or

(2) if the potential values of the “recipient” and “sending” devices are too close, so that their role could

soon be exchanged, allowing for an “information loop” between them. Both cases are dealt with a weight

function wϵ′(ϵ) = d(ϵ′, ϵ) · p(ϵ′, ϵ), determining how much data from ϵ should be transmitted to a neighbour

δ(ϵ′). The function is built on two components, d(ϵ′, ϵ) = R− dist(ϵ′, ϵ) and p(ϵ′, ϵ) = |P (ϵ)− P (ϵ′)|, where

R is the communication radius and dist(ϵ′, ϵ) is a measure of distance between ϵ′ and ϵ. Such weights have

to be normalised by factor N(ϵ) =
∑

ϵ′∈E−
ϵ
wϵ′(ϵ), obtaining normalised weights wϵ′(ϵ)/N(ϵ). Any device

can then compute its partial aggregate as in Cmp (cf. Equation (2)) with the addition of weights:

Cwmp(ϵ) = x(ϵ)⊕
⊕

ϵ′∈E+
ϵ

{
Cwmp(ϵ

′)⊗
wδ(ϵ)(ϵ

′)

N(ϵ′)

}
. (3)

where binary operator ⊗ above is such that v ⊗ k “extracts” from a local value v a percentage k.3 For165

instance, if ⊕ is addition then ⊗ is multiplication, while if ⊕ is idempotent then ⊗ is a threshold function

determining which links should be exploited or not for sending data.

It has been shown that Cwmp largely outperforms both Csp and Cmp [9]. However, it leverages heuristics

and hence correctness guarantees cannot be provided. Furthermore, it suffers in scenarios of arithmetic data

collection characterised by high mobility, where the system undergoes exponentially erroneous behaviour [9].170

3. Collection by Information Speed Thresholds

This section introduces the Lossless Information Speed Thresholds (Clist) and Bounded-Loss Information

Speed Thresholds (Cblist) collection algorithms. These algorithms work by maximising the information speed

on the basis of the assumptions described in Section 2.2 and the further network model assumptions described

in Section 3.1, while satisfying the constraints presented in Section 3.2.175

3.1. Network Model Assumptions

We consider a potential field P (ϵ) for any event ϵ as input (cf. Sec. 2), and use notation ϵnext for the event

that follows ϵ on the same device: ϵ ⇝ ϵnext and δ(ϵ) = δ(ϵnext). In order to compute Clist and Cblist, we

leverage some basic forecasting of values in subsequent events ϵnext, enabled by the following assumptions.

Scheduled time. For any event ϵ, we require a known upper bound tu(ϵ) to t(ϵnext). This requirement180

can be satisfied easily and precisely, since the scheduling of firings is generally controlled by a large degree.

Potential field dynamics. For any event ϵ, we require a known upper and lower bounds Pu(ϵ), P l(ϵ) to

P (ϵnext). For instance, if V is an upper bound on the movement speed of devices, we can define Pu(ϵ) =

P (ϵ) + V · (tu(ϵ) − t(ϵ)). Such an upper bound may be adjusted by accounting for errors in potential field

3We also used the notation wδ(ϵ
′) as alias of wϵ′′ (ϵ

′) where δ(ϵ′′) = δ.

8

computation, and could be refined if the movement direction can be guessed. For probability computations,185

we assume P (ϵnext) to vary uniformly at random between its upper and lower bounds.4

Communication success. For each event ϵ and neighbour ϵ′, there is a conservative (and reasonably

accurate) estimate connectionSuccessϵ′(ϵ) of the probability with which ϵ is able to successfully send a

message to the next event ϵ′next on δ(ϵ′).

Sure connection. Additionally, Clist requires that some neighbour can surely receive messages. We define

surelyConnectedϵ′(ϵ) as the Boolean value of whether connectionSuccessϵ′(ϵ) is equal to 1, and assume that

for each event ϵ there is a neighbour ϵ′ satisfying surelyConnectedϵ′(ϵ). Notice that surelyConnected could

be obtained from an upper bound on distance dist(ϵ′, ϵ), an upper bound on speed V , and a lower bound

on communication radius R:

surelyConnectedϵ′(ϵ) ⇔ maxDistNow(ϵ′, ϵ) ≤ R, maxDistNow(ϵ′, ϵ) = dist(ϵ′, ϵ) + kV lag(ϵ′, ϵ)

where k is set to 0 if dist refers to t(ϵ), 1 if it refers to both t(ϵ′) and t(ϵ) (GPS-based), 2 if it refers to t(ϵ′)

(cf. Section 2.2). Estimating connectionSuccess requires an additional knowledge of the network model.

For instance, if we assume: (1) a probability F (d) of communication success for devices at a distance d,

with integral F i(d) =
∫
F (d)∂d; (2) that the relative distance of devices varies between its minimum and

maximum bounds uniformly at random; then connectionSuccessϵ′(ϵ) could be estimated as:

connectionSuccessϵ′(ϵ) ⋍
F i(maxDistNow(ϵ′, ϵ))− F i(minDistNow(ϵ′, ϵ))

maxDistNow(ϵ′, ϵ)−minDistNow(ϵ′, ϵ)
.

As an example, consider a crowd tracking system estimating count and barycentre of a crowd in a public190

event in a decentralised fashion, possibly using low-power wearable devices (e.g., bracelets) provided by

organisers. For such a system, it would be reasonable to meet the above requirements by investigating the

networking system properties prior to deployment, as radios and protocols are known in advance.

3.2. Algorithmic Constraints

In addition to the assumptions above, we restrict our focus to scalable and lossless or bounded-loss195

collection algorithms. A distributed algorithm is said to be scalable if, in any event, partial results require

O(1) message size and O(N) time and space complexity to be computed, where N = |Eϵ| denotes the size

of the neighbourhood of ϵ, namely, the number of its supplier events.

A data collection algorithm is said to be lossless if it guarantees that the input value x(ϵ) in any event

contributes to the algorithm outcome C(ϵ′) for at least one event ϵ′ in the collector node where P (ϵ′) = 0.200

This will be shown for Clist by inductively ensuring that the partial result of an event is received and

considered by at least one neighbour event. In scenarios with high mobility or unreliability, this condition

may be impossible to meet. Thus, we also consider (for Cblist) the following more relaxed constraint.

4Though this model is not very realistic, it is “pessimistic”: values are usually more concentrated towards the middle.

9

A collection algorithm has bounded-loss if for every event ϵ the “relative loss” random variable Xϵ has

mean 1 and variance below a given threshold; where Xϵ corresponds to the relative fraction of the partial205

result in ϵ that is actually received by any neighbour. For arithmetic aggregations, this relative fraction

for a reference event can be straightforwardly computed as x1+...+xn

x , where x is the partial result in the

reference event ϵ, and x1, . . . , xn are the values received and used by neighbours of ϵ to compute their partial

results. For idempotent aggregations, there is no notion of “fraction” between values; instead, values are

either received and used or not: we say that the fraction is 1 in the affirmative case and 0 in the negative210

case. In this case, the relative loss random variable Xϵ degenerates to a Bernoulli distribution; and bounding

its variance is equivalent to bounding the probability for Xϵ to be zero. Notice that in several real world

scenarios of aggregation, such as the crowd density and barycentre estimation, there is typically a need for

a reasonably reliable estimate rather than a exact, lossless value. It is key, though, to have the ability to

bound the error, so that the estimate can be correctly interpreted by domain experts.215

3.3. Lossless Idempotent Aggregation

For idempotent aggregation, double counting of the same contribution has no negative impact on the

overall collection result, so emphasis can be put on avoiding loss of data by leveraging multi-path strategies

(i.e., sending data to multiple neighbours). Since the basic multi-path algorithm is unable to quickly self-

adjust [9], we need to tune it in order to enforce the maximum information speed v (as potential descended220

by messages per time unit), exploiting the network model assumptions defined in Section 3.1. Indeed, if

the algorithm does not consider the longer paths from any event ϵ to the collector (i.e., it does not consider

obsolete information), then reactivity to input is maximised for quick revision of the results.

Note that a scalable algorithm cannot be based on the information speed v of entire paths, since it would

be impossible to select them in intermediate events according to this criterion. For any set of values k

reaching an event ϵ through potential ∆Pk in a timespan ∆tk, a constant-sized subset of those values must

be selected without knowledge of the supplemental timespan ∆t required to reach the collector, and hence

of the speed associated with the entire paths of the candidate values. Therefore, we implicitly choose paths

by setting a speed constraint to each edge. The threshold speed θ(ϵ) of an event ϵ is the speed that must be

reached by a message ϵ⇝ ϵ′ in order to be considered:

v(ϵ, ϵ′) =
P (ϵ)− P (ϵ′)

t(ϵ′)− t(ϵ)
< θ(ϵ) (4)

In other words, if information transmitted by ϵ to ϵ′ descends the potential P (·) at a speed lower than the

threshold determined in θ(ϵ), then it is discarded. Since a global threshold may not take into account the225

variety of situations arising in the whole network, potentially inducing data loss for substantial portions of

it, we exploit local thresholds computed in each event. Additionally, such thresholds are computed to be

10

maximal (in order to discard as many paths as possible) while ensuring that the message will be considered

by at least one device in the neighbourhood; hence allowing the algorithm to be lossless.

For effective and efficient choice of such thresholds, we exploit the model assumptions of Section 3.1.

To prevent data loss, for any event ϵ we must ensure at least one neighbour event ϵ′ ⇝ ϵ for which

surelyConnectedϵ′(ϵ) holds does consider the message. Through the upper bounds Pu(·) on potential and

tu(·) on the scheduling time, we can set a lower bound on the information speed from ϵ to ϵ′next:

v(ϵ, ϵ′next) =
P (ϵ)− P (ϵ′next)

t(ϵ′next)− t(ϵ)
≥ P (ϵ)− Pu(ϵ′)

tu(ϵ′)− t(ϵ)
= vwst

ϵ′ (ϵ) (5)

Therefore, the maximum threshold granting zero loss of data is defined as follows:5

θ(ϵ) = max
{
vwst
ϵ′ (ϵ) : surelyConnectedϵ′(ϵ) = ⊤

}
(6)

So, partial accumulation results can be computed in any event ϵ by repeated application of the update rule:

Clist(ϵ) = x(ϵ)⊕
⊕
ϵ′∈Eϵ

{
Clist(ϵ

′) : v(ϵ′, ϵ) =
P (ϵ′)− P (ϵ)

t(ϵ)− t(ϵ′)
≥ θ(ϵ′)

}
(7)

where the locally available contribution x(ϵ) is aggregated with the partial collection results provided only230

by those supplier events ϵ′ for which the speed v(ϵ′, ϵ) of information flowing to ϵ exceeds the threshold

determined by previous events θ(ϵ′). The Clist algorithm is thus altogether defined by Equations (5) to (7).

Even though the thresholds determined at any event maximise the expected future information speed, and

the neighbour that theoretically provides the highest speed is accordingly selected, the Clist algorithm is

not single-path: indeed, since a message ϵ ⇝ ϵ′next can go faster than the estimated lower bound vwst
ϵ′ (ϵ)235

(cf. Equation (5)), it can still exceed the threshold θ(ϵ) (cf. Equation (6)) designed for another target. As

per the above explanation, we can finally state the following property.

Property 1 (Clist is locally optimal among lossless collection algorithms). Let threshold θ(ϵ) be such

that, using information available at event ϵ, it is possible to guarantee a lowest speed of information coming

out from ϵ of at least θ(ϵ) without risk of losing data. Then, the lowest speed of information coming out240

from ϵ for Clist is greater or equal to θ(ϵ).

Example 1. Consider the following network (left), where each device δi performs events ϵji according to the

given time schedule (right):

5If surelyConnectedϵ′ (ϵ) does not hold for any neighbour, it is not possible to ensure zero loss of data and we set the

threshold to −∞, hence settling for a gossip-like behaviour.

11

1.3

1.8
1.4 1.7

1.1

δ0

δ1

δ2

δ3

δ0 δ1 δ2 δ3

P (·) 0.0 1.8 1.3 2.9

δ0

δ1

δ2

δ3

1.5 31 2.5 40.5 2 4.51 3.5

d
ev
ic
e

time

ε00 ε01

ε10 ε11 ε12

ε20 ε21 ε22

ε30 ε31

For simplicity, we assume that the potential in each event equals the exact distance in the graph from245

the source, and its lower and upper bounds are ±0.5 away from it. Similarly, we assume that t(·) and

tu(·) correspond to the exact timing of their current (resp. next) event, and that all devices are surely

connected. Consider event ϵ31 with suppliers ϵ11, ϵ
2
1. We have that: vwst

ϵ11
(ϵ31) = (2.9−2.3)/(4.0−3.5) = 1.2 and

vwst
ϵ21

(ϵ31) = (2.9−1.8)/(4.5−3.5) = 1.1. Thus, θ(ϵ11) = max(1.2, 1.1) = 1.2. In event ϵ12, the data from ϵ31 will be

considered since it will be having speed (2.9−1.8)/(4−3.5) = 2.2 > 1.2. In event ϵ22, the data from ϵ31 will also be250

considered since it will be having speed (2.9−1.3)/(4.5−3.5) = 1.6 > 1.2.

3.4. Bounded-Loss Idempotent Aggregation

In settings for which the lossless constraint is not satisfiable, we consider the weaker bounded-loss con-

straint (cf. Section 3.2). In the idempotent case, this requires the probability of total loss for each event to be

below a fixed threshold pfail. As in the lossless case, we resort to a multi-path strategy, pruning the slowest

communication paths while respecting the constraint. Thus, we need to calculate a threshold speed θ(ϵ) in

event ϵ, regulating message discard as in Equation (4). Given such a threshold speed θ as a parameter, by

Equation (4), the message from ϵ for δ(ϵ′) is not discarded provided that the potential P (ϵ′next) satisfies:

θ ≤ P (ϵ)− P (ϵ′next)

t(ϵ′next)− t(ϵ)
⇔ P (ϵ′next) ≤ P (ϵ)− θ(t(ϵ′next)− t(ϵ)).

Since t(ϵ′next) ≤ tu(ϵ′), a sufficient condition is P (ϵ′next) ≤ P (ϵ) − θ(tu(ϵ′) − t(ϵ)). Assuming that P (ϵ′next)

varies uniformly at random between its bounds P l(ϵ′) and Pu(ϵ′) (cf. Section 3.1), we obtain that a conser-

vative estimate of the probability for the message not being discarded by the algorithm is:

survivalP(ϵ, ϵ′, θ) =
P (ϵ)− θ · (tu(ϵ′)− t(ϵ))− P l(ϵ′)

Pu(ϵ′)− P l(ϵ′)
.

Combining this with the probability connectionSuccess(ϵ, ϵ′) for the message not physically reaching the

neighbour, we obtain that the overall probability of failure for the communication from ϵ to δ(ϵ′) is:

failingP(ϵ, ϵ′, θ) = 1− connectionSuccess(ϵ, ϵ′) survivalP(ϵ, ϵ′, θ) (8)

and the probability of all communication failing together is failingP(ϵ, θ) =
∏

ϵ′⇝ϵ failingP(ϵ, ϵ
′, θ). In

order to optimise the recovery speed of the algorithm under the bounded-loss constraint, we thus pose

12

θ(ϵ) = max {θ ∈ [0,∞] : failingP(ϵ, θ) ≤ pfail}. Notice that failingP(ϵ, θ) is an increasing function of θ: when

the threshold increases, every survivalP(ϵ, ϵ′, θ) decreases hence failingP(ϵ, ϵ′, θ) increases. Then, θ(ϵ) can

be effectively found by binary search with arbitrary precision. Besides the different criterion for computing

θ(ϵ), the Cblist algorithm is then identical to Clist as described in Equation (7):

Cblist(ϵ) = x(ϵ)⊕
⊕
ϵ′∈Eϵ

{
Cblist(ϵ

′) : v(ϵ′, ϵ) =
P (ϵ′)− P (ϵ)

t(ϵ)− t(ϵ′)
≥ θ(ϵ′)

}
(9)

Example 2. Consider the network and events of Example 1, with the same potentials and upper and lower

bounds. Assume that devices within a distance of 1.5 are surely connected, while more distant devices are

50% connected. Consider event ϵ31 with suppliers ϵ11, ϵ21. Given θ, we have that: survivalP(ϵ31, ϵ
1
1, θ) =255

2.9−θ(4.0−3.5)−1.3
2.3−1.3 = 1.6 − θ/2 and survivalP(ϵ31, ϵ

2
1, θ) = 2.9−θ(4.5−3.5)−0.8

1.8−0.8 = 2.1 − θ. Combining this with

connection probabilities, we get that failingP(ϵ31, θ) = (1− 1.0(1.6− θ/2))(1− 0.5(2.1− θ)) = (θ/2− 0.6)(θ/2−

0.05) = 0.25θ2−0.325θ+0.03. Assuming we want pfail = 2.36%, the highest θ we can choose is θ(ϵ31) = 1.28.

Both events ϵ12, ϵ
2
2 will then consider data from ϵ31, as the speed attained for them is 2.2, 1.6 > 1.28.

3.5. Lossless Arithmetic Aggregation260

For arithmetic collection, we must prevent counting a same contribution more than once (double count-

ing), to avoid an exponential accumulation of errors. Therefore, we amend Clist to work in a single-path

fashion. Consider information speed conditions and maximum thresholds, eqs. (4) to (6). The single neigh-

bour m(ϵ) that is chosen as recipient of the local partial collection is the one ensuring maximum vwst
m(ϵ)(ϵ):

m(ϵ) ∈
{
ϵ′ ∈ Eϵ : surelyConnectedϵ′(ϵ) = ⊤ ∧ vwst

ϵ′ (ϵ) = θ(ϵ)
}

(10)

If no neighbour is surely connected, data loss cannot be avoided and we choose m(ϵ) minimising the chance

of losing data. Finally, the accumulation of partial aggregation results is like for Csp (cf. Equation (1)):

Clist(ϵ) = x(ϵ)⊕
⊕

ϵ′∈Eϵ∧ δ(m(ϵ′))=δ(ϵ)

Clist(ϵ
′) (11)

That is, the locally provided value x(ϵ) is combined with partial accumulation results Clist(ϵ
′) of parent

events ϵ′, i.e., from those that chose the current device δ(ϵ) as single-path recipient, δ(m(ϵ′)).

Example 3. Consider the scenario described in Example 1. In event ϵ31, the neighbour ensuring maximum

vwst = 1.2 is m(ϵ31) = ϵ11. Thus, event ϵ12 will consider the data from ϵ31, while ϵ22 will not.

3.6. Bounded-Loss Arithmetic Aggregation265

If we tolerate some statistical amount of error, a better multi-path strategy can be devised for arithmetic

aggregation. Suppose that a value x needs to be sent to neighbours i = 1 . . . n, each of them with a probability

pi of receiving (and not discarding) a message. Let wi for i = 1 . . . n be any positive weights assigned to

13

those neighbours (not necessarily normalised), regulating how much of x needs to be transmitted to each of

them. Let Bp be denoting a Bernoulli random variable with probability p of being 1, and 1− p of being 0.270

Then, we can express the random variable X of the amount received by neighbours as X =
∑n

i=1 xwiBpi
.

For the bounded-loss constraint (cf. Section 3.2), we need to find an assignment to wi granting us that the

mean of values received is indeed x. The average amount received by neighbours is E(X) = xS1, where

S1 =
∑n

i=1 wipi. It follows that in order to get an average value received of x, weights (hence X) need to

normalised by dividing them by S1, obtaining w′
i = wi/S1, X ′ = X/S1.275

For the bounded-loss constraint, we also need to bound the variance of the relative loss random variable,

which in this case corresponds to Y = X′
/x =

∑n
i=1 xw′

iBpi

x =
∑n

i=1 w
′
iBpi =

∑n
i=1

wi

S1
Bpi . Then, its variance

is V (Y) =
∑n

i=1

(
wi

S1

)2

V (Bpi
) =

∑n
i=1

w2
i

S2
1
pi(1− pi) =

S2

S2
1
, where S2 =

∑n
i=1 w

2
i pi(1− pi). Since we need to

bound V (Y), we first need to compute an assignment of weights wi minimising it. This can be obtained by

posing the partial derivatives ∂V (Y)/∂wi to be simultaneously zero:

∂V (Y)

∂wi
=

∂S2

∂wi
· S2

1 − S2 · 2S1
∂S1

∂wi

S4
1

=
S1

∂S2

∂wi
− 2S2

∂S1

∂wi

S3
1

=
S1

∂
∂wi

∑n
j=1(w

2
jpj(1− pj))− 2S2

∂
∂wi

∑n
j=1(wjpj)

S3
1

=
S12wipi(1− pi)− 2S2pi

S3
1

=
2pi
S3
1

(S1wi(1− pi)− S2) = 0 ⇔ S1wi(1− pi) = S2 ⇔ wi =
S2

S1(1− pi)

Although S2

S1
depends on w1, . . . , wn, it does not depend on i: thus, weights are proportional to 1

1−pi
by

the equation above. In fact, any assignment of weights proportional to 1
1−pi

satisfies the equation, since

they are normalised to w′
i before being used in Y . This can be directly checked by posing wi =

α
1−pi

in the

derivatives, obtaining ∂V (Y)/∂wi =
2pi

S3
1

(
S1

α
1−pi

(1− pi)− S2

)
= 2pi

S3
1

∑n
j=1(α

α
1−pj

pj − α2

(1−pj)2
pj(1− pj)) = 0.

Since all derivatives are zero, it follows that this choice of wi is a minimum, maximum or saddle point for280

V (Y). Given that V (Y) is a positive function of wi, there has to exist a minimum which can either be the

only point we found where derivatives vanish, or it may be a point at an edge of the domain. The points

at the edge of the domain are those of the kind wj = 1, wi = 0 for i ̸= j (sending all data to neighbour j).

The variance for one of these points is V (Y) = S2/S2
1 =

∑n
i=1 w2

i pi(1−pi)

(
∑n

i=1 wipi)
2 =

pj(1−pj)

p2
j

= 1
pj/(1−pj)

. Instead, the

variance with wi = α/(1−pi) is V (Y) =
∑n

i=1(
α/(1−pi))

2pi(1−pi)

(
∑n

i=1
αpi/(1−pi))

2 =
α2 ∑n

i=1
pi/(1−pi)

α2(
∑n

i=1
pi/(1−pi))

2 = 1∑n
i=1

pi/(1−pi)
≤ 1

pj/(1−pj)
285

which is lower, concluding that wi = α/(1−pi) is indeed a minimum.

Let now Vmax be the maximum variance admitted by the bounded-loss constraint. Thus, we require

that: V (Y) = 1∑n
i=1

pi/(1−pi)
≤ Vmax ⇔

∑n
i=1

pi/(1−pi) ≥ 1/Vmax. Notice that pi is the probability of com-

munication succeeding (with the message not being discarded) between the current event ϵ and a cor-

responding neighbour ϵi, which by Equation (8) in Section 3.4 is equal to pi = 1 − failingP(ϵ, ϵi, θ) =

connectionSuccess(ϵ, ϵi) · survivalP(ϵ, ϵi, θ). Accordingly, we can choose the maximum threshold granting

that the bounded-loss constraint is satisfied with an optimal weight assignment:

θ(ϵ) = max

{
θ ∈ [0,∞] :

1

V (ϵ, θ)
=

∑
ϵ′⇝ϵ

1− failingP(ϵ, ϵ′, θ)

failingP(ϵ, ϵ′, θ)
≥ 1

Vmax

}
(12)

14

Since failingP(ϵ, ϵ′, θ) is an increasing function of θ, the expression: 1−failingP(ϵ,ϵ′,θ)
failingP(ϵ,ϵ′,θ) = 1

failingP(ϵ,ϵ′,θ) − 1 is a

decreasing function of θ. It follows that θ(ϵ) can effectively be found by binary search at arbitrary precision.

The overall structure of the Cblist algorithm is then similar to Clist as described in Equation (7), except

for the different criterion for computing θ(ϵ) and for the introduction of weights:

Cblist(ϵ) = x(ϵ)⊕
⊕
ϵ′∈Eϵ

{
w(ϵ′, δ(ϵ))⊗ Cblist(ϵ

′) :
P (ϵ′)− P (ϵ)

t(ϵ)− t(ϵ′)
≥ θ(ϵ′)

}
(13)

w(ϵ, δ) =

1/ failingP(ϵ,ϵδ,θ(ϵ))∑

ϵ′⇝ϵ 1/ failingP(ϵ,ϵ′,θ(ϵ)) if exists ϵδ ⇝ ϵ on δ

0 otherwise.

(14)

Example 4. Consider the scenario described in Example 2 and event ϵ31 with suppliers ϵ11, ϵ
2
1. Given θ, we

have that: 1/V (ϵ,θ) = 1
θ/2−0.6 −1+ 1

θ/2−0.05 −1. Assume that Vmax = 3/59: then, the highest θ we can choose is290

θ(ϵ31) = 1.3. Both following events ϵ12, ϵ
2
2 will then consider the data from ϵ31, since the speed attained for them

is 2.2, 1.6 > 1.3. Their respective weights will be: 1
failingP(ϵ31,ϵ

1
1,θ)

= 1
θ/2−0.6 = 20 ⇒ w(ϵ31, δ1) =

20
65/3 = 12/13

and 1
failingP(ϵ31,ϵ

2
1,θ)

= 1
θ/2−0.05 = 5

3 ⇒ w(ϵ31, δ2) =
5/3
65/3 = 1

13 .

3.7. Resiliency to Network Changes and Self-Stabilisation

The resiliency to network changes of the algorithms presented in this paper can be formally characterised295

by the notion of self-stabilisation [7]. A distributed program is said self-stabilising if whenever network

structure and input values stabilise, the output values also stabilise (after some time), and the limit output

values only depend on the final network structure and input values. This last condition is crucial, as it ensures

that after a change, the result does not depend on the values before that change; hence, the algorithm always

adjusts to the correct output for the new input. All the algorithms discussed in this paper are self-stabilising,300

both gradients (G blocks) and collections (C blocks). In particular, all collection algorithms follow the acyclic

self-stabilising pattern described in [7], where the value of each node in the network is computed as (any)

function of the values of nodes with a higher potential. In this way, after potentials reach stabilisation, the

node values also stabilise, starting from nodes of maximal potential (farther away from the collector nodes),

then proceeding all the way inward until the collector nodes (of potential zero) also stabilise.305

Even though self-stabilisation ensures that a correct value is eventually reached in a static situation after

a change, it does not pose a limit on how long does it take to reach that final configuration, and it does not

apply to mobile situations in which perturbations never stop. In such a scenario, most algorithms exhibit

their fragility: single-path aggregation fails to consider large portions of the network, while multi-path

aggregation fails to discard obsolete values, leading to double-counting and possibly exponential increase310

in errors. The Clist and Cblist algorithms, on the other hand, are designed exactly for these situations,

optimising the speed at which obsolete values are discarded, to allow for prompt reactions and avoiding

double-counting, while exploiting redundancy whenever possible to reduce (or prevent) data losses.

15

(a) Initially, the collector device (the big red node) is on one

side; the devices instructed to vary the values to be collected

are on the opposite end, shown with a bold border.

(b) Suddenly, a different collector node is selected at the op-

posite side of the arena; a corresponding switch also occurs for

the devices featuring significant value dynamics.

Figure 2: Evaluation scenario for the idempotent case. The shade of the nodes represents the gradient field: devices closer to

the source compute a smaller distance and feature warmer colours with respect to others further.)

4. Experimental Evaluation

In this section, we evaluate and compare the proposed algorithms, Clist and Cblist (cf. Section 3), against315

state-of-the-art collection algorithms (cf. Section 2), i.e., Csp [7] (single-path collection), Cmp [7] (multi-

path collection), and Cwmp [9] (weighted multi-path collection). Such reference algorithms were already

implemented in Protelis [17], a programming language for self-organising systems based on computational

fields [7]; so, the proposed algorithms have also been coded in Protelis. We run the evaluation by means of

experiments designed to test them especially in stressful conditions. The experiments consist of simulations320

configured and executed using Alchemist [18], a flexible simulator for networked systems and Protelis appli-

cations that has been used in several works [10, 7, 15]. The source code of the algorithms and experiments,

the simulation framework, and the instructions for reproducibility are freely available at a public repository6.

The rest of the section is organised as follows. First, we describe the simulation framework adopted (Sec-

tion 4.1); then, we discuss the specific experimental configuration and results for two main cases: idempotent325

aggregation (“minimum”, Section 4.2) and arithmetic aggregation (“counting”, Section 4.3).

4.1. Simulation framework

Similar experimental scenarios are designed for evaluating both cases (idempotent and arithmetic aggre-

gation). Consider a circular arena filled with many nodes at random positions that compute at a certain,

6https://bitbucket.org/roberto-casadei/experiment-optimal-collection

16

https://bitbucket.org/roberto-casadei/experiment-optimal-collection

similar frequency and interact with nearby nodes (neighbours). Rounds, which include both computation330

and broadcasting of data to neighbours, are run once per second by any device; we consider a 10% variance

in the rates of rounds in different devices and a further 10% variance rate for a single device. The nodes are

mobile devices configured to move randomly in the arena at a fixed, uniform speed. The sink device (a.k.a.

collector—the recipient of the collection process) is initially located at the left end of the arena; then, at

some time instant (t = 200 for the arithmetic case, and t = 300 for the idempotent case) it switches at335

the opposite, right end of the arena. Figure 2 shows this reference scenario graphically. Concrete scenarios

are produced by varying the following key parameters. (1) Diameter (hops): the circular arena where the

nodes are situated has a diameter specified in terms of a number of maximal hops (i.e., multiples of the

communication radius). For a fixed communication radius, a higher value of hops means that information

must cover more space to cover the entire system, since the arena is larger. (2) Average number of neigh-340

bours (neigh): this parameter determines the average size of neighbourhoods. For fixed communication

radius and diameter, a higher neigh means higher average density of devices. Together with hops, neigh

affects the total number of devices considered in a scenario. (3) Speed (speed): the speed at which devices

move randomly in the area, expressed as a fraction of the radius of communication covered every 5 simulated

seconds. E.g., with a radius of 100 metres, a 20% speed means that devices cover 20 metres every 5 seconds,345

i.e., 4m/s (a slow bicycle pace). The concrete values these parameters range over is reported in Table 2.

As the resulting matrix of configurations would be huge, we chose to vary each parameter while keeping the

others fixed to a default value. The default values for each parameter have been chosen from an extensive

exploration of parameter configurations, and have been deemed indicative for the settings of interest. Our

goal is addressing highly mobile and large-scale scenarios. Addressing huge-scale networks is not a real goal350

since IoT applications typically feature data locality and divide-et-impera approaches can be used to split a

very large area (problem) into multiple areas (smaller problems), with a separate collection process running

in each one of them, and then collecting in turn the sub-results of the sub-area collectors. Each distinct

configuration is run multiple times by varying a random seed affecting both the actual displacements of

devices as well as the simulation dynamics (e.g., the actual timing of round scheduling at the devices). The355

values obtained for the different runs of each configuration have been averaged to show their tendency. In

total, 120 different runs (each of 400 simulated seconds) have been launched, analysed, and reported.

4.2. Idempotent Aggregation

The idempotent aggregation operator in this evaluation is the minimum function, i.e., ⊕ = min. So, the

value to be collected at the sink is the minimum value among those provided by the devices in the arena. We360

generate the values yielded by the devices in order to make the task hard for the collection algorithms. For

idempotent aggregation, this means making obsolete values produced by distant devices significant. Indeed,

if the values produced in the past are not very significant (e.g., for collection of the minimum, because

17

Param. Description Default Values

hops Arena diameter as a number of maximal hops 10 [2, 3, ..., 16] (step = 1)

neigh Average number of neighbours per device 20 [7.0, 10.0,..., 31] (step = 3.0)

speed Device speed as fraction of radius covered in 5s 20 [0.0, 2.5,..., 40] (step = 2.5)

radius Communication radius in metres 100

Table 2: Parameters of the simulation scenario

more recent values are decreasing), then there is little advantage in preferring reactivity, and multi-path

collection is preferable. However, if values far from the collector are not very significant (e.g., because values365

are randomly distributed, or, for collection of the minimum, because small values tend to be concentrated

nearby the collector), then data loss has a negligible effect and single-path collection is preferable.

To increase the significance of values far away from the collector, we let the values produced by a

group X of devices located at the opposite end of arena vary as per a sinusoid (cf. Figures 2 and 3):

x(ϵ) = min(max(A cos(2π(min(t(ϵ), 300) + ϕ)/T),−M),M) which is a function of the current simulation370

time instant t(ϵ), parametrised with amplitude A = 300, sinusoid period T = 250, phase ϕ = −25, and

projection interval ±M = ±220. The other devices, not included in X, are configured to yield irrelevant

values (e.g., a constant 400 that is always above the actual minimum). Note that, at t = 300, the devices in

X and the collector switch to the opposite side of the arena; also, for t ≥ 300 the inputs x(ϵ) of the devices in

X equal to 220 (the minimum in the network), as per the formula above. This dynamics enables us to inspect375

the response of the collection algorithms in all the relevant situations: stationary and non-stationary—for

both decreasing and increasing values of the true result, and for continuous and discontinuous perturbations.

The experimental results are shown in Figure 3. From them, it is evident that Csp suffers the continuous

perturbations induced by mobility. It is confirmed its superior performance over Cmp and Cwmp in static

scenarios (e.g., for speed < 5). Cmp is effective before t = 200, then it takes quite a lot of time to recover.380

Also, its ability to react suffers significantly as the network diameter hops and the density neigh raise, while

it is relatively uninfluenced by speed. Cwmp has a rather good performance in the considered scenarios, even

though it works better with greater neighbourhood sizes. It is effective especially in very dynamic scenarios,

where it outperforms Csp and Cmp. Though good, Cwmp is dominated by the new proposed algorithms,

Clist and Cblist: these achieve similar performances, with the latter doing better mainly at higher speeds.385

For speed > 40%, Clist starts to vacillate a bit, performing like Cwmp: this is due to a pessimistic selection

of the data speed thresholds, which is bounded to the “zero information lost” constraint. By relaxing this

constraint (admitting a very low but not exactly zero chance of information loss) Cblist enables data to flow

faster, maximising reactivity and hence dealing great with fast mobility. Finally, note in Figure 3 (top left)

how the change of the sink at t = 300 has only a minor effect on the algorithms’ output.390

18

time

m
in

50 100 150 200 250 300 350

-200

-100

0

100

200

300

400

speed

m
in

er
r

0 5 10 15 20 25 30 35 40

50

100

150

200

250

300

hops

m
in

er
r

2 4 6 8 10 12 14

50

100

150

200

250

300

neigh

m
in

er
r

6 8 10 12 14 16 18 20 22 24 26 28 30

50

100

150

200

250

300

sp mp wmp

list blist ideal

Figure 3: Results of applying the different collection algorithms (Csp, Cmp, Cwmp, Clist and Cblist) to the idempotent aggre-

gation case. The top-left plot shows, for the default configuration of parameters (hops = 10, neigh = 20, speed = 20—cf.,

Table 2), how the value perceived at the sink through the different algorithms relates, over time, to the “ideal” min value in

the network. The other plots show the average error (min err) across several runs for varying values of speed, hops and neigh.

4.3. Arithmetic Aggregation

The arithmetic aggregation operator considered in this evaluation is the sum function, i.e., ⊕ = +. Every

device is instructed to contribute with a value of 1. Given this design, the collector node will accumulate

a value estimating the number of nodes included in the entire system. In other words, this defines a

decentralised count algorithm. Unlike the idempotent case, where a set of devices vary the value they395

provide to the collection, this case has a fixed truth value (corresponding to the total number of devices in

the system) for the entire simulation time: the only event injected to perturb the system dynamics is the

change of the collector node (as explained in Section 4.1). Note that such a truth value is fixed in a given

scenario, but differs across scenarios with different numbers of devices (depending on hops and neighs).

The results from the experiments can be found in Figure 4. The basic single- and multi-path algorithms400

Csp and Cmp exhibit the poorest performance. The former, Csp, is very good in stationary settings and at

very low speeds (0–2.5%), has acceptable performance at moderate speeds (2.5–10%) but tends to severely

overestimate (as shown in Figure 4 top left) the true count for speeds higher than 10%. The latter, Cmp, on

the other hand severely overestimates the true count: the error grows exponentially with higher values of

speed. Therefore, at the chosen default speed (20%), it collects the worst results—however, the relation with405

19

time

su
m

50 100 150 200 250 300 350

500

1000

1500

2000

speed

su
m

er
r

0 5 10 15 20 25 30 35 40

200

400

600

800

1000

1200

1400

hops

su
m

er
r

2 4 6 8 10 12 14

101

102

103

104

neigh

su
m

er
r

6 8 10 12 14 16 18 20 22 24 26 28 30

102

102.2

102.4

102.6

102.8

103

103.2

103.4

103.6

sp mp wmp

list blist blist (filtered)

ideal

Figure 4: Results of applying the different collection algorithms (Csp, Cmp, Cwmp, Clist and Cblist—the latter with and

without the exponential back-off filter) to the arithmetic aggregation scenario. The plot at the top left shows, for the default

configuration of parameters (hops = 10, neigh = 20, speed = 20—cf., Table 2), how the value perceived at the collector through

the different algorithms relates, over time, to the “ideal” sum value in the network (i.e., the count of all the devices).The

remaining plots (top right, bottom left, and bottom right) show the average error (sumerr) across several runs for varying

values of speed, hops and neigh. (High-resolution versions of the plots can be found at the provided repository site.)

increasing hops and neigh is similar to that of the other algorithms. Its weighted version, Cwmp, does a little

better than Csp in moderate to high mobile settings. Except for stationary settings, the algorithms proposed

in this paper, Clist and Cblist provide the best performance. In particular, Clist moderately underestimates

the true count value. Cblist does better than Clist especially for high speeds, where it exhibits about the

55% of the error of the latter for speed = 40%. We considered applying an exponential back-off filter to410

provide stability in the aggregation results; from experimentation, we observed a significant positive effect

only for Cblist. With the use of the filter, Cblist further improves its performance, reaching negligible error

for medium/small diameters (numbers of hops), medium neighbourhood sizes (neigh approximately within

range [18, 22]), and moderate speeds (5% to 25%). Finally, notice that when the collector changes (at time

t = 200), a peak of error is registered for all the algorithms (cf. Figure 4 top left).415

20

Symbol Description Unit Value

v⃗ Pedestrian speed m/s 1.6

R Distance at loss probability 99% m 50

α Exec frequency Weibull shape n.a. 2.5

β Exec frequency Weibull scale n.a. 1.2

1/λ Mean energy saving delay s 0.1

P (d) Loss probability n.a. (derived)

r Distance at loss probability 50% m (0.8, 0.85, 0.9, 0.95)R

C Device count devices (3, 4, . . . , 10) · 102

E
⊙

Error in crowd barycentre est. m (metric)

P (w) Probability of being in danger n.a. (metric)

Table 3: Summary of all constants (top), free variables (centre) and metrics (bottom) of the case study, indicating their

associated symbol, unit, and (where meaningful) values.

5. Case study

To exemplify practical applications, we test the proposed algorithms in a realistic setup of mobile edge

computing. We focus on crowd tracking, the process of monitoring the evolution of large assembles of people,

with the goal of keeping crowd density under control to prevent dangerous situations. We shall show how

such monitoring can be performed fully at the edge of the network. Consider a scenario of crowd tracking420

in the Italian city of Turin7, especially pushed after the famous June 2017 incident, when a panic wave and

stampede emerged resulting in casualties and injuries [19]. We set up a large event in the popular public

park “Parco del Valentino”, with an area of roughly 5 · 105m2. Suppose a small fraction of participants are

equipped with wearable devices given by the organisation, capable of local peer-to-peer communication.

As reference hardware, we model the communication capabilities of the DecaWave DWM1001 Develop-425

ment Board89. The board features two radio devices, based respectively on Bluetooth Low Energy (BTLE)

and on a custom implementation of an Ultrawide Band (UWB) transceiver (IEEE 802.15.4-2011). The BTLE

radio is used to exchange identification beacons, while the UWB module is used to communicate directly

with devices in proximity, creating a mesh network. The current implementation reaches a communication

range of several tenths of meters, and a data rate in the order of few megabits per second. The device is430

designed to be easily attachable to small-size, low-power ARM boards, such as the Raspberry PI zero, with

enough computational power to sustain a full fledged operating system such as Android or GNU/Linux.

7This would fits Turin initiatives such as the “Smart Square” https://www.planetsmartcity.com/smartsquare/index.html
8https://www.decawave.com/product/dwm1001-development-board/
9This prototype device is priced below e100 and its expected market price is about e20, fully compatible with our scenario.

21

https://www.planetsmartcity.com/smartsquare/index.html
https://www.decawave.com/product/dwm1001-development-board/

Figure 5: Snapshots of the simulated scenario: (left) initial displacement (purple dots are wearable devices, blue ones are edge

servers); (center) each edge server is given an area (automatically by a gradient), and accumulates and processes data coming

from that devices in it; (right) final situation (green/yellow/red devices denote areas of low/growing/dangerous density).

In our scenario, nine edge servers are displaced at key locations in the park corresponding to existing

facilities. The system goal is to provide edge servers with data for predicting the evolution of the local crowd

movement, so that field operators can be informed timely about risky situations. Devices can access their435

position with reasonable accuracy. Our goal is to estimate the density and barycentre of the local crowd in

order to detect risky areas. We run an estimation of the local density, and propagate a warning to devices

in potentially risky areas: such data can be used to generate short- and mid-terms density estimates [20].

The case study has been open-sourced for reproducibility, configured with a continuous integration

system, and released as DOI objects [21]. Table 3 summarises all the variables, constants, and metrics. To440

challenge our proposed algorithms, we include three elements of realism and a disturbance: (1) a packet

loss model, with the probability of a packet not being received growing with distance; (2) variability in the

device working frequency, to emulate unpredicted scheduling policies, e.g., for battery saving; (3) people

are not stationary, but move towards random waypoints within the park at a speed of 1.6m/s [22]; (4) once

the system initial transient is terminated, we progressively turn off all edge servers, shutting down one edge445

server every 100 seconds. We measure two parameters: the probability that a device is found in an area

where density is growing towards a potentially dangerous level (P (w)), and the overall error of the system

in identifying the barycentre of the tracked crowd (E
⊙

), compared to the value produced by an oracle.

Our packet loss model builds from an existing model and field experience. We base our model on an

existing characterisation of the UWB radio packet loss [23], where distance is found as the most impacting450

parameter related to signal attenuation, which in turn is linearly related to the probability of packet loss.

Loss probability is modelled as a function of distance d between the packet emitter and any receiver. The

22

0 200 400 600 800 1000
time

20

40

60

80

100

120

140

160

 (m
)

 for diverse deployed devices count
300
400
500
600
700
800
900
1000

0 200 400 600 800 1000
time

0.0

0.1

0.2

0.3

0.4

P(
w

)

P(w) for diverse deployed devices count
300
400
500
600
700
800
900
1000

Figure 6: Barycentre estimation error (left) and probability of being notified of a warning situation (right). The system

precision is affected by the number of edge servers: less edge servers imply a larger area to be monitored by each. The system is

reasonably precise, with an error of few tenths of metres, despite the number of nodes participating in the system. As expected,

the more nodes run the system, the higher the chance of such event happening. Nodes are initially displaced randomly, so

larger groups form at the beginning of the simulation in the proximity of the park centre as people reach their desired area.

With less edge servers, and large areas, the precision of the system decreases sensibly, as results are mediated on a larger area.

best fit of the data in [23] was found in a generalised logistic curve: P (d) = A+ K−A
ν
√

Qe−Bd+C
with parameters

A = 0, K = C = 1 (needed for a upper asymptote 1 and lower asymptote 0) and ν = 3 (derived from

the experimental data). We derive the shape and offset parameters Q and D from the more manageable455

parameters r and R, representing respectively the distance at which 50% and 99% of packets are lost. The

resulting function is: P (d) = (7elog(
6 792 093/29 701) r−d

R−r + 1)−1/3. To estimate r and R, we measure the behaviour

of two DWM1001 devices, obtaining estimate R = 50m and range (0.8, 0.85, 0.9, 0.95)R for r. All results

presented in the following sections are the average of simulations executed with these different values for r.

In many situated IoT systems, the operating system likely enforces sleep policies not allowing devices460

to promptly react to received messages or to execute at a constant rate. To model this behaviour, we

adopted the following strategy: devices evaluate their program every some time, defined by samples of a

Weibull distribution with α = 2.5 and β = 1.2, whose mean is close to 1 and variance close to 0.2. Also, we

consider that deep sleep states in microcontrollers may introduce error upon the variability of energy-aware

scheduling. As a characterisation of such error is out of the scope of this work, we assumed they cause465

exponentially distributed delays with λ = 10Hz (mean delay equal to the standard deviation: 1/λ = 0.1s).

Table 3 summarises all symbols, units, and values for the constants, variables, and metrics of the case

study. Snapshots of the simulation execution are depicted in Figure 5, numerical results are framed in

Figure 6. All data points are the result of the average over the four values for r described above,and for

each combination of values we ran ten repetitions varying the simulator random seed, which influences both470

the initial displacement of devices in the park and the progression of the simulation. Data shows that the

system is able to provide reasonable estimates of the barycentre of the crowd, regardless of the number of

23

participants, and keeping a reasonable quality despite the progressive loss of edge servers. The situation

is different in the case of propagated warning: less edge servers mean larger areas, and thus a different

estimation of the local density, and hence a lower probability of being warned. However, in real system, a475

more refined, and possibly learning-enabled strategy, could be devised to propagate warnings only to those

devices close to the barycentre of the risky area. Overall, data suggests that the proposed algorithms are

indeed applicable in reality, especially in highly dynamic situations where mesh networking is involved.

6. Conclusion

In this article, we introduce two novel algorithms, Clist and Cblist, addressing distributed collection for480

both idempotent and arithmetic aggregation. The former is designed to be lossless, the latter to allow a

statistical bound on data loss: the key idea of both is to maximise reactivity by regulating information speed

through thresholds defined on the basis of a set of network model assumptions. An extensive evaluation is

performed to compare these algorithms with state-of-the-art collection algorithms (Csp, Cmp, Cwmp) in hard

conditions characterised by significant levels of scale, density, and mobility. The results witness a marked485

improvement, providing small errors even in scenarios where devices move fast. Finally, a crowd tracking

case study is proposed to show the presented algorithms in action in a significant monitoring application.

Future works can be classified in three groups: (i) carrying on a full implementation of the proposed

tracking system in collaboration with the Torino City Lab, to experiment with the possibility of providing

a set of smart mobility services for Turin citizens, all based on the mobile edge computing paradigm; (ii)490

further improving performance of the proposed algorithms, by using machine learning techniques to optimise

various details of system execution, including fire frequency of devices, filtering of neighbours that should

receive messages, and selection of algorithm parameters; and (iii) considering data collection as a key brick

of a full library of adaptive distributed services for mobile edge computing, hence studying new algorithms

for other key problems such as gossiping, potential field creating, sparse leader election, and so on.495

References

[1] D. Miorandi, S. Sicari, F. D. Pellegrini, I. Chlamtac, Internet of things: Vision, applications and research challenges, Ad

Hoc Networks 10 (7) (2012) 1497–1516. doi:10.1016/j.adhoc.2012.02.016.

[2] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J. Kong, J. P. Jue, All one needs to know

about fog computing and related edge computing paradigms: A complete survey, J. Syst. Archit. 98 (2019) 289–330.500

doi:10.1016/j.sysarc.2019.02.009.

[3] J. Beal, S. Dulman, K. Usbeck, M. Viroli, N. Correll, Organizing the aggregate: Languages for spatial computing, in:

Formal and Practical Aspects of Domain-Specific Languages: Recent Developments, IGI Global, 2013, Ch. 16, pp. 436–501.

doi:10.4018/978-1-4666-2092-6.ch016.

[4] E. F. Nakamura, A. A. F. Loureiro, A. C. Frery, Information fusion for wireless sensor networks: Methods, models, and505

classifications, ACM Comput. Surv. 39 (3) (2007) 9. doi:10.1145/1267070.1267073.

24

http://dx.doi.org/10.1016/j.adhoc.2012.02.016
http://dx.doi.org/10.1016/j.sysarc.2019.02.009
http://dx.doi.org/10.4018/978-1-4666-2092-6.ch016
http://dx.doi.org/10.1145/1267070.1267073

[5] F. Dressler, A study of self-organization mechanisms in ad hoc and sensor networks, Comput. Commun. 31 (13) (2008)

3018–3029. doi:10.1016/j.comcom.2008.02.001.

[6] J. Yick, B. Mukherjee, D. Ghosal, Wireless sensor network survey, Comput. Networks 52 (12) (2008) 2292–2330. doi:

10.1016/j.comnet.2008.04.002.510

[7] M. Viroli, G. Audrito, J. Beal, F. Damiani, D. Pianini, Engineering resilient collective adaptive systems by self-stabilisation,

ACM Transactions on Modeling and Computer Simulation 28 (2) (2018) 16:1–16:28. doi:10.1145/3177774.

[8] A. Howard, M. J. Mataric, G. S. Sukhatme, Mobile sensor network deployment using potential fields: A distributed,

scalable solution to the area coverage problem, in: Proceedings of DARS 2002, Fukuoka, Japan, June 25-27, 2002,

Springer, 2002, pp. 299–308. doi:10.1007/978-4-431-65941-9_30.515

[9] G. Audrito, S. Bergamini, F. Damiani, M. Viroli, Effective collective summarisation of distributed data in mobile multi-

agent systems, in: Proceedings of AAMAS 2019, Montreal, QC, Canada, May 13-17, 2019, IFAAMAS, 2019, pp. 1618–1626.

[10] J. Beal, D. Pianini, M. Viroli, Aggregate programming for the internet of things, IEEE Computer 48 (9) (2015) 22–30.

doi:10.1109/MC.2015.261.

[11] G. Zhou, T. He, S. Krishnamurthy, J. A. Stankovic, Impact of radio irregularity on wireless sensor networks, in: 2nd520

International Conference on Mobile Systems, Applications, and Services, MobiSys ’04, ACM, New York, NY, USA, 2004,

pp. 125–138. doi:10.1145/990064.990081.

[12] G. Audrito, F. Damiani, M. Viroli, E. Bini, Distributed real-time shortest-paths computations with the field calculus, in:

IEEE Real-Time Systems Symposium (RTSS), IEEE Computer Society, 2018, pp. 23–34. doi:10.1109/RTSS.2018.00013.

[13] Q. Liu, A. Pruteanu, S. Dulman, Gradient-based distance estimation for spatial computers, Comput. J. 56 (12) (2013)525

1469–1499. doi:10.1093/comjnl/bxt124.

[14] G. Audrito, R. Casadei, F. Damiani, M. Viroli, Compositional blocks for optimal self-healing gradients, in: Self-Adaptive

and Self-Organizing Systems (SASO), IEEE, 2017, pp. 91–100. doi:10.1109/SASO.2017.18.

[15] G. Audrito, F. Damiani, M. Viroli, Optimal single-path information propagation in gradient-based algorithms, Sci. Com-

put. Program. 166 (2018) 146–166. doi:10.1016/j.scico.2018.06.002.530

[16] Y. Zhang, X. Lin, Y. Yuan, M. Kitsuregawa, X. Zhou, J. X. Yu, Duplicate-insensitive order statistics computation over

data streams, IEEE Trans. Knowl. Data Eng. 22 (4) (2010) 493–507. doi:10.1109/TKDE.2009.68.

[17] D. Pianini, M. Viroli, J. Beal, Protelis: Practical aggregate programming, in: ACM Symposium on Applied Computing

(SAC), 2015, pp. 1846–1853. doi:10.1145/2695664.2695913.

[18] D. Pianini, S. Montagna, M. Viroli, Chemical-oriented simulation of computational systems with ALCHEMIST, J. Simu-535

lation 7 (3) (2013) 202–215. doi:10.1057/jos.2012.27.

[19] V. Caramello, L. Bertuzzi, F. Ricceri, U. Albert, G. Maina, A. Boccuzzi, D. C. Francesco, M. C. Schreiber, The mass

casualty incident in turin, 2017: A case study of disaster responders’ mental health in an italian level I hospital, Disaster

Medicine and Public Health Preparedness 13 (5-6) (2019) 880–888.

[20] B. Anzengruber, D. Pianini, J. Nieminen, A. Ferscha, Predicting social density in mass events to prevent crowd disasters,540

in: Social Informatics - 5th International Conference, SocInfo 2013, Kyoto, Japan, November 25-27, 2013, Proceedings,

Vol. 8238 of Lecture Notes in Computer Science, Springer, 2013, pp. 206–215. doi:10.1007/978-3-319-03260-3_18.

[21] D. Pianini, Danysk/experiment-2021-jcee-optimal-converge-cast: Release 0.1.0-2021-02-04t103419 (2021). doi:10.5281/

ZENODO.4501063.

[22] R. V. Levine, A. Norenzayan, The pace of life in 31 countries, Journal of Cross-Cultural Psychology 30 (2) (1999) 178–205.545

doi:10.1177/0022022199030002003.

[23] D. Neuhold, J. F. Schmidt, J. Klaue, D. Schupke, C. Bettstetter, Experimental study of packet loss in a UWB sensor

network for aircraft, in: Proceedings of the 20th ACM International Conference on Modelling, Analysis and Simulation of

Wireless and Mobile Systems, ACM, 2017, p. 137–142. doi:10.1145/3127540.3127549.

25

http://dx.doi.org/10.1016/j.comcom.2008.02.001
http://dx.doi.org/10.1016/j.comnet.2008.04.002
http://dx.doi.org/10.1016/j.comnet.2008.04.002
http://dx.doi.org/10.1016/j.comnet.2008.04.002
http://dx.doi.org/10.1145/3177774
http://dx.doi.org/10.1007/978-4-431-65941-9_30
http://dx.doi.org/10.1109/MC.2015.261
http://dx.doi.org/10.1145/990064.990081
http://dx.doi.org/10.1109/RTSS.2018.00013
http://dx.doi.org/10.1093/comjnl/bxt124
http://dx.doi.org/10.1109/SASO.2017.18
http://dx.doi.org/10.1016/j.scico.2018.06.002
http://dx.doi.org/10.1109/TKDE.2009.68
http://dx.doi.org/10.1145/2695664.2695913
http://dx.doi.org/10.1057/jos.2012.27
http://dx.doi.org/10.1007/978-3-319-03260-3_18
http://dx.doi.org/10.5281/ZENODO.4501063
http://dx.doi.org/10.5281/ZENODO.4501063
http://dx.doi.org/10.5281/ZENODO.4501063
http://dx.doi.org/10.1177/0022022199030002003
http://dx.doi.org/10.1145/3127540.3127549

Giorgio Audrito, Ph.D. in Mathematics from the University of Torino, is a research fellow at the Computer550

Science Department of the same university. His research interests include distributed computing, program-

ming languages, distributed algorithms and graph algorithms. He leads the development of FCPP, a C++-

based implementation of the field calculus. Home page: http://giorgio.audrito.info/#!/research.

Roberto Casadei is a research fellow in Computer Science and Engineering at the University of Bologna.

With more than 25 publications in international journals and conferences, his research interests and activities555

revolve around software engineering and distributed artificial intelligence. He leads the development of the

ScaFi aggregate programming toolkit. Home page: https://robertocasadei.github.io.

Ferruccio Damiani is an associate professor at the Computer Science Department of the University of

Turin. There, he founded and coordinates the System Modelling, Verification and Reuse (MoVeRe) research

group, whose goal is to contribute to an effective seamless integration of Formal Methods into software and560

system development methodologies. Home page: http://www.di.unito.it/~damiani.

Danilo Pianini is a research fellow in Computer Science and Engineering at the University of Bologna. He

authored over 50 papers journals and conferences on simulation, self-organization, aggregate computing, and

software engineering. He is the lead designer of dozens of open-source projects, among which the Alchemist

simulator and the Protelis programming language. Home page: http://www.danilopianini.org.565

Mirko Viroli is Full Professor in Computer Engineering at Alma Mater Studiorum–Università di Bologna

(Italy). He is an expert in advanced software development and engineering, author of more than 250 papers

(of which more than 70 on international journals). He is member of the Editorial Board of IEEE Software

magazine. Home page: https://www.unibo.it/sitoweb/mirko.viroli.

26

http://giorgio.audrito.info/#!/research
https://robertocasadei.github.io
http://www.di.unito.it/~damiani
http://www.danilopianini.org
https://www.unibo.it/sitoweb/mirko.viroli

	Introduction
	Background and Related Work
	Mathematical Fundamentals of Distributed Data Collection
	An Abstract Model of Computation for Proximity-based Interaction Networks
	State-of-the-art Distributed Data Collection Algorithms for Proximity-based Interaction Networks
	Potential Field
	Single-path Collection
	Multi-path Collection
	Weighted Multi-path Collection.

	Collection by Information Speed Thresholds
	Network Model Assumptions
	Algorithmic Constraints
	Lossless Idempotent Aggregation
	Bounded-Loss Idempotent Aggregation
	Lossless Arithmetic Aggregation
	Bounded-Loss Arithmetic Aggregation
	Resiliency to Network Changes and Self-Stabilisation

	Experimental Evaluation
	Simulation framework
	Idempotent Aggregation
	Arithmetic Aggregation

	Case study
	Conclusion

