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Correct placental development during early gestation is considered the main determinant

of fetal growth in late pregnancy. A reduction in maternal nourishment occurring across

the early developmental window has been linked to a wide range of pregnancy disorders

affecting placental transport capacity and consequently the fetal nutrient supply line, with

long-term implications for offspring health and productivity. In livestock, ruminant species

specifically experience maternal undernutrition in extensive systems due to seasonal

changes in food availability, with significant economic losses for the farmer in some

situations. In this review, we aim to discuss the effects of reduced maternal nutrition

during early pregnancy on placental development with a specific focus on ruminant

placenta physiology. Different types of placental adaptation strategies were examined,

also considering the potential effects on the epigenetic landscape, which is known

to undergo extensive reprogramming during early mammalian development. We also

discussed the involvement of autophagy as a cellular degradation mechanism that may

play a key role in the placental response to nutrient deficiency mediated by mammalian

target of rapamycin, named the mTOR intracellular pathway.

Keywords: placenta, undernutrition, early pregnancy, autophagy, ruminants

INTRODUCTION

In mammals, the establishment of correct placentation is one of the key steps to ensuring a
successful pregnancy outcome. As the major determinant of fetal growth, the placenta is the
first organ that forms during embryonic development. It constitutes the foeto-maternal interface,
whose primary function is to regulate the exchange of respiratory gases, nutrients, and waste
products between the mother and fetus (1). Although the placenta functional role has long been
underestimated, placental development was recently examined in a number of studies revealing the
existence of a finely regulated control system responsible for the balanced distribution of nutrients
to fulfill the increasing demands for the growing fetus without jeopardizing the mother’s health (2).

Since placental growth precedes fetal growth, events that occur during early pregnancy, such
as trophoblast cell differentiation and placental vascularization, are thought to be particularly
critical for correct placentation (1). Any perturbations in these developmental processes affect
placental efficiency and in turn compromise the fetal nutrient supply line, leading to pregnancy
complications such as intrauterine growth restriction (IUGR) (3). Moreover, a growing body of
data obtained from clinical and experimental studies correlates the onset of adult diseases with
the occurrence of in utero adverse conditions (4). These stress-induced disturbances influence
placental development, leading to changes in fetal uptake of nutrients as well as in the secretion
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of hormones and other signaling molecules into foeto-maternal
circulation (4). Furthermore, as an important process of
epigenetic remodeling occurs during the early development of
mammals (5), an increasing number of articles have highlighted
the presence of epigenetic modifications in specific genes as
well as in the global genome for offsprings raised under uterine
suboptimal conditions (6).

Overall, the nutritional status of the mother is the
most important external factor influencing the intrauterine
environment (7), with significant implications for fetal growth
(8, 9), and long-term health of the offspring (10–12), in a process
known as fetal programming. Experiencing suboptimal maternal
nutrition can lead the growing fetus to different outcomes
depending on the timing and severity of the nutritional
insults (13). To date, the effects of reduced maternal nutrition
on fetal growth and metabolism as well as susceptibility to
the development of cardiovascular or metabolic diseases in
adulthood have been discussed in livestock (14) as well as in
humans (15). In particular, ruminant species seem to be affected
by poor maternal nutrition, which frequently occurs due to
seasonal changes in forage quantity and quality. In most cases,
if not adequately supplemented, grazing-based diets often fail to
provide adequate nutrients and may have a negative impact on
the growth and performance of both mothers and offspring, with
important economic losses for farmers (16, 17).

This review aims to focus on early pregnancy interactions
between mothers and offspring in ruminants to discuss the
consequences of reduced maternal nutrition on the development
of the placenta and the adaptation strategies that follow. In
fact, although the ability of the ruminant placenta to adapt
its development to meet fetal growth demands has been
previously reported in pregnancies complicated by nutrient
deficiencies (18), knowledge about themechanisms allowing such
compensatory action is still fragmentary.

Moreover, we analyzed recent information on the impact
of autophagy, a cell survival mechanism that is particularly
active under starvation conditions (19), and strengthened the
hypothesis that it serves as a rescuemechanism to counterbalance
low nutrient availability through the self-digestion of trophoblast
cytosolic components and the recycling of obtained nutrients
for the benefit of the growing fetus (20). Some evidence in
the literature (summarized in Table 1) seems to suggest that
autophagy could represent a powerful tool available for the
placenta to bypass transitory nutritional stress, even if excessive
autophagy beyond certain limits leads to cell death, as reported in
many placental pathologies (21, 22).

NUTRIENTS TRANSPORT ACROSS
RUMINANT PLACENTA

Early Placenta Development
The structure of the placenta is specifically designed to support
the survival of the conceptus in the intrauterine environment
and represents the juxtaposition of two components with
different origins: the uterine endometrium constitutes the
maternal portion, while the fetal portion is mainly composed

of trophoblast cells, which are the first lineage specified
during embryogenesis (1). Soon after fertilization, under a
complex mechanism of epigenetic and transcriptional regulation,
the mammalian embryo reaches the blastocyst stage and
differentiates into two distinct cell lineages: the inner cluster
of cells, which later give rise to the proper fetus, and the
outermost line of cells surrounding the blastocyst, called the
trophoectoderm, which is programmed to give rise exclusively
to the population of trophoblast cells, the main cell type of the
placental structures (6). At the time of implantation, trophoblast
cells differentiate into a variety of trophoblast cell subtypes
with different functions, which cooperate to form the mature
placenta. Despite the high variability in placental structures
and trophoblast cell subtypes between different mammalian
species, trophoblast cells follow identical developmental steps
during early pregnancy, including proliferation, differentiation,
migration and, in some cases, invasion (1).

In ruminant placenta (defined as synepitheliochorial or
cotyledonary), the foeto-maternal exchange of nutrients occurs
primarily throughout specialized areas of attachment called
placentomes, formed by the fusion of fetal cotyledons with
endometrial caruncles, randomly distributed to the whole
placental tissue (23). In ewes, the growth of the cotyledonary
mass is exponential during the first 80 days of pregnancy, while
in cows, although there is no change in the number of bovine
placentomes, the mean size progressively increases throughout
gestation, leading to a greater complexity of the placentome
vasculature (24, 25). Ruminant trophoblast cells differentiate
into two cell types characterized by different morphologies and
functionalities: mononucleated and binucleated cells. The first
type is the main structural component of the placenta, which
is directly involved in the nutrient exchange process due to
its specific morphological features, such as apical microvilli
or intracellular junctions. Binucleated cells constitute ∼20%
of the total population, and their migration and fusion with
maternal endometrial cells generate foeto-maternal syncytia and
consequently promote implantation and placentome formation.
Along with their structural role, binucleated cell functions
include hormone production, such as placental lactogen and
steroid hormones (23, 26).

During early placental development, along with trophoblast
cell differentiation, the establishment of functional vascular
architecture determines the placental ability to support the
exponential increase in fetal growth later in pregnancy. In fact,
a well-developed placental vasculature is necessary to increase
the utero-placental blood flow and thus the supply of nutrients
and other circulating molecules from maternal to fetal blood (13,
25). At the beginning of placental development, vascularization
leads to de novo endothelial cell differentiation, followed by self-
organization to form capillary-like tubes. Then, starting from
this primary vascular network, new capillaries begin to form
by angiogenesis (27). Although knowledge of placental vascular
development is still fragmentary, the key factors involved
have nevertheless been identified during early pregnancy in
ruminants and comprise vascular endothelial growth factor
(VEGF), angiopoietins (ANG1/ANG2), fibroblast growth factors
(FGF), and their respective receptors (28–30). In summary,
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TABLE 1 | References on the role of autophagy on trophoblastic cell function and placental formation.

Cells /tissues Treatment Autophagy TC effect Model References

−HTR8/SVneo

HUVECs

Oxidative stress Increased −↓ TC invasion

−↓ endothelial cell tube formation

PE (21)

−EVT

HUVECs

Hypoxia and sENG Inhibition −↓ EVT invasion

−↓ of vascular remodeling

PE (117)

−HTR8

JEG3

LncRNA-H19 overexpression Induction −↓ TC viability

−↑ invasion

PE (129)

−HTR8

JEG

Silencing LncRNA-H19 Induction ↓ TC proliferation and invasion FGR (128)

−HTR8/SVneo

JEG3

ATG5 or beclin-1 shRNA Inhibition ↑ In the invasiveness of TC PE (122)

HTR8/SVneo Rapamycin/Bafilomicin and IGF2

supplementation

Modulation Modulation of TC invasion RSA (121)

Cytotrophoblasts from IUGR

placenta

Hypoxia and p53 activation Modulation Modulation of TC turnover IUGR/PE (118)

HTR8/SVneo Folate-deficient condition and

3MA

Modulation Modulation of TC invasion ability

and apoptosis

Folate

deficiency

(126)

Porcine trophoblast cells (pTr) ROS inducing condition Induction Modulation of TC attachment and

differentiation

– (124)

HTR8/SVneo LRP6 overexpression under H/R Induction ↑ TC growth, invasion and migration PE (120)

−HTR8/SVneo

−HTR8-ATG4BC74A (autophagy-

deficient)

HIF1a overexpression Modulation Modulate TC homeostasis

and invasiveness

Hypoxia, PE (125)

Mouse placenta (d19) Gestational food restriction Decreased −↓ Vascularity

−Damaged TC layers

IUGR (137)

Mouse placenta (d10-14) Folate deficient diet Impaired −Impaired placental morphology

−Hemorrhages

−Disturbed TC layer patterning

Folate related

diseases

(126)

Mouse placenta (d14.5) 3MA Inhibition Increased absorption rate RSA (128)

Sheep placenta (d20) in vitro embryo production Increased −Impaired placental structure

−Disturbed TC layer organization

ART induced

defects

(132)

Rat placenta (d16) Hyperoside Activated −Suppressed the inflammation and

NF-κB activation

Immune

mediated

RPL

(136)

Cells: HTR8/SVneo, human first trimester extravillous trophoblasts; LncRNA, long non coding RNA; shRNA, short hairpin RNA; IGF2, insulin growth factors; HUVECs, human umbilical

vein endothelial cells; ROS, reactive oxygen species; JEG3, choriocarcinoma cells; HTR8, human extravillous trophoblast cells; EVT, human extravillous trophoblast cells. Treatments:

sENG, soluble endoglin; 3MA, 3Methyladenine; HIF-1α, hypoxia inducible factors; LRP6, low-density lipoprotein receptor-related protein 6; H/R, hypoxia/reoxygenation. Model: PE,

preeclampsia; IUGR, intrauterine growth restriction; FGR, fetal growth restriction; RSA, spontaneous recurrent abortion; ART, assisted reproductive technologies; RPL, immune mediated

recurrent pregnancy loss.

most of the events responsible for proper placental development
occur during early pregnancy, making this development time
window particularly important for a well-balanced distribution
of nutrients between mother and fetus later in gestation.

Main Mechanisms of Nutrients Transport
Throughout pregnancy, the developing fetus is dependent on
the transplacental supply of nutrients from maternal to fetal
circulation. The major substrates required for foeto-placental
growth include glucose, amino acids, and fatty acids, and their
transport occurs through two main mechanisms of facilitative
diffusion that can involve either passive transport down a
concentration gradient or active transport processes against a
concentration gradient (31). Moreover, as a metabolic organ, the
placenta is highly responsive to a wide range of nutritional signals
of adversity. Generally, for substances crossing the placenta by
passive diffusion, there will be no or reduced transport if the

maternal gradient is not maintained, while active transport will
also be reduced, as it receives less substrate for energy production
(32). More details on the most important transplacental
transport mechanisms found under nutrient-deficient conditions
in livestock were previously discussed (31–33).

Glucose is the main energy substrate to sustain foeto-placenta
development. Its transport occurs down a concentration gradient
and is mediated by glucose transporters (GLUTs) (31). In
pregnant sheep, placental glucose consumption represents∼75%
of the glucose available from the uterine circulation, and this
proportion increases with decreasing glucose concentration in
the maternal artery (34). A large portion of glucose is used by
the placenta to obtain lactate, which is considered a key fuel for
fetal growth (35), and its production varies in relation to the rate
of placental glucose consumption (36). Moreover, insulin growth
factor 1 (IGF1) is known to play an important role as a positive
regulator of glucose uptake by stimulating the expression of the
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FIGURE 1 | Fetal and placental effects of maternal nutritional treatments. This diagram summarizes the main events that follow an acute or moderate dietary

restriction faced by the pregnant mother that affects the uterine environment. Ruminants that receive reduced maternal nutrition in early pregnancy develop a

suboptimal uterine environment, and the fate of pregnancy is highly dependent on the extent of the reduction and, in turn, on the adaptability of the placenta. Acute

nutritional deprivation results in defective development of the placenta, which is unable to support fetal growth with an adequate amount of nutrients. Otherwise, if the

reduction of nutrients is moderate, the placenta can adapt its development by improving the transport capacity of nutrients to meet growing fetal needs and ensure

the maintenance of a normal growth trajectory.

GLUT1 receptor, which is the predominant glucose transporter
in the placenta (37, 38).

In sheep, reduced maternal nutrition [60% of energy
requirements (ER)] from early to mid-gestation (28–80 days)
reduces placental mass but not the number of GLUT-1 receptors
(39). Similar results have been obtained following short-term
(83–90 days) acute maternal restriction during mid-gestation,
suggesting that the placental glucose transport system is less
affected by nutrient reduction (40).

Normal placental function is also strictly dependent on
amino acid availability. Amino acids are both locally synthesized
and derived from the maternal circulation using energy-
dependent active transport (31). This mechanism is operated
by multiple amino acid transporters, whose expression and
activity are regulated by several factors, such as amino acid
and glucose concentrations and insulin, leptin, and IGF1 levels
(41–44). In ruminant species, the developing placenta displays
a specific pattern of amino acid production and foeto-maternal
distribution according to breed and nutrition (45). In particular,
maternal undernutrition (−50%) has often been associated with
changes in fetal and maternal amino acid profiles caused by
reduced placental transport or metabolism (46, 47). Additionally,
the developing fetus and its corresponding placenta require
lipids and fatty acids to sustain membrane formation and
fetal fat stores. Fatty acids are taken up by the placenta and
transported to the fetus from two main sources in the maternal
circulation: free fatty acids (FFAs) non-esterified and esterified
fatty acids in triglycerides (TGs) carried by lipoproteins (33).
FFAs are transported along the concentration gradient by various
FFA transporter proteins, whose expression and activity are
influenced by insulin, IGF1, and leptin (40, 48). Lipoprotein-
bound TGs in the maternal circulation are hydrolyzed by

placental lipoprotein lipase to release long-chain fatty acids and
allow fatty acid transporter/binding proteins (FATPs/FABPs) to
transport them across the placental membranes (49). In sheep,
in response to maternal undernutrition, there are changes in the
TGs and FFAs profiles of fetal andmaternal plasma, whichmay be
related, in part, to modification of placental fatty acids transport
or metabolism (40, 50).

Finally, in the case of reduced nutrient availability, the
placenta plays a central role in regulating the allocation of
resources to the developing fetus, operating at different levels for
each transport mechanism.

Factors Affecting Placental Transport
Capacity
Nutrient transport across the placenta depends first on
morphological characteristics such as placental shape
and size, utero-placental vascularization, and density of
transporter proteins. In addition to structural features, the
transplacental exchange of nutrients can also be modulated
by various signals, including hormones, growth factors, and
cytokines (18).

As it constitutes the center of this complicated network
of autocrine and paracrine signals, the placenta cannot be
considered only a passive tool for nutrient exchange between
the mother and the fetus but also exerts a controlling function
aimed at ensuring a balanced distribution of nutrients, which
becomes particularly crucial in the case of reduced availability
(see Figure 1). When nutrients are scarce, they adapt their
development to maximize the use of the few available resources
by enhancing the nutrient transport capacity, for example, by
increasing placentome volume or vascularization density (47,
50, 51). Hence, in the case of reduced maternal nutrition, the
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placenta can be considered the first line of defense, especially
in cases of deficiencies affecting the early phase of gestation,
where the mother is programmed to accumulate nutrients and
the embryo needs them as well to sustain organogenesis (52).

Obviously, in the case of acute reduction of nutrients, these
compensatory signals are not sufficient to satisfy the nutrient
requirements of the growing fetus, which develops IUGR or, in
very severe conditions, may die (18, 44).

TABLE 2 | Relevant strategies of placental adaptations in ruminants following maternal undernutrition during early to mid-pregnancy.

Model/NR length Nutritional reduction (NR) Placental adaptation strategy References

Sheep

Days 28–78

50% of total energy intake ↑ vascular density in CAR in twins (9)

Sheep

Days 28–80

Re-feed

Day 80–140

60% of energy requirements ↓ placental mass

Re-feed:

↑ placental mass

↑ placental GLUT-1

(39)

Sheep

Non-IUGR

IUGR

Day 35–125

50% of dietary requirements

(NRC)

Non-IUGR:

↑ amino acid transporters

IUGR:

Alterations of placentome architecture

↓ total placentome volume

↓ area of the feto-maternal interface

(47)

Sheep

Days 83–90

Re-feed

Day 90–135

Reduced concentrate ration

(n.a.)

↓ IGFBP-3 and VEGF expression

↓ placental weight

↓ number of placentomes

Re-feed:

↓ IGFBP-2 expression

Change of placentome type distribution

(40)

Cows

Days 30–125

Re-feed

Day 125–250

50% of dietary requirements

(NRC)

↑ COT vascularity

↓ COT/CAR weights↑ growth signaling pathways (Akt,

ERK1/2) in COT arteries

Re-feed:

↓ COT and total placentome weights

↑ CAR vascularity and vessel number

(51)

Sheep

Days 28–78

Re-feed

Day 78–135

50% of dietary requirements

(NRC)

↓ placental and placentomes weight

↑ nutrient transporter production and growth signaling

(i.e., GLUT1, AMPK, ACC, ERK1/2) activity

(50)

Cows

Days 30–125

Re-feed

Day 125–22

Day 220–250

50% of energy requirements ↓ CAR and COT weight

↑ expression of vascular growth factor (sFlt-1)

Re-feed:

↑CAR capillary surface density

↓ COT capillary area/number/surface density

(77)

Cows

Days 0–99/198

Protein content Low/ High ↑ dry cotyledon weight

↑ trophoectoderm volume density

(76)

Sheep

Days 0–70

Re-feed

Day 70–135

85% of dietary requirements Re-feed:

↑ COT growth

Change in placentome type distribution

(78)

Sheep

Days 30–80

50% of energy requirements ↑ abundance of small placentomes in fetal part

↓ weight of fetal part

(73)

Sheep

Days 0–30

Re-feed

Day 31–78

50% of dietary requirements

(NRC)

Re-feed:

↑ vascularity in CAR and COT

↑ growth signaling pathway (Akt and ERK1/2) in COT

arterial

(81)

Sheep

Days 22–45

Days 45–90

Days 90–135

70% of dietary requirements Re-feed (90–135):

↓ placental and placentome weight

Change in placentome type distribution

↑ IGFBP-6 expression in the maternal villi

(89)

Different nutritional treatments generates a series of placental developmental adaptations in order to increase the efficiency of the placental transport. Although following different routes,

in most case these alterations are able to maintain fetal growth trajectory within the normal range. NRC, national research council; CAR, caruncles; COT, cotyledons; GLUT1, glucose

transporter 1; IGFBP-2,−3,−6, insulin growth factor binding protein 2−3−6; VEGF, vascular endothelial growth factors; AMPK, 5′ adenosine monophosphate- activated protein kinase;

ACC, acetyl-CoA carboxylase; ERK1/2, the extracellular signal-regulated kinase 1/2; sFlt-1 or sVEGFR-1, soluble fms-like tyrosine kinase-1.
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The placental adaptation strategies described to date following
reduced maternal nutrition during early pregnancy (summarized
in Table 2) seem to result from the integration of different
signals derived from both the mother and fetus (32, 48,
52). The key maternal signals informing the placenta about
the suboptimal nutritional status of the mother include low
circulating levels of insulin, IGF1, and leptin and high cortisol
levels (43, 48, 53). Following maternal undernutrition, the fetus
signals to upregulate placental nutrient transport to maintain
its own normal level of nutrient uptake. Usually, fetal signaling
occurs via stress and other metabolic hormones (4, 37, 52),
such as glucocorticoids, leptin, and insulin, although growing
knowledge gives IGF2 (Insulin growth factor II) a key role in
signaling fetal demands [Figure 2; (54, 55)]. Moreover, a set
of placental nutrient-sensing pathways that allow integration
of maternal and fetal signals has been recently identified,
including adenosine monophosphate-activated protein kinase
(AMPK), amino acid response-signal transduction pathway
(AAR), glycogen synthase 3 (GSK-3), and mammalian target
of rapamycin complex 1 (mTORc1) (32). These mechanisms of
nutrient sensing enhance fetal nutrient availability by influencing
maternal physiology, placental growth, and nutrient transport
(56). Among them, the most relevant for our discussion is mTOR
(57, 58) due to its role as an upstream negative regulator of
autophagy [Figure 2; (59)].

mTOR is a serine/threonine kinase that exists in 2 distinct
forms (complexes 1 and 2), both of which regulate cellular
adaptation to nutrient stress by coupling signals between
nutrients and growth factors. mTORc1 is the major complex
studied in mammalian placentas, and its activity is known to
be mediated by the phosphatidylinositol 3′-kinase (PI3K)/Akt
andMAPK/ERK (Mitogen-activated protein kinase/Extracellular
signal-regulated kinase) signaling pathways (60).

Signal transduction from a stimulus to the regulation
of cellular processes involved in the regulation of cellular
homeostasis is primarily dependent on the activation of protein
kinase cascade. Both the PI3K/Akt andMAPK/ERK pathways are
important intracellular signal transduction cascades, regulating
cell survival, differentiation, proliferation, metabolism, and
motility in response to extracellular cues (61). Akt is the
primary mediator of the PI3K induced cascade responsible
for the activation of several downstream effectors such as
mTOR. Whereas ERK, at the end of MAPK signaling cascade,
is the unique substrate and downstream effector of the
mitogen-activated protein/extracellular signal-regulated kinase
(MEK) (62). Activation of both ERK and Akt occurs through
phosphorylation and mTORC1 is a key integration points
that receive many inputs from both signaling, depending on
the limitation or imbalance of amino acid, glucose, insulin,
and insulin-like growth factor concentrations (62–65). In
particular, mTOR-dependent regulation of placental homeostasis
affects both maternal and fetal IGF axes by modulating IGF
binding protein 1 (IGFBP-1) expression and activity (66, 67).
Interestingly, some reports proposed that placental mTORC1 is a
critical hub for the homeostatic control of foeto-placental growth,
adjusting the fetal growth trajectory according to the ability of the
maternal supply line to provide nutrients through the placenta

(60). However, no implications for the autophagy mechanism
were considered in this model.

One alternative mechanism allowing cell-communication
during pregnancy could involve the release and uptake of
extracellular vesicles, able to transfer biological material (mRNAs
and miRNAs) between cells or tissues. Despite reports on
human normal and complicated pregnancy (68) recognize to
the exosome-mediated delivery of miRNAs, an important roles
in trophoblast physiology and foeto-maternal communication
(69, 70). To date, little is known about exosomes and miRNAs
during pregnancy in livestock. Exosomal miRNAs isolated
from sheep uterine luminal fluid before implantation, suggest
a role in conceptus-maternal communication during early
pregnancy (71). Another study analyzed expression levels of
different miRNAs isolated from maternal circulation, umbilical
cord serum, and placentomes from early to mid-pregnancy.
Interestingly, pathway analysis predicted that differentially
expressed miRNAs target important pathways for cellular growth
and organs development (72). However, additional works are
needed to explore the role of placental miRNAs in maternal-fetal
communication and their possible implication in the placental
adaptation strategies to a suboptimal uterine environment.

EFFECTS OF REDUCED MATERNAL
NUTRITION DURING EARLY PREGNANCY
IN LIVESTOCK

In the livestock supply chain, the priority of the feeding program
is to provide the least expensive diet to reduce the annual budget
with minimal impact on animal performance and productivity.
However, when pregnancy occurs, if the nutrient supply is not
adequate to sustain both maternal and fetal requirements, the
mother will start to utilize its own reserves, leading to a reduction
in the body condition score (BCS), which is a crucial determinant
for optimal pregnancy proceedings (73).

Worldwide, nutrient deficiency has been reported to occur
very often in animals provided with forage-based diets due
to its seasonal variation in both quality and quantity. For
example, in Australia (southwestern Queensland), the quality
of cattle nutrition is strongly influenced by seasonality, with a
very low (5% instead of 15%) crude protein (CP) concentration
during the winter period (11, 74). Similarly, in the western
region of the United States (Montana), the nutrient uptake of
grazing ewes is often ∼50% of their NRC (National Research
Council) nutrient requirement due to the poor quality of
forage (17). In such situations, if pregnancy occurs without
any kind of diet supplementation (16, 75), fetal growth will be
seriously compromised, probably due to defective placentation.
In fact, several nutritional experiments conducted on ruminants
have demonstrated alterations in different aspects of placental
development and transport in response to reduced maternal
nutrient availability [Table 2; (8, 40, 50, 51, 73, 74, 76–81)].
However, a critical analysis of the results is complex due to the
high variability of the experimental conditions applied in both
sheep and cows, including diet composition, length of treatment,
and timing of evaluation. Additionally, for most nutritional
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FIGURE 2 | Placental integration of foeto-maternal signals. Maternal undernutrition during early pregnancy generates a series of maternal and fetal signals of

adversity, whose integration is one of the key functions of the placenta. Maternal signals include low levels of insulin, leptin, and IGF1 and high levels of cortisol, while

fetal signals include high levels of insulin, leptin, glucocorticoids, and low levels of IGF2. These signals are integrated by mTORc1 placental signaling. We hypothesized

that moderate maternal undernutrition decreases mTORc1 levels, which in turn activate the intracellular degradation mechanism of autophagy. The degradation

products can be used as new nutrients to counterbalance inadequate maternal support. This short-term increased availability of nutrients can increase mTORc1 levels

and consequently enhance placental growth and nutrient transport capacity toward the developing fetus. Furthermore, the epigenetic regulation of placental gene

expression (in particular on imprinted genes) plays a fundamental role for a balanced resources distribution between mother and fetus, so it could be particularly

important for driving placental adaptation in the case of reduced maternal nutrition.

studies conducted on livestock, the main purpose is to evaluate
the effects of an unbalanced maternal diet on offspring health
and productivity (10–12). Hence, placentas are often analyzed
at the end of pregnancy, giving us an incomplete picture of
what occurred during early development, especially in cases
where fetal growth is offset and placental defects are no longer
visible (50, 51).

Nevertheless, the development of the placenta is more
susceptible to nutritional depletions that affect early and mid-
pregnancy, the phase of rapid placenta growth (8, 13, 24). In
general, most studies in livestock show that severe undernutrition
reduces placental growth, whereas less extreme reductions in
the maternal diet have the opposite effect (2) (Figure 1). For
example, in sheep, moderate (−15%) nutrient restriction from
early to mid-pregnancy (0–70 d) alters placental morphology
at term, showing increased growth of the fetal side of the
placentome (78). However, because fetal growth follows the
normal trajectory, this can be considered a sign of adaptation
rather than a developmental defect. Whereas, ewes sustain more
severe conditions (50–60% of ER), even for a short period
(30–80 days), with a decrease in the placental weight at mid-
gestation, a higher number of placentomes have been observed
in comparison with adequately fed controls (73). Interestingly,
if the effect of a similar treatment was analyzed at full-term
pregnancy (79), an increased total placental weight was observed,
indicating that a higher number of placentomes successfully
enhanced nutrient uptake later in pregnancy when normal
nutrition was restored. Again, a more significant response

to the fetal part has been reported, suggesting a greater
response of this placental portion to nutritional deficiencies
(73, 78). At mid-gestation, reducing (−30%) only the CP of
the diet causes a decreased proportion of large placentomes
in favor of a high number of small placentomes with a
predominant vasculature, compared to sheep offered the same
reduction of the total diet (79). This suggests that protein
availability preferentially affects the vascular compartment of
the placenta, as supported by the observation that a low
CP diet in the first trimester of bovine pregnancy increased
the blood vessel volume and volume density of fetal villi at
term (8).

Similarly, many studies in sheep and bovines have shown
that the placenta alters its vascular development to minimize
the impact of reduced nutrient availability on fetal growth
(Table 2). The reported changes following different protocols of
nutrient restriction include modulation of cotyledon vascularity
(51), early placentomal differentiation (80), or upregulation of
the expression of angiogenetic factors (77). For example, in
sheep, it has been reported that the placenta reacts to maternal
undernutrition (50%) imposed until day 30 of gestation by
increasing the vascular density of the placentomes, despite their
reduced average weight at mid-gestation (81). This adaptation
strategy maintains the trajectory of fetal growth within a
normal range and occurs in association with upregulation of
the MAPK/ERK1/2 and PI3K/Akt growth signaling pathways in
cotyledonary arterial tissue of placentomes, which is expected to
promote placental growth and angiogenesis (81).
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Similarly, cows that were nutrient restricted (50%) from early
to mid-pregnancy (30–125 d) exhibited increased cotyledon
vascularity, improved placentome efficiency and increased
phosphorylated Akt and ERK1/2 in cotyledonary arteries
compared to controls (51); however, all treatment-related
differences detected in undernourished cows were lost at term.

In sheep, Ma et al. (50) demonstrated that maternal nutrient
reduction (50%) from early (28 d) to mid-gestation (78 d)
stimulates the placenta to activate several mechanisms that
increase placental transport capacity and, in turn, fetal growth.
These mechanisms include upregulation of glucose and fatty acid
transporter expression, increased activity of AMPK and ERK1/2,
and upregulation of angiogenesis in cotyledonary tissues from
mid-gestation onward. At that time, both fetal weights and length
were significantly lower in nutrient-restricted ewes, indicating
that restriction of the maternal diet induced fetal growth
reduction. After refeeding, due to placental compensation,
restricted fetuses exhibited a catch-up growth rate and reached
similar weights and body lengths compared to the control fetuses
in late gestation (50).

The AMPK pathway is activated by a variety of physiological
stimuli, such as glucose deprivation or hypoxia, resulting in a
reduction of cellular energy level and an increase in AMP/ATP
ratio (61). It is interesting to note that, together with the
others metabolic related signaling pathways mentioned above
(Akt, ERK1/2), is also well-documented mediator of autophagy
activation (19); however, no direct observations on autophagic
flux have been clearly documented in relation to placental
adaptation strategies.

Interestingly, more efficient placental responses to nutritional
depletion (50%) have been reported in ewes habitually managed
under harsh environments with limited food availability. These
placentae displayed an early conversion of placentomes with
an increase in size and vascularity. In contrast, this conversion
failed to occur in control ewes, suggesting that placentae adapted
to growth in a suboptimal environment are more prone to
overcome a stressful situation by using more efficient strategies
than those facing this situation for the first time (80).

At the cellular level, previous stressor experienced by mother
cell as well as previously adopted contrasting strategies can be
communicated to the descendant cells, to better adaptation.
Inheritance of previous stress responses in a “memory” -
like manner can be expected to serve as a mechanism to
enhance cell survival and can occur through epigenetic regulatory
mechanisms, allowing cells to rapidly switch gene expression
patterns or growth states in response to adverse environmental
conditions (82). However, epigenetic studies to deeply define the
mechanism are still poorly developed in mammals.

THE POTENTIAL INVOLVEMENT OF
EPIGENETIC REGULATION

The concept of fetal programming has been introduced to explain
the role of developmental plasticity in response to environmental
and nutritional signals during intrauterine life and its potential
negative consequences (risk of cardiovascular, metabolic, and

behavioral diseases) in postnatal life (4). Although the initiation
mechanism remains unclear, recent observations in humans and
rodents suggest that epigenetic changes in regulatory regions
and growth-related genes play a significant role in this adaptive
process involving both the fetus and the placenta (6).

The disorders associated with suboptimal foeto-placental
growth are frequently caused by changes in the regulation of
the IGF axis, which operates via two mitogenic polypeptides,
IGF1, and IGF2, whose specific action and bioavailability
are modulated by IGF binding proteins (IGFBPs) and IGF
receptors (IGFRs) (67, 83). As discussed above, knockout mice
revealed a role for IGF2 as a key fetal signal able to modulate
placental growth and amino acid transport (84). In mice
lacking the placental-specific IGF2 transcript, placental growth
is compromised starting from early gestation, but normal fetal
growth is maintained until late gestation (85). This occurs due
to increased placental transport of glucose and amino acids
associated with upregulated expression of genes belonging to the
System A amino acid transporter gene family (85). Interestingly,
if these mice were subjected to maternal undernutrition, IGF2-
deficient placentas failed the compensatory upregulation of those
genes in response to nutrient restriction (86). In ruminants,
the IGF axis is thought to play a fundamental role in placental
and fetal growth as well as the ability to regulate metabolism,
nutrient partitioning, and nutrient transport (87, 88). Several
studies report that the synthesis of the components of the
IGF system can be modulated with different outcomes through
nutrition. For example, in the sheep placentome, IGF2 mRNA
expression seems to be unaffected by maternal undernutrition
(45–90 d), notwithstanding the increase in placental weight
(89). However, IGF2 activity could be indirectly modulated, as
this and other authors reported alterations in the expression
of IGFBPs, which are thought to inhibit actions of IGF2 by
reducing their bioavailability, following maternal undernutrition
(40, 74, 89). Similarly, as IGF2R would be expected to increase
IGF2 turnover and reduce its anabolic actions (83), the reduced
IGF2R expression detected in rat placenta following a low CP
diet could partially explain the impaired placental growth as
well as the retarded fetal growth found in this model (90).
The role of IGF2 in regulating foeto-placental growth is also
supported by pioneering studies on murine models exploring
the epigenetic mechanism involved in the regulation of gene
expression during mammalian development (91, 92). Among
these, genomic imprinting has been identified as the mechanism
regulating the monoallelic expression of genes in a parent-of-
origin-specific manner, resulting in their functional differences
during development (93). Silencing of the unexpressed allele
occurs by epigenetic marks, including DNA methylation, which
are known to be influenced by environmental factors and
nutrients (94, 95). Such a regulated gene cluster, called imprinted
genes, displays strong placental expression, and is thought to
be involved in both fetal and placental growth mainly via the
regulation of nutritional resource allocation (84). In particular,
the parental conflicting theory (96) proposes that paternally
expressed genes support the extraction of maternal resources for
the benefit of the fetus; in contrast, maternally derived genes
tend to counteract this effect to prevent complete depletion of
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resources for the pregnant mother (Figure 2). IGF2 is one of
the most studied imprinted genes, which, paired with another
well-known imprinted gene, lncH19 (long non-coding H19),
regulates placental growth and nutrient transport capacity,
playing opposite roles (97–99). Even the type 2 receptor gene
(IGF2R) necessary to prevent overabundance of IGF2 is reported
to be imprinted (100, 101), as well as genes for placental amino
acid transporters [Slc38a4 (78)] or genes regulating maternal
nutrient partitioning (Paternally Expressed Gene PEG3) (102),
suggesting that imprinting mechanisms can be implicated in the
developmental reprogramming of placental transport under a
suboptimal nutritional environment. Unfortunately, few reports
are currently available on the imprinted status of placental genes
from undernourished mothers, and most have conflicting data
(103–105). For example, one study reported that the methylation
pattern of placental lncH19 and IGF2 was unaltered in response
to maternal protein restriction in rats, even if IGF2 expression
was often affected (103).

In contrast, another report conducted in mice showed that
maternal caloric restriction that results in IUGR differentially
affects placental gene expression and whole genome DNA
methylation in a sex-specific manner (male). In particular, a set of
differentially methylated imprinted genes and miRNAs targeting
genes responsible for transplacental nutrient transfer was
identified, suggesting specific susceptibility of these epigenetic
marks to nutritional depletion (104).

Furthermore, by examining the broad gene expression profiles
of fetal and placental tissue of mice undernourished in utero,
some authors concluded that the expression of imprinted genes
does not seem to be more susceptible to perturbation induced by
maternal undernutrition than other genes (105). However, they
propose that the selective modulation of certain imprinted genes
(lncH19, IGF2R, and PEG3) in fetal liver plays an important role
in the adaptive fetal response to in utero undernutrition.

On the other hand, it is conceivable that changes in
maternal nutrition status alter the availability of methyl donors,
influencing the global and specific methylation status of the
developing placenta. Interestingly, some studies have reported
nutritional influences on DNA methylation levels in specific
regions of the brain (106), liver (107), or gametes (108).
However, more detailed experiments are needed to establish
a clear link between placental epigenetic regulation and
maternal undernutrition.

ROLE OF PLACENTAL mTOR IN THE
CONTROL OF NUTRIENT AVAILABILITY

As previously discussed, mTOR is a serine/threonine kinase that
controls cell growth, proliferation, and metabolism in response
to nutrient variation. It forms two distinct protein complexes,
mTOR complex (mTORC) 1 and 2, which have specific substrate
preferences and trigger different downstream signals to regulate
cell function and viability. mTORC1 responds to growth factors,
energy, oxygen, and amino acids and is primarily involved in the
regulation of cell growth andmetabolism (60, 64, 66). It promotes
anabolism by increasing the synthesis of proteins, lipids, glucose,

and nucleotides and by inhibiting the catabolic process of
autophagy. In contrast, mTORC2 is regulated by growth factors
and controls mainly cell growth and proliferation, survival, ion
transport, cell migration, and cytoskeletal remodeling through
its downstream substrates, including PKC and Akt (60, 64).
During pregnancy, placental mTOR plays an important role in
the regulation of fetal growth in response to nutritional changes
(57). Data collected from growth-restricted pregnancies (58, 66)
suggest that during placental development, mTOR serves as a
link between maternal nutrient availability and fetal growth. This
was confirmed even in rats fed low-protein diets that showed
placental mTOR inhibition in association with a downregulation
of placental amino acid transporter expression and restricted fetal
growth (44, 57).

Other study conducted on human trophoblast cells report
that mTOR seems to act as a molecular mechanism of nutrient
sensing, which integrates multiple signals indicating the presence
of major substrates (such as free fatty acids, amino acids, and
glucose) in the maternal circulation and responds with up-
or downregulated placental growth and nutrient transporters
[Figure 2; (109)]. In particular, the mTOR pathway stimulates
system A and L amino acid transporters, which are critical
for the transport of both essential and non-essential amino
acids to the fetus (110). Moreover, mTOR indirectly regulates
placental protein synthesis and active transport mechanisms by
modulating ATP availability (through regulation of trophoblast
oxidative phosphorylation) with expected consequences for
placental growth (111).

In addition, mTOR responds to hormones and growth factors
inmaternal circulation andwithin the placenta.More specifically,
it is activated by maternal insulin, IGF1 and leptin, and it is
inhibited by adiponectin and cortisol (58). Inhibition of placental
mTOR has been frequently reported in association with a
reduction in insulin/IGF1 signaling and amino acid transporters
in rats fed low-protein diets (44, 57), in mice suffering maternal
folate deficiencies (112), and in human placenta from IUGR
pregnancy (113). In contrast, a study conducted on ewes by
Ma et al. (50) reported that maternal nutrient restriction until
mid-gestation does not alter placental expression of Akt and
mTOR, despite a 26% decrease in fetal weight that will be
normalized later in gestation. In addition, unlike other studies
demonstrating downregulated expression of amino acid and
glucose transporters in IUGR placentas from human and rat
(44, 58), the same study reported an increased level of glucose
and fatty acid transporters at mid gestation (50). This difference
in the sheep model suggests that these placentas may activate
a compensatory reaction that does not involve Akt/mTOR but
passes through other important regulatory pathways in the
placenta, such as AMPK or ERK1/2 signaling.

Finally, mTORc1 acts as themost important negative regulator
of autophagy, since inactivation of mTOR is an upstream
event governing the activation of autophagic mechanisms.
These degradation mechanisms serve to provide cells with free
amino acids, carbon, azote, and fatty acids for survival in
adverse conditions such as starvation or hypoxia. Amino acid
or growth factor deprivation is the most effective stimulus
inducing autophagy, and both are linked to the mammalian
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target of rapamycin complex 1 (mTORC1) pathway [Figure 2;
(59)]. As demonstrated using different cell culture systems
(MEF, HEK293, and HEK293T), under normal conditions
mTORC1 phosphorylates components of the Unc-51-like kinase
1 (ULK1) complex to prevent autophagy initiation. Interestingly,
recent studies have shown that mTOR and AMPK coordinate
the regulation of cellular nutrient and energy signals to
maintain cellular homeostasis through phosphorylation of
ULK1 at distinct serine residues. Under conditions of cellular
energy deficiency, AMPK phosphorylates ULK1 to disrupt
the interaction with mTOR, thus resulting in autophagy
activation (114).

SIGNS OF AUTOPHAGY IN PLACENTAL
AND TROPHOBLAST CELLS SUBJECTED
TO ADVERSE CONDITIONS

Autophagy is an intracellular, self-degradation system necessary
to maintain cellular homeostasis during critical periods of
cellular differentiation and tissue development and in response
to nutrient stress. It is characterized by the engulfment of
cytoplasmic material, aggregated proteins, and organelles into
a double-membraned structure (autophagosome) that is able
to degrade the sequestered materials and recycle the obtained
products to increase nutrient availability for the suffering
cell (19). What makes this mechanism so interesting is
the ability to self-increase its activity to protect cells from
nutritional deficiencies or in response to altered metabolism.
The surveillance of cellular homeostasis under low nutrient
availability is a crucial step for the maintenance of cell survival,
and autophagy is a mechanism that supports this purpose (19).

Several signaling pathways underlying the regulation of cell
autophagy have been identified, including the PI3K/Akt/mTOR,
MAPK/ERK/mTOR, and AMPK signaling pathways that
promote cell growth, proliferation, and survival (114). Moreover,
autophagy regulation by amino acid and glucose availability
has been extensively validated in different cellular systems. In
particular, when cells suffer amino acid starvation, mTOR is
inactivated, leading to activation of autophagic signaling to
increase amino acid availability by degrading proteins. Similarly,
in the case of glucose starvation, AMPK will be activated
immediately to prevent ATP consumption and increase glucose
intake to maintain energy homeostasis (114). At the same time,
the autophagic pathway is activated to recycle nutrients (19).
However, this process is not unlimited, and beyond a certain
threshold, it can become harmful to the cell and even cause death.

Recent data obtained from human and murine studies
indicate that during mammalian pregnancy, autophagy plays an
essential role in the development of the placenta (115) as well as
in the regulation of resource allocation (116), which has spurred
further studies on the involvement of autophagy in placental
dysfunction (117–119).

Given that the characterization of this cellular mechanism is
relatively recent, most of the knowledge about it derives from
genetic manipulation studies in mice or from observations in
the human clinic, whereas in vitro cell systems are mainly used

for testing both upstream and downstream signaling pathways
involved in the regulation of autophagic flux during placentation
(Table 1). In trophoblast cells obtained from human, mouse,
and pig placentas, autophagy activation has been tested in
vitro using different stress culture conditions or chemical
compounds, confirming a role for autophagy in controlling
essential trophoblast mechanisms such as cell differentiation,
proliferation, migration, and invasion (120–125).

In mice subjected to different deficient diets, autophagy has
been reported to play multiple important roles in embryonic
development, trophoblast functionality, and placenta formation,
although the governing mechanisms are still partially unknown
(126, 127). Furthermore, abnormal increases in autophagic
activity have been reported even in gestational diseases sharing
a common origin on defective placental development, such as
preeclampsia (21, 117) or intrauterine growth restriction (118,
119). Interestingly, evidence of placental autophagy has been
found in pregnancies complicated folate deficiency (126), in
agreement with data obtained from folate-deficient mice, which
develop IUGR in association with inhibition of placental mTORC
signaling and decreased amino acid transporter expression and
activity (112).

As folate influences the availability of methyl donors, these
reports suggest a possible link between placental autophagy and
maternal undernutrition, which can result in the unbalanced
regulation of the methylation machinery and in turn affects
the expression of regulated genes, including imprinted genes.
However, this fascinating line of research is still poorly explored,
with very few reports looking at the placental epigenetic profile
following a period of reduced maternal nutrition.

An indirect link connecting autophagy regulation with
genomic imprinting has been provided by data obtained
from autophagy inhibition in trophoblast cells. Specifically,
experiments conducted on humans and mice demonstrated that
autophagy suppression seems to induce spontaneous abortion
by stimulating IGF2 secretion and PEG10 (Paternally Expressed
Gene 10) reduction. Furthermore, high IGF2 levels lead to
decidual NK cell differentiation and cytotoxicity activation at
the maternal-fetal interface, while decreased PEG10 reduces
the invasiveness of trophoblast cells, contributing to early
pregnancy failure (121). Moreover, silencing the imprinted
gene lncH19, which is known to be downregulated in human
placentae from fetal growth restriction (FGR) pregnancies,
inhibited the proliferation and invasion of trophoblast cells
and promoted autophagy by targeting miR-18a-5p (128).
Accordingly, overexpression of lncH19 promotes invasion and
autophagy activation via the PI3K/Akt/mTOR pathway in human
trophoblast cells, confirming the crucial involvement of this gene
in trophoblast cell functionality (129).

Few studies thus far have reported the role of mTOR in
ruminant pregnancy. In goats, the CREBRF (CREB3 Regulatory
Factor)-mTOR-autophagy pathway plays a central role in
prostaglandin secretion and cell attachment in regulating
endometrial function (130). In ewes, inhibition of angiogenesis
also resulted in reduced activation of Akt/mTOR signaling
and elevated LC3B-II, a marker of cellular autophagy in the
endometrium. This study suggests that the CXCR4 (C-X-CMotif
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Chemokine Receptor 4) signaling at the ovine fetal–maternal
interface governs placental homeostasis by serving as a critical
upstream mediator of vascularization and cell viability, thereby
ensuring appropriate placental development (131).

Increased placental autophagy has been reported in early (20
days) ovine placenta obtained from embryos produced in vitro
(132). Interestingly, these placentae are characterized by reduced
vessel development (30) as well as by reduced expression of the
imprinted genes lncH19 and IGF2 (133); however, no data on
mTOR or other regulatory pathways have been provided.

Other evidence that indicates an important role for placental
autophagy in supporting fetal growth came from interesting work
demonstrating that in mice, even short-term food deprivation
produces significant changes in hypothalamic and placental gene
expression (20). In particular, 24-h starvation decreased PEG3
imprinted gene expression in the placenta in association with
increased autophagy and ribosomal turnover. Interestingly, such
dysregulation does not occur in the hypothalamus, where PEG3
expression increases following food deprivation. Hence, normal
brain development seems to be maintained at a cost to its
placenta, which sustains, at least for the short term, nutrient
supply for the developing hypothalamus (20).

Similarly, using a murine model, it has been shown that
short-term (48 h) food deprivation causes mTOR deactivation
in starved placentae in association with an increase in
the autophagic marker LC3B compared to basal levels in
controls (127).

A possible connection between placental vascularization and
autophagy has been explored through the study of soluble
decorin, a pan-receptor tyrosine kinase inhibitor that affects the
biology of several receptor tyrosine kinases by triggering receptor
internalization and degradation. It is involved in the regulation of
autophagy and inhibition of angiogenesis in both microvascular
and macrovascular endothelial cells. This process is mediated by
a high-affinity interaction with VEGFR2 (vascular endothelial
growth factor receptor), which leads to increased levels of the
maternally imprinted gene PEG3 (134, 135). Autophagy during
the process of placental vascularization has been demonstrated
to occur even during initial placentation in sheep (20 days), when
dysregulation of central placental chemokine signaling (CXCL12-
CXCR4 axis) at the fetal–maternal interface leads to decreased
local vascularization and suppressed Akt/mTOR signaling and
promotes induction of autophagy, with further implications for
proper placentation (131). Moreover, a recent study using a
rat model of immune-mediated pregnancy loss proposed drug-
induced placental autophagy as a good candidate for therapy due
to the resulting improvement in pregnancy outcomes. Following
placental autophagy induction, associated with downregulated
mTOR placental expression, the study reported an increased
fetal weight and decreased resorption rate due to suppression of
placental inflammation (136).

Finally, in a murine model of IUGR (137) obtained with mild
to moderate late gestational food restriction, it was reported

that autophagy and Endoplasmic Reticulum stress pathways
are decreased in placentas from growth-restricted mothers,
especially in the junctional zone of the murine placenta. This
is in contrast to most of the data from both in vivo and in
vitro studies (20, 112, 126, 127) that report the activation of
autophagy following nutrient deficiency; however, due to the
peculiar ability of the placenta to adapt its own development
according to variations in the intrauterine environment, it is
possible to argue that this organmay also have the ability to guide
the direction of the autophagic response by taking into account
several factors, such as the general well-being of the mother or
the timing and severity of nutritional deprivation.

CONCLUSION

The role of placentation in achieving efficient reproductive
success has not yet been sufficiently investigated in livestock
despite the evident impact that environmental and nutritional
conditions may have on fetal growth and the development of
possible alterations subsequent to the fetal phase that affect
performance growth in offspring.

This review has highlighted the studies carried out to
examine nutritional deficiencies in ruminants and shows the
results obtained with laboratory species and humans, where this
problem has historically been addressed for the longest time.

In particular, we have deepened a very intriguing aspect of
the role of autophagy as a homeostatic mechanism that seeks
to compensate, within certain limits, for external influences on
intrauterine growth. Its regulation through general hormonal
pathways could also be central in supporting and improving the
placenta-fetus interaction and in achieving reproductive success,
in livestock. The role of mTOR in ruminants is proposed to
be central to understanding this regulation, although in these
species, this intracellular pathway has been elucidated in few
studies to date. Via mTOR, autophagic regulation interferes
with placentation, such as the vascularization process and
the regulation of imprinted genes. The definition of which
main pathway is used will determine effective and improved
strategies for the management of pregnancies, even in livestock
supply chains with the most exposure to nutritional and energy
alterations during pregnancy.
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