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ABSTRACT
We present a simple model for describing intrinsic correlations for galaxy sizes based on
the halo model. Studying these correlations is important both to improve our understand-
ing of galaxy properties and because they are a potential systematic for weak lensing size
magnification measurements. Our model assumes that the density field drives these intrinsic
correlations and we also model the distribution of satellite galaxies. We calculate the possible
contamination to measurements of lensing convergence power spectrum from galaxy sizes,
and show that the cross-correlation of intrinsic sizes with convergence is potentially an im-
portant systematic. We also explore how these intrinsic size correlations may affect surveys
with different redshift depth. We find that, in this simple approach, intrinsic size correlations
cannot be neglected in order to estimate lensing convergence power spectrum for constraining
cosmological parameters.
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1 IN T RO D U C T I O N

Weak gravitational lensing has the potential to be one of the most
powerful probes in cosmology, constraining models with great pre-
cision. By measuring small but coherent changes in the shape,
brightness and size of background galaxies, weak lensing can tell us
both about the background cosmology and the distribution of dark
matter in the Universe. Weak lensing measurements thus far have
focused primarily on the shape distortions, or shear; cosmic shear
correlations were first detected in 2000 by several groups (Bacon,
Refregier & Ellis 2000; Kaiser, Wilson & Luppino 2000; Waerbeke
et al. 2000; Wittman et al. 2000) and have since been significantly
improved using surveys such as CFHTLens (Heymans et al. 2012).
Shear measurements of weak lensing are a critical component of
future surveys such as Euclid1 and LSST.2

Cosmic magnification, leading to coherent size and brightness
distortions, has also been observed but not to the same extent as
shear. Magnification has been primarily probed through the cross-
correlation between foreground galaxies and background objects
selected with by their flux, known as flux magnification or mag-
nification bias. This was first detected using background quasars
by Scranton et al. (2005) and other background sources, such as
Lyman-break galaxies, have since been used to study the mass
profiles of dark matter haloes (Hildebrandt, van Waerbeke & Erben
2009; Van Waerbeke et al. 2010; Hildebrandt et al. 2011, 2013; Ford

� E-mail: sandro.ciarlariello@port.ac.uk
1 http://www.euclid-ec.org/
2 http://www.lsst.org/lsst

et al. 2012; Bauer et al. 2014). Such galaxy–galaxy lensing can be
combined with shear measurements as a complementary weak lens-
ing probe which allow us to control systematics and cosmological
parameters’ constraints (van Waerbeke 2010; Duncan et al. 2014).

Cosmic magnification can also be detected directly using galaxy
sizes and magnitudes (Bartelmann et al. 1996) because size in-
formation is already available from a lensing survey, and this has
recently been observed by Schmidt et al. (2011). Huff & Graves
(2014) also detected magnification using sizes measured by means
of the Fundamental Plane relation for early-type galaxies. Follow-
ing these measurements Casaponsa et al. (2013) studied the extent
size magnification can be used as a complement to cosmic shear,
investigating how observational limitations can affect this kind of
measurement. Heavens, Alsing & Jaffe (2013) showed that combin-
ing size and shape information from weak lensing measurements
could, in principle, improve our current constraints on cosmologi-
cal parameters obtained by means of only cosmic shear. Recently,
Alsing et al. (2014) extended this analysis to quantify the conver-
gence dispersion expected from size measurements and the possible
impact of intrinsic size correlations.

Intrinsic correlations between the observed shapes and sizes of
galaxies can arise via other physical mechanisms and mimic the
effects of weak lensing. For cosmic shear, it has long been rec-
ognized (Croft & Metzler 2000; Heavens, Refregier & Heymans
2000; Catelan, Kamionkowski & Blandford 2001; Crittenden et al.
2001; Hirata & Seljak 2010) that intrinsic alignments of galaxies
are important systematics and could lead to biases if not accounted
for. These intrinsic ellipticity correlations have been measured in
several works (Brown et al. 2002; Mandelbaum et al. 2006, 2011;
Hirata et al. 2007; Faltenbacher et al. 2009; Okumura, Jing & Li
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2009; Joachimi & Bridle 2010; Joachimi et al. 2011, 2013; Chisari
et al. 2014; Singh, Mandelbaum & More 2014; Sifón et al. 2015).
The physical mechanisms for these correlations are not fully under-
stood, and the mechanisms appear to depend on the galaxy type.
The shape of elliptical galaxies is thought to reflect mainly the
shape of the halo in which the galaxy is embedded and the halo
shape is given by the gravitational tidal field on large scales. For
disc galaxies, alignments can arise from angular momentum corre-
lations. Indeed, if two discs spin along the same direction then they
are seen under the same inclination by an observer.

A number of methods have been proposed to mitigate these in-
trinsic alignments, either by removing pairs physically close (King
& Schneider 2002a,b), developing a model based on the halo model
(Schneider & Bridle 2010), using a technique for boosting or nulling
this intrinsic signal (Joachimi & Schneider 2010) or adopting path
integral marginalization over all the possible intrinsic alignment
models (Kitching & Taylor 2011). Without some attempt to correct
for this systematic, very significant biases will appear in constraints
from future measurements (Bridle & King 2008; Kirk, Bridle &
Schneider 2010; Kirk et al. 2012).

Here we attempt a similar investigation into whether there could
be intrinsic correlations in the sizes of galaxies that would similarly
bias the interpretation of magnification data. From an observational
point of view, the situation is unclear. There are some recent claims
of dependence of galaxy size on the environment (Cooper et al.
2012) as well as other claims where either no dependence has been
found (Rettura et al. 2010) or a possible anti-correlation has been
found between environment and galaxy size (Maltby et al. 2010). To
estimate their impact on weak lensing, Alsing et al. (2014) modelled
size correlations in a heuristic way; our aim here is to find a more
physical model for these correlations.

We investigate the degree to which intrinsic size correlations arise
in a simple halo model, assuming the observed galaxy sizes correlate
closely with the mass of the haloes and subhaloes (Kravtsov 2013).
Larger and more massive galaxies live in more massive haloes, and
even if the subhalo population is largely independent of the halo
mass, the sizes of the largest subhaloes will still be limited by the
total halo mass. We use this simple model to predict what would be
observed for a magnification estimator based solely on the galaxy
sizes, and how the intrinsic signal correlates with the true lensing
convergence.

The paper is organized as follows. In Section 2 we introduce the
lensing formalism and theory. In Section 3 we discuss the halo model
formalism, and in Section 4 we apply it to intrinsic size correlations.
In Section 5 the power spectra of intrinsic size correlations are
calculated. In Section 6 results are shown and analysed, and then
we conclude in Section 7.

2 LENSING MAGNIFICATION

Weak gravitational lensing by large-scale structure can be observed
both through shape distortion correlations (cosmic shear) and the
magnification of distant galaxies. These two effects are described
by the transformation matrix which maps the true galaxy source
positions to their observed position on the sky,

A(θ ) =
(

δij − ∂2ψ(θ )

∂θi∂θj

)
=

(
1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)
, (1)

where ψ(θ ) is the two-dimensional gravitational potential, γ1 =
1
2 (ψ,11 − ψ,22), γ 2 = ψ , 12 where the comma in ψ , i represents the
partial derivative of the gravitational potential with respect to the

variable θ i and κ is the convergence. Indicating the cosmic shear by
γ , we have γ = γ1 + iγ2. The determinant of this matrix gives the
cosmic magnification μ of a surface area element:

μ = 1

det A
= [(1 − κ)2 − |γ |2]−1. (2)

In the weak lensing regime |κ| and |γ | � 1, so the magnification is
approximately μ � 1 + 2κ .

Given equation (2) for the relation between magnified and in-
trinsic surface area element, we can derive the relation between
magnified and intrinsic angular sizes. The angular size, λ, of an
object becomes

λO = (1 + κ)λI, (3)

where the subscripts stand for the observed (O) and intrinsic (I)
angular size of the galaxy; we define the intrinsic angular size to be
the square root of the solid angle of the galaxy image. As pointed
out by Heavens et al. (2013), this definition for the galaxy size
is uncorrelated with shear. In the weak lensing limit, this can be
written

ln
λO

λ̄
� κ + ln

λI

λ̄
, (4)

where λ̄ is the mean angular size at a given redshift. Then we use
as our estimator the following one (Schmidt et al. 2011; Heavens
et al. 2013; Bacon et al. 2014):

κ̂ = ln
λO

λ̄
−

〈
ln

λO

λ̄

〉
, (5)

which has zero mean. Note that, relative to their average at a given
redshift, the physical size of a galaxy r is essentially a proxy for
its observed angular size λ because the angular diameter distance
DA(z) is the same for the average:

r(z)

r̄(z)
= λDA(z)

λ̄DA(z)
= λ

λ̄
. (6)

For any given galaxy, its observed size will be determined more
by its intrinsic size than by its magnification, so any individual mea-
surement will be dominated by this intrinsic size dispersion. But by
averaging many such measurements over a patch where the magni-
fication is coherent, one can reach a regime where the magnification
dominates. However, this assumes that the average intrinsic sizes
are uncorrelated; if there are intrinsic correlations in sizes, so that
〈r〉patch �= r̄ then this could be wrongly interpreted as magnification.
The magnification estimator will effectively have two contributions,
the true convergence and the intrinsic contribution:

κ̂ = κ + κI. (7)

Here, κ I is the contribution to the size magnification estimator aris-
ing from the intrinsic sizes; in particular,

κI ≡ ln
λI

λ̄
−

〈
ln

λI

λ̄

〉
. (8)

The primary observables are the two point moments of the estimator,
which has three contributions; in Fourier space, these are written
as

Cκ̂ (	) = Cκ (	) + 2CκκI (	) + CκI (	). (9)

The lensing auto-correlation is well understood, and here we inves-
tigate the other terms in a simple halo model.
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The lensing convergence power spectrum, Cκ , is given by means
of the Limber approximation (Limber 1954):

Cκ (	) =
∫ χhor

0
dχ

q2(χ )

[fK (χ )]2
Pδ

(
	

fK (χ )
, χ

)
, (10)

where Pδ is the matter power spectrum, χ is the comoving distance
along the line of sight, χhor is the comoving horizon distance and
fK(χ ) is the comoving angular diameter distance. The weighting
function

q(χ ) = 3H 2
0 �m,0

2c2

fK (χ )

a(χ )

∫ χhor

χ

dχ ′ n(χ ′)
fK (χ ′ − χ )

fK (χ ′)
, (11)

where a is the dimensionless scale factor, c is the speed of light, H0

is the Hubble constant, �m, 0 is the present matter density parameter
and n(χ ) dχ is the effective number of galaxies in dχ , normalized
so that

∫
n(χ ) dχ = 1. The radial function fK(χ ) depends on K, the

inverse square of curvature radius in units of H0/c, as follows:

fK (χ ) =

⎧⎪⎪⎨
⎪⎪⎩

√
K sin(

√
Kχ ) K > 0

χ K = 0,
√−K sinh(

√−Kχ ) K < 0.

(12)

For simplicity, below we will assume K = 0.

3 TH E H A L O M O D E L

3.1 Overview

Here we describe a simple model for how galaxy sizes may be in-
trinsically correlated, based on the halo model formalism (Scherrer
& Bertschinger 1991; Seljak 2000; Cooray & Sheth 2002; Sheth &
Jain 2002). We first describe our implementation of the halo model
itself, and will discuss its implications for galaxy sizes in the next
section.

The halo model assumes the mass in the Universe is distributed
into distinct haloes, whose large-scale distribution is described by
mass-dependent two-point (and potentially higher order) correla-
tions. A central galaxy is associated with the halo centre, and satel-
lite galaxies are distributed around it with some profile probability
density. The satellites are associated with subhaloes, which have a
distribution of mass which in principle depends on the mass of the
halo in which they sit.

A complete specification of the halo model requires knowing the
halo mass function and the distribution of subhalo masses within a
halo; it also requires knowing the probability density profile of how
subhaloes are distributed in a halo and understanding the statistics
of how haloes are distributed on large scales, usually parametrized
by the mass-dependent bias function.

3.2 Elements of the halo model

Throughout we will indicate halo masses and sizes with M, R and
subhalo (or satellite) masses and sizes with m, r.

3.2.1 Mass function

The comoving number density of collapsed haloes with mass be-
tween M and M + dM is described by the halo mass function
n(M, z)

M2

ρ̄
n(M)

dM

M
= νf (ν)

dν

ν
; (13)

here ρ̄ is the comoving background density and ν ≡ δ2
c (z)/σ 2(M, z)

is the ratio of the critical density for the spherical collapse (squared)
to the variance of a halo with mass M. The function f(ν) can be
written as (Sheth & Tormen 1999)

νf (ν) = A(p)[1 + (qν)−p]
( qν

2π

)1/2
exp

(
−qν

2

)
. (14)

Weinberg & Kamionkowski (2003) found that, for 0.1 ≤ �m ≤ 1
and −1 ≤ w ≤ −0.3, the critical density at a given redshift is
accurately given by the following fitting function:

δc(z) = 3

20
(12π)2/3(1 + α log10 �m(z)), (15)

where α(w) is a function of the dark energy equation of state pa-
rameter w:

α(w) = 0.353w4 + 1.044w3 + 1.128w2 + 0.555w + 0.131. (16)

Here we will assume a cosmological constant (w = −1) for which
α = 0.013. Assuming spherical collapse, p = 0, A(p) = 0.5 and
q = 1 (Press & Schechter 1974); alternatively, ellipsoidal col-
lapse results in the Sheth–Tormen mass function where p � 0.3,
A(p) � 0.3222 and q � 0.75 (Sheth & Tormen 1999). In this paper
we use the Sheth–Tormen formulation of the mass function because
it provides better agreement with N-body simulations.

3.2.2 Subhalo mass function

For clustering statistics, it is sufficient to simply know how many
galaxies are populating a halo of a given mass, known as the halo
occupation distribution (HOD). However, for our purposes we also
need to quantify the physical properties of satellite galaxies, so
we require a subhalo mass function. We use the parametrization
introduced by Giocoli et al. (2010):

dN (m, M, z)

dm
= (1 + z)1/2 AM M mα exp

[
−β

( m

M

)3
]
, (17)

with the parameters AM = 9.33 × 10−4, α = −1.9 and β = 12.2715.
Recently, Dooley et al. (2014) have shown that this subhalo mass
function does not strongly depend on the choice of the cosmological
parameters. N(M, z), or the HOD, is simply the integral of the
subhalo mass function of those galaxies above an observable mass
or luminosity threshold.

The assumption of this subhalo mass function is that the num-
ber of substructures per host halo mass is universal; more massive
haloes host proportionately more satellite galaxies. However, there
still remains mass dependence in the exponential cut-off; more mas-
sive subhaloes only exist in more massive haloes. This latter fact
implies a weak size correlation between satellites and their central
galaxy hosts, which strengthens if the less massive satellites are not
observed.

3.2.3 Radial profile

In addition to knowing how many subhaloes there are, we need to
know how they are distributed around the centre of the halo. We
assume a Navarro–Frenk–White (NFW) profile (Navarro, Frenk &
White 1996) both for the distribution of mass in the halo and for
the probability of finding any given subhalo at a particular distance
from the centre of the halo. In principle, the subhalo probability
distribution may depend on the subhalo mass, m, and be significantly
different from the halo mass distribution.
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The NFW profile is given by (Navarro et al. 1996)

ρNFW(x|M) = ρs

x/rs(1 + x/rs)2
, (18)

where x is the distance from the centre of the halo and rs is the
scale radius of the halo. Its concentration is defined as c = R200/rs

where R200 is the virial radius of the halo. The virial radius is
defined as the radius enclosing an overdensity equal to 200ρcr,
where ρcr, 0 = 2.7 × 1011 M� h2 Mpc−3 is the critical density of
the universe at redshift z = 0. In particular, including the redshift
dependence of the critical density, we have

R200(z) =
(

3 M

4πρcr(z)�

)1/3

, (19)

where � = 200 is the redshift-independent overdensity parameter
and ρcr(z) = ρcr, 0E(z)2, where E(z) is the expansion rate given by

E(z) = H (z)

H0
=

√
�m,0(1 + z)3 + �K(1 + z)2 + ��,0. (20)

The normalization ρs is given by:

ρs = M

4πr3
s

[
ln(1 + c) − c

1 + c

]
, (21)

and we use the following model for the concentration from Oguri
& Hamana (2011):

c(z) = c0(1 + z)−0.71

(
M

Mc0

)−0.086

, (22)

where c0 = 7.26 and Mc0 = 1012 M� h−1. This implicitly assumes
that the concentration is a deterministic function of the halo mass,
with no scatter.

We can convert from a matter distribution to a subhalo prob-
ability distribution by simply dividing by the total halo mass,
u(x|M) = ρNFW(x|M)/M. Below we work in Fourier space for calcu-
lating power spectra, where it is useful to have the Fourier transform
of the normalized density profile given in equation (18):

u(k|M) =
∫ R

0
dx

4πx2

M

sin(kx)

kx
ρNFW(x|M). (23)

In principle we should also specify the radial profiles and mass–
concentration relations for the subhaloes, as in Giocoli et al. (2010);
however, below we assume a simple relation of the satellite radii to
the subhalo mass, so the subhalo profiles are not required.

3.2.4 Large-scale halo distribution

The final element in the halo model description is to specify the
large-scale distribution of haloes; this is usually done through spec-
ifying two-point (and higher) moments to match the expected linear
or weakly non-linear behaviour. Here we focus on matching the
two-point moments by assuming a simple deterministic bias that is
mass dependent.

In the halo model, the two-point correlation function can be
written

ξ (x) = ξ1h(x) + ξ2h(x), (24)

where the first term describes the contribution from each halo
whereas the second term gives the contribution on large scales
from halo correlations. The mass function and probability den-
sity profiles are needed to evaluate both terms, but the two-halo
term also requires the halo correlation function ξhh(x|M1, M2) =

b(M1)b(M2)ξlin(x), where ξlin(x) is the linear mass correlation func-
tion and b(M, z) is the bias parameter. We use the bias model (con-
sistent with the mass function) from Sheth & Tormen (1999):

b(M) = 1 + qν − 1

δc
+ 2p

δc(1 + (qν)p)
, (25)

where p, q and ν are defined as above.
This approximation is justified because on large scales the density

correlation function has to follow the linear correlation function.
There is an explicit constraint on b(M), as pointed out by Seljak
(2000), because on large scale the amplitude of the two-halo term
of the mass-weighted density power spectrum has to match the
amplitude of the linear power spectrum. This gives a constraint for
the halo model bias:∫ ∞

0
dMn(M)b(M)

M

ρ̄
= 1, (26)

so that, on the very largest scales where the mass profile of the
haloes is unimportant, the mass distribution matches linear theory.

3.3 Size–mass relation

As we are interested in the sizes of galaxies and how they are
correlated, we must have a process for relating the observed size of
a galaxy to the halo model. For this, we use the size–virial radius
relation found by Kravtsov (2013) where abundance matching was
used to relate simulated halo masses to the properties of observed
galaxies; by this means he found a linear relation between the virial
radius R200 of the haloes and the radius enclosing half of the galaxy
mass r1/2:

r1/2 = 0.015 R200. (27)

Kravtsov (2013) finds that this relation holds over eight orders of
magnitude in stellar mass and for all morphological types.

This relation is consistent with the model developed by Mo, Mao
& White (1998) in which galaxy disc sizes are determined by the
angular momentum they acquire during the collapse. As also stated
in Kravtsov (2013), it is remarkable that the relation given in equa-
tion (27) seems to be valid even for early-type galaxies, showing
that angular momentum is extremely important in the process of
galaxy formation. Additionally, r1/2 can be related to the effective
radius of a galaxy Re, which is the radius enclosing half of the
light of the galaxy, through r1/2 = 1.34 Re (Kravtsov 2013). In the
following we identify r1/2 with r(m) in order to keep the notation
concise.

3.4 Mass threshold

In order to translate the halo model into observable quantities, we
need to model the galaxy selection effects. For simplicity, we will
assume that we have a survey complete to some intrinsic luminosity
threshold. Assuming the luminosity directly relates to stellar mass,
we require a relationship between halo mass and galactic stellar
mass for selecting a minimum halo mass for our calculations. We
use the relation given by Guo et al. (2010):

M∗
M

= C ×
[(

M

M0

)−a

+
(

M

M0

)b
]d

, (28)

where C = 0.129, M0 = 1011.4 M�, a = 0.926, b = 0.261, d = 2.440
and M is the mass of the host halo. This relation is obtained assuming
a one-to-one correspondence between subhaloes and galaxies by
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using abundance matching, the hypothesis that the cumulative halo
mass function is equal to the cumulative galaxy mass function.

By means of equation (28) we choose minimum masses for both
subhaloes and haloes equal to mmin = Mmin = 1011 M� h−1 that
corresponds to a minimum galaxy mass equal to 2 × 109 M� h−1.
Setting this limit for the minimum halo mass is also in agreement
with the HOD model analysed in Kravtsov et al. (2004).

4 TR A N S L AT I N G TO O B S E RVATI O N S

Given the halo model assumptions, we can work out its implica-
tions for observables. We first look at background quantities before
moving on to the two-point quantities of primary interest. Here,
following the approach given in Sheth (2005), we build up from
the simplest halo model quantities to the size-weighted galaxy dis-
tribution and how it impacts the magnification estimator defined
above.

4.1 Halo density

We begin with the discrete distribution of the haloes, which is
described by

nh(x) =
∫ ∞

0
dM

∑
i

δD(M − Mi)δ
(3)
D (x − xi) (29)

where we have integrated over the possible halo masses. The sum
within the integral has expectation given by the mass function de-
fined above,〈 ∑

i

δD(M − Mi)δ
(3)
D (x − xi)

〉
= n(M) = dNh

dMdV
. (30)

The total halo density is given by the integral, n̄h = ∫ ∞
0 dM n(M).

4.2 Halo matter density

If we assume that the mass distribution is dominated by that asso-
ciated with the haloes (ignoring that in subhaloes), the dark matter
density field is given by:

ρ(x) =
∑

i

ρNFW(x − xi , Mi) =
∑

i

Miu(x − xi , Mi), (31)

where the sum is over the haloes and u(x, M) is the density profile
normalized to the halo mass. We can obtain a continuous density
field from the discrete one given in equation (31) by introducing
Dirac delta functions:

ρ(x) =
∫ ∞

0
dM M

∫
d3x ′ ∑

i

δD(M − Mi)δ
(3)
D (x′ − xi)

× u(|x − x′|,M). (32)

Taking the ensemble average we obtain the mean matter density:

ρ̄ ≡ 〈ρ(x)〉 =
∫ ∞

0
dM n(M) M, (33)

where we used the fact that
∫

d3x u(|x − xi |, M) = 1 (since the
function u is normalized for each halo).

4.3 Galaxy density

In the halo model, it is assumed that the galaxy density is composed
of two terms, the central galaxies positioned at the halo centre and

satellite galaxies distributed around the halo centre. Analogously to
the halo density defined above, we can write the galaxy density as

ng(x) =
∫ ∞

0
dM

∑
i

δD(M − Mi)
∑

j

δ
(3)
D (x − xi − xj ), (34)

where the
∑

j is over the central and possible satellite galaxies and
xj represents their position relative to the halo centre; xj = 0 for
the central galaxy, while for the satellite galaxies, these positions
are described by the satellite probability profile.

The average number of satellites for a halo of a given mass is
〈Nsat|M〉 which is related to the HOD; it is an integral of the subhalo
mass function defined above:

〈Nsat|M〉 =
∫ M

mmin

dm
dN (m,M)

dm
, (35)

and the HOD has one more than this to account for the central
galaxy. Again, we assume that substructures inside a halo follow a
spatial distribution ud(|x − xc|,M) (which we assume to be of the
form given in equation 18) depending on the halo mass and where
xc are the coordinates of the centre of the halo. After averaging over
the subhalo ensembles, the galaxy density can be written as

ng(x) =
∑

i

δ
(3)
D (x − xi) + 〈Nsat|Mi〉ud(x − xi |Mi), (36)

which can again be written as

ng(x) =
∫ ∞

0
dM

∫
d3x ′ ∑

i

δD(M − Mi)δ
(3)
D (x′ − xi)

×
[
δ

(3)
D (x − x′) + 〈Nsat|M〉ud(|x − x′|, M)

]
. (37)

After averaging over the positions of the haloes, we find

n̄g =
∫ ∞

0
dM n(M)(1 + 〈Nsat|M〉). (38)

This could alternatively be written as

n̄g =
∫ +∞

Mmin

dM n(M)
∫ M

mmin

dm

×
(

δD(m − M) + dN (m,M)

dm

)
, (39)

where we have introduced minimum halo and galaxy masses which
will arise in realistic observations and assumed the central galaxy
mass is comparable to that of the halo itself. Though a fraction of
the total halo mass will reside in the subhaloes, we do not expect
this to greatly impact the central galaxy size.

4.4 The galaxy size field

Our assumption is that the observed half-radius is related to the
subhalo mass, as described above. We weight the galaxy density
defined in Section 4.3 by the radius, and normalize by the total
galaxy density to define a galaxy size field as

r(x) = n̄−1
g

∫ ∞

0
dM

∑
i

δD(M − Mi)

×
∑

j

δ
(3)
D (x − xi − xj )r(mj ), (40)

where r(mj) is the radius associated with the mass of the central
galaxy or satellite galaxies. For the central galaxy, we should for-
mally base its radius on the residual mass, that is, subtracting the
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Figure 1. Distribution of object for given half-mass radius for both haloes
and subhaloes as well as for the total population at redshift z = 0 and for
minimum halo mass Mmin = 1011 M� h−1. Symbols indicate the mean
half-mass radii for each population (square for satellites, circle for centrals,
triangle for the total population). In the main plot the number densities are
shown for the entire range of half-mass radii; for a better view of the mean
values the inset plot represents the number densities in the range between
r1/2 = 1.7 and 1.8 kpc h−1.

integrated mass in subhaloes from the total halo mass. However,
even for the smallest haloes in our model, the total mass in the
subhaloes only accounts for around 10 per cent of the halo mass, so
this correction makes a small change in the inferred central radius.
We checked that our correlation results are not affected by making
this correction and for simplicity we adopt the radius based on the
total mass.

The galaxy size field given by equation (40) can be averaged over
the subhalo ensembles to find

r(x) = n̄−1
g

∑
i

[r(Mi)δ
(3)
D (x − xi)

+ r̄sat(Mi)〈Nsat|Mi〉ud(x − xi |Mi)]

= n̄−1
g

∫ ∞

0
dM

∫
d3x ′ ∑

i

δD(M − Mi)δ
(3)
D (x′ − xi)

×
[
r(M)δ(3)

D (x − x′) + r̄sat(M)〈Nsat|M〉ud(|x − x′|, M)
]
,

(41)

where r̄sat(M) ≡ ∫ M

mmin

dN(m,M)
dm

r(m)dm/〈Nsat|M〉 is the average
satellite radius for satellites in a halo of mass M.

With this, it is straightforward to derive the distribution of radii
and derive the average galaxy size:

r̄ = n̄−1
g

∫ +∞

Mmin

dM n(M)
∫ M

mmin

dm

×
(

δD(m − M) + dN (m,M)

dm

)
r(m). (42)

In Fig. 1 radii distributions, calculated by means of the size–mass
relation given by equation (27) found by Kravtsov (2013) combined
with the halo mass function, for centrals, satellites and total galaxy
population are shown and the mean values for half-mass radius for
each type of structures are indicated at redshift z = 0.

4.5 The local estimator field

The magnification estimator, defined as

κ̂ = ln
λO

λ̄
−

〈
ln

λO

λ̄

〉
, (43)

acts on the observed angular sizes of galaxies, potentially combining
galaxies over a range of redshifts. It is possible however to consider
a local definition of the estimator field that when summed over
redshift becomes the two-dimensional projected estimator.

The intrinsic contribution to the magnification estimator arises
because the observed size depends on the true galaxy size. These
are related through the angular diameter distance, and for objects at
a given redshift λI = r(z)/DA(z), so that,

ln
λI

λ̄
= ln

r(z)

r̄
+ ln

r̄

DA(z)λ̄
. (44)

For objects at a given redshift, their observed size field and true size
field are related by a constant term, which cancels when considering
the fluctuation field. Their fluctuations are identical,

ln
λI

λ̄
−

〈
ln

λI

λ̄

〉
z

= ln
r(z)

r̄
−

〈
ln

r

r̄

〉
z
. (45)

Thus, the intrinsic contribution is effectively

κI(z) = ln
r(z)

r̄
−

〈
ln

r

r̄

〉
z
. (46)

Note that in both cases, dividing by the mean radius (or angular size)
makes the argument of the logarithm dimensionless, but any scale
would be equivalent, as the divisors cancel when subtracting the
field average. It is the clustering of relative sizes which contributes
to the magnification estimator. This work is primarily concerned
with statistics of the angular sizes of galaxies, projected over a
broad redshift distribution. Statistics related to the true physical
sizes of galaxies potentially would be biased by individual photo-
metric redshift errors, and so it would be essential to treat these
carefully in any 3D or tomographic analysis of the physical size
correlations.

A given realization of halo and subhalo positions results in an
estimator-weighted density field as

κI(x) = n−1
g

∫ ∞

0
dM

∑
i

δD(M − Mi)

×
∑

j

δ
(3)
D (x − xi − xj )κI(mj ), (47)

where

κI(m, z) = ln

(
r(m)

r̄

)
−

〈
ln

( r

r̄

)〉
z
. (48)

By definition, the expectation of this estimator is zero, 〈κ I〉 = 0; the
expectation value of the log-size field at a given redshift is〈

ln
( r

r̄

)〉
z

= n̄−1
g

∫ ∞

Mmin

dM n(M)
∫ M

mmin

dm

×
(

δD(m − M) + dN (m,M)

dm

)
ln

(
r(m)

r̄

)
. (49)

5 TWO -POINT STATISTICS

Our focus here is to understand the implications of size correlations
on two-point statistics, and in particular in comparing how the power
spectrum of the magnification estimator relates to that of the true
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magnification once size correlations are included. Thus, we must
calculate the power spectrum of the intrinsic size correlations and
their cross-correlation with the true magnification.

As discussed above, in the halo model two-point correlations
receive contributions from pairs of galaxies inhabiting the same
halo and from where they inhabit two different haloes. The same
holds for the power spectrum:

P (k) = P1h(k) + P2h(k). (50)

It is straightforward to calculate the power spectrum of the matter
density fluctuation δρ/ρ̄ using the halo model formalism developed
above (Scherrer & Bertschinger 1991):

P1h(k) =
∫ ∞

0
dMn(M)

(
M

ρ̄

)2

u2(k,M),

P2h(k) = b̄2
ρP

lin(k), (51)

where

b̄ρ =
∫ ∞

0
dMn(M)b(M)

M

ρ̄
u(k, M). (52)

The number density fluctuation is similar, but accounts for the
central and satellite galaxy contributions separately. The one-halo
term includes terms from the central–satellite and the satellite–
satellite pairs within the same halo:

P1h(k) = n̄−2
g

∫ ∞

0
dMn(M)(〈Nsat|M〉u(k,M)

+ 〈Nsat(Nsat − 1)|M〉u2(k, M)). (53)

The two-halo term has three contributions, including central–
central, central–satellite and satellite–satellite terms:

P2h(k) = b̄2
nP

lin(k), (54)

where

b̄n = n̄−1
g

∫ ∞

0
dMn(M)b(M) (1 + 〈Nsat|M〉u(k,M)) . (55)

5.1 Magnification estimator power spectrum

In this subsection we present our model for the correlation between
log-size of galaxies. In the one-halo terms, we only include the
cross-correlations between different galaxies, so there is no central–
central contribution.

5.1.1 One-halo terms

Applying the halo model formalism, we obtain the following power
spectra for the auto-correlation:

P 1h−sat
κI

(k) = n̄−2
g

∫ ∞

Mmin

dMn(M)

×
[∫ M

mmin

dm
dN (m,M)

dm
κI(m)ud(k,M)

]2

. (56)

We also have contribution from central–satellite correlation terms:

P 1h−cs
κI

(k) = 2

n̄2
g

∫ ∞

Mmin

dMn(M) κI(M)

×
∫ M

mmin

dm
dN (m, M)

dm
κI(m)ud(k, M). (57)

Figure 2. The bias factors arising from central and satellite galaxies, as a
function of redshift, for a survey with fixed mass threshold. Satellites are
more numerous, but have a lower average size. Those on the lower threshold
are most numerous and dominate at low redshift; as these are below the
average size, the satellite bias becomes negative.

5.1.2 Two-halo terms

Applying the halo model formalism, we obtain the following power
spectra for the auto-correlation:

P 2h
κI

(k) = (b̄κI,c + b̄κI,s )
2P lin(k), (58)

where

b̄κI,c = n̄−1
g

∫ ∞

Mmin

dM n(M) b(M) κI(M) (59)

and

b̄κI,s = n̄−1
g

∫ ∞

Mmin

dMn(M)b(M)
∫ M

mmin

dm
dN (m,M)

dm

× κI(m)ud(k,M). (60)

These biases are perhaps the most important result of our model,
as the two-halo terms dominate on the scales where lensing is most
easily interpreted. In Fig. 2 we show how the central and satellite
biases evolve as a function of redshift. The central bias ranges from
0.1 at high redshifts, down to a few times 10−2 at low redshifts,
while the satellite bias is considerably smaller (∼10−3), becoming
negative at low redshifts.

As the sample will be dominated by central galaxies at this mass
threshold, it is worth trying to understand its amplitude better in the
limit where there are only central galaxies. Recall the definition of
the intrinsic kappa field is the log of the radius minus its average
(see equation 46). Examining the expression for the central bias, we
see that it is effectively a weighted average of κ I, where the number
density weight is modified by a bias function, b(M). Were it not for
this bias factor, this integral is the usual density averaging, meaning
that the two terms in κ I would exactly cancel by definition.

If b(M) were constant, independent of the mass, the central bias
would also be zero. The central bias thus depends on how b(M)
changes as a function of mass. In particular, since the bias increases
for larger mass haloes, where the radii are larger than average,
this implies b̄κI,c is positive. Its magnitude depends on how fast
b(M) increases over the mass range that dominates the estimator,
Mmin < M < 1014 M� h−1.

The picture is somewhat more complex when the satellite popula-
tion becomes more important. The satellite distribution is weighted
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somewhat to lower mass galaxies (Fig. 1), so the mean of the log
radius becomes smaller. This fact tends to increase the central bias.
Meanwhile, the weighting towards lower mass tends to cancel the
increase in b(M), reducing the amplitude of b̄κI,s . For the lowest
redshifts, the up-weighting of the low masses is enough to make
b̄κI,s negative.

5.2 Density–size cross-power spectra

For the cross-correlation density–size we obtain for both central
and satellites:

P 1h−sat
ρκI

(k) = ρ̄−1n̄−1
g

∫ ∞

0
dMn(M)M

×
∫ M

mmin

dm
dN (m, M)

dm
κI(m) u(k,M) ud(k, M)

P 2h
ρκI

(k) = b̄ρ(b̄κI,c + b̄κI,s )P
lin(k), (61)

where b̄ρ is given in equation (52) (using the constraints given in
equations 33 and 26) and the other bias factors are given above.

In this work, we are assuming all of the lensing mass is associated
with the haloes, and ignore mass associated with subclumps. On
large scales, this should be a good approximation, but potentially
it fails to take into account further correlations between size and
density on scales within haloes. It would be straightforward to
extend this work to include this effect in the halo model.

5.3 Angular power spectra

In order to compare intrinsic size correlations with weak lensing
convergence power spectra we have to integrate the projected size
correlations over the redshift distribution:

κI(θ ) =
∫

dχ n(χ ) κI(χθ, χ ), (62)

where n(χ ) is the redshift distribution described in Section 2. Again
we assume Limber’s approximation and the total convergence power
spectrum can be written as:

Cκ̂ (	) = Cκ (	) + 2CκκI (	) + CκI (	). (63)

The lensing term is given by equation (10) and the intrinsic terms
in equation (63) are calculated as follows:

CκκI (	) =
∫ χhor

0
dχ

q(χ )n(χ )

χ2
PρκI

(
	

χ
, χ

)

CκI (	) =
∫ χhor

0
dχ

n2(χ )

χ2
PκI

(
	

χ
, χ

)
, (64)

where q(χ ) is the lensing weight function defined in Section 2.

6 R ESULTS

6.1 Model assumptions

We evaluate our results in the context of a flat � cold dark mat-
ter cosmology with parameters consistent with best-fitting Planck
data (Planck Collaboration XVI 2014); in particular, we assume a
total matter density �m, 0 = 0.32, cosmological constant density
��, 0 = 0.68, baryon density �b, 0 = 0.049 and Hubble constant
H0 = 100 h km s−1 Mpc−1, where h = 0.67. In addition, we assume
the spectral index of the matter power spectrum is ns = 0.96 and it
is normalized such that σ 8 = 0.83.

We adopt the transfer function given in Eisenstein & Hu (1998)
and non-linear evolution of the matter power spectrum (for esti-
mating lensing convergence power spectrum) is calculated with
HALOFIT from Smith et al. (2003) recently revised by Takahashi
et al. (2012).

For the redshift distribution of lensed sources, we adopt the com-
monly used parametrization,

n(z) ∝ za exp

[
−

(
z

z0

)b
]
. (65)

We consider two different set of parameters for this redshift dis-
tribution form; following Schneider & Bridle (2010), to simulate a
Euclid-like survey we assume a = 2, b = 1.5 and z0 = 0.64 which
gives a mean redshift around 0.96. For a CFHTLenS-like survey, we
use parameters from Benjamin et al. (2007): a = 0.836, b = 3.425
and z0 = 1.171 which give a mean redshift approximately z � 0.8.
For the shallow survey we used a = 0.6, b = 1.5 and z0 = 0.55 in
order to obtain a mean redshift around z � 0.5.

6.2 Comparison of power spectra

In Fig. 3 we show the contributions to the power spectrum of κ̂ for
the CFHTLenS and Euclid-like surveys. As can be seen, intrinsic

Figure 3. Power spectra for two different redshift distributions, CFHTLenS-like with mean redshift 〈z〉 � 0.8 and Euclid-like with 〈z〉 � 0.96.
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Figure 4. The power spectra for a more shallow survey, with mean redshift
around z ∼ 0.5. Here the intrinsic effects are more significant than for
surveys centred at higher redshifts.

size correlations are relevant even for a very deep survey such as
Euclid, where their contamination increases from 10 per cent on the
largest scales to being comparable to the convergence on 	 ∼ 100.
For the CTHTLenS-like survey, with 〈z〉 � 0.8, the contamination
is even larger, beginning at 25 per cent of the convergence signal on
large scales.

For these surveys, the largest intrinsic contribution comes from
the cross-correlation between the intrinsic sizes and the conver-
gence, while the intrinsic auto-correlation is subdominant except
at the smallest scales. On the largest scales, κ and κ I are strongly
correlated as the ratio 〈κκI〉/

√〈κκ〉〈κIκI〉 is of the order 80 per cent.
For a shallower redshift distribution, the intrinsic contamination

can dominate the signal. To demonstrate this, in Fig. 4 we show
the contributions for a survey with 〈z〉 � 0.5; there we see the
intrinsic and convergence spectra are comparable, and significantly
correlated. With multiple bins, the convergence dominates in high-
redshift bins, but remains correlated with the intrinsic sizes in lower
redshift bins; unlike the convergence, the intrinsic sizes will be
relatively uncorrelated between bins.

In Fig. 5 we show the contribution to the size–size power spectrum
and size-convergence power spectrum arising from centrals and
satellites, and also how the spectra arise from the one-halo and two-

halo terms. The spectra are dominated by the two-halo contributions
on the scales of interest, and on these scales the central galaxy
contribution is most significant; this follows from what was seen
previously for the central and satellite biases. On smaller scales,
the one-halo term and the contribution from satellites both become
more important.

Recall that at low redshift, the satellite bias becomes negative,
because satellite galaxies have sizes generally smaller than the total
mean value. In the size–size correlation, this leads to the satellites
being negatively correlated with the central galaxy population. They
also contribute negatively to the size-convergence spectrum, though
with an amplitude much smaller than the positive amplitude arising
from the central sizes.

Formally the size–size power spectrum should be positive def-
inite; however, here we have omitted correlations of galaxies
with themselves. As a result, on small scales the negative cross-
correlation between central and satellite galaxies can actually dom-
inate. On such scales, probing the typical galaxy sizes, our model
is not expected to be physical; on these scales, galaxies will begin
to overlap and they would not be observed as distinct.

7 C O N C L U S I O N S

We have presented a simple model for calculating intrinsic corre-
lations for galaxy sizes using halo model formalism. This is a first
calculation and necessarily neglects some effects which could be
very relevant. One important issue that should be factored in is scat-
ter in the mass–radius relation; this could considerably weaken the
correlations we see in the sizes. Galaxy sizes may also be environ-
mental dependent and affected by baryonic physics in ways that are
hard to fold into the simple halo model.

We also have restricted our analysis to a simple mass threshold
in the selection of galaxies. For a more realistic analysis, one might
consider how these effects would impact a flux-limited sample, or
one with a cut-off in the observed angular size of galaxies. We plan
to continue our study by examining the magnitude of the effect in
galaxy surveys like the Sloan Digital Sky Survey, focusing on low
redshifts where intrinsic effects should dominate.

Our preliminary study indicates that, as for measurements of
galaxy shapes, it may not be possible to ignore intrinsic correlations
when interpreting measurements of galaxy sizes and magnitudes.
These effects, and particularly correlations between convergence

Figure 5. Contributions to the intrinsic size (upper plots) and intrinsic size-convergence (lower plots) power spectra for CFHTLenS-like survey (〈z〉 � 0.8).
We plot the absolute values; the central–satellite contribution for CκI and the satellite contribution for CκκI as well as the one-halo term are negative. On the
scales of interest, the correlations are dominated by the two-halo contributions for the central galaxies.
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and intrinsic properties, are potentially an important systematic
for magnification measurements and could significantly bias the
resulting cosmological constraints if they are not accounted for.
On the other hand, they represent a new observable that could
potentially tell us more about how galaxies form.

Correlations of galaxy magnitudes are also used to detect magni-
fication and these are similarly expected to be correlated with halo
masses; it is worth investigating how magnitudes are correlated
with both convergence and galaxy sizes and this is a straightfor-
ward extension of the halo model we have developed here. We plan
to pursue this in future work.
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