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Abstract. We introduce a global wave front set using Weyl quantizations
of pseudodifferential operators of infinite order in the ultradifferentiable
setting. We see that in many cases it coincides with the Gabor wave front
set already studied by the last three authors of the present work. In this
sense, we also extend, to the ultradifferentiable setting, previous work
by Rodino and Wahlberg. Finally, we give applications to the study of
propagation of singularities of pseudodifferential operators.
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1. Introduction

In the theory of partial differential equations, the wave front set locates the
singularities of a distribution and, at the same time, describes the directions of
the high frequencies (in terms of the Fourier transform) responsible for those
singularities. In the classical context of Schwartz distributions theory, it was
originally defined by Hörmander [27]. There is a huge literature on wave front
sets for the study of the regularity of linear partial differential operators in
spaces of distributions or ultradistributions in a local sense; see, for instance,
[1,2,9,10,23,36,37] and the references therein.

In global classes of functions and distributions (like the Schwartz class
S(Rd) and its dual) the concept of singular support does not make sense, since
we require the information on the whole R

d. However, we can still define a
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global wave front set to describe the micro-regularity of a distribution, where
the cones are taken with respect to the whole of the phase space variables.
In fact, in [28] Hörmander introduces two different types of global wave front
sets addressed to the study of quadratic hyperbolic operators: the C∞ wave
front set, in the Beurling setting, for temperate distributions u ∈ S ′(Rd) using
Weyl quantizations, and the analytic wave front set, in the Roumieu setting,
for ultradistributions S ′

A(Rd) of Gelfand-Shilov type, defined in terms of a
very general known version of the FBI transform as introduced originally by
Sjöstrand [40]. Unfortunately, these global versions of wave front set have been
almost ignored in the literature. Only very recently, Rodino and Wahlberg [37]
recover the concept of C∞ wave front set of [28] and show that it can be refor-
mulated in terms of the short-time Fourier transform (or Gabor transform),
very related to the FBI transform. Moreover, in [37] the authors show also that
the original wave front set coincides with the Beurling version of the analytic
wave front set introduced by Hörmander and that it can be described merely
by a Gabor frame, i.e. with the information of the decay of the Gabor coeffi-
cients in a sufficiently dense lattice. The latter is what the authors in [37] call
the Gabor wave front set. On the other hand, Nakamura [30] introduces the
homogenous wave front set for the study of propagation of micro-singularities
for Schrödinger equations, and it turns out to be equal to the Gabor wave front
set [38]. Cappiello and Schulz [17] recover the analytic wave front set of [28]
and show that it can be written using the Gabor transform (with Gaussian
window) and study some cases not treated by Hörmander for Gelfand-Shilov
ultradistributions of Gevrey type.

Here, we work in the classes of ultradifferentiable functions Sω(Rd), where
ω is a weight function in the sense of Braun, Meise, and Taylor [16], originally
introduced by Björck [7] as follows: a function u ∈ L1(Rd) is in Sω(Rd) if (u
and û ∈ C∞(Rd) and)

∀λ > 0, α ∈ N
d
0 : sup

x∈Rd

eλω(x) max{|Dαu(x)|, |Dαû(x)|} < +∞,

where N0 := N∪{0} and Dα = (−i)|α|∂α. The classes under consideration are
suitable for our purposes, since they are invariant under Fourier transform and
provide a big scale of spaces that contain as a particular case the Schwartz
class when the weight function is ω(t) = log(1+t) for t ≥ 0 (example of weight
function that we do not consider in this paper). We have seen in the literature
the benefits of time-frequency analysis when applied to such classes (see [26]),
even in combination with the global theory of (pseudo)differential operators
(see e.g. [11] and the references therein, or [33,35] when the classes are defined
by sequences in the sense of Denjoy–Carleman). We have to mention also
that our classes always contain compactly supported functions (they are non-
quasianalytic) and we recover Gelfand–Shilov spaces of Beurling type of index
s > 1 when the weight function is ω(t) = t1/s, i.e. a Gevrey weight.
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In [12] the last three authors of the present paper introduce the ultrad-
ifferentiable version of the analytic wave front set found in [17,28,37] in the
(Beurling) setting for S ′

ω(Rd)-ultradistributions, show that it can be described
also in terms of Gabor frames for subadditive weight functions (as it is done
in the setting of temperate distributions in [37]) and apply it to the study of
the global regularity of (pseudo)differential operators of infinite order (in [37]
the authors cannot treat operators of infinite order, since they consider sym-
bols with polynomial growth only). However, the question if the latter wave
front set can also be described in terms of Weyl quantizations, as in [28,37],
remained open in the ultradifferentiable setting.

The first author in [4] studies the change of quantization in the class
of global pseudodifferential operators introduced in [6] and gives sufficient
conditions to obtain parametrices for any quantization. This is the starting
point to define a new wave front set in terms of Weyl quantizations for S ′

ω(Rd).
The purpose of the present paper is twofold: on the one hand, we define a Weyl
wave front set and study when it coincides with the (continuous version of the)
Gabor wave front set of [12] for the ultradifferentiable setting; on the other
hand, we give applications of this set to the regularity of pseudodifferential
operators in the very general setting of [6].

The paper is organized as follows: in the next section we give some pre-
liminaries, in Sect. 3 we study the kernel of some operators given by Weyl
quantizations for symbols as in [6]. We already observe in this section that,
just to give examples of symbols with a prescribed exponential growth from
above and from below, the range of weight functions ω we need is quite re-
strictive; see Example 3.3 (in fact, to give an example for the Gevrey weight
ω(t) = ta, we need that 0 < a < 1/2). In Sect. 4 we introduce the Weyl wave
front set and see that it can be characterized in terms of symbols of order
zero. In Sect. 5, we extend the inclusion on the Gabor wave front set [12, The-
orem 4.13] to any differential operator with variable coefficients and, later, we
compare the Gabor wave front set, given in terms of the short-time Fourier
transform in the continuous form, as in [12, Definition 3.1] (see Definition 5.1)
with the Weyl wave front set. We need also here to impose that our weight
functions be smaller than some Gevrey weight (see Remark 5.8). We could not
circumvent this restriction, since we use similar techniques as in [37]. Finally,
in Sect. 6 we study the propagation of singularities of Weyl quantizations with
respect to the Weyl wave front set. For instance, for a suitable weight function
ω, any 0 < ρ ≤ 1 and a symbol a(x, ξ) as in [6], we are able to prove that
(Theorem 6.8)

WFω
ρ (aw(x,D)u) ⊂ WFω

ρ (u) ∩ conesupp(a) ⊂ WFω
ρ (u)

⊂ WFω
ρ (aw(x,D)u) ∪ char(a),

where u ∈ S ′
ω(Rd), aw(x,D)u is the Weyl quantization of u, conesupp(a) is

the conic support of a(x, ξ) (Definition 4.4), char(a) is the characteristic set of
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a(x, ξ) (the set of points which are characteristic for a(x, ξ); see Definition 4.1)
and WFω

ρ (u) is the Weyl wave front set of u.

2. Preliminaries

We denote the Fourier transform of f ∈ L1(Rd) by

̂f(ξ) :=
∫

Rd

e−ix·ξf(x)dx,

with standard extensions to more general spaces of functions and distributions.
We work with weight functions as in Braun, Meise, and Taylor [16].

Definition 2.1. A (non-quasianalytic) weight function ω : [0,+∞[→ [0,+∞[ is
an increasing and continuous function that satisfies

(α) There exists L ≥ 1 such that ω(2t) ≤ L(ω(t) + 1), t ≥ 0;

(β)
∫ +∞

1

ω(t)
t2

dt < +∞;

(γ) log(t) = o(ω(t)) as t → ∞;
(δ) ϕω : t �→ ω(et) is convex.

For z ∈ C
d we denote ω(z) = ω(|z|), where |z| denotes the Euclidean

norm of z. These weight functions satisfy from Definition 2.1(α),

ω(x + y) ≤ Lω(x) + Lω(y) + L; ω(x, y) ≤ Lω(x) + Lω(y) + L

(2.1)

for all x, y ∈ R
d. We also recall that

ω
(x + y

2

)

≤ ω(max{|x|, |y|}) ≤ ω(x) + ω(y), x, y ∈ R
d. (2.2)

We shall assume that the weight functions vanish on the interval [0, 1]. Then
it holds, for 〈x〉2 = 1 + |x|2, x ∈ R

d,

ω(〈x〉) ≤ Lω(x) + L, x ∈ R
d.

We define the Young conjugate as follows:

ϕ∗
ω(t) := sup

s≥0
{st − ϕω(s)}, t ≥ 0.

When the choice on the weight is clear, we will write ϕ and ϕ∗ for short. From
the convexity of ϕ (Definition 2.1(δ)), we have that ϕ∗ is a convex function,
ϕ∗(t)/t is increasing and tends to infinity as t → ∞, and ϕ∗∗ = ϕ. Furthermore,
since ω|[0,1] ≡ 0, we have ϕ∗(0) = 0. Here we gather some well-known facts
and estimates involving the Young conjugate. See for instance [13, Appendix
A] for their proofs, in a more general context.



Global Wave Front Sets in Ultradifferentiable Classes Page 5 of 40    65 

Lemma 2.2. Given a weight ω as in Definition 2.1, we have
(i) For all λ > 0 and k ∈ N,

tk ≤ eλϕ∗( k
λ )eλω(t), t ≥ 1.

(ii) For all σ > 0 there exists Cσ > 0 such that for each λ > 0,

inf
j∈N0

t−σjeλϕ∗(σj
λ ) ≤ Cσe−(λ−1)ω(t), t ≥ 1.

(iii) Let L ≥ 1 such that ω(et) ≤ Lω(t) + L, t ≥ 0. Then, for all λ > 0 and
n ∈ N,

λLnϕ∗
( t

λLn

)

+ nt ≤ λϕ∗
( t

λ

)

+ λ

n
∑

j=1

Lj , t ≥ 0.

(iv) For all λ > 0,

2λϕ∗
(s + t

2λ

)

≤ λϕ∗
( s

λ

)

+ λϕ∗
( t

λ

)

≤ λϕ∗
(s + t

λ

)

, s, t ≥ 0.

(v) For all λ,B > 0 there exists C > 0 such that

B|α|α! ≤ Ceλϕ∗
(

|α|
λ

)

, α ∈ N
d
0.

From now on L ≥ 1 stands for the constant in Lemma 2.2(iii). When
considering a suitable change of weights, the following estimates included in
[6, Lemma 2.9] will appear on the stage.

Lemma 2.3. Let a ≥ 1. If ω and σ are weight functions such that
(i) ω(ta) = o(σ(t)), t → ∞, then for all λ, μ > 0 there exists Cλ,μ > 0 such

that

λϕ∗
σ

( j

λ

)

≤ Cλ,μ + μ
1
a
ϕ∗

ω

( j

μ

)

, j ∈ N0.

(ii) ω(ta) = O(σ(t)), t → ∞, then there exists C > 0 such that for each
λ > 0,

λϕ∗
σ

( j

λ

)

≤ λ + λC
1
a
ϕ∗

ω

( j

λC

)

, j ∈ N0.

We have that ω is (equivalent to) a subadditive weight function if and
only if ω satisfies [32, Proposition 1.1]:
(α0) ∃C1 > 0 ∃ t0 > 0 ∀λ ≥ 1 ∀ t ≥ t0 : ω(λt) ≤ λC1ω(t).
See [8,21,32] for more information on property (α0).

The setting of this work is the space of ultradifferentiable functions de-
fined by Björck [7]. This space is characterized by different systems of semi-
norms (see, e.g. [11,13,26]). In fact, Sω(Rd) consists of all u ∈ S(Rd) such
that

∀λ, μ > 0, ∃Cλ,μ > 0, ∀α ∈ N
d
0, x ∈ R

d : |Dαu(x)| ≤ Cλ,μeλϕ∗
(

|α|
λ

)

e−μω(x),
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or, equivalently,

∀λ > 0 ∃Cλ > 0, ∀α, β ∈ N
d
0, x ∈ R

d : |xβDαu(x)| ≤ Cλeλϕ∗
(

|α+β|
λ

)

,

(2.3)

and also

∀λ > 0, sup
x∈Rd

(

max{|u(x)|, |û(x)|}eλω(x)
)

< +∞. (2.4)

The strong dual of Sω(Rd) is denoted by S ′
ω(Rd).

We use the following notation for the translation, modulation and phase-
shift operators:

Txf(y) = f(y − x); Mξf(y) = eiy·ξf(y); Π(z)f(y) = eiy·ξf(y − x),

for all x, y, ξ ∈ R
d and z = (x, ξ).

Definition 2.4. Let ψ ∈ Sω(Rd) \ {0} be a window function. The short-time
Fourier transform of f ∈ S ′

ω(Rd) is defined, for z = (x, ξ) ∈ R
2d, by

Vψf(z) := 〈f,Π(z)ψ〉

=
∫

Rd

f(y)ψ(y − x)e−iy·ξdy, z = (x, ξ) ∈ R
2d.

We note that the conjugate linear action of S ′
ω(Rd) on Sω(Rd), 〈·, ·〉, is

consistent with 〈·, ·〉L2(Rd). We also observe that

Vψf(z) = ̂f · Txψ(ξ), z = (x, ξ) ∈ R
2d. (2.5)

If ψ ∈ Sω(Rd) \ {0} is a window function and F is measurable on R
2d, the

adjoint operator is

V ∗
ψ F =

∫

R2d

F (z)Π(z)ψdz, (2.6)

and it follows from [12, (2.25)] that

V ∗
ψ Vψ = (2π)d ‖ψ‖2

L2(Rd) IS′
ω(Rd). (2.7)

We recall from [26, Theorem 2.7] that given ψ ∈ Sω(Rd) \ {0} and u ∈ S ′
ω(Rd)

we have u ∈ Sω(Rd) if and only if for all λ > 0 there exists Cλ > 0 such that

|Vψu(z)| ≤ Cλe−λω(z), z ∈ R
2d.

Some results involving the short-time Fourier transform for the Schwartz
class are known. See e.g. [25, Chapter 3]. The proofs are the same for the
ultradifferentiable setting.

Lemma 2.5. If T ∈ S ′
ω(Rd) and g ∈ Sω(Rd), then

̂gT = (2π)−d
(

ĝ ∗ ̂T
)

, ĝ ∗ T = ĝ · ̂T .
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Lemma 2.6. If f, g ∈ Sω(Rd) \ {0}, then

Vgf(x, ξ) = e−ix·ξVfg(−x,−ξ), x, ξ ∈ R
d.

Lemma 2.7. [25, (1.8),(1.9)] If ψ ∈ Sω(Rd) \ {0}, then

My
̂ψ(η) = T̂−yψ(η), M̂yψ(η) = Ty

̂ψ(η), y, η ∈ R
d.

By applying formula (2.5) and Lemmas 2.5 and 2.7 , we get

Lemma 2.8. If f ∈ S ′
ω(Rd) and ψ ∈ Sω(Rd) \ {0}, then

Vψf(x, ξ) = (2π)−d
(

̂f ∗ M−x
̂ψ
)

(ξ) x, ξ ∈ R
d.

3. The Weyl Quantization

In this section we study properties of the kernel of an operator given by a
Weyl quantization and the short-time Fourier transform. First, we recall the
definition of the global symbols defined in [4,6]. From now on, m ∈ R and
0 < ρ ≤ 1.

Definition 3.1. We define GSm,ω
ρ as the set of symbols p(x, ξ) ∈ C∞(R2d) such

that for all λ > 0 there exists Cλ > 0 with

|Dα
x Dβ

ξ p(x, ξ)| ≤ Cλ〈(x, ξ)〉−ρ|α+β|eλρϕ∗
(

|α+β|
λ

)

emω(x,ξ), α, β ∈ N
d
0 , x, ξ ∈ R

d.

We observe that the only difference with the global symbols in [6, Defi-
nition 3.1] is the factor emω(x,ξ) instead of emω(x)emω(ξ), which is more conve-
nient for our purposes here, but the corresponding theory of pseudodifferential
operators remains the same. The constant m is called the order of the symbol.

For b ∈ GSm,ω
ρ , we consider the Weyl quantization for u ∈ Sω(Rd) (see

for example [39, Definition 23.5] or [37, page 631]):

bw(x,D)u = (2π)−d

∫

R2d

ei(x−s)·ξb
(x + s

2
, ξ

)

u(s)dsdξ, x ∈ R
d.

By [4, Lemma 3.3] and [6, Theorem 3.7], given a global symbol in GSm,ω
ρ ,

the corresponding Weyl quantization is well defined and continuous from Sω(Rd)
into itself. Given two symbols a(x, ξ) and b(x, ξ), we write a#b(x, ξ) to denote
the Weyl product of the two symbols, i.e. the symbol corresponding to the
composition of the Weyl quantizations of a(x, ξ) and b(x, ξ):

(a#b)w(x,D) = aw(x,D)bw(x,D).

By [39, Theorem 23.6 and Problem 23.2] (cf. [4, Corollary 4.5]), the Weyl
product of a and b has the following asymptotic expansion:

a#b(x, ξ) ∼
∞
∑

j=0

∑

|β+γ|=j

(−1)|β|

γ!β!
2−|β+γ|∂γ

ξ Dβ
xa(x, ξ) ∂β

ξ Dγ
xb(x, ξ). (3.1)
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When dealing with asymptotic expansions, a special type of operator appears,
usually denoted by R, and called globally ω-regularizing operator, which acts
R : S ′

ω(Rd) → Sω(Rd), see [6, Proposition 3.11]. We also have that given
a global symbol r(x, ξ) ∈ GSm,ω

ρ , the pseudodifferential operator associated
R = rw(x,D) is globally ω-regularizing if and only if r ∈ Sω(R2d) (see [6,
Proposition 3.11], [31, Proposition 1.2.1]).

The following result provides sufficient conditions for a symbol to admit a
left parametrix and is an extension of [22, Theorem 3.4] for global pseudodiffer-
ential operators. These conditions are the basis to define the Weyl wave front
set. By [4, Theorems 3.11 and 5.4], it is easy to see that the same conditions
are valid for any global quantization. In particular, for Weyl quantizations.

Theorem 3.2. Let ω be a weight function and let σ be a subadditive weight
function with ω(t1/ρ) = o(σ(t)) as t → ∞. Let p ∈ GS|m|,ω

ρ be such that, for
some R ≥ 1:

(i) There exists C1 > 0 such that |p(z)| ≥ C1e
−|m|ω(z) for |z| ≥ R;

(ii) There exist C2 > 0 and n ∈ N such that

|Dαp(z)| ≤ C
|α|
2 〈z〉−ρ|α|e

1
n ϕ∗

σ(n|α|)|p(z)|,
for α ∈ N

2d
0 , |z| ≥ R.

Then, there exists q ∈ GS|m|,ω
ρ such that q#p = 1 + r, for some r ∈ Sω(R2d).

The following example is inspired by [3, Capitolo 4]. [39]

Example 3.3. Let ω(t) = ta be a Gevrey weight, for some 0 < a < 1/2. For
m ∈ R we consider

p(z) := e|m|〈z〉a

, z ∈ R
2d.

We want to show that (i) and (ii) in Theorem 3.2 hold. It is clear that

|p(z)| = e|m|ω(〈z〉) ≥ e|m|ω(z) ≥ e−|m|ω(z), z ∈ R
2d.

On the other hand, by using Faà di Bruno formula for several variables (see,
for example [29, Page 234]), we obtain that there exists C > 0 such that, for
ρ = 1 − a,

|Dαp(z)| ≤ C|α|α!〈z〉−ρ|α|p(z), α ∈ N
2d
0 , z ∈ R

2d. (3.2)

Let σ be as in Theorem 3.2. By Lemma 2.2(v) there exists C ′ ≥ 1 such that

α! ≤ C ′eϕ∗
σ(|α|).

Therefore

|Dαp(z)| ≤ (CC ′)|α|eϕ∗
σ(|α|)〈z〉−ρ|α||p(z)|,

for all α ∈ N
2d
0 and z ∈ R

2d. We claim that p ∈ GS|m|,ω
ρ . Indeed, from Lem-

mas 2.2(v) and 2.3(i), for all λ > 0 there exist Cλ, C ′
λ > 0 such that

C|α|α! ≤ Cλeλϕ∗
σ

(

|α|
λ

)

≤ C ′
λeλρϕ∗

ω

(

|α|
λ

)

, α ∈ N
2d
0 .
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So, from (3.2) and the subadditivity of the weight ω, for all λ > 0 there exists
C ′

λ > 0 such that

|Dαp(z)| ≤ C ′
λeλρϕ∗

ω

(

|α|
λ

)

〈z〉−ρ|α|e|m|ω(〈z〉)

≤ C ′
λe|m|eλρϕ∗

ω

(

|α|
λ

)

〈z〉−ρ|α|e|m|ω(z),

for all α ∈ N
2d
0 and z ∈ R

2d.
We observe that in this example we have the restriction 0 < a < 1/2,

since a = 1 − ρ, ω(t1/ρ) = t
a

1−a , and ω is non-quasianalytic.

Since Sω(R4d) is nuclear [14,15,19,20], for b ∈ GSm,ω
ρ , there exists K ∈

S ′
ω(R4d) such that

Vψbw(x,D)V ∗
ψ : Sω(R2d) → S ′

ω(R2d),

where

Vψ(bw(x, D)V ∗
ψ F )(y′, η′) = (2π)d

∫

R2d

K(y′, η′, y, η)F (y, η)dydη, F ∈ Sω(R2d),

in the sense that

〈Vψbw(x, D)V ∗
ψ F, G〉 = (2π)d〈K(y′, η′, y, η), G(y′, η′)F (y, η)〉, G ∈ Sω(R2d).

For u ∈ Sω(Rd) and ψ ∈ Sω(Rd), ‖ψ‖L2(Rd) = 1, we denote F = Vψu, which
belongs to Sω(R2d) by [26, Theorem 2.7]. We have by (2.7) (see [12])

Vψ(bw(x,D)u)(y′, η′) =
∫

R2d

K(y′, η′, y, η)Vψu(y, η)dydη, (y′, η′) ∈ R
2d.

(3.3)

We analyse the kernel of this operator:

Theorem 3.4. Let b ∈ GSm,ω
ρ and ψ ∈ Sω(Rd) such that ‖ψ‖L2(Rd) = 1. If

u ∈ Sω(Rd), then we have

K(y′, η′, y, η)

= (2π)−2d

∫

R2d

(∫

Rd

eix·(ξ−η′)eis·(η−ξ)b
(x + s

2
, ξ

)

ψ(x − y′)ψ(s − y)ds

)

dξdx,

(3.4)

for all (y′, η′, y, η) ∈ R
4d, where K is the kernel in (3.3).

Proof. Let us consider V ∗
ψ : Sω(R2d) → Sω(Rd) as in (2.6). For F ∈ Sω(R2d)

we have

bw(x,D)V ∗
ψ F (x)

= (2π)−d

∫

R2d

ei(x−s)·ξb
(x + s

2
, ξ

)

V ∗
ψ F (s)dsdξ, x ∈ R

d.
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Then, by using the definition of V ∗
ψ F

Vψ(bw(x,D)V ∗
ψ F )(y′, η′)

= (2π)−d

∫

Rd

∫

R2d

e−ix·η′
ψ(x − y′)ei(x−s)·ξb

(x + s

2
, ξ

)

V ∗
ψ F (s)dsdξdx

= (2π)−d

∫

Rd

∫

R2d

∫

R2d

e−ix·η′
ψ(x − y′)ei(x−s)·ξb

(x + s

2
, ξ

)

× F (y, η)eis·ηψ(s − y)dydηdsdξdx

for all (y′, η′) ∈ R
2d. We shall assume that m ≥ 0; otherwise, the proof is

easier. We want to use Fubini’s theorem for the variables y, η, s. To this aim, we
estimate the modulus of the integrand as follows: Since ψ ∈ Sω(Rd), b ∈ GSm,ω

ρ ,
and F ∈ Sω(R2d), for all λ1, λ2 > 0 there exists Cλ1,λ2 > 0 such that, by (2.2),
we have
∣

∣

∣ψ(x − y′)b
(x + s

2
, ξ

)

F (y, η)ψ(s − y)
∣

∣

∣

≤ Cλ1,λ2e
mω( x+s

2 ,ξ)e−λ1ω(y,η)e−λ2ω(s−y)

≤ Cλ1,λ2e
mLω(x)emLω(s)emLω(ξ)emLe− λ1

2 ω(y)e− λ1
2 ω(η)e− λ2

L ω(s)eλ2ω(y)eλ2 ,

which belongs to L1(R3d
y,η,s) if we choose λ2 > mL2 (the integral depending

on s converges) and λ1 > 2λ2 (the integrals depending on y and η converge).
Therefore, we use Fubini’s theorem, and we obtain

Vψ(bw(x, D)V ∗
ψ F )(y′, η′) = (2π)−d

∫

Rd

∫

Rd

∫

R2d

eix·ξF (y, η)ψ(x − y′)e−ix·η′

×
(∫

Rd

eis·(η−ξ)b
(x + s

2
, ξ

)

ψ(s − y)ds

)

dydηdξdx.

(3.5)

We want to use again Fubini’s theorem, now in dydηdξdx. To that aim, we
need some preparation for

I(y, η, ξ, x) :=
∫

Rd

eis·(η−ξ)b
(x + s

2
, ξ

)

ψ(s − y)ds.

Similarly as before, since b ∈ GSm,ω
ρ and ψ ∈ Sω(Rd), for all λ > 0 there exists

Cλ > 0 such that
∣

∣

∣b
(x + s

2
, ξ

)

ψ(s − y)
∣

∣

∣ ≤ Cλemω( x+s
2 ,ξ)e−λω(s−y)

≤ CλemLω(x)emLω(s)emLω(ξ)emLe− λ
L ω(s)eλω(y)eλ,

which belongs to L1(Rd
s) if λ > mL2. Moreover, it tends to 0 as |s| → +∞.

Let us assume |η − ξ|∞ := max1≤h≤d |ηh − ξh| = |ηj − ξj | ≥ 1 for some
1 ≤ j ≤ d. For any N ∈ N0, we integrate by parts as follows:
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|I| =
∣

∣

∣

∫

Rd

1
(ηj − ξj)N

(DN
sj

eis·(η−ξ))b
(x + s

2
, ξ

)

ψ(s − y)ds
∣

∣

∣

=
∣

∣

∣

∫

Rd

(−1)N

(ηj − ξj)N
eis·(η−ξ)DN

sj

(

b
(x + s

2
, ξ

)

ψ(s − y)
)

ds
∣

∣

∣

≤ 1
|ηj − ξj |N

N
∑

k=0

(

N

k

) ∫

Rd

∣

∣

∣DN−k
sj

b
(x + s

2
, ξ

)∣

∣

∣|Dk
sj

ψ(s − y)|ds.

We observe that |η − ξ| ≤ √
d|η − ξ|∞ =

√
d|ηj − ξj |. We put p ∈ N so that

2
√

d ≤ ep, and since b ∈ GSm,ω
ρ and ψ ∈ Sω(Rd), by Lemma 2.2(iv) and (2.2)

we have that for all n ∈ N there exist Cn, C ′
n > 0 such that

|I| ≤ (
√

d)N

|η − ξ|N
N
∑

k=0

(

N
k

)

×
∫

Rd

Cn

〈(x + s

2
, ξ

)〉−ρ(N−k)
e
(n+1)Lpρϕ∗

(

N−k

(n+1)Lp

)

emω( x+s

2
,ξ)

× C′
ne

(n+1)Lpϕ∗
(

k

(n+1)Lp

)

e−(mL2+L)ω(s−y)ds

≤ CnC′
n

(
√

d)N

|η − ξ|N e
(n+1)Lpϕ∗

(

N

(n+1)Lp

) N
∑

k=0

(

N
k

) ∫

Rd

emω( x+s

2
,ξ)e−(mL2+L)ω(s−y)ds

≤ CnC′
nemLemL2+L (2

√
d)N

|η − ξ|N e
(n+1)Lpϕ∗

(

N

(n+1)Lp

)

×
∫

Rd

emLω(x)+mLω(s)+mLω(ξ)e− mL2+L

L
ω(s)+(mL2+L)ω(y)ds.

From the choice of p ∈ N, Lemma 2.2(iii) gives

|I| ≤ CnC ′
nemLemL2+Le(n+1)

∑p
j=1 Lj |η − ξ|−Ne(n+1)ϕ∗

(

N
n+1

)

× emLω(x)emLω(ξ)e(mL2+L)ω(y)

∫

Rd

e−ω(s)ds.

The integral depending on s converges by property (γ). We take the infimum
on N ∈ N0 and we use Lemma 2.2(ii) (for σ = 1) as follows: for each n ∈ N

there exists C ′′
n > 0 such that

|I| ≤ C ′′
ne−nω(ξ−η)emLω(x)emLω(ξ)e(mL2+L)ω(y)

≤ C ′′
nene(− n

L +mL)ω(ξ)enω(η)emLω(x)e(mL2+L)ω(y).

Thus, for all x, y, y′, ξ, η ∈ R
d satisfying |ξ − η|∞ ≥ 1, we have that for all

λ, λ1, λ2 > 0 there exists Cλ,λ1,λ2 > 0 so that

|F (y, η)ψ(x − y′)I|
≤ Cλ,λ1,λ2e

−λ1ω(y,η)e−λ2ω(x−y′)e(− λ

L
+mL)ω(ξ)eλω(η)emLω(x)e(mL2+L)ω(y)

≤ Cλ,λ1,λ2e
− λ1

2
ω(y)e− λ1

2
ω(η)e− λ2

L
ω(x)eλ2ω(y′)
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× eλ2e(− λ

L
+mL)ω(ξ)eλω(η)emLω(x)e(mL2+L)ω(y)

= Cλ,λ1,λ2e
λ2e(−

λ1
2

+mL2+L)ω(y)e(−
λ1
2

+λ)ω(η)e(−
λ

L
+mL)ω(ξ)

× e(−
λ2
L

+mL)ω(x)eλ2ω(y′),

which belongs to L1(R4d
y,η,ξ,x) provided λ > mL2 (the integral in dξ converges),

λ2 > mL2 (the integral in dx converges), and λ1 > max{2(mL2 +L), 2λ} (the
integrals in dy and dη converge).

On the other hand, if |ξ−η|∞ ≤ 1, then |ξ|−|η| ≤ |ξ−η| ≤ √
d|ξ−η|∞ ≤√

d, so |ξ| ≤ |η| +
√

d. Hence

ω(ξ) ≤ ω(|η| +
√

d) ≤ Lω(η) + Lω(
√

d) + L.

Then, as before, for all λ, λ1, λ2 > 0 there exists Cλ,λ1,λ2 > 0 such that
∣

∣

∣F (y, η)ψ(x − y′)b
(x + s

2
, ξ

)

ψ(s − y)
∣

∣

∣

≤ Cλ,λ1,λ2e
−λω(y,η)e−λ1ω(x−y′)emω( x+s

2 ,ξ)e−λ2ω(s−y)

≤ Cλ,λ1,λ2e
− λ

2 ω(y)e− λ
2 ω(η)e− λ1

L ω(x)eλ1ω(y′)eλ1

× emLω(x)emLω(s)e(mL+1)ω(ξ)e−ω(ξ)emLe− λ2
L ω(s)eλ2ω(y)eλ2

≤ C ′
λ,λ1,λ2

e(− λ2
L +mL)ω(s)e(− λ

2 +λ2)ω(y)

× e(− λ
2 +mL2+L)ω(η)e−ω(ξ)e(− λ1

L +mL)ω(x)eλ1ω(y′),

for some C ′
λ,λ1,λ2

> 0. It belongs to L1(R5d
s,y,η,ξ,x) if λ2 > mL2 (the integral

depending on s converges), λ > max{2λ2, 2mL2+2L} (the integrals depending
on y and η converge), and λ1 > mL2 (the integral depending on x converges).

We can therefore use Fubini’s theorem in (3.5), and we obtain

Vψ(bw(x,D)V ∗
ψ F )(y′, η′)

= (2π)−d

∫

R2d

(∫

R3d

eix·(ξ−η′)eis·(η−ξ)

× b
(x + s

2
, ξ

)

ψ(x − y′)ψ(s − y)dsdξdx

)

F (y, η)dydη.

We put F = Vψu, with u ∈ Sω(Rd). Then, by (2.7) it follows by assumption
V ∗

ψ F = V ∗
ψ Vψu = (2π)du. Hence

Vψ(bw(x,D)u)(y′, η′) =
∫

R2d

K(y′, η′, y, η)Vψu(y, η)dydη,

for all (y′, η′) ∈ R
2d, where the kernel K(y′, η′, y, η) is as in (3.4). �
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Now we recall some facts about entire functions [6, Theorem 2.16, (2.18),
(2.19)]: for any weight function ω, there exists an entire function

G(z) =
∑

α∈N
d
0

aαzα, z ∈ C
d, (3.6)

with

|aα| ≤ eCe−Cϕ∗
ω

(

|α|
C

)

, α ∈ N
d
0, (3.7)

for some C > 0, satisfying

log |G(z)| ≤ ω(z) + C1, z ∈ C
d

log |G(z)| ≥ C2ω(z) − C4, for z ∈ ˜U = {z ∈ C
d : | Im(z)| ≤ C3(|Re(z)| + 1)},

for some C1, C2, C3, C4 > 0. Moreover, for n ∈ N, the n-th power of G, Gn, is
a power series

Gn(z) =
∑

α∈N
d
0

bαzα, z ∈ C
d (3.8)

satisfying

|bα| ≤ enCe−nCϕ∗
ω

(

|α|
nC

)

, α ∈ N
d
0, (3.9)

for the same constant C > 0 as in (3.7). For this C > 0, by using Lemma 2.2(v)
we have that for all λ > 0 there exists Cλ > 0 such that

∣

∣

∣Dβ 1
Gn(ξ)

∣

∣

∣ ≤ CnCλeλϕ∗
(

|β|
λ

)

e−nKω(ξ), β ∈ N
d
0, ξ ∈ R

d, (3.10)

for some K > 0. We integrate by parts using the ultradifferential operator of
(ω)-class associated to G (see [6, p. 3483] for the definition) in (3.6) with the
next formula, which follows from [6, (3.3)]:

ei(x−y)·ξ =
1

Gn(y − x)
Gn(−Dξ)ei(x−y)·ξ. (3.11)

Under the assumptions in Theorem 3.4, we estimate the kernel (3.4) as done
in [12, Proposition 4.4], with the corresponding modifications for the general
symbols of [4,6].

Theorem 3.5. Let b ∈ GSm,ω
ρ and ψ ∈ Sω(Rd) with ‖ψ‖L2(Rd) = 1. If u ∈

Sω(Rd) and K(y′, η′, y, η) is as in (3.4), then for all λ > 0 there exist Cλ, μλ >
0 such that

|K(y′, η′, y, η)| ≤ Cλe−λω(y−y′)e−λω(η−η′)eμλω(η′)emax{0,mL2}(ω(y′)+ω(y))

(3.12)

for all (y′, η′, y, η) ∈ R
4d.

Moreover, if b(z) = 0 for z ∈ Γ \ B(0, R) for an open conic set Γ ⊆
R

2d \ {0} and for some R > 0, then for every open conic set Γ′ ⊆ R
2d \ {0}
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such that Γ′ ∩ S2d−1 ⊆ Γ (where S2d−1 denotes the unit sphere in R
2d) we

have that for all λ > 0 there exists Cλ > 0 such that

|K(y′, η′, y, η)| ≤ Cλe−λω(y−y′)e−λω(η−η′)e−2λω(y′)e−2λω(η′) (3.13)

for all (y′, η′) ∈ Γ′, (y, η) ∈ R
2d.

Proof. Let m > 0. We use the following change of variables in the kernel (3.4)

x − y′ = x′, s − y = s′.

By abuse of notation, we will denote x′ by x and s′ by s. We have, by Theo-
rem 3.4,

K(y′, η′, y, η) = (2π)−2d

∫

R3d

ei(x+y′)·(ξ−η′)+i(s+y)·(η−ξ)

× b
(x + y′ + s + y

2
, ξ

)

ψ(x)ψ(s)dsdxdξ

= (2π)−2de−iy′·η′+iy·η
∫

R3d

b
(x + y′ + s + y

2
, ξ

)

ψ(x)ψ(s)

× eis·(η−ξ)eix·(ξ−η′)eiξ·(y′−y)dsdxdξ. (3.14)

Let G ∈ H(Cd) be as in (3.6). For �, h ∈ N, k ∈ N0, we use (3.11) as follows:

ei(s·(η−ξ)+x·(ξ−η′)+ξ·(y′−y))

=
1

G(ξ − η)
G(−Ds)

[

ei(s·(η−ξ)+x·(ξ−η′)+ξ·(y′−y))
]

=
1

G(ξ − η)Gh(η′ − ξ)
G(−Ds)eis·(η−ξ)Gh(−Dx)

[

ei(x·(ξ−η′)+ξ·(y′−y))
]

=
1

G(ξ − η)Gh(η′ − ξ)〈y − y′〉2k

× G(−Ds)eis·(η−ξ)Gh(−Dx)eix·(ξ−η′)(1 − Δξ)keiξ·(y′−y).

We want to apply this into (3.14) and then integrate by parts in order to write

|K(y′, η′, y, η)| = (2π)−2d〈y − y′〉−2k
∣

∣

∣

∫

R3d

eiξ·(y′−y)λ�,h,k(y
′, η′, y, η, s, x, ξ)dsdxdξ

∣

∣

∣

(3.15)

with

λ,h,k(y′, η′, y, η, s, x, ξ) = (1 − Δξ)k[G−(ξ − η)G−h(η′ − ξ)eix·(ξ−η′)eis·(η−ξ)

× Gh(Dx)G(Ds)
{

b
(x + y′ + s + y

2
, ξ

)

ψ(x)ψ(s)
}]

.

We can integrate by parts in ds and dx since ψ ∈ Sω(Rd). To check if we can
integrate by parts also in dξ, ξ = (ξ1, . . . , ξd) ∈ R

d, we estimate
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|λ�,h,k| = |(1 − ∂2
ξ1

− · · · − ∂2
ξd
)k[G−�(ξ − η)G−h(η′ − ξ)eix·(ξ−η′)eis·(η−ξ)

× Gh(Dx)G
�(Ds)

{

b
(x + y′ + s + y

2
, ξ

)

ψ(x)ψ(s)
}]∣

∣

∣

≤
∑

j1+···+jd+jd+1=k

∣

∣

∣

k!

j1! · · · jd!jd+1!
∂2j1

ξ1
· · · ∂2jd

ξd
[G−�(ξ − η)G−h(η′ − ξ)

× eix·(ξ−η′)eis·(η−ξ)Gh(Dx)G
�(Ds)

{

b
(x + y′ + s + y

2
, ξ

)

ψ(x)ψ(s)
}]∣

∣

∣

=
k

∑

j′=0

(k

j′

)
∑

j1+···+jd=k−j′

(k − j′)!
j1! · · · jd!

∣

∣∂2j1
ξ1

· · · ∂2jd

ξd
[G−�(ξ − η)G−h(η′ − ξ)

× eix·(ξ−η′)eis·(η−ξ)Gh(Dx)G
�(Ds)

{

b
(x + y′ + s + y

2
, ξ

)

ψ(x)ψ(s)
}]∣

∣

∣.

Then, for j = (j1, . . . , jd) ∈ N
d
0,

|λ�,h,k| ≤
k

∑

j′=0

(

k
j′

)

∑

|j|=k−j′

(k − j′)!
j1! · · · jd!

∑

σ1+···+σ5=2j

(2j)!

σ1! · · · σ5!

× |∂σ1
ξ G−�(ξ − η)||∂σ2

ξ G−h(η′ − ξ)||∂σ3
ξ eix·(ξ−η′)||∂σ4

ξ eis·(η−ξ)|

×
∣

∣

∣∂
σ5
ξ Gh(Dx)G

�(Ds)
{

b
(x + y′ + s + y

2
, ξ

)

ψ(x)ψ(s)
}∣

∣

∣

≤
k

∑

j′=0

(

k
j′

)

∑

|j|=k−j′

(2(k − j′))!
(2j1)! · · · (2jd)!

∑

σ1+···+σ5=2j

(2j1)! · · · (2jd)!

σ1! · · · σ5!

× |∂σ1
ξ G−�(ξ − η)||∂σ2

ξ G−h(η′ − ξ)||x||σ3||s||σ4|

×
∣

∣

∣∂
σ5
ξ Gh(Dx)G

�(Ds)
{

b
(x + y′ + s + y

2
, ξ

)

ψ(x)ψ(s)
}∣

∣

∣

≤
k

∑

j′=0

(

k
j′

)

∑

|σ1+···+σ5|=2(k−j′)

(2(k − j′))!
σ1! · · · σ5!

|∂σ1
ξ G−�(ξ − η)||∂σ2

ξ G−h(η′ − ξ)|

× |x||σ3||s||σ4|
∣

∣

∣∂
σ5
ξ Gh(Dx)G

�(Ds)
{

b
(x + y′ + s + y

2
, ξ

)

ψ(x)ψ(s)
}∣

∣

∣.

We take M ∈ N, to be determined later. By (3.10) there exist CM , C1, C3 > 0
so that

|∂σ1
ξ G−(ξ − η)| ≤ C

1CMe
(M+1)L2ϕ∗

(

|σ1|
(M+1)L2

)

e−C3ω(ξ−η);

|∂σ2
ξ G−h(η′ − ξ)| ≤ Ch

1 CMe
(M+1)L2ϕ∗

(

|σ2|
(M+1)L2

)

e−hC3ω(η′−ξ).

By Lemma 2.2(i), it holds that for M ∈ N,

|x||σ3| ≤ e
(M+1)L2ϕ∗

(

|σ3|
(M+1)L2

)

e(M+1)L2ω(〈x〉)

≤ e
(M+1)L2ϕ∗

(

|σ3|
(M+1)L2

)

e(M+1)L3ω(x)e(M+1)L3
.

Analogously,

|s||σ4| ≤ e
(M+1)L2ϕ∗

(

|σ4|
(M+1)L2

)

e(M+1)L3ω(s)e(M+1)L3
.



   65 Page 16 of 40 V. Asensio et al. Results Math

We also have
∣

∣

∣∂σ5
ξ Gh(Dx)G(Ds)

{

b
(x + y′ + s + y

2
, ξ

)

ψ(x)ψ(s)
}∣

∣

∣ ≤
∑

δ,τ∈N
d
0

|aδ||bτ |

×
∑

δ1 + δ2 = δ
τ1 + τ2 = τ

δ!
δ1!δ2!

τ !
τ1!τ2!

∣

∣

∣Dδ1
x Dτ1

s ∂σ5
ξ b

(x + y′ + s + y

2
, ξ

)∣

∣

∣|Dδ2
x ψ(x)||Dτ2

s ψ(s)|,

where aδ and bτ correspond to the coefficients of Gh and of G in (3.8). More-
over, by (3.9) there exists C4 > 0 so that they can be estimated by

|aδ| ≤ ehC4e−hC4ϕ∗
(

|δ|
hC4

)

;

|bτ | ≤ eC4e−C4ϕ∗
(

|τ|
�C4

)

.

Since b ∈ GSm,ω
ρ and ψ ∈ Sω(Rd), for the above M ∈ N and for all μ > 0 there

exists CM,μ > 0 such that
∣

∣

∣Dδ1
x Dτ1

s ∂σ5
ξ b

(x + y′ + s + y

2
, ξ

)∣

∣

∣|Dδ2
x ψ(x)||Dτ2

s ψ(s)|

≤ CM,μe
4(M+1)L2ρϕ∗

(

|δ1+τ1+σ5|
4(M+1)L2

)

emω( x+y′+s+y
2 ,ξ)

× eML2ϕ∗
(

|δ2|
ML2

)

e−μω(x)eML2ϕ∗
(

|τ2|
ML2

)

e−μω(s).

Similarly as in (2.2), we have

emω( x+y′+s+y
2 ,ξ) ≤ emLω( x+y′+s+y

2 )emLω(ξ)emL

≤ emLω(2 max{|x|,|y′|,|s|,|y|})emLω(ξ)emL

≤ emL2ω(x)emL2ω(y′)emL2ω(s)emL2ω(y)emLω(ξ)emL2+mL.

Since 0 < ρ ≤ 1 and ϕ∗(x)/x is increasing, we obtain

e
4(M+1)L2ρϕ∗

(

|δ1+τ1+σ5|
4(M+1)L2

)

≤ eML2ϕ∗
(

|δ1|
ML2

)

eML2ϕ∗
(

|τ1|
ML2

)

e
(M+1)L2ϕ∗

(

|σ5|
(M+1)L2

)

.

Then, as |σ1 + · · · + σ5| = 2(k − j′) ≤ 2k,

e
(M+1)L2ϕ∗

(

|σ1|
(M+1)L2

)

· · · e(M+1)L2ϕ∗
(

|σ5|
(M+1)L2

)

≤ e
(M+1)L2ϕ∗

(

2k
(M+1)L2

)

,

and also
∑

δ1+δ2=δ
τ1+τ2=τ

δ!
δ1!δ2!

τ !
τ1!τ2!

eML2ϕ∗
(

|δ1|
ML2

)

eML2ϕ∗
(

|δ2|
ML2

)

eML2ϕ∗
(

|τ1|
ML2

)

eML2ϕ∗
(

|τ2|
ML2

)

≤ 2|δ+τ |eML2ϕ∗
(

|δ|
ML2

)

eML2ϕ∗
(

|τ|
ML2

)

.
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On the other hand, we have

k
∑

j′=0

(

k

j′

)

∑

|σ1+···+σ5|=2(k−j′)

(2(k − j′))!
σ1! · · · σ5!

=
k

∑

j′=0

(

k

j′

)

52(k−j′) = 52k

(

1 +
1
52

)k

= (26)k.

By all these estimates, we have that for all M ∈ N and μ > 0 there exists
C ′

M,μ > 0 such that

|λ,h,k| ≤ C ′
M,μ(26)ke

(M+1)L2ϕ∗
(

2k
(M+1)L2

)

(C1e
C4)+he−C3ω(ξ−η)e−hC3ω(η′−ξ)

× e((M+1)L3+mL2−μ)(ω(x)+ω(s))emL2ω(y′)emL2ω(y)emLω(ξ)

×
∑

δ,τ∈N
d
0

2|δ|eML2ϕ∗( |δ|
ML2 )−hC4ϕ∗

(

|δ|
hC4

)

2|τ |eML2ϕ∗( |τ|
ML2 )−C4ϕ∗

(

|τ|
�C4

)

.

For any �, h ∈ N, let M ∈ N satisfy

M ≥ C4 max{�, h}.

Then, by Lemma 2.2(iii), we obtain

eML2ϕ∗
(

|δ|
ML2

)

e−hC4ϕ∗
(

|δ|
hC4

)

≤ e
hC4L2ϕ∗

(

|δ|
hC4L2

)

e−hC4ϕ∗
(

|δ|
hC4

)

=
( 1

e2

)|δ|
e
2|δ|+hC4L2ϕ∗

(

|δ|
hC4L2

)

e−hC4ϕ∗
(

|δ|
hC4

)

≤
( 1

e2

)|δ|
ehC4L2+hC4L.

Analogously,

eML2ϕ∗
(

|τ|
ML2

)

e−C4ϕ∗
(

|τ|
�C4

)

≤
( 1

e2

)|τ |
eC4L2+C4L.

The series
∑

δ,τ∈N
d
0

( 2
e2

)|δ+τ |
≤

∑

δ,τ∈N
d
0

(1
e

)|δ+τ |

converges (see for instance [6, (3.6)]). Again Lemma 2.2(iii) yields, as 26 < e4,
that

(26)ke
(M+1)L2ϕ∗

(

2k
(M+1)L2

)

≤ e(M+1)L2+(M+1)Le(M+1)ϕ∗
(

2k
M+1

)

.

Then, for all μ > 0 there exists C ′′
μ,M > 0 such that (for M so that M ≥

C4 max{�, h})
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|λ,h,k| ≤ C ′′
μ,Me(M+1)ϕ∗

(

2k
M+1

)

(C1e
C4+C4L+C4L2

)+h

×e((M+1)L3+mL2−μ)(ω(x)+ω(s))emL2ω(y′)

×emL2ω(y)emLω(ξ)e−C3ω(ξ−η)e−hC3ω(η′−ξ). (3.16)

By estimating

e−C3ω(ξ−η)e−hC3ω(η′−ξ) ≤ e−
C3
L ω(η)e(−h

C3
L +C3)ω(ξ)ehC3ω(η′)e(+h)C3 ,

given � ∈ N we take h > �L + mL2/C3, and we choose μ > (M + 1)L3 + mL2

so that |λ,h,k| is estimated by a function that belongs to L1(R2d
s,x) for all

k ∈ N0, and that goes to 0 as |ξ| → +∞. From this, it follows that we can
integrate by parts also in dξ, putting the ∂ξ-derivatives inside the integral in
dsdx. Therefore, since

e−
C3
L ω(η)ehC3ω(η′) ≤ e−

C3
L2 ω(η−η′)e(

C3
L +hC3)ω(η′)e

C3
L ,

there exists CM,,h,μ > 0 such that, by (3.15)

|K(y′, η′, y, η)| ≤ CM,�,h,μ〈y − y′〉−2ke
(M+1)ϕ∗

(

2k

M+1

)

emL2(ω(y)+ω(y′))

× e−�
C3
L2 ω(η−η′)e(�

C3
L

+hC3)ω(η′)

×
∫

R3d

e((M+1)L3+mL2−μ)(ω(x)+ω(s))e(mL+�C3−h
C3
L

)ω(ξ)dsdxdξ.

We take the infimum on k ∈ N0 and we use Lemma 2.2(ii) (with σ = 2) to get
for some C ′

M,,h,μ > 0,

|K(y
′
, η

′
, y, η)| ≤ C

′
M,�,h,μe

−Mω(〈y−y′〉)
e

mL2(ω(y)+ω(y′))
e

−�
C3
L2 ω(η−η′)

e
(� C3

L
+hC3)ω(η′)

×
∫

R3d

e
((M+1)L3+mL2−μ)(ω(x)+ω(s))

e
(�C3+mL−h

C3
L

)ω(ξ)
dsdxdξ.

(3.17)

Given � ∈ N, the integrals are convergent by the same selection as before
(h > �L + mL2/C3 and μ > (M + 1)L3 + mL2). Therefore, for every λ > 0
there exist Cλ, μλ > 0 such that

|K(y′, η′, y, η)| ≤ Cλe−λω(y−y′)e−λω(η−η′)eμλω(η′)emL2(ω(y′)+ω(y)).

This shows formula (3.12). We observe that, given � ∈ N, if we take h > 0 as
before (h > �L+mL2/C3) and M ≥ C4 max{�, h} satisfying also M ≥ �+mL3

then

e−Mω(〈y−y′〉) ≤ e−ω(y−y′)e−mL2ω(y)+mL3ω(y′)+mL3
.

By setting μ > 0 as before (μ > (M + 1)L3 + mL2), we get from (3.17) that
for all λ > 0 there are Cλ, μλ > 0 such that

|K(y′, η′, y, η)| ≤ Cλe−λω(y−y′)e−λω(η−η′)eμλω(η′)e(mL2+mL3)ω(y′). (3.18)
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For the second part, we follow closely the proof of [37, Proposition 3.7].
By (3.16), we can proceed as in (3.17) using (3.15) and taking the infimum on
k ∈ N0 to find C ′′

M,,h,μ > 0 such that

|K(y′, η′, y, η)| ≤ C ′′
M,,h,μe−Mω(〈y−y′〉)emL3ω(y−y′)e(mL2+mL3)ω(y′)

×
∫

R3d

e((M+1)L3+mL2−μ)(ω(x)+ω(s))

× emLω(ξ)e−C3ω(ξ−η)e−hC3ω(η′−ξ)dsdxdξ

(3.19)

for all (y′, η′, y, η) ∈ R
4d. Now, we assume b(z) = 0 for z ∈ Γ\B(0, R). We set

Dy′,y :=
{

(x, s, ξ) ∈ R
3d :

(x + y′ + s + y

2
, ξ

)

∈ (R2d \ Γ) ∪ B(0, R)
}

.

We want to estimate |K(y′, η′, y, η)| for (y′, η′) ∈ Γ′, a conic subset of Γ with
Γ′ ∩ S2d−1 ⊆ Γ, and (y, η) ∈ R

2d. By formula [37, (3.19)], there exists ε > 0
such that

∣

∣

∣

(y′, η′)
|(y′, η′)| −

(

x+y′+s+y
2 , ξ

)

|(y′, η′)|
∣

∣

∣ ≥ ε,

for all (y′, η′) ∈ Γ′, |(y′, η′)| ≥ 2R, (x, s, ξ) ∈ Dy′,y, (y, η) ∈ R
2d. From this, it

follows, as |y′ − x − s − y| ≤ 2max{|y′ − y|, |x + s|},

eω(ε(y′,η′)) ≤ e
ω

(

y′−x−s−y
2 ,η′−ξ

)

≤ eLω(y′−y)+L2ω(x)+L2ω(s)eLω(η′−ξ)eL2+L.

Thus, for that ε > 0, there exist Cε, Lε > 0 such that

e
1
2ω(y′)e

1
2ω(η′) ≤ eω(y′,η′) ≤ Cεe

Lε(ω(y′−y)+ω(x)+ω(s)+ω(η′−ξ)).

Hence there exist C ′
ε, L

′
ε > 0 such that

e−ω(η′−ξ) ≤ C ′
εe

−L′
εω(y′)−L′

εω(η′)eω(y−y′)+ω(x)+ω(s). (3.20)

Set h = Hh′ = h′ + (H − 1)h′ for some H > 1 and h′ > 0 to be determined
later. Therefore by (3.20)

e−(H−1)h′C3ω(η′−ξ)e−h′C3ω(η′−ξ)

≤ (C ′
ε)

(H−1)h′C3e−(H−1)h′C3L′
εω(y′)

× e−(H−1)h′C3L′
εω(η′)e(H−1)h′C3(ω(y−y′)+ω(x)+ω(s))

× e−h′ C3
L ω(ξ)eh′C3ω(η′)eh′C3 .

Since

e−C3ω(ξ−η) ≤ eC3e−
C3
L ω(η−η′)eC3ω(η′−ξ)

≤ eC3e−
C3
L ω(η−η′)eC3Lω(η′)eC3Lω(ξ)eC3L

we then find, from (3.19), C ′′′
M,,h,μ > 0 such that

|K(y′, η′, y, η)| ≤ C ′′′
M,,h,μe−Mω(〈y−y′〉)
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× e((H−1)h′C3+mL3)ω(y−y′)e(−(H−1)h′C3L′
ε+mL2+mL3)ω(y′)

× e−
C3
L ω(η−η′)e(−(H−1)h′C3L′

ε+h′C3+C3L)ω(η′)

×
∫

R3d

e((M+1)L3+mL2+(H−1)h′C3−μ)(ω(x)+ω(s))

× e(−h′ C3
L +C3L+mL)ω(ξ)dsdxdξ.

Given � ∈ N arbitrary, we denote λ = �C3
L > 0. We put h′ > 0 such that

(

−h′ C3

L
+ �C3L + mL

)

ω(ξ) ≤ −ω(ξ),

and then H > 1 with

(−(H − 1)h′L′
εC3 + mL2 + mL3)ω(y′) ≤ −2λω(y′);

(−(H − 1)h′L′
εC3 + h′C3 + �C3L)ω(η′) ≤ −2λω(η′).

We take M ∈ N (which satisfies M ≥ C4 max{�,Hh′}) such that

−Mω(〈y − y′〉) + ((H − 1)h′C3 + mL3)ω(y − y′) ≤ −λω(y − y′),

and finally μ > 0 large enough so that

((M + 1)L3 + mL2 + (H − 1)h′C3 − μ)(ω(x) + ω(s)) ≤ −(ω(x) + ω(s)).

With these choices, the convergence of the integrals is guaranteed, and also
(3.13) is satisfied for all (y′, η′) ∈ Γ′, |(y′, η′)| ≥ 2R and (y, η) ∈ R

2d. The
proof for |(y′, η′)| ≤ 2R follows directly from (3.18). This completes the proof.

�

4. The Weyl Wave Front Set

In the present section we introduce a new global wave front set given in terms
of Weyl quantizations in the ultradifferentiable setting, similarly to the one
introduced by Hörmander [28, Definition 2.1] in the classical setting. We have
some restrictions on the weight functions since the definition is based on the
construction of parametrices given in [4,22]. We also show that in the definition
it is enough to use symbols of order zero, so we extend [37, Proposition 2.7],
which is crucial for the next sections.

Definition 4.1. Given a ∈ GSm,ω
ρ , we say that z0 ∈ R

2d\{0} is non-characteristic
for a if there exist a Gevrey weight function σ with ω(t1/ρ) = o(σ(t)) as
t → +∞, C1, C2 > 0, n ∈ N, R ≥ 1, and an open conic set Γ ⊂ R

2d \ {0} with
z0 ∈ Γ, satisfying
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|a(z)| ≥ C1e
mω(z), and (4.1)

|Dαa(z)| ≤ C
|α|
2 〈z〉−ρ|α|e

1
n ϕ∗

σ(n|α|)|a(z)|, (4.2)

for all α ∈ N
2d
0 , z ∈ Γ, |z| ≥ R.

We recall that there are non-quasianalytic weight functions in the sense
of [16] that cannot be dominated by any subadditive function that satisfies
property (β) (see [24]). This motivates the following definition.

Definition 4.2. Fix 0 < ρ ≤ 1. A weight function ω is called ρ-regular if for all
m ∈ R there exists a ∈ GSm,ω

ρ such that for some Gevrey weight function σ

with ω(t1/ρ) = o(σ(t)) as t → +∞, the inequalities (4.1) and (4.2) hold for all
z ∈ R

2d with |z| ≥ R, for some R ≥ 1.

If follows from Example 3.3 that Gevrey weights ω(t) = ta, 0 < a < 1/2,
are (1 − a)-regular weight functions.

Definition 4.3. Let ω be a weight function, 0 < ρ ≤ 1 and u ∈ S ′
ω(Rd). We

say that z ∈ R
2d \ {0} is not in the Weyl wave front set WFω

ρ (u) of u if
there exist m ∈ R and a ∈ GSm,ω

ρ such that aw(x,D)u ∈ Sω(Rd) and z is
non-characteristic for a.

We need to introduce the notion of conic support [37, Definition 2.1]
before the next result.

Definition 4.4. Given u ∈ S ′
ω(R2d), the conic support of u, denoted by

conesupp (u), is defined as the set of all x ∈ R
2d \ {0} such that any conic

open set Γ ⊆ R
2d \ {0} that contains x satisfies that supp (u) ∩ Γ is not a

compact set in R
2d.

The following lemma is [23, Lemma 4].

Lemma 4.5. Given a weight function σ and two cones Γ,Γ′ ⊆ R
2d \ {0} such

that Γ′ ∩ S2d−1 ⊆ Γ, there exists χ ∈ C∞(R2d) such that 0 ≤ χ ≤ 1, supp (χ) ⊆
Γ, χ(z) = 1 for z ∈ Γ′ with |z| ≥ 1 and for every k ∈ N there is Ck > 0 such
that

|Dαχ(z)| ≤ Ck〈z〉−|α|ekϕ∗
σ

(

|α|
k

)

, α ∈ N
2d
0 , z ∈ R

2d.

Moreover, if ω satisfies ω(t1/ρ) = o(σ(t)) as t → ∞, for some 0 < ρ ≤ 1, then
χ ∈ GS0,ω

ρ .

Now we show that in Definition 4.3, similarly as in [37, Proposition 2.7],
the symbol can be taken of order zero for regular weight functions.

Proposition 4.6. Let ω be a ρ-regular weight function, for some 0 < ρ ≤ 1,
u ∈ S ′

ω(Rd), and 0 �= z0 /∈ WFω
ρ (u). There exist b ∈ GS0,ω

ρ and an open conic
set Γ ⊂ R

2d \ {0} such that z0 ∈ Γ, 0 ≤ b ≤ 1, b(z) = 1 for z ∈ Γ with |z| ≥ 1
and bw(x,D)u ∈ Sω(Rd).
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Proof. Since z0 /∈ WFω
ρ (u), there are m ∈ R and a ∈ GSm,ω

ρ such that
aw(x,D)u ∈ Sω(Rd), a Gevrey weight function σ such that ω(t1/ρ) = o(σ(t))
as t → ∞, C1, C2 > 0, n ∈ N, R ≥ 1, and an open conic set Γ ⊂ R

2d \{0} such
that z0 ∈ Γ, and a satisfies (4.1) and (4.2) for all z ∈ Γ with |z| ≥ R. It is not
restrictive to assume C2 ≥ 1.

Without losing generality, we can assume that Γ is connected (if Γ is not
connected, then we take the connected component in which z0 lies). Then,
since (4.1) is satisfied it is not restrictive to assume [40]

a(z) ≥ 0, z ∈ Γ, |z| ≥ R.

Moreover, we have

a(z) ≥ C1e
mω(z), z ∈ Γ, |z| ≥ R. (4.3)

Since ω is a ρ-regular weight there is a symbol a0 ∈ GSm,ω
ρ and a Gevrey weight

function that without loss of generality we can assume to be σ (if not, we take
the minimum of the two Gevrey weights, which is also a Gevrey weight) such
that for the same C1, C2 > 0, n ∈ N, R ≥ 1, formulas (4.1) and (4.2) are
satisfied for a0, for all z ∈ R

2d with |z| ≥ R. As R
2d \ B(0, R) is connected,

a0(z) ≥ 0 for all z ∈ R
2d, |z| ≥ R and also

a0(z) ≥ C1e
mω(z), |z| ≥ R. (4.4)

Let Γ′,Γ′′ ⊂ R
2d \ {0} be open conic sets such that z0 ∈ Γ′′, Γ′′ ∩ S2d−1 ⊂ Γ′

and Γ′ ∩ S2d−1 ⊂ Γ. For the weight function σ, let χ be as in Lemma 4.5 for Γ
and Γ′. By proceeding in a similar way for Γ′ and Γ′′, we can obtain b ∈ GS0,ω

ρ

with 0 ≤ b ≤ 1, supp (b) ⊆ Γ′, b(z) = 1 for z ∈ Γ′′ with |z| ≥ 1.
Now, we set

b0(z) := χ(z)a(z) + (1 − χ(z))a0(z).

It is clear that b0 ∈ GSm,ω
ρ since a, a0 ∈ GSm,ω

ρ , χ ∈ GS0,ω
ρ . For any z /∈ Γ, we

have that χ(z) = 0 and therefore (since a0 satisfies (4.1) for all |z| ≥ R),

|b0(z)| = |a0(z)| ≥ C1e
mω(z), z /∈ Γ, |z| ≥ R.

On the other hand, as a(z), a0(z) ≥ 0 for all z ∈ Γ with |z| ≥ R, and 0 ≤ χ ≤ 1,
it follows b0(z) ≥ 0. Furthermore, from (4.3) and (4.4),

b0(z) = χ(z)a(z) + (1 − χ(z))a0(z) ≥ C1e
mω(z), z ∈ Γ, |z| ≥ R.

Hence, we obtain

|b0(z)| ≥ C1e
mω(z), |z| ≥ R. (4.5)

This obviously implies condition (i) of Theorem 3.2 for b0. Since χ is as in
Lemma 4.5, there exists C > 0 such that, for the previous n ∈ N,

|Dαχ(z)| ≤ C〈z〉−|α|eϕ∗
σ(|α|) ≤ C〈z〉−ρ|α|e

1
n ϕ∗

σ(n|α|),
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for all α ∈ N
2d
0 , z ∈ R

2d. Therefore, as a, a0 satisfy (4.2) for z ∈ Γ with |z| ≥ R,
by Leibniz rule we have

|Dαb0(z)| ≤
∑

β≤α

(α

β

)

|Dβχ(z)||Dα−βa(z)| +
∑

β≤α

(α

β

)

|Dβ(1 − χ)(z)||Dα−βa0(z)|

≤
∑

β≤α

(α

β

)

C〈z〉−ρ|β|e
1
n

ϕ∗
σ
(n|β|)

× C
|α−β|
2 〈z〉−ρ|α−β|e

1
n

ϕ∗
σ
(n|α−β|)(|a(z)| + |a0(z)|).

Since a, a0 ∈ GSm,ω
ρ there exists C ′ > 0 such that (we observe that

∑

β≤α

(

α
β

)

=
2|α|)

|Dαb0(z)| ≤ C(2C2)|α|〈z〉−ρ|α|e
1
n ϕ∗

σ(n|α|)2C ′emω(z).

We consider D = 2C2 max{1, 2CC′
C1

} > 0. Then from (4.5) we obtain

|Dαb0(z)| ≤ D|α|〈z〉−ρ|α|e
1
n ϕ∗

σ(n|α|)C1e
mω(z)

≤ D|α|〈z〉−ρ|α|e
1
n ϕ∗

σ(n|α|)|b0(z)|
for all α ∈ N

2d
0 and z ∈ Γ, |z| ≥ R. On the other hand, if z /∈ Γ, then by

construction b0 = a0, which satisfies (4.2). Hence b0 satisfies condition (ii) of
Theorem 3.2 for all z ∈ R

2d with |z| ≥ R.
Thus, there exists c ∈ GS|m|,ω

ρ such that

c#b0 = 1 + s, for some s ∈ Sω(R2d).

Therefore

b = b#c#b0 − b#s

= b#c#(b0 − a) + b#c#a − b#s. (4.6)

We claim that bw(x,D)u ∈ Sω(Rd). Since supp (b) ⊆ Γ′ and

b0 − a = χa + (1 − χ)a0 − a = (1 − χ)(a0 − a)

vanishes for z ∈ Γ′, |z| ≥ 1 (because χ(z) = 1) we deduce that

E := supp (b) ∩ supp (b0 − a)

is a compact set. This implies

b#c#(b0 − a) ∈ Sω(R2d).

Indeed, let χ̃ ∈ Sω(R2d) with compact support with χ̃ = 1 on E. Then
b#c#(b0 − a) has the same asymptotic expansion of b#c#(χ̃(b0 − a)). By
[6, Proposition 4.3] we deduce

bw(x,D)cw(x,D)(b0 − a)w(x,D) = bw(x,D)cw(x,D)(χ̃(b0 − a))w(x,D) + R,
(4.7)
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for a globally ω-regularizing operator R : S ′
ω(Rd) → Sω(Rd). Since χ̃(b0 − a)

has compact support, we have

(χ̃(b0 − a))w(x,D)u ∈ Sω(Rd), u ∈ S ′
ω(Rd).

The continuity of the Weyl operator yields

cw(x,D)(χ̃(b0 − a))w(x,D)u ∈ Sω(Rd), u ∈ S ′
ω(Rd),

and

bw(x,D)cw(x,D)(χ̃(b0 − a))w(x,D)u ∈ Sω(Rd), u ∈ S ′
ω(Rd).

Hence, by (4.7),

bw(x,D)cw(x,D)(b0 − a)w(x,D)u ∈ Sω(Rd), u ∈ S ′
ω(Rd).

Moreover, since s ∈ Sω(R2d), we have

bw(x,D)sw(x,D)u ∈ Sω(Rd), u ∈ S ′
ω(Rd).

By assumption aw(x,D)u ∈ Sω(Rd), so

bw(x,D)cw(x,D)aw(x,D)u ∈ Sω(Rd), u ∈ S ′
ω(Rd).

Hence, from (4.6), we finally obtain that

bw(x,D)u = bw(x,D)cw(x,D)(b0 − a)w(x,D)u+

+ bw(x,D)cw(x,D)aw(x,D)u − bw(x,D)sw(x,D)u

belongs to Sω(Rd) for any u ∈ S ′
ω(Rd), and the proof is complete. �

5. A Comparison Between Different Wave Front Sets

The following definition of wave front set has been introduced and studied in
[12, Definition 3.1], which extends the Gabor wave front set given in [37] for
the classical setting.

Definition 5.1. Let u ∈ S ′
ω(Rd) and ψ ∈ Sω(Rd) \ {0} be a window function.

We say that z0 ∈ R
2d \ {0} is not in the ω-wave front set WF′

ω(u) of u if there
exists an open conic set Γ ⊆ R

2d \ {0}, z0 ∈ Γ, such that

sup
z∈Γ

eλω(z)|Vψu(z)| < +∞, λ > 0.

In [12, Theorem 4.13] an inclusion like (5.2) for linear partial differential
operators with polynomial coefficients is proven. Now, we present an extension
of this result for any linear partial differential operator of order m with variable
coefficients of the form

P (x,D) =
∑

|γ|≤m

aγ(x)Dγ , (5.1)

where aγ ∈ Sω(Rd).



Global Wave Front Sets in Ultradifferentiable Classes Page 25 of 40    65 

We observe that, in general, a function in Sω(R2d) is not automatically
a global symbol in GSm,ω

ρ . Hence (5.1) is not necessarily an operator with
symbol in these classes. It is proven in [6, Example 3.13(b)] that in general
Sσ(R2d) ⊆ ⋂

m∈R
GSm,ω

ρ ⊆ Sω(R2d) for every pair of weights ω and σ satisfying
ω(t(1+ρ)/ρ) = O(σ(t)), t → ∞, for some 0 < ρ ≤ 1. Also it is given there a
suitable example of a weight ω for which Sω(R2d) =

⋂

m∈R
GSm,ω

ρ .
We show that the action of the differential operator in (5.1) to an ultra-

distribution u ∈ S ′
ω(Rd) shrinks the ω-wave front set WF′

ω(u).

Theorem 5.2. For the differential operator defined in (5.1), we have

WF′
ω(P (x,D)u) ⊆ WF′

ω(u), u ∈ S ′
ω(Rd). (5.2)

The ω-wave front set does not depend on the choice of the window func-
tion ψ. The following lemma is an improvement of [12, Proposition 3.2].

Lemma 5.3. Let u ∈ S ′
ω(Rd), ψ ∈ Sω(Rd) \ {0}, and z0 ∈ R

2d \ {0}. If there
exists an open conic set Γ ⊆ R

2d \ {0} containing z0 such that

sup
z∈Γ

eλω(z)|Vψu(z)| < +∞, λ > 0,

then, for any bounded set B of Sω(Rd) \ {0} and for any open conic set Γ′ ⊆
R

2d \ {0} containing z0 and such that Γ′ ∩ S2d−1 ⊆ Γ, where S2d−1 is the unit
sphere in R

2d, we have

sup
φ∈B

sup
z∈Γ′

eλω(z)|Vφu(z)| < +∞, λ > 0.

Proof. By [12, Proposition 2.12], for any ψ, φ ∈ Sω(Rd), ψ �= 0, we have

|Vφu(z)| ≤ (2π)−d ‖ψ‖−2
L2 (|Vψu| ∗ |Vφψ|)(z), z ∈ R

2d.

By Lemma 2.6,

|Vφψ(z′)| = |Vψφ(−z′)| = |Vψφ(−z′)|, z′ ∈ R
2d.

Then,

(|Vψu| ∗ |Vφψ|)(z) =
∫

R2d

|Vψu(z − z′)||Vφψ(z′)|dz′

=
∫

R2d

|Vψu(z − z′)||Vψφ(−z′)|dz′.

For ε > 0, we denote for all z ∈ R
2d,

I1(z) :=
∫

〈z′〉≤ε〈z〉
|Vψu(z − z′)||Vψφ(−z′)|dz′,

I2(z) :=
∫

〈z′〉≥ε〈z〉
|Vψu(z − z′)||Vψφ(−z′)|dz′.

We choose ε > 0 sufficiently small so that

z ∈ Γ′, |z| ≥ 1, 〈z′〉 ≤ ε〈z〉, then z − z′ ∈ Γ.
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Since Vψ : Sω(Rd) → Sω(R2d) is continuous (by [12, Proposition 2.9]), the set
Vψ(B) is bounded in Sω(R2d). Thus for all μ > 0 there exists Cμ > 0 such
that

sup
φ∈B

|Vψφ(−z′)|eμω(−z′) ≤ Cμ, z′ ∈ R
2d.

To estimate I1, we use the assumption made on Γ for Vψu as follows: for
all λ > 0 there exists Cλ > 0 such that

I1(z) ≤ Cλ

∫

〈z′〉≤ε〈z〉
e−λLω(z−z′)|Vψφ(−z′)|dz′

≤ CλeλLe−λω(z)

∫

R2d

eλLω(z′)|Vψφ(−z′)|dz′

= CλeλLe−λω(z)

∫

R2d

(

e(λL+1)ω(−z′)|Vψφ(−z′)|)e−ω(z′)dz′ ≤ C ′
λe−λω(z),

for some constant C ′
λ > 0, for all z ∈ Γ′, |z| ≥ 1, and all φ ∈ B.

On the other hand, by [26, Theorem 2.4] (see also [12, Theorem 2.5]),
Vψu is continuous and there are constants c, μ > 0 such that

|Vψu(z)| ≤ ceμω(z), z ∈ R
2d.

Let q ∈ N0 be such that ε−1 < 2q. Then, for 〈z′〉 ≥ ε〈z〉, the properties of the
weight ω yield

ω(z) ≤ ω(ε−1〈z′〉) ≤ ω(2q〈z′〉) ≤ Lq+1ω(z′) + Lq+1 + Lq + · · · + L.

Then, we have

−Lq+1ω(z′) ≤ −ω(z) + (Lq+1 + Lq + · · · + L), for 〈z′〉 ≥ ε〈z〉.
Therefore, for all λ > 0 and all φ ∈ B, we have

I2(z) ≤ c

∫

〈z′〉≥ε〈z〉
eμω(z−z′)|Vψφ(−z′)|dz′

≤ ceμLeμLω(z)

∫

〈z′〉≥ε〈z〉
eμLω(−z′)|Vψφ(−z′)|dz′

= ceμLeμLω(z)

∫

〈z′〉≥ε〈z〉
e−(λ+μL)Lq+1ω(z′)

× (|Vψφ(−z′)|e((λ+μL)Lq+1+1+μL)ω(−z′))e−ω(z′)dz′

≤ ceμLe(λ+μL)(Lq+1+Lq+···+L)e−λω(z)

×
∫

R2d

(|Vψφ(−z′)|e((λ+μL)Lq+1+1+μL)ω(−z′))e−ω(z′)dz′.

Hence for all λ > 0 there exists C ′′
λ > 0 such that

I2(z) ≤ C ′′
λe−λω(z), z ∈ R

2d.

This finishes the proof. �
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Proof of Theorem 5.2. We fix a window function ψ ∈ Sω(Rd) \ {0}. From the
linearity of the short-time Fourier transform and Lemmas 2.8 and 2.5, we have,
for z = (x, ξ) ∈ R

2d,

Vψ(P (x,D)u)(x, ξ) =
∑

|γ|≤m

Vψ(aγ · Dγu)(x, ξ)

= (2π)−d
∑

|γ|≤m

(

̂aγ · Dγu ∗ M−x
̂ψ
)

(ξ)

= (2π)−2d
∑

|γ|≤m

(

(

âγ ∗ ̂Dγu
) ∗ M−x

̂ψ
)

(ξ)

= (2π)−2d
∑

|γ|≤m

(

̂Dγu ∗ (

âγ ∗ M−x
̂ψ
)

)

(ξ). (5.3)

On the other hand, it is easy to see that

âγ ∗ M−x
̂ψ = M−x

(

Mxâγ ∗ ̂ψ
)

.

Now, we define φx,γ ∈ Sω(Rd) \ {0} depending on x ∈ R
d, γ ∈ N

d
0 with

|γ| ≤ m such that

̂φx,γ := Mxâγ ∗ ̂ψ. (5.4)

Then, by formula (5.3), Lemma 2.8, and [12, (4.31)],

Vψ(P (x,D)u)(x, ξ) = (2π)−2d
∑

|γ|≤m

(

̂Dγu ∗ M−x

(

Mxâγ ∗ ̂ψ
)

)

(ξ)

= (2π)−d
∑

|γ|≤m

Vφx,γ
(Dγu)(x, ξ)

= (2π)−d
∑

|γ|≤m

∑

β≤γ

(

γ

β

)

ξγ−βVDβφx,γ
(u)(x, ξ). (5.5)

We show that the set

B := {Mxâγ ∗ ̂ψ : x ∈ R
d, |γ| ≤ m} (5.6)

is bounded in Sω(Rd). For all λ > 0, we have, by the Young inequality,
∣

∣eλω(y)
(

Mxâγ ∗ ̂ψ
)

(y)
∣

∣ =
∣

∣

∣

∫

eλω(y)Mxâγ(s)̂ψ(y − s)ds
∣

∣

∣

=
∣

∣

∣

∫

eλω(y)eix·sâγ(s)̂ψ(y − s)ds
∣

∣

∣

≤ eλL

∫

eλLω(s)|âγ(s)|eλLω(y−s)|̂ψ(y − s)|ds

≤ eλL max
|γ|≤m

∥

∥

∥eλLω(·)âγ(·)
∥

∥

∥

L1(Rd)

∥

∥

∥eλLω(·)̂ψ(·)
∥

∥

∥

L∞(Rd)
.

(5.7)
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On the other hand, by Lemmas 2.7 and 2.5 we have

Mxâγ ∗ ̂ψ = T̂−xaγ ∗ ̂ψ = (2π)d ̂(T−xaγ · ψ),

so its Fourier transform satisfies

(
̂

Mxâγ ∗ ̂ψ)(η) = (2π)d
̂

( ̂T−xaγ · ψ)(η) = (2π)2d(T−xaγ · ψ)(−η).

Thus, for all λ > 0,

∣

∣eλω(η)(
̂

Mxâγ ∗ ̂ψ)(η)
∣

∣ = (2π)2d|eλω(η)T−xaγ(−η)ψ(−η)|
= (2π)2d|aγ(x − η)eλω(−η)ψ(−η)|
≤ (2π)2d max

|γ|≤m
‖aγ(·)‖L∞(Rd)

∥

∥

∥eλω(·)ψ(·)
∥

∥

∥

L∞(Rd)
.

(5.8)

Formulas (5.7) and (5.8) show that the set given in (5.6) is bounded in Sω(Rd)
[26, Corollary 2.9] (we are using the seminorms given by (2.4)).

Since the Fourier transform is an isomorphism in Sω(Rd), the set

F−1(B) = {φ : ̂φ = f, for some f ∈ B}
is bounded in Sω(Rd), and therefore

B′ := {φ : ̂φ = f, for some f ∈ B}
is also a bounded set in Sω(Rd), and the function φx,γ taken in (5.4) belongs
to B′. Now, we see that

B′′ := {Dβφ : φ ∈ B′, |β| ≤ m}
is also bounded in Sω(Rd). We consider the following system of seminorms in
Sω(Rd) (see (2.3)):

qλ(φ) = sup
α,δ∈N

d
0

sup
x∈Rd

|xαDδφ(x)|e−λϕ∗
(

|α+δ|
λ

)

, φ ∈ Sω(Rd), λ > 0.

We fix λ > 0. From the convexity of ϕ∗ (Lemma 2.2(iv)) we have for β ∈ N
d
0,

|β| ≤ m,

qλ(Dβφ) = sup
α,δ∈N

d
0

sup
x∈Rd

|xαDδ+βφ(x)|e−λϕ∗
(

|α+δ|
λ

)

≤ eλϕ∗
(

|β|
λ

)

sup
α,δ∈N

d
0

sup
x∈Rd

|xαDδ+βφ(x)|e−2λϕ∗
(

|α+(δ+β)|
2λ

)

≤ eλϕ∗
(

|β|
λ

)

sup
α,δ′∈N

d
0

sup
x∈Rd

|xαDδ′
φ(x)|e−2λϕ∗

(

|α+δ′|
2λ

)

= eλϕ∗
(

|β|
λ

)

q2λ(φ).

Since φ ∈ B′ and eλϕ∗
(

|β|
λ

)

≤ eλϕ∗( m
λ ), we get qλ(Dβφ) < +∞ as we wanted.
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Let us show (5.2). To this aim, we denote z = (x, ξ) ∈ R
2d and assume

that 0 �= z0 /∈ WF′
ω(u). Then, there exists Γ ⊆ R

2d \ {0} an open conic set
containing z0 such that

sup
z∈Γ

eλω(z)|Vψu(z)| < +∞, λ > 0.

By Lemma 5.3 we obtain that, for any open cone Γ′ containing z0 with
Γ′ ∩ S2d−1 ⊆ Γ,

sup
β,γ∈N

d
0 :|β|,|γ|≤m

x∈R
d

sup
z∈Γ′

eλω(z)|VDβφx,γ
(u)(z)| < +∞, λ > 0. (5.9)

From (5.5) we have, for all λ > 0,

eλω(z)|Vψ(P (x,D)u)(z)| ≤ (2π)−d

×
∑

|γ|≤m

∑

β≤γ

(

γ
β

)

|ξγ−β |e−Lω(z)e(λ+L)ω(z)|VDβφx,γ
(u)(z)|. (5.10)

Since |γ − β| ≤ |γ| ≤ m we have, by Lemma 2.2(i), that

|ξγ−β | ≤ |ξ||γ−β| ≤ 〈z〉m ≤ eϕ∗(m)eω(〈z〉) ≤ eϕ∗(m)eLω(z)+L

for all z = (x, ξ) ∈ R
2d. Therefore

sup
z∈R2d

|ξγ−β |e−Lω(z) < +∞

for every β ≤ γ, |γ| ≤ m. When taking the supremum in (5.10) in z ∈ Γ′,
by (5.9) we obtain

sup
z∈Γ′

eλω(z)|Vψ(P (x,D)u)(z)| < +∞, λ > 0.

Hence z0 /∈ WF′
ω(P (x,D)u) and the proof is complete. �

First Inclusion

Now, we compare the Weyl wave front set defined in Sect. 4 with the ω-wave
front set WF′

ω(u), for certain weight functions ω and any ultradistribution
u ∈ S ′

ω(Rd).

Proposition 5.4. Let ω be a weight function, b ∈ GSm,ω
ρ , and u ∈ S ′

ω(Rd).
Then,

WF′
ω(bw(x,D)u) ⊂ conesupp (b).

Proof. For a window function ψ ∈ Sω(Rd) \ {0}, by formula (3.13) the kernel
K in (3.4) satisfies the same estimates as in [12, Proposition 4.4]. The proof is
therefore analogous to that of [12, Proposition 4.11] (with the only difference
that now ω is not necessarily subadditive). �

The same result holds for the Kohn-Nirenberg quantization, and the proof
is analogous. As a consequence of Proposition 5.4, we obtain as in [12, Corollary
4.12] the following
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Corollary 5.5. If b ∈ GSm,ω
ρ has compact support, then bw(x,D) is globally

ω-regularizing.

Theorem 5.6. Let ω be a ρ-regular weight function, for some 0 < ρ ≤ 1. If
u ∈ S ′

ω(Rd), then

WF′
ω(u) ⊂ WFω

ρ (u).

Proof. Let 0 �= z0 /∈ WFω
ρ (u). According to Proposition 4.6, there exist b ∈

GS0,ω
ρ and an open conic set Γ ⊂ R

2d \ {0} such that z0 ∈ Γ, 0 ≤ b ≤ 1,
b(z) = 1 for z ∈ Γ with |z| ≥ 1 and bw(x,D)u ∈ Sω(Rd). We consider ˜b =
1 − b ∈ GS0,ω

ρ , which satisfies ˜b(z) = 0 for z ∈ Γ with |z| ≥ 1, so in particular
z0 /∈ conesupp (˜b). Since bw(x,D)u ∈ Sω(Rd) we obtain, by Proposition 5.4,

WF′
ω(u) = WF′

ω(bw(x,D)u +˜bw(x,D)u) = WF′
ω(˜bw(x,D)u) ⊂ conesupp (˜b).

Hence, z0 /∈ WF′
ω(u). �

Second Inclusion

Theorem 5.7. Let ω be a weight function and 0 < ρ ≤ 1 such that

ω(t1/ρ) = o(σ(t)), σ(t1+ρ/2) = O(γ(t)), (5.11)

as t → ∞ for some Gevrey weight function σ and some weight function γ. If
u ∈ S ′

ω(Rd), then

WFω
ρ (u) ⊂ WF′

ω(u).

Remark 5.8. The assumption in Theorem 5.7 implies

ω(t(2+ρ)/(2ρ)) = o(γ(t)), t → ∞.

For ω(t) = ta, a = 1 − ρ, this condition holds if (1 − ρ)(2+ρ
2ρ ) < 1, accordingly

1 > ρ > −3+
√

17
2 ≈ 0.56155; and 0 < a < 5−√

17
2 .

Proof of Theorem 5.7. First, we recall that the Wigner transform of ψ(x) =
e− 1

2 |x|2 , x ∈ R
d, is (see for instance [37, Theorem 4.2])

Wig(ψ)(z) = (4π)
d
2 e−|z|2 , z ∈ R

2d.

Let 0 �= z0 /∈ WF′
ω(u). Then, there exists an open conic set Γ ⊆ R

2d \ {0} such
that z0 ∈ Γ and

sup
z∈Γ

eλω(z)|Vψu(z)| < +∞, λ > 0. (5.12)

We consider Γ′ ⊆ R
2d\{0} an open conic set such that z0 ∈ Γ′ and Γ′ ∩ S2d−1 ⊆

Γ. By Lemma 4.5, we can construct b ∈ GS0,γ
1 such that 0 ≤ b ≤ 1, whose

support is contained in Γ, and b(z) = 1 for z ∈ Γ′, |z| ≥ 1.
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We define a := b ∗ Wig(ψ). To estimate its derivatives, we use b ∈ GS0,γ
1 ,

Peetre’s inequality and Lemma 2.2(iii) to obtain that for all λ > 0 there exists
Cλ > 0 such that

|Dαa(z)| ≤
∫

R2d

|Dα
z b(z − w)|Wig(ψ)(w)dw

≤
∫

R2d

Cλ〈z − w〉−|α|eλLϕ∗
γ

(

|α|
λL

)

(4π)
d
2 e−|w|2dw

≤
∫

R2d

Cλ〈z − w〉−ρ|α|eλLϕ∗
γ

(

|α|
λL

)

(4π)
d
2 e−|w|2dw

≤ Cλ(4π)
d
2 〈z〉−ρ|α|

(

2
ρ
2 |α|eλLϕ∗

γ

(

|α|
λL

)
)

∫

R2d

〈w〉ρ|α|e−|w|2dw

≤ Cλ(4π)
d
2 〈z〉−ρ|α|eλLeλϕ∗

γ

(

|α|
λ

)
∫

R2d

〈w〉ρ|α|e−|w|2dw (5.13)

for all α ∈ N
2d
0 and z ∈ R

2d. Since γ(t) = o(t), for all ε > 0 there exists Cε > 0
such that

γ(〈w〉2) ≤ ε〈w〉2 + Cε = ε|w|2 + (ε + Cε), w ∈ R
2d.

Therefore, we obtain for some C ′
ε > 0, by Lemma 2.2(i),

∫

R2d

〈w〉ρ|α|e−|w|2dw ≤
∫

R2d

〈w〉ρ|α|e− 1
ε γ(〈w〉2)C ′

εdw

= C ′
ε

∫

R2d

(〈w〉2)
ρ
2 |α|

e−λ ρ
2 γ(〈w〉2)e(− 1

ε +λ ρ
2 )γ(〈w〉2)dw

= C ′
ε

∫

R2d

(

(〈w〉2)|α|
e−λγ(〈w〉2)

)
ρ
2
e(− 1

ε +λ ρ
2 )γ(〈w〉2)dw

≤ C ′
εe

λ ρ
2 ϕ∗

γ

(

|α|
λ

)
∫

R2d

e(− 1
ε +λ ρ

2 )γ(〈w〉2)dw. (5.14)

We take ε > 0 small enough (ε < 2
λρ ) so that the integral converges, and we

fix it. By assumption we have ω(t(2+ρ)/(2ρ)) = o(γ(t)) as t → ∞. Therefore,
from (5.13), (5.14), and Lemma 2.3(i) we obtain that for all λ > 0 there exists
C ′

λ > 0 such that

|Dαa(z)| ≤ C ′
λ〈z〉−ρ|α|eλ(1+ρ/2)ϕ∗

γ

(

|α|
λ

)

≤ C ′′
λ〈z〉−ρ|α|eλρϕ∗

ω

(

|α|
λ

)

, (5.15)

for another constant C ′′
λ > 0 depending on λ > 0. This shows a ∈ GS0,ω

ρ .
Let Γ′′ ⊆ Γ′ be another open conic set such that z0 ∈ Γ′′ and Γ′′ ∩ S2d−1 ⊆

Γ′. Then, there exists δ > 0 such that z − w
t ∈ Γ′ for z ∈ Γ′′ with |z| = 1,

|w| ≤ δ, and t ≥ 1. Since |z − w| ≥ |z| − δ ≥ 1 holds if |w| ≤ δ and |z| ≥ 1 + δ,
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we have for z ∈ Γ′′, |z| ≥ 1 + δ,

|a(z)| =
∫

R2d

b(z − w)Wig(ψ)(w)dw

≥
∫

{|w|≤δ}
b
(

|z|
( z

|z| − w

|z|
))

Wig(ψ)(w)dw

=
∫

{|w|≤δ}
Wig(ψ)(w)dw =: C∗ > 0.

Hence (4.1) is satisfied for m = 0. Moreover, as σ(t1+ρ/2) = O(γ(t)), t → ∞,
we use Lemma 2.3(ii) to get, by (5.15), that there exist C ′ > 0 and n ∈ N

such that for z ∈ Γ′′, |z| ≥ 1 + δ, and α ∈ N
2d
0 ,

|Dαa(z)| ≤ C ′〈z〉−ρ|α|e
1
n ϕ∗

σ(n|α|) ≤ C ′

C∗ 〈z〉−ρ|α|e
1
n ϕ∗

σ(n|α|)|a(z)|,

and (4.2) is satisfied, too. Therefore z0 is non-characteristic for a.
It only remains to show that aw(x,D)u ∈ Sω(Rd). We recall that the

Weyl operator aw(x,D) coincides with the localization operator given by (see
for instance [18, (6), (3)])

aw(x,D)u(x) =
∫

R2d

b(z)Vψu(z)Π(z)ψ(x)dz. (5.16)

Since supp (b) ⊆ Γ and 0 ≤ b ≤ 1, given α ∈ N
d
0 we have by (5.16), for

z = (t, ξ) ∈ R
2d,

|Dαaw(x,D)u(x)| ≤
∫

Γ

|Vψu(t, ξ)||Dα
x (eix·ξψ(x − t))|dtdξ

≤
∑

β≤α

(

α

β

)∫

Γ

|Vψu(t, ξ)||ξ||β||Dα−β
x ψ(x − t)|dtdξ.

From (5.12), Lemma 2.2(i), and since ψ ∈ Sω(Rd) we have that for all λ > 0
there exist Cλ, C ′

λ > 0 such that

|Dαaw(x,D)u(x)| ≤
∑

β≤α

(

α

β

)∫

Γ

Cλe−2(λL+1)ω(t,ξ)eλLϕ∗
(

|β|
λL

)

eλLω(ξ)

× C ′
λeλLϕ∗

(

|α−β|
λL

)

e−λLω(x−t)dtdξ.

As

−2(λL + 1)ω(t, ξ) ≤ −(λL + 1)(ω(t) + ω(ξ))

≤ −(ω(t) + ω(ξ)) − λLω(ξ) + λLω(x − t) − λω(x) + λL,

we obtain

−2(λL + 1)ω(t, ξ) + λLω(ξ) − λLω(x − t) ≤ −(ω(t) + ω(ξ)) − λω(x) + λL,
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which shows that the integral converges. Moreover, by the convexity of ϕ∗

(Lemma 2.2(iv), (iii)) we have aw(x,D)u ∈ Sω(Rd), and therefore z0 /∈
WFω

ρ (u). �

Corollary 5.9. Let ω be a ρ-regular weight function for some 0 < ρ ≤ 1 that
satisfies (5.11) for two weight functions σ and γ as in Theorem 5.7. Then, for
u ∈ S ′

ω(Rd), we have

WFω
ρ (u) = WF′

ω(u).

Example 5.10. Let −3+
√

17
2 < ρ < 1 and ω(t) = ta with a = 1 − ρ. Then for

every b, c > 0 such that 1−ρ
ρ < b < 2

2+ρ and b(1 + ρ/2) < c < 1, the weight
functions ω, σ(t) = tb and γ(t) = tc satisfy the hypotheses of Corollary 5.9
(see Remark 5.8).

6. Weyl Wave Front Set and Propagation of Singularities

In this section we study the propagation of singularities for Weyl quantizations
with the Weyl wave front set with symbols in the class GSm,ω

ρ .

Lemma 6.1. Let ω be a ρ-regular weight function for some 0 < ρ ≤ 1 and
u ∈ S ′

ω(Rd). Then WFω
ρ (u) is empty if and only if u ∈ Sω(Rd).

Proof. Let us first assume that u ∈ Sω(Rd). Taking a ≡ 1 ∈ GS0,ω
ρ we have

that z is non-characteristic for a, for every z ∈ R
2d \{0}, and aw(x,D)u = u ∈

Sω(Rd), so WFω
ρ (u) is empty.

Assume now that WFω
ρ (u) is empty. From Theorem 5.6 we have that

WF′
ω(u) is empty, and then from [12, Proposition 3.18] we obtain u ∈ Sω(Rd).

�

Proposition 6.2. Let ω be a ρ-regular weight function for some 0 < ρ ≤ 1, and
m ∈ R; fix a symbol a ∈ GSm,ω

ρ . We have

WFω
ρ (u) ⊂ WFω

ρ (aw(x,D)u) ∪ char(a),

for every u ∈ S ′
ω(Rd), where char(a) is the complement in R

2d of the set of
non-characteristic points for a in the sense of Definition 4.1.

Proof. Let z0 �= 0 satisfying z0 /∈ WFω
ρ (aw(x,D)u) ∪ char(a). By Proposi-

tion 4.6 we have that there exist b ∈ GS0,ω
ρ and an open conic set Γ ⊂ R

2d \{0}
containing z0 such that 0 ≤ b ≤ 1, b(z) = 1 for z ∈ Γ, |z| ≥ 1, and

bw(x,D)aw(x,D)u ∈ Sω(Rd), (6.1)

for every u ∈ S ′
ω(Rd). We already know that the Weyl product b#a of the

composition bw(x,D)aw(x,D) has an asymptotic expansion as in (3.1), i.e.
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b#a(x, ξ) ∼ ∑∞
j=0 cj(x, ξ), where

cj(x, ξ) =
∑

|β+γ|=j

(−1)|β|

γ!β!
2−|β+γ|∂γ

ξ Dβ
xb(x, ξ) ∂β

ξ Dγ
xa(x, ξ), (6.2)

for every j ∈ N0. Now, we apply [6, Theorem 4.6] to obtain a symbol c(x, ξ) ∈
GSm,ω

ρ with asymptotic expansion
∑

cj and satisfying

c(x, ξ) = b(x, ξ)a(x, ξ) +
∞
∑

n=1

jn+1−1
∑

j=jn

Ψj,n(x, ξ)cj(x, ξ), (6.3)

where (jn)n and Ψj,n are defined in [6, formula (4.4)]. We observe that, from
the properties of b(x, ξ), we have

c(x, ξ) = a(x, ξ) for all z = (x, ξ) ∈ Γ, |z| ≥ 1. (6.4)

On the other hand, since z0 /∈ char(a), the symbol a(x, ξ) satisfies (4.1) and
(4.2) (we can assume without loss of generality that the open conic set Γ
appearing in (4.1) and (4.2) is the same Γ appearing in (6.4)). By (6.4), we
have that z0 is non-characteristic for c(x, ξ). Finally, since for every u ∈ S ′

ω(Rd)
we have

bw(x,D)aw(x,D)u = cw(x,D)u + Ru,

where R is a globally ω-regularizing operator, by (6.1), it follows that cw(x,D)
u ∈ Sω(Rd). Hence, z0 /∈ WFω

ρ (u). �

Lemma 6.3. Let ω be a ρ-regular weight function for some 0 < ρ ≤ 1, u ∈
S ′

ω(Rd) and v ∈ Sω(Rd). We have

WFω
ρ (u) = WFω

ρ (u + v).

Proof. Let z0 /∈ WFω
ρ (u). Then there exists a symbol a(x, ξ) ∈ GSm,ω

ρ for some
m ∈ R such that z0 is non-characteristic for a(x, ξ) and aw(x,D)u ∈ Sω(Rd).
Since v ∈ Sω(Rd), we have aw(x,D)(u + v) ∈ Sω(Rd) (see, for instance, [4,
Lemma 3.3] and [6, Theorem 3.7]). Therefore z0 /∈ WFω

ρ (u + v) and, so

WFω
ρ (u + v) ⊂ WFω

ρ (u).

By the same procedure we get

WFω
ρ (u) = WFω

ρ (u + v − v) ⊂ WFω
ρ (u + v),

so the proof is complete. �

Proposition 6.4. Let ω be a ρ-regular weight function for some 0 < ρ ≤ 1,
m ∈ R and a(x, ξ) ∈ GSm,ω

ρ . Then

WFω
ρ (aw(x,D)u) ⊂ conesupp(a),

for every u ∈ S ′
ω(Rd).
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Proof. Fix 0 �= z0 /∈ conesupp(a). Then there exists an open conic set Γ
containing z0 such that a(z) = 0 for every z ∈ Γ, |z| ≥ R, for some R > 0.
We choose Γ′ and χ ∈ GS0,ω

ρ as in Lemma 4.5, with z0 ∈ Γ′. Since χ(z) = 1
for z ∈ Γ′, |z| ≥ 1, we trivially have that χ satisfies (4.1) and (4.2), so z0 is
non-characteristic for χ. Now, we can argue as in the proof of Proposition 6.2
to obtain that the Weyl product of the composition χw(x,D)aw(x,D) has an
asymptotic expansion

∑

cj where cj , j ∈ N0, is given as in (6.2) with χ instead
of b, and we can consider the symbol c ∈ GSm,ω

ρ as in (6.3) whose asymptotic
expansion is

∑

cj , obtaining that for every u ∈ S ′
ω(Rd),

χw(x,D)aw(x,D)u = cw(x,D)u + Ru

for some globally ω-regularizing operator R. Since supp(a) ∩ supp(χ) is com-
pact, we have that supp(c) is compact. So, from Corollary 5.5 we obtain that
cw(x,D) is globally ω-regularizing. Consequently, for every u ∈ S ′

ω(Rd), we
have

χw(x,D)aw(x,D)u ∈ Sω(Rd),

and so z0 /∈ WFω
ρ (aw(x,D)u). �

Remark 6.5. We observe that Proposition 5.4 and Corollary 5.9 imply the
thesis in Proposition 6.4 under the extra assumption (5.11) for two weight
functions σ and γ as in Theorem 5.7, but this assumption is not necessary in
the proof of Proposition 6.4.

Proposition 6.6. Let ω be a ρ-regular weight function for some 0 < ρ ≤ 1 and
a ∈ GSm,ω

ρ . Then

WFω
ρ (aw(x,D)u) ⊂ WFω

ρ (u),

for every u ∈ S ′
ω(Rd).

Proof. Fix 0 �= z0 /∈ WFω
ρ (u); by Proposition 4.6 there exist b ∈ GS0,ω

ρ and
an open conic set Γ containing z0 with b(z) = 1 for z ∈ Γ, |z| ≥ 1 and
bw(x,D)u ∈ Sω(Rd). Set b̃ = 1 − b ∈ GS0,ω

ρ and observe that

aw(x,D)u = aw(x,D)b̃w(x,D)u + aw(x,D)bw(x,D)u.

Since aw(x,D) : Sω(Rd) → Sω(Rd), we have that aw(x,D)bw(x,D)u ∈ Sω(Rd),
and so, by Lemma 6.3,

WFω
ρ (aw(x,D)u) = WFω

ρ (aw(x,D)b̃w(x,D)u). (6.5)

Since b̃(z) = 0 for every z ∈ Γ, |z| ≥ 1, arguing as in the proof of Proposi-
tion 6.2, there exists a symbol c that vanishes for z ∈ Γ, |z| ≥ 1 and

aw(x,D)b̃w(x,D)u = cw(x,D)u + Ru, u ∈ S ′
ω(Rd),

for a globally ω-regularizing operator R. Therefore from (6.5), we use
Lemma 6.3 and Proposition 6.4 to obtain

WFω
ρ (aw(x,D)u) = WFω

ρ (cw(x,D)u) ⊂ conesupp(c).
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Since z0 ∈ Γ we have that z0 /∈ conesupp(c) and then z0 /∈ WFω
ρ (aw(x,D)u).

�

We have the following result as in [37, Proposition 2.11].

Corollary 6.7. Let ω be a ρ-regular weight function for some 0 < ρ ≤ 1, a ∈
GSm,ω

ρ , and u ∈ S ′
ω(Rd). If

conesupp (a) ∩ WFω
ρ (u) = ∅,

then aw(x,D)u ∈ Sω(Rd).

Proof. From Propositions 6.4 and 6.6 we obtain by assumption that WFω
ρ

(aw(x,D)u) = ∅. The result then follows by Lemma 6.1. �

From Propositions 6.2, 6.4, and 6.6 we immediately have the following
result.

Theorem 6.8. Let ω be a ρ-regular weight function for some 0 < ρ ≤ 1 and
a ∈ GSm,ω

ρ . Then

WFω
ρ (aw(x, D)u) ⊂ WFω

ρ (u) ∩ conesupp(a) ⊂ WFω
ρ (u) ⊂ WFω

ρ (aw(x, D)u) ∪ char(a).

Corollary 6.9. Let ω be a ρ-regular weight function for some 0 < ρ ≤ 1 which
satisfies (5.11) for two weight functions σ and γ as in Theorem 5.7, and a ∈
GSm,ω

ρ . Then

WF′
ω(aw(x, D)u) ⊂ WF′

ω(u) ∩ conesupp(a) ⊂ WF′
ω(u) ⊂ WF′

ω(aw(x, D)u) ∪ char(a).

Proof. It is an immediate consequence of Theorem 6.8 and Corollary 5.9. �

Remark 6.10. If ω is ρ-regular for some 0 < ρ ≤ 1, then for all m ∈ R there
exists a ∈ GSm,ω

ρ such that every z ∈ R
2d \ {0} is non-characteristic for a in

the sense of Definition 4.1 ; so char (a) = ∅, and then by Theorem 6.8,

WFω
ρ (aw(x,D)u) = WFω

ρ (u), u ∈ S ′
ω(Rd). (6.6)

By Example 3.3, for Gevrey weights ω(t) = th with 0 < h < 1/2, which are
(1 − h)-regular, we have that for every m ∈ R, the Weyl operator aw(x,D)
associated to the symbol

a(z) := e|m|〈z〉h

, z ∈ R
2d,

satisfies (6.6).
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