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Abstract
The possibility of knowing people traits on the basis of what they write is a
field of growing interest named author profiling. To infer a user's gender,
age, native language, language variety or even when the user lies, simply
by analyzing her texts, opens a wide range of possibilities from the point of
view of security. In this paper, we review the state of the art about some of
the  main  author  profiling  problems,  as  well  as  deception  and  irony
detection, especially focusing on the Arabic language.

1.Introduction
Idiosyncrasy inherent to social media makes them a special environment of
communication,  due  to  its  freedom  of  expression,  informality  and
spontaneous  generation  of  topics  and  trends.  But  also  the  possible
anonymity of the users. In most cases, personal information is missing; in
other cases, users lie. This lack of knowledge about who writes the contents
contributes to the emergence of new security issues, such as threatening
messages.  For  example,  Magdy  et  al.  (2015)  collected  a  corpus  of
approximately 57 thousand tweeps, who authored nearly 123 million tweets.
The tweets collected were mostly written in Arabic, and they are related to
ISIS organization. To study the historical timeline of the users, Magdy et al.
(2015) classified manually the tweets into anti-ISIS, and pro-ISIS, in other
words ISIS supporter’s vs ISIS opponents as they checked their historical
timeline for the period before the creation of ISIS so they get insights into
the antecedents of their support preference. Finally, a classifier was built
using the collected data to predict eventually who is more likely will oppose
or support the group.

To be  able  to  determine  the  linguistic  profile  of  a  person  who  writes  a
"suspicious  or  threatening  text"  may  provide  valuable  background
information.  For  example,  when analyzing  a  threatening  text,  we  should
know: i) the veracity of the threat, by detecting possible deception or irony
in  the  message  (since  therefore  does  not  represent  a  threat)1  ii) the
demographics  of  the  author,  such  as  age,  and  gender;  iii) besides  her
cultural and social context (e.g. native language or/and dialect), with the

1 Fake terroristic threat: two Irish were refused entry to the USA after tweeting that 
they were going to "destroy" America  http://abcnews.go.com/Blotter/pair-held-
twitter-homeland-threat-mix-reports/story?id=15472918 

http://abcnews.go.com/Blotter/pair-held-twitter-homeland-threat-mix-reports/story?id=15472918
http://abcnews.go.com/Blotter/pair-held-twitter-homeland-threat-mix-reports/story?id=15472918


attempt of profiling potential terrorists (Russell and Miller, 1977). Recently,
we started the Arabic Author Profiling project for Cyber-Security (ARAP) to
address  the  lack  of  resources  and  tools  for  the  author  profiling  task  in
Arabic.2 

In this survey, we review the state of the art of some of the main author
profiling  areas  in  general  and  for  the  Arabic  language  in  particular.  We
focused mainly on Arabic language, in order to stress the gap of what has
been addressed in English and other languages as compared to the Arabic
language. We start our survey with the age and gender identification task,
the native language and language variety identification task. Later on, we
present the work on the deception detection and the irony and sarcasm
detection.  Finally,  we briefly  discuss some of  the challenges  faced while
processing the Arabic language in these tasks.

2.Age and Gender Identification
Author  profiling  is  a  research  topic  that  is  in  vogue  in  the  research
community  and  several  are  the  shared  tasks  organized  on  different
demographic aspects during the last years. With respect to age and gender
identification, a shared task has been organized at PAN3 at the Conference
and Labs of the Evaluation Forum (CLEF)4 since 2013. The focus has been on
age and gender identification, in different languages apart from English:

 In 2013 (Rangel et al., 2013), the aim was dealing with large datasets
with high levels of noise, both in English and Spanish.

 In 2014 (Rangel et al., 2014), participants had to approach the task in
multiple genres such as social media, blogs, Twitter and hotel reviews,
for both English and Spanish.

 In 2015 (Rangel et al., 2015), age and gender identification problem
was combined with personality recognition. In this case, the tweets
were provided for Spanish, English, Italian and Dutch.

 In  2016 (Rangel  et  al.,  2016b),  the  focus  was  on  the  cross-genre
evaluation, that is, training in one genre (Twitter) and evaluating in
another one (blogs, social  media and reviews).  This year data was
provided for Spanish, English and Dutch.

 In 2017 (in progress), the goal is to identify the authors’ gender as 
well as the specific variation of their native language.

Majority of approaches at PAN used combinations of style-based features
such as frequency of punctuation marks, capital letters, quotations, and so
on, together with parts-of-speech tags and content-based features such as
bag  of  words,  term  frequency-inverse  document  frequency  (TF-IDF),
dictionary-based  words,  topic-based  words,  entropy-based  words,  or
content-based  features  obtained  with  Latent  Semantic  Analysis  (LSA).  It
should be highlighted this approach that obtained the overall best results for
three years (López-Monroy et al., 2013; López-Monroy et al., 2014; Álvarez-
Carmona et al., 2015) by using a second-order representation that relates
documents  with  profiles  (e.g.  men,  women,  teenagers,  etcetera)  and
subprofiles (e.g. videogamers, students, housewives, etc.). In another work
(López-Monroy  et  al.,  2015),  the  authors  test  their  approach  on  Schler's
collection  (Schler  et  al.,  2006)  showing  a  significant  improvement  in

2 http://arap.qatar.cmu.edu/
3 http://pan.webis.de 
4 http://www.clef-initiative.eu 

http://www.clef-initiative.eu/
http://pan.webis.de/
http://arap.qatar.cmu.edu/


accuracy  up  to  82.01%  and  77.68%  respectively  for  gender  and  age
identification. On the English partition of the PAN-AP-13 dataset (Rangel et
al., 2013), the authors in (Weren et al., 2014) show the contribution to the
task of  information retrieval  features,  obtaining accuracies of  62.1% and
68.2%  respectively  for  gender  and  age  identification.  The  authors  in
(Maharjan et al., 2014) approach the task with 3 million features processed
with MapReduce, that allow them to obtain competitive results (higher than
61% for  both gender and age identification in  both English  and Spanish
datasets)  with great reductions in time consumed. Finally,  the EmoGraph
graph-based approach (Rangel and Rosso, 2016) captures how users convey
verbal emotions in the morphosyntactic structure of the discourse, obtaining
competitive  results  with  the  best-performing  systems  at  PAN  2013  and
demonstrating its robustness against genres and languages on PAN-AP-14
corpus (Rangel and Rosso, 2015).

2.1 Age and Gender Identification in Arabic
The literature for age and gender identification in the Arabic language is
scanty. The authors in (Estival et al., 2008) investigate the age and gender
identification  problem  (besides  the  level  of  education  or  personality)  in
English and Arabic emails. For Arabic, they collect 8,028 emails from 1,030
native speakers of Egyptian Arabic. They built the Text Attribution Tool (TAT)
by obtaining 518 features grouped as shown in Table 1, and test different
machine  learning  algorithms  such  as  support  vector  machines  (SVM),  k-
nearest  neighbors  (KNN)  or  decision  trees  combined  with  chi-square  or
information  gain.  The  accuracies  reported  are  of  72.10%  and  81.15%
respectively for gender and age identification.

Feature Group Description
ArabicNamedEntities Language-independent named 

entities
ArabicChar Character level features
ArabicMorphological Morphological level features
ArabicLexical Lexical level features

Table 1: Feature groups for the TAT system.

The  TAT  system  includes  several  data  repositories  and  a  couple  of
components to derive the features and to build classifiers. The architecture
is modular and it is organized around a chain of processing modules. This
architecture allows a flexible experimentation with the different modules. As
shown  in  Figure  1,  The  process  is  data-driven  as  the  output  of  each
processing module depends on its input (Estival et al., 2008).



Figure 1: TAT System Diagram (Estival et al., 2008)

The authors in (Alsmearat et al., 2015) investigate gender identification in
500  articles  collected  from  well-known  Arabic  newsletters.  They  collect
articles from writers with similar academic profiles and with experience in
journalistic writings and who write their articles in Modern Standard Arabic
(MSA), from the Jordan and Palestine variations. They combine bag-of-words
features  with  sentiments  and  emotions  and  explore  different  machine
learning methods. In Table 2 their best results are shown. Subsequently, the
authors  (Alsmearat  et  al.,  2014)  extend  their  work  to  experiment  with
different machine learning algorithms, data-subsets and feature selection
methods, reporting accuracies up to 94%. 

Bag-of-words 86.4
%

Sentiments & 
emotions

61.9
%

Both 86.4
%

Table 2: Results for Alsmearat et al. (2015) in Arabic newsletters.

The authors in (AlSukhni and Alequr, 2016) collect 8,034 tweets from 
Jordanian dialects and label them manually with gender. They add to their 
bag-of-words approach the name of the authors of the tweets, reporting a 
great improvement in different evaluation metrics. They also add other 
features such as the number of words per tweet or the average word length.
Several different machine learning algorithms are tested and the best 
results are shown in Table 3.

Approach Used Results



Bag-of-words 62.49%
Bag-of-words+ author’s names 98.69%
Bag-of-words+ + number of words & average 
word length

99.50%

Table 3: Results for Alsukhni et al. (2016) in Twitter.

3.Native Language, Language Varieties, and 
Dialects Identification

Besides the language identification of a potentially  threatening message,
and especially with the rise of social media, there are new challenges to
deal with such as the identification of the native language of its author or
even the discrimination among varieties of the same language and dialects.

Native language identification consists of  identifying the native language
(L1) of an author who writes in another language (L2). This task is crucial for
security because it allows contextualizing the author of a possible threat. For
example, an author can be writing in Arabic albeit his native language may
be Farsi or French, because he was born in France. 

Several  corpora have been built,  mainly from academia where English is
learned  as  a  second  language.  For  example,  the  two  versions  of  the
International  Corpus  of  Learner  English  (ICLE  &  ICLEv2)  (Granger  et  al.,
2002),  First  Certificate  in  English  (FCE)  (Yannakoudakis  et  al.,  2011),
International  Corpus  Network  of  Asian  Learners  of  English  (ICNALE)
(Ishikawa, 2011), Test of English as a Foreign Language (TOEFL) (Blanchard
et al.,  2013),  International  Corpus of  Cross linguistic  Interlanguage (ICCI)
(Tono,  2012),  National  University  of  Singapore Corpus of  Learner  English
(NUCLE)  (Dahlmeier  et  al.,  2013),  Corpus  of  English  Essays  by  Asian
University  Students  (CEEAUS)  (Ishikawa,  2009).  Similarly,  Lang-85 is  a
collaborative  service  where  students  from different  languages  can  write
essays to be corrected by native speakers.

Due to the interest in the field, the first  shared task on native language
identification  was  organized  at  the  Innovative  Use  of  NLP  for  Building
Educational Applications (BEA-8) workshop at the 2013 Conference of the
North American Chapter  of  the Association for Computational  Linguistics:
Human  Language  Technologies  NAACL-HT6 (Tetreault  et  al.,  2013).  There
were 29 participants who had to discriminate among 11 languages of the
TOEFL corpus.  The most used features were character,  word and POS  n-
grams,  with  support  vector  machine,  maximum  entropy  and  ensemble
methods. The reported accuracies are approximately 84%. 

On the other hand, the task of discriminating among similar languages such
as Bosnian, Croatian and Serbian, or language varieties such as Portuguese
from Brazil vs. Portugal, or Spanish from Spain vs. Argentina or Peru, steps
up the difficulty of native language identification due both to the highest
lexical,  syntactical  and  semantic  similarity  of  the  texts,  and  the  cultural
idiosyncrasies of the writers. 

This  field  has  attracted  the  researcher’s  attention  during  the  last  years.
There are several  investigations with different languages such as English

5 http://lang-8.com 
6 https://sites.google.com/site/nlisharedtask2013 
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(Lui and Cook, 2013), South-Slavic (Ljubesic et al., 2007), Chinese (Huang
and  Lee,  2008),  Persian  and  Dari  (Malmasi  et  al.,  2015),  or  Malay  and
Indonesian  (Bali,  2006),  to  mention  just  a  few  of  them.  For  example,
focusing on Portuguese the authors in (Zampieri and Gebre, 2012) collect
1,000 articles  from well-known Brazilian7 and Portugal8 newsletters.  They
combine character and word n-grams and report accuracies of 99.6% with
word  unigrams,  91.2%  with  word  bigrams  and  99.8%  with  character  4-
grams. With respect to Spanish, the authors in (Maier and Gómez-Rodríguez,
2014) investigate the identification among Argentinian, Chilean, Colombian,
Mexican and Spanish on Twitter. They combine four types of features (n-
grams and language models) and report accuracies of about 60-70%. The
authors in (Rangel et al., 2016a) collect the HispaBlogs9 corpus by gathering
posts from five Spanish varieties: Argentinian, Chilean, Mexican, Peruvian
and Spanish.  The authors ensure that training and test  partitions do not
share any author of instance between them, avoiding possible over-fitting. A
low-dimensionality  representation  is  proposed  to  reduce  the  number  of
features to only six per class, allowing to deal with big data environments
such as social media. They report an accuracy of 71.1% in comparison to
72.2% and 70.8% that they obtain with Skip-grams and Sentence Vectors in
(Franco-Salvador et al., 2015).
 
The interest in the field is also reflected in the number of workshops and
shared tasks organized:

 Defi Fouille de Textes (DEFT) 2010 shared task (Grouin et al., 2011)
focused on language variety identification of French texts.

 LT4CloseLang workshop on Language Technology for Closely Related
Languages and Language Variants (Nakov et al., 2014) organized in
2014  at  the  conference  on  Empirical  Methods  on  Natural  Language
Processing (EMNLP)10.

 VarDial  Workshop (Zampieri  et  al.,  2014) on applying NLP Tools  to
Similar Languages, Varieties and Dialects, organized in 2014 at the
 International Conference on Computational Linguistics (COLING)11, focused
on  thirteen  languages  divided  into  the  following  groups:  Bosnian,
Croatian,  Serbian;  Indonesian,  Malay;  Czech,  Slovak;  Brazilian
Portuguese,  European  Portuguese;  Peninsular  Spanish,  Argentinian
Spanish; and American English, British English.

 LT4VarDial joint workshop on Language Technology for Closely Related
Languages, Varieties and Dialects (Zampieri et al., 2015) organized in
2015  at  RANLP12,  focused  on  thirteen  languages  divided  into  the
following groups: Bulgarian, Macedonian; Bosnian, Croatian, Serbian;
Czech,  Slovak;  Malay,  Indonesian;  Brazilian,  European  Portuguese;
Argentinian, Peninsular Spanish; and a group with a variety of other
languages.

7 http://www.folha.uol.com.br 
8 http://www.dn.pt 
9 https://github.com/autoritas/RD-Lab/tree/master/data/HispaBlogs 
10 http://alt.qcri.org/LT4CloseLang/index.html 
11 http://corporavm.uni-koeln.de/vardial/sharedtask.html 
12 http://ttg.uni-saarland.de/lt4vardial2015/dsl.html 

http://ttg.uni-saarland.de/lt4vardial2015/dsl.html
http://corporavm.uni-koeln.de/vardial/sharedtask.html
http://alt.qcri.org/LT4CloseLang/index.html
https://github.com/autoritas/RD-Lab/tree/master/data/HispaBlogs
http://www.dn.pt/
http://www.folha.uol.com.br/


 Vardial workshop on NLP for Similar Languages, Varieties and Dialects
(Malmasi  et  al.,  2016)  organized  in  2016  at  COLING13,  with  two
subtasks:  i)  a more realistic DSL (Discriminating Similar Languages)
task with new varieties such as Hexagonal vs. Canadian French, and
the removal of very easy to discriminate languages such as Czech vs.
Slovak  and  Bulgarian  vs.  Macedonian;  and  ii)  a  new  subtask  on
discriminating Arabic dialects in speech transcripts (Ali et al., 2015)
with  Modern  Standard  Arabic  and  four  dialects  (Egyptian,  Gulf,
Levantine and North African), as described more in detail in Section
3.2.

 Author  Profiling  at  PAN  2017,  where  together  with  gender
identification,  the  aim  is  to  detect  the  language  variety  of  the
authors. Four are the addressed languages with different variations: i)
English  (Australia,  Canada,  Great  Britain,  Ireland,  New  Zealand,
United States);  ii) Spanish (Argentina, Chile, Colombia, Mexico, Peru,
Spain,  Venezuela);  iii) Portuguese  (Brazil,  Portugal);  and  iv) Arabic
(Egypt, Gulf, Levantine, Maghrebi). For each variety, there are 1,000
authors (half per gender) with 100 tweets per author.

3.1 Arabic Native Language Identification

Few  are  the  resources  available  for  the  Arabic  language.  It  is  worth  to
mention the BUiD Arab Learner Corpus (BALC) (Randall and Groom, 2009), a
resource for studying the acquisition of English spelling. BUiD is a set of
examination  essays  written by  16-year-old  Arabic  students  with  different
proficiency  levels  in  English.  The  corpus  consists  of  1,865  texts  with
287,227-word  tokens  and  20,275-word  types.  The  aim  of  this  research
project carried out in collaboration by the British University in Dubai, the
United Arab Emirates,  and the University of  Birmingham in the UK, is to
study the particular difficulties for Arab learners when spelling English. The
authors  draw some preliminary  findings  consistent  with  previous  studies
(Haggan,  1991;  Sadhwani,  2005):  Arab  readers  and  writers  have  more
problems with vowels than with consonants, reflecting the fact that Arabic is
a consonantal  script hence Arabs may pay more attention to consonants
than  to  vowels  (vowel  blindness)  (Hayes-Harb,  2006;  Ryan  and  Meara,
1992). 

Alfaifi et al. (2014) created the Arabic Learner Corpus (ALC), a large Arabic
learner corpus (282K words) produced by native and non-native learners of
Arabic  from  pre-university  and  university  levels.  Farwaneh  and  Tamimi
(2012) built the Arabic Learners Written Corpus (ALWC). 
The corpus of 51K words was produced by non-native Arabic speakers in
various countries over a period of 15 years. The corpus covers three basic
learner’s  levels  (beginner,  intermediate  and  advanced),  and  three  text
styles  (descriptive,  narrative  and instructional).  Abuhakema et  al.  (2008)
created a corpus of 9K Arabic words written by native English speakers who
learned Arabic as a foreign language while studying abroad. Hassan and
Daud  (2011)  built  the  Malaysian  Arabic  Learners  Corpus,  they  tried  to
investigate the usage of Arabic conjunctions among L2 learners. The corpus
size  is  240K  words  and  it  was  written  by  Malaysian  university  students
during their first  and second year of Arabic major degree. Moreover,  the
corpus includes spontaneous essays produced using Microsoft Word.

13 http://ttg.uni-saarland.de/vardial2016 
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Zaghouani  et  al.  (2015),  within  the scope of  the Qatar  Arabic  Language
Bank (QALB) project (Zaghouani et al. 2014), created a corpus of 2 million
words  of  spelling  errors  for  a  variety  of  Arabic  texts  including  (a)  user
comments on news websites, including dialectal Arabic (b) native speaker
essays (c) non-native speaker essays, (d) machine translation output. The
native  student  essays  data  is  categorized  by  the  student  learning  level
(beginner, intermediate, advanced) and by the learner type (L2 vs. L1).

The goal of the automatic native language identification tool is to find the
native  language  of  the  language  learner  using  his  writing.  Most  of  the
research  in  this  area  has  been  done  on  the  native  language  of  English
learners. Recently, some efforts were made to identify the native language
of text written in other languages such as Arabic. Malmasi and Dras (2014)
built an SVM model using various features including function words, part-of-
speech  n-grams,  and  Context-Free  Grammar  (CFG)  rules.  Their  system
obtained an accuracy of 41% when it was evaluated using the Arabic learner
corpus created by Alfaifi et al. (2014). More recently, Ionescu (2015) created
a new distance measure for  strings with  the name, Local  Rank Distance
(LRD). His method was inspired by the rank distance method as it measures
the local displacement of character n-grams among two strings. During the
evaluation of the ALC corpus, Ionescu system outperformed Malmasi and
Dras by 10 folds with an accuracy of 50.1%. Finally, Mechti et al. (2016),
proposed a classification method using some statistical data generated from
a corpus. It is considered a hybrid method combining surface analysis in the
text with an automatic learning method.

3.2 Arabic Dialects Identification

The lack of language resources for dialectical Arabic well known, recently
some researchers addressed this problem by creating lexicons, Wordnets,
corpora, and treebanks. In (Zaidan and Callison-Burch, 2011) the authors
collect  the  Arabic  Online  Commentary  dataset  (AOC),  gathering  86.1K
articles  and  1.4M  comments  from  three  newspapers:  i)  Al-Ghad14 from
Jordan;  ii)  Al-Riyadh15 from Arabia  Saudi;  and  iii) Al-Youm Al-Sabe'16 from
Egypt. They use Amazon Mechanical Turk to manually label them with the
corresponding dialect. With a smoothed word unigram model (Zaidan and
Callison-Burch, 2014), they report accuracies of 87.2%, 83.3% and 87.9%
respectively for Levantine, Gulf and Egyptian dialects. Also, in (Cotterell &
Callison-Burch,  2014),  a  multi-genre  dialectal  corpus  for  Levantine,  Gulf,
North African, Iraqi and Egyptian dialects was described.

Graff  et  al.  (2006),  presented  an  Iraqi  Arabic  lexicon  with  words  from
recorded speech marked with morphology information, pronunciation, and
part-of-speech. The annotation was done through a dedicated user interface.
Boujelbane et al. (2013), built a Tunisian dialectal corpus in order to create a
language model for a speech recognition system for a Tunisian Broadcast
News company. Cavalli-Sforza et al. (2013) created an Iraqi Arabic WordNet
using an English-Iraqi dictionary and the modern standard Arabic version of

14 http://www.alghad.com 
15 http://www.alriyadh.com 
16 http://www.youm7.com 
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WordNet  as  well  as  the  English  WordNet.  Moreover,  a  Tunisian  dialect
WordNet was built in (Bouchlaghem & Elkhlifi, 2014) starting from a Tunisian
corpus.

Duh  &  Kirchhoff  (2006),  built  a  Levantine  lexicon  using  a  transductive
learning  method  through  partially  annotated  text  in  order  to  perform
sentiment analysis  of  social  networks data using a dedicated lexicon for
slang sentimental words and idioms was developed as described in (Hedar &
Doss,  2013).  Al-Sabbagh & Girju  (2012b),  described their  initial  work  on
building a corpus for Egyptian Arabic. The corpus was compiled from various
data  sources  such  as  Twitter,  Blogs  and  Forums.  Also,  Almeman  &  Lee
(2013), used the web as a source to create a multi-dialect Arabic corpus for
North African, Egyptian, Gulf and Levantine dialects. 

Jarrar et al. (2014) presented his Palestinian Arabic corpus with 43K words
and a parallel corpus for Algerian Arabic and MSA was proposed in (Harrat et
al., 2014) for the purpose of machine translation. In (Elfardy and Diab, 2013)
the authors  investigate the discrimination between Egyptian and Modern
Standard Arabic. They propose two set of features: i) core features such as
token-based, perplexity, morphological-based, orthography, and similar; and
ii) meta- features such as frequencies of punctuation signs, numbers, special
characters, words in Roman script, words with character flooding, number of
words, average word length, and so on. They report an accuracy of 85.5%.

The AOC dataset has been used in other investigations. For example, the
authors in (Tillmann et al., 2014) discriminate between Egyptian dialect and
Modern Standard Arabic by using a combination of character, word and part-
of-speech n-grams with features obtained with the AIDA tool. They report an
accuracy  of  89.1%.  In  (Darwish  et  al.,  2014),  the  authors  combine  the
Egyptian  part  of  the  LDC2012T09  dataset  (Zbib  et  al.,  2012)  with  the
Modern Standard Arabic dataset of  the International  Workshop on Arabic
Language  Translation17.  They  experiment  with  different  combinations  of
machine  learning  features:  i)  word  1/3-grams  with  character  1/5-grams,
reporting  an  accuracy  of  84.7%;  ii)  morphological  features,  reporting
accuracies  between  89.3%  and  90.1%;  and  iii)  the  use  of  a  dialectal
Egyptian  lexicon,  reporting  accuracies  of  93.6% by using 1,300 dialectal
words, 94.6% by using 94K verbs and 94.4\% by using 8K words with letter
substitutions.

The authors in (Sadat et al., 2014) investigate machine learning techniques
using Naïve Bayes classifiers and n-gram Markov language models for the
automatic  discrimination  among  6  Arabic  dialects:  Egyptian,  Iraqi,  Gulf
(including  Bahrain,  Emirates,  Kuwait,  Qatar,  Oman  and  Saudi  Arabia),
Maghreb  (including  Algeria,  Tunisia,  Morocco,  Libya  and  Mauritania),
Levantine (including Jordan, Lebanon, Palestine and Syria), and Sudan. They
use n-gram models and report accuracies close to 98%. 

An interesting work is the one done on Algerian Arabic, Berber and Standard
Arabic in (Adouane et al. 2017; Adouane et al. 2016a; Adouane et al. 2016b;
Adouane  et  al.  2016c).   The  authors  used  hybrid  methods  combining
dictionaries and supervised machine learning methods such as the Hidden
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Markov  Model  (HMM)  and  N-gram  classification  tagging  to  identify  the
dialects while Saâdane et al.  (2017; Saâdane et al.  2015) used mainly a
rule-based linguistic approach to detect the Arabic dialects.

The  authors  in  (Shoufan  and  Al-Ameri,  2015)  provided  a  comprehensive
survey  on  natural  language  processing  methods  for  Arabic,  including  a
review of  the dialect identification task. The increasing interest in Arabic
dialects identification is attested by the eighteen teams participating in the
Arabic subtask of the third DSL track (Ali et al., 2015). Its difficulty is backed
up  by  the  obtained  accuracies  of  about  50%.  A  summary  of  the  best
approaches and their accuracies is shown in Table 4.

Approach Accuracy
OPEN TRACK

SVM, w/c n-grams
Ensemble, w/c n-grams
Multiple string kernels

51.4%
51.2%
50.9%

CLOSE TRACK
SVM, char 5/6-grams
Ensemble, w/c n-grams

53.2%
49.1%

Table 4: Results for 2016 DSL Arabic subtask.

Recently, Habash et al. (2017),18 proposed MADAR, a large-scale project for
dialectal Arabic covering 25 Arabic dialects from the main cities in the Arab
region. Their dialectal identification tool is currently in progress. 

4.Deception Detection
A deceptive opinion can be defined as a fictitious opinion written with the
intention to sound authentic in order to mislead the reader. An opinion spam
usually is a short text written by an unknown author using a not very well
defined  style.  These  characteristics  make  the  problem  of  automatic
detection of opinion spam very challenging (Rosso and Cagnina, 2017). 

In the literature, the most research attends the problem of opinion spam
detection for reviews written in English language. In (Fitzpatrick et al., 2015)
the  authors  describe  different  behaviors  indicative  of  deception  such  as
physiological, gestural and verbal, considering the opinion spam detection
among  others  problems.  Several  works  approached  the  problem  of  the
detection of deceptive opinions considering features based on the content of
the reviews in a supervised way. In (Ott et al., 2011) the authors use the 80
dimensions of LIWC2007 (Pennebaker et al., 2007b), unigrams and bigrams
as a set  of  features with an SVM classifier. In  (Hernández Fusilier  et  al.,
2015b; Hernández Fusilier et al., 2015a) the authors propose a PU-learning
variant using two different representations: word n-grams and character n-
grams. The best results are obtained with a Naïve Bayes classifier using
character 4 and 5 grams as features (Hernández Fusilier et al., 2015b) and,
the conjunction of word unigrams and bigrams in (Hernández Fusilier et al.,
2015a). With those results, the authors conclude that PU-learning show to
be appropriate for detecting opinion spam. Character n-grams in tokens, the
sentiment score and LIWC linguistic features such as pronouns, articles, and

18 nlp.qatar.cmu.edu/madar



verbs (present, past and future tenses) were used in (Cagnina and Rosso,
2015) for the detection of opinion spam. The best results are obtained with
a Naïve Bayes classifier and the combination of character 4-grams in tokens
and LIWC features for the representation of the opinions.

4.1 Deception Detection in Arabic
The detection of spam in Arabic opinion reviews is a relatively new research
field then, the bibliography is scarce in this area. In (Wahsheh et al., 2013b)
the  authors  present  one  of  the  first  systems  to  detect  spam  in  Arabic
opinions. The system named SPAR uses features as spam URLs (a blacklist
with Arabic content/link spam web pages (Wahsheh et al., 2013a)), five or
more consecutive numbers and,  presence of  the '@'  symbol  with  letters
around (e-mails address) for the classification of opinions like spam or not
spam. The system also categorizes the spam opinions in 'high' or 'low' spam
depending on the content of the review, using a special metric. At the same
time, the non-spam reviews are labeled as 'positive', 'negative' or 'neutral'
based on two language polarity dictionaries built by the authors, one with
2,800 words/phrases and other with 75 emoticons. SPAR is tested with a
dataset of 3,090 opinions written in the Arabic language collected manually
by the authors from Yahoo!-Maktoob News. An SVM classifier in Weka data
mining tool is used to obtain the results. After performing a 10 fold cross-
validation experiment, the accuracy reported is 97.50% and the error rate is
2.49%. The authors conclude that SPAR provides a reliable and trustworthy
performance to distinguish spam from non-spam opinions. 

In  (Hammad and El-Halees,  2015) the authors propose a novel approach
combining methods from data mining and text mining with machine learning
techniques to detect spam in opinion reviews written in the Arabic language.
Additionally,  the  approach  uses  methods  to  solve  the  class  imbalance
problem present in the dataset used. For the representation of the reviews,
review content, meta-data about each reviewer and hotel information have
been used as features. The authors build a dataset of 2,848 reviews from
online  Arabic  websites  such  as  Tripadvisor.com.es,  Booking.com  and
Agoda.es. The classification is performed with Naïve Bayes (NB), SVM, ID3
and K-NN algorithms with a 10-fold cross-validation experiment. The best
results are obtained with NB and over-sample method, that is 99.20% of
accuracy,  concluding in the effectiveness of  this approach for identifying
spam in Arabic reviews.

The authors in (Aloshban and Al-Dossari, 2016) present some preliminary
ideas about a method for grouping spam detection in social media for the
Arabic language. The proposal uses open source tools for the processing of
the  Arabic  texts  and  consists  of  4  phases:  crawling  (to  collect  tweets),
preprocessing  (to  clean  the  texts),  spamming  activities  detection  and
individual member's behavior scanning (to identify suspected spammers).
The spam activities detection is  based on the work of  (Mukherjee et al.,
2012) that aims to detect group members posting tweets on a particular
entity for a short time (Group Time Window), check the similarity of a tweet
content (Group Content Similarity) and detect if  the members of a group
post  tweet  on the  entity  at  first  (Group Early  Time Frame).  The  authors



conclude that the research is at its  early stage and a lot of  work is still
needed to finish this proposal.

5.Irony and Sarcasm Detection
A suspicious message may not be a threat when it is humoristic or ironic
(Reyes  et  al.,  2012).  Irony  and sarcasm represent  an  interesting  way to
communicate opinions toward a particular target in social media (Hernández
Farías and Rosso, 2016). The most common definition of irony refers to the
use of words for expressing the opposite meaning from what is literally said
(Grice, 1975). When irony becomes offensive with a specific target to attack
is considered as a form of sarcasm (Bowes and Katz, 2011). These figurative
language devices represent a big challenge for natural language processing
related tasks, especially for sentiment analysis (Bosco et al., 2013).

In recent years, several approaches have been proposed to deal with irony
and sarcasm detection in social media. Irony (and sarcasm) detection has
been  addressed  as  a  classification  problem,  where  decision  trees  and
support  vector  machine  are  among  the  classifiers  that  obtain  the  best
results. The majority of research investigating irony and sarcasm detection
has focused on Twitter. Surface features (such as punctuation marks and
emoticons)  together  with  textual  markers  to  identify  inconsistencies  and
incongruities in texts have been widely exploited (Reyes et al.,2013; Barbieri
and Saggion, 2014; Hernández Farías et al., 2015; Joshi et al., 2015; Karoui
et al., 2015). In (Barbieri et al., 2014; Sulis et al., 2016) the authors attempt
to classify tweets labeled with #irony and #sarcasm. They use the same
dataset achieving 0.62 and 0.69 in F-measure terms, respectively. Aiming to
evaluate the performance of sentiment analysis systems in the presence of
irony  and  sarcasm  some  evaluation  campaigns  have  been  organized  in
English (Ghosh et al., 2015) and in other languages such as Italian (Basile et
al., 2014; Barbieri et al., 2016).

5.1 Irony and Sarcasm Detection in Arabic
With respect to works in Arabic, few are the attempts in which irony has
been addressed in literature and mass media (Abuhajam, 2004; Alabban,
2014; Alharbi, 2015; Battish, 1983). There are no automatic approaches to
detect irony and sarcasm. In (Sigar and Taha, 2012) the authors manually
analyze  the  similarities  and  differences  between  ironic  expressions  in
English and Arabic. They use data from books, articles and Internet (some
images). A manual annotated Twitter dataset is instead described in (Refaee
and  Rieser,  2014).  The  authors  asked  two  native  speakers  of  Arabic  to
annotate polarity. Additionally, the presence of sarcasm has been annotated.
Very recently a preliminary system for irony detection in Arabic in social
media was presented in (Karoui et al., 2017). Several features have been
taken into account: surface, sentiment, contextual,  and shifter ones (e.g.
false assertion, exaggeration). In In the future, the authors  plan to manually
check the reliability of the hashtags they consider and include pragmatic
features that should help to infer the context needed to understand further
irony.



6. Challenges in Processing Arabic text
Processing  the  Arabic  language  for  any  NLP  task  can  be  sometimes
challenging due to several peculiarities that we present in this section.  First
of all, Arabic morphology is relatively complex in that it uses prefixes, infixes
and  suffixes,  not  only  for  inflection  but  also  to  concatenate  words.  This
various  morphological  variation  can  be  dealt  with  by  using  hand-crafted
rules, which enable to strip off possible prefixes and suffixes from the word
stem before further processing. Furthermore, the spoken form of Arabic is
quite different from the written form of the language as it is one of the few
languages in the world with clear diglossia. For any native speaker of Arabic,
there exist at least two forms of the language, the spoken form which is
typically  a  specific  dialect  versus  a  formal  written  form,  referred  to  as
modern standard Arabic (MSA). Moreover, Arabic is different from English
both  morphologically  and  syntactically.  Hence,  Arabic  is  a  challenging
language  to  the  existing  NLP  technology  tailored  to  the  nuances  of  the
English language. From the morphological standpoint, Arabic exhibits rich
morphology. Similar to English, Arabic verbs are marked explicitly for tense,
voice  and  person,  however,  in  addition,  Arabic  marks  verbs  with  mood
(subjunctive, indicative and jussive) information. Depending on the genre of
the  text  at  hand,  not  all  of  those  features  are  explicitly  marked  in  the
naturally occurring text. Arabic writing is known for being underspecified for
short vowels.  

Developing NLP systems in a diglossic situation like Arabic could in indeed
lead to some complication. For instance, it is very difficult for any single NLP
application to process data from all  the dialectal  varieties of Arabic with
their  linguistic  peculiarities  (e.g.  the  loss of  case distinctions)  while  they
have some common properties. In order to successfully process a text with
dialectal Arabic,  the NLP application should be able to detect beforehand
which  variety  it  is  aiming  to  address  so  the  linguistic  properties  of  the
particular dialect can be applied. In order to tackle this issue, Habash et al.
(2005) took the initiative to address the issue of Arabic dialects and made
the  assumption  that  is  it  much  easier  to  develop  natural  language
processing  tools  for  the  dialects  by  extracting  and  categorizing  the
grammatical features of a given dialect, making it to behave like Modern
Standard Arabic  (MSA)  before applying MSA natural  language processing
tools to process a text. Currently, the MADAMIRA tool for the morphological
analysis and disambiguation of Arabic is widely used and can be considered
a state of the art tool to process Arabic (Arfath et al. 2014). 

Conclusions
In this survey, we have reviewed the state of the art in the Arabic language
of age, gender, native language and language variety identification, as well
as of deception and irony detection. The main aim is to highlight what still
needs  to  be  done  for  the  Arabic  language  for  automatically  profiling
demographics or detecting deception and irony. The final aim will be to fill in
these  gaps  and develop  an  author  profiling  system for  cyber-security  in
Arabic.
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