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Abstract

In a semi-abelian context, we study the condition (NH) asking that Higgins
commutators of normal subobjects are normal subobjects. We provide examples
of categories that do or do not satisfy this property. We focus on the relationship
with the Smith is Huq condition (SH) and characterise those semi-abelian cate-
gories in which both (NH) and (SH) hold in terms of reflection and preservation
properties of the change of base functors of the fibration of points.
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Introduction

The recent works [27, 19] explain that the universal-algebraic commutator
defined by Higgins in the context of varieties of Ω-groups [21] can be defined in
an arbitrary semi-abelian category [24]. In contrast with the commutator intro-
duced by Huq [22]—already in a setting essentially equivalent to semi-abelian—
which is defined for a pair of subobjects K, L ď X as a normal subobject
rK,LsX �X, a priori the Higgins commutator rK,Ls ď X is in general just a
subobject of X, even when K and L are normal subobjects of X. In fact the
two are closely related, as the former is always the normal closure of the latter.

Since, in general, Huq and Higgins commutators do not coincide, their even-
tual coincidence, for normal subobjects, becomes a property that a semi-abelian
category may or may not satisfy. This condition, which we will denote by (NH),
was introduced by the first author in his Ph.D. thesis [15]. In this article we
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study the condition (NH) as well as its relation with other categorical conditions.
In addition we give examples, counterexamples and equivalent characterisations.

In Section 1 we recall the definitions of the Huq and the Higgins commutator
and some of their basic properties. In Section 2 we explain that (NH) holds if
and only if, for any pair of (protosplit) normal subobjects of an object, these two
commutators coincide (Theorem 2.8). It is well known that for a group G, the
commutator rG,Gs is a characteristic subgroup of G. In Section 3 we show that
this can be proved in a semi-abelian category satisfying (NH), if the definition
of characteristic subobject from [16] is used. In Section 4 we recall from the
first author’s Ph.D. thesis [15] that any category of interest in the sense of [31]
satisfies (NH) and we give a first example of a semi-abelian category which
does not. In Section 5 we compare (NH) with the Smith is Huq condition
(SH) considered in [29], and show that the two are independent from each
other. In Section 6 we characterise those categories which satisfy both (NH)
and (SH) in terms of the fibration of points. In particular, Theorem 6.5 tells
us that (SH) + (NH) is equivalent to the condition that for any f : W Ñ Z
in C , the change of base functor f˚ : PtZpC q Ñ PtW pC q of the fibration of
points preserves Huq commutators of pairs of normal subobjects. In fact, it
suffices to have this condition for W “ 0, so (SH) + (NH) holds if and only
if the kernel functors Ker : PtZpC q Ñ C preserve Huq commutators of pairs of
normal subobjects.

1. Preliminaries

Throughout this paper we assume that C is a semi-abelian category [24, 2].

Definition 1.1. [22] A pair of morphisms f : A Ñ C and g : B Ñ C is said
to commute or cooperate if there exists a (necessarily unique) morphism ϕ
making the diagram

A
x1A,0y

z�

f

�$
AˆB

ϕ ,2 C

B

x0,1By

Zd

g

:D

commute.

In this setting it can be seen that two morphisms commute if and only if
their regular images commute (see for instance [2]). For this reason we will only
define the Huq commutator for subobjects.

Definition 1.2. [22] For a pair of subobjects k : K � X and l : L � X of X
in C , the Huq commutator is the smallest normal subobject rK,LsX �X such
that the images of k and l commute in the quotient X{rK,LsX .
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In this context [7, 2] it can be shown that Huq commutator of k and l always
exists and can be constructed as the kernel of q in the diagram

K

x1K ,0y

z� ��

k

�$
K ˆ L

ϕ ,2 Q X
qlr lr rK,LsX

�lrkerpqqlr

L

x0,1Ly

Zd LR

l

:D

where Q is the colimit of the square of solid arrows, or equivalently as the kernel
of q in the diagram

K ` L

��

@

1K 0
0 1L

D

,2,2

A

k
l

E

��

K ˆ L

ϕ

��
rK,LsX

� ,2
kerpqq

,2 X
q

,2,2 Q

in which the right hand square is a pushout.

Definition 1.3. [27, 19] For a pair of subobjects k : K � X and l : L � X
of an object X in C , the Higgins commutator of K and L is the subobject
rK,Ls ď X constructed as in diagram

K ˛ L

����

� ,2κK,L ,2 K ` L

A

k
l

E

��
rK,Ls ,2 ,2 X

where κK,L is the kernel of
@

1K 0
0 1L

D

: K ` LÑ K ˆ L.

The object K ˛ L is the co-smash product [14, 27, 20] of K and L and
the Higgins commutator is its regular image under the morphism

@

k
l

D

˝κK,L.
Note that the normal subobject pK ˛Lq� pK `Lq can also be seen as the Huq
commutator of the coproduct inclusions ιK : K Ñ K ` L and ιL : LÑ K ` L.

Examples 1.4. In the category Gp of groups, K ˛ L is generated by words
klk´1l´1 as a normal subgroup of K`L, so that rK,Ls is the usual commutator
of K and L in X. In the category CRng of (non-unitary) commutative rings,
rK,Ls “ KL.
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We recall:

Lemma 1.5. Consider K, L ď X ď Y . Then the Higgins commutator of K
and L, computed in X, coincides with the Higgins commutator of K and L,
computed in Y .

Proof. This follows from uniqueness of regular images.

Lemma 1.6. [27, Proposition 5.7] For K, L ď X, the Huq commutator rK,LsX
is the normal closure in X of the Higgins commutator rK,Ls.

Proof. Let k : K � X and l : L� X be subobjects of X. Consider the diagram

K ˛ L
� ,2κK,L ,2

e

����

K ` L

A

1K 0
0 1L

E

,2,2
A

k
l

E

��

K ˆ L

ϕ

��
rK,Ls ,2

m ,2
��

��

X
q

,2,2 Q

rK,LsX

4 5? kerpqq

5?

where m is the image of the morphism
@

k
l

D

. Since
@

1K 0
0 1L

D

is the cokernel
of κK,L and the square on the right is a pushout, it follows that q is the cokernel
of m˝e. Since e is an epimorphism, q is also the cokernel of m. It immediately
follows that the Huq commutator rK,LsX is the normal closure of rK,Ls in X.

Since in a semi-abelian category the regular image of a normal subobject is
normal, if

@

k
l

D

is a regular epimorphism (i.e. when X “ K _ L), then the two
commutators coincide.

As a consequence of Theorem 4.4, we will see that, for normal subobjects,
the two commutators coincide in every category of interest in the sense of
G. Orzech [31], such as Gp or the category Rng of (non-unitary) rings and R-Lie
of Lie algebras over a fixed ring R. However, Examples 4.5 and 5.4 show that
for an arbitrary semi-abelian category, even those which are closely related to
categories of interest, the two commutators need not coincide for abitrary pairs
of normal subobjects.

The Higgins commutator can also be used to characterise normal mono-
morphisms.
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Lemma 1.7. [27, Theorem 6.3] A subobject K ď X is normal in X if and only
if rK,Xs ď K.

In fact, a more general version of this result holds: Lemma 4.9 in [19].

2. The condition (NH)

In general, as explained above, Huq and Higgins commutators need not
coincide; in other words, Higgins commutators need not be normal. In some
categories, though, the Huq commutator of a pair of normal monomorphisms
will always coincide with its Higgins commutator. In this section we focus on
equivalent formulations of this condition.

Definition 2.1. A semi-abelian category satisfies the condition Normality of
Higgins commutators (NH) when, for each pair of normal subobjects K,
L�X, the Higgins commutator rK,Ls ď X is normal in X.

It is easy to check that the category of groups satisfies (NH). By contrast,
the following example shows that, for arbitrary (non-normal) subgroups K and
L of X, the commutator rK,Ls need not be a normal subgroup of X.

Example 2.2. [15, Example 5.3.9] Let A5 be the simple group of even permuta-
tions of order five. For the two subgroups K “ xp12qp34qy and L “ xp12qp45qy,
we have rK,Ls “ xp345qy ‰ rK,LsA5

“ A5 its normalisation.

Under (NH), Higgins commutators and Huq commutators of normal subob-
jects coincide.

Lemma 2.3. In a semi-abelian category with (NH),

K,L�X ñ rK,LsX “ rK,Ls.

Proof. By Lemma 1.6 the Huq commutator rK,LsX is the normal closure of
rK,Ls in X. Hence if rK,Ls is already normal in X, then the two commutators
will coincide.

Lemma 2.4. In a semi-abelian category with (NH), if K, L ď X ď Y and K,
L� Y , then

rK,LsX “ rK,LsY .

Proof. If C satisfies (NH), then it follows from Lemma 2.3 that both commuta-
tors rK,LsX and rK,LsY coincide with the Higgins commutator rK,Ls, which
is independent of the object in which it is computed by Lemma 1.5.
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Lemma 2.5. Given K �X � Y , consider the induced diagram

K �(

�(

_��
k

��
0 ,2 X � ,2

xx,0y
,2 Y ˆY {X Y

π1

��

π2 ,2 Y

_��

lr ,2 0

0 ,2 X � ,2
x

,2 Y � ,2 Y {X ,2 0.

If K � Y then K � pY ˆY {X Y q.

Proof. Since K � Y , the right hand side pullback square decomposes into a
composite of pullbacks:

Y ˆY {X Y � ,2

_��

Q � ,2

_��

Y

_��
Y

� ,2 Y {K � ,2 Y {X

It is clear that K is the kernel of Y ˆY {X Y Ñ Q.

Recall the well known fact:

Lemma 2.6. Consider a split extension as in bottom row of the diagram

0 ,2 K_��
k

��

,2 K 1

��

,2 Zlr ,2 0

0 ,2 X
x
,2 Y

f ,2 Z
s

lr ,2 0

such that x˝k is normal. Then this split extension lifts along k : K Ñ X to yield
a normal monomorphism of split extensions.

Proof. The needed lifting is obtained via the pullback of split extensions in the
diagram

K_��

k

��

� ,2 ,2 K 1

v�

��

,2 Z
s

v�

lr

K
� ,2 ,2_��

x˝k

��

R
r1 ,2

xr1,r2y

��

Ylr

X � ,2
x

,25v�
x

v�

Y
f ,2

xs˝f,1Y y

v�

Z
s

lr

s

v�
Y

� ,2
x0,1Y y

,2 Y ˆ Y
π1 ,2 Y

x1Y ,1Y y
lr
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where R is the denormalisation [6, 2] of x˝k.

Definition 2.7. [4] A morphism K
� ,2 ,2X is called a protosplit (normal)

monomorphism if and only if it is the kernel of a split epimorphism. We
will use the notation K �X to indicate that K ď X is a protosplit normal
subobject of X, i.e. its representing monomorphisms are protosplit normal.

In what follows we shall consider the diagram

0 ,2 K_��
k

��

,2 K 1

k1

��

,2 Zlr ,2 0

0 ,2 X
x
,2 Y

f ,2 Z
s

lr ,2 0

0 ,2 L
_LR
l

LR

,2 L1

l1

LR

,2 Zlr ,2 0

(:)

where k1 and l1 are normal monomorphisms in PtZpC q.

Theorem 2.8. For a semi-abelian category C , the following are equivalent:

(i) C satisfies (NH);
(ii) for all K, L ď X ď Y , if K, L� Y , then rK,LsX “ rK,LsY ;
(iii) for all K, L ď X � Y , if K, L� Y , then rK,LsX “ rK,LsY ;
(iv) for all K, L ď X � Y , if K, L� Y then rK,LsX “ rK,LsY ;
(v) for all K, L ď X�Y , if K, L�Y and X “ K_L, then rK,LsX “ rK,LsY ;

(vi) for all K, L ď X�Y , if K, L�Y and X “ K_L, then rK,LsX “ rK,LsY ;
(vii) for any diagram (:) there exists a normal subobject N�Y in PtZpC q such

that KerpN � Y q “ rK,LsX �X;
(viii) for any diagram (:) such that X “ K_L, there exists a normal subobject

N � Y in PtZpC q such that KerpN � Y q “ rK,LsX �X.

Proof. By Lemma 2.4 (i) implies (ii). It is also clear that (ii) implies (iii), (iii)
implies (iv), (iii) implies (v) and (v) implies (vi). Assuming now that (v) holds,
since rK,LsK_L “ rK,Ls as explained above, (i) follows from the fact that since
K _ L� Y is the join of two normal monomorphisms it is normal [1, 22].

By Lemma 2.5, condition (vi) implies (v) as follows. Assuming that K and
L are normal in Y , the lemma gives us K, L � pY ˆY {X Y q. Hence by the
assumption (vi) and the fact that xx, 0y : X Ñ Y ˆY {X Y is a protosplit normal
monomorphism, we have rK,LsX “ rK,LsYˆY {XY . Consider the diagram

K ˛ L � ,2 κK,L ,2

e

����

K ` L

��
A

x˝k
x˝l

E

w�

A

k
l

E

w� w�
rK,Ls

� ,2
m

,2 X � ,2
xx,0y

,2

x

�(

Y ˆY {X Y

π1

����
Y.
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Since X “ K_L it follows that rK,LsX “ rK,Ls and so rK,Ls “ rK,LsYˆY {XY

is normal in Y ˆY {X Y . Since the image of a normal monomorphism is normal
it follows that x˝m is normal in Y . Therefore since rK,LsY � Y is the normal
closure of rK,Ls ď Y it follows that rK,LsY “ rK,Ls “ rK,LsX as required.
Finally we note that (vii) is equivalent to (iv) and (viii) is equivalent to (vi)
since they are simple reformulations obtained using Lemma 2.6 and the fact
that for a morphism of split extensions

0 ,2 K_��
k

��

,2 K 1

k1

��

,2 Zlr ,2 0

0 ,2 X
x
,2 Y

f ,2 Z
s

lr ,2 0,

the monomorphism k1 considered as a morphism in PtZpC q is normal if and
only if x˝k is normal in C .

3. Characteristic subobjects and (NH)

In the category of groups it is well known that for each group G the com-
mutator rG,Gs is a characteristic subgroup of G. It is not difficult to see that
a subgroup S of G is characteristic if and only if for each group B, every action
B5G Ñ G, defined with respect to the monad B5p´q (see [3], [4] and [11]),
restricts to an action B5S Ñ S. This description was used by the first author
and A. Montoli in [16] as a definition of characteristic subobject in an arbitrary
semi-abelian category. In this section we will give alternative characterisations
of characteristic subobjects and then show that (NH) implies that when K
and L are characteristic subobjects of X the Huq commutator of rK,LsX is a
characteristic subobject of X. The same result was proved in [16] in a context
including categories of interest.

Definition 3.1. [16] A subobject S ď X is said to be characteristic when
every action B5X Ñ X restricts to an action B5S Ñ S.

Proposition 3.2. For a subobject S ď X the following are equivalent:

(i) S is a characteristic subobject of X;

(ii) each split extension

X
x ,2 Y

f ,2 Z
s
lr

lifts to a morphism of split extensions

0 ,2 S
��

��

,2 T

��

,2 Zlr ,2 0

0 ,2 X
x
,2 Y

f ,2 Z
s

lr ,2 0
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(iii) for each Y such that X � Y , S is a normal subobject of Y ;

(iv) for each Y such that X � Y , S is a normal subobject of Y .

Proof. The implications (i) ô (ii) and (i) ñ (iv) were proved in [16]. It follows
that the proof will be complete if we show that (iv) ñ (iii) ñ (ii). Trivially
(iv) ñ (iii) since (iii) is a special case of (iv). Finally, the implication (iii) ñ (ii)
follows from Lemma 2.6.

Proposition 3.3. If C satisfies (NH), then for K and L characteristic subob-
jects of X, rK,LsX is a characteristic subobject of X.

Proof. By Proposition 3.2 it is sufficient to show that if X is a normal subobject
of Y then rK,LsX is a normal subobject of Y . But, trivially by Proposition 3.2
we have K and L are normal subobjects of Y and so by Theorem 2.8, rK,LsX “
rK,LsY is a normal subobject of Y .

Corollary 3.4. If C satisfies (NH), then for each object X, the commutator
rX,Xs “ rX,XsX is a characteristic subobject of X.

Proof. This follows from Proposition 3.3 with K “ L “ X, since X is trivially
a characteristic subobject of X.

4. Categories of interest satisfy (NH)

The condition (NH) was first studied in the first author’s thesis [15], where
it is also shown that any category of interest in the sense of Orzech satisfies it.
In this section we recall this fact.

Definition 4.1. [31] A category of interest is a variety of universal algebras
whose theory contains a unique constant 0, a set Ω of finitary operations and a
set of identities E such that:

(COI 1) Ω “ Ω0 Y Ω1 Y Ω2, where Ωi is the set of i-ary operations;

(COI 2) Ω0 “ t0u, ´ P Ω1 and ` P Ω2, where Ωi is the set of i-ary operations, and
E includes the group laws for 0, ´, `; define Ω11 “ Ω1zt´u, Ω12 “ Ω2zt`u;

(COI 3) for any ˚ P Ω12, the set Ω12 contains ‚ defined by x ‚ y “ y ˚ x;

(COI 4) for any ω P Ω11, E includes the identity ωpx` yq “ ωpxq ` ωpyq;

(COI 5) for any ˚ P Ω12, E includes the identity x ˚ py ` zq “ x ˚ y ` x ˚ z;

(COI 6) for any ω P Ω11 and ˚ P Ω12, E includes the identity ωpxq ˚ y “ ωpx ˚ yq;

(COI 7) for any ˚ P Ω12, E includes the identity x` py ˚ zq “ py ˚ zq ` x;

(COI 8) for any ˚, ‚ P Ω12, there exists a word w such that E includes the identity

px˚yq‚z “ wpx˚1py‚1zq, . . . , x˚mpy‚mzq, y˚m`1px‚m`1zq, . . . , y˚npx‚nzqq

where ˚1, . . . , ˚n and ‚1, . . . , ‚n are operations in Ω12

Note that we have slightly generalized the original axiom (COI 8). Note also
that since any category of interest is a variety of Ω-groups, it is automatically
semi-abelian [24].
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Examples 4.2. The categories Gp of groups, Rng of non-unitary rings, and
K-Lie of Lie algebras, K-Leibniz of Leibniz algebras, and K-Poisson of Poisson
algebras over a field K are all categories of interest. On the other hand, categories
of Jordan algebras and of non-associative algebras aren’t, because (COI 8) fails
for them. More generally, varieties of distributive Ω-groups [21] need not be
categories of interest.

Remark 4.3. By (COI 5), for any ˚ P Ω12, E includes the identity

px ˚ zq ` px ˚ tq ` py ˚ zq ` py ˚ tq

“ px` yq ˚ pz ` tq “ px ˚ zq ` py ˚ zq ` px ˚ tq ` py ˚ tq;

hence it also includes px ˚ tq ` py ˚ zq “ py ˚ zq ` px ˚ tq.

Theorem 4.4. [15, Theorem 5.3.6] If C is a category of interest, X an object
in C and K, L�X, then the Higgins commutator rK,Ls is normal in X.

Proof. Since categories of interest are distributive Ω-groups by definition, ac-
cording to Theorem 4B in [21], the commutator rK,Ls is the ideal of K_L gen-
erated by the elementary commutator words wpk, lq “ ´wpkq´wplq`wpk` lq,
with k P Kn, l P Ln and w a single n-ary operation (for any n) or the identity.
Since C is a category of interest, we have elementary commutator words of these
types:

(i) ´k ´ l ` k ` l, with k P K and l P L;

(ii) ´ωpkq ´ ωplq ` ωpk ` lq, with k P K, l P L and ω P Ω11;

(iii) ´pk1 ˚ k2q ´ pl1 ˚ l2q ` ppk1 ` l1q ˚ pk2 ` l2qq, with k1, k2 P K, l1, l2 P L
and ˚ P Ω12.

Now, by Definition 4.1,

´ωpkq ´ ωplq ` ωpk ` lq
pCOI 4q
“ ´ωpkq ´ ωplq ` ωpkq ` ωplq

and ωpkq P K, ωplq P L, since K and L are subobjects. It follows that words of
type (ii) are again of type (i). Moreover,

´ pk1 ˚ k2q ´ pl1 ˚ l2q ` ppk1 ` l1q ˚ pk2 ` l2qq

pCOI 5q
“ ´pk1 ˚ k2q ´ pl1 ˚ l2q ` pk1 ˚ k2q ` pk1 ˚ l2q ` pl1 ˚ k2q ` pl1 ˚ l2q

“ pk1 ˚ l2q ` pl1 ˚ k2q,

where the last equality follows from Remark 4.3.
So we only have two types of elementary commutator words:

(i) ´k ´ l ` k ` l, with k P K and l P L;

(iii)’ pk1 ˚ l2q ` pl1 ˚ k2q, with k1, k2 P K, l1, l2 P L and ˚ P Ω12.
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Now let vK,Lw be the subobject of X generated by the elementary commutator
words. We shall prove that vK,Lw is normal in X (and thus in K _ L). As a
consequence, vK,Lw “ rK,Ls and rK,Ls will be an ideal of X, as required.

In order to prove that vK,Lw is an ideal of X, by Theorem 1.7 in [31] it
suffices to prove that it is closed under conjugation and products with elements
of X. We start by verifying these two conditions for generators.

(i) For any k P K, l P L, x P X:

´ x` p´k ´ l ` k ` lq ` x

“ p´x´ k ` xq ` p´x´ l ` xq ` p´x` k ` xq ` p´x` l ` xq

and the right hand expression is an elementary commutator word of type (i), K
and L being ideals of X; for any k P K, l P L, x P X and ˚ P Ω12:

p´k ´ l ` k ` lq ˚ x
pCOI 5q
“ ´pk ˚ xq ´ pl ˚ xq ` pk ˚ xq ` pl ˚ xq

and again the right hand expression is an elementary commutator word of
type (i), K and L being ideals of X.

(iii)’ For any k1, k2 P K, l1, l2 P L, x P X and ˚ P Ω12

´x` pk1 ˚ l2q ` pl1 ˚ k2q ` x
pCOI 7q
“ pk1 ˚ l2q ` pl1 ˚ k2q,

that is, commutator words of type (iii)’ are stable by conjugation; for any k1,
k2 P K, l1, l2 P L, x P X and ˚, ‚ P Ω12,

ppk1 ˚ l2q ` pl1 ˚ k2qq ‚ x
pCOI 5q
“ ppk1 ˚ l2q ‚ xq ` ppl1 ˚ k2q ‚ xq

but, by (COI 8), there exists a word w such that

pk1 ˚ l2q ‚ x “

wpk1 ˚1 pl2 ‚1 xq, . . . , k1 ˚m pl2 ‚m xq, l2 ˚m`1 pk1 ‚m`1 xq, . . . , l2 ˚n pk1 ‚n xqq

where each term on the right is an elementary commutator word since K and L
are ideals, and so the product pk1˚l2q‚x is generated by elementary commutator
words. Similarly, the same holds for the product pl1 ˚ k2q ‚ x.

We conclude the proof by induction. Let w1pk, lq and w2pk
1, l1q be words

in vK,Lw satisfying the two conditions above—conjugates and products with
elements of X are still in vK,Lw. Let us first consider the sum w1 ` w2. For
any x P X,

´x` pw1 ` w2q ` x “ p´x` w1 ` xq ` p´x` w2 ` xq

and the right hand expression is in vK,Lw, since w1 and w2 satisfy the induction
hypothesis. For any x P X and ˚ P Ω12,

pw1 ` w2q ˚ x
pCOI 5q
“ pw1 ˚ xq ` pw2 ˚ xq
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and again the right hand expression is in vK,Lw, since w1 and w2 satisfy the
induction hypothesis.

Now consider the product w1 ˚ w2 where ˚ is a fixed operation in Ω12. For
any x P X,

´x` pw1 ˚ w2q ` x
pCOI 7q
“ w1 ˚ w2,

that is, the product w1 ˚w2 is stable under conjugation; and for any x P X and
‚ P Ω12,

pw1 ˚ w2q ‚ x
pCOI 8q
“ wpw1 ˚1 pw2 ‚1 xq, . . . , w1 ˚m pw2 ‚m xq,

w2 ˚m`1 pw1 ‚m`1 xq, . . . , w2 ˚n pw1 ‚n xqq

where each term on the right is generated by elementary commutator words,
because w1 and w2 satisfy the induction hypothesis. Hence pw1˚w2q‚x P vK,Lw,
which concludes the proof.

Next we give an example showing that (NH) need not hold outside the
context of categories of interest. In particular (COI 7) is necessary. Example 5.4
below proves that also (COI 8) is also necessary. Both show that there are semi-
abelian categories in which Higgins commutators of normal subobjects need not
be normal.

Example 4.5. [15, Example 5.3.8] Consider the category whose objects are
groups with an additional binary associative and distributive operation ˚, which
satisfies all the axioms in Definition 4.1, except for (COI 7), and morphisms are
group homomorphisms preserving ˚. Let A be the dihedral group of order 8, in
additive notation:

A “ xr, s | 4r “ 0, 2s “ 0, s` r ` s “ 3ry

endowed with an associative and distributive product generated by:

˚ r s
r s s
s s s

The subobject K “ t0, 2r, s, s`2ru of A generated by s and 2r is an ideal of A,
whereas the commutator rK,Ks “ t0, su is not, since it is not closed under
conjugation: indeed, r ` s´ r “ r ` s` 3r “ s` 2r R rK,Ks.

5. Independence of the Smith is Huq condition (SH)

In this section we prove that (NH) is independent of the Smith is Huq con-
dition (SH), by giving examples of categories which satisfy one but not the
other.
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5.1. The Smith is Huq condition (SH)

Given two equivalence relations R and S on X, with respective normalisa-
tions K, L � X, the Smith commutator rR,SsS of R and S is an equivalence
relation on X which measures how far R and S are from centralising each other
(see [34, 32, 2]). If the Smith commutator of two equivalence relations is trivial,
then the Huq commutator of their normalisations is also trivial [10]. But, in
general, the converse is false; in [2, 8] a counterexample is given in the category
of digroups, which is a semi-abelian variety, even a variety of Ω-groups [21]. The
requirement that the two commutators vanish together is known as the Smith
is Huq Condition (SH) and it is shown in [29] that, for a semi-abelian cat-
egory, this condition holds if and only if every star-multiplicative graph is an
internal groupoid, which is important in the study of internal crossed mod-
ules [23]. Moreover, (SH) is also known to hold for pointed strongly protomod-
ular categories [10] (in particular, for any Moore category [17, 33]) and in action
accessible categories [12] (in particular, for any category of interest [30]).

5.2. Characterisation in terms of Higgins commutators

Given subobjects k : K Ñ X, l : LÑ X and m : M Ñ X of an object X, the
ternary Higgins commutator rK,L,M s ď X is the image of the composite

K ˛ L ˛M
� ,2ιK,L,M ,2

_��

K ` L`M
B

k
l
m

F

��
rK,L,M s ,2 ,2 X

where ιK,L,M is the kernel of

K ` L`M

C

iK iK 0
iL 0 iL
0 iM iM

G

,2 pK ` Lq ˆ pK `Mq ˆ pL`Mq;

ik, iL and iM denote coproduct injection morphisms. The object K ˛ L ˛M is
the ternary co-smash product [14, 20, 19] of K, L and M .

The main result of [20] states that for all K, L�X, the Smith commutator
rK,LsS may be decomposed as the join rK,Ls_ rK,L,Xs, so that (SH) holds if
and only if rK,LsX “ rK,Ls _ rK,L,Xs or, equivalently, rK,L,Xs ď rK,LsX .

5.3. Relation between (NH) and (SH)

It is a natural question to ask whether the conditions (NH) and (SH) are
related. The following examples show that they are, in fact, independent.

Example 5.4. [15, Example 5.3.7] Let NARng be the category non-associa-
tive rings [21] whose objects are abelian groups with an additional binary
operation ˚ which distributes over addition; and whose morphisms are group ho-
momorphisms preserving ˚. This category satisfies all axioms in Definition 4.1,
except for (COI 8).
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Let A be the object in NARng with abelian group structure the free abelian
group on tx, y, zu, endowed with a distributive product with the following mul-
tiplication table:

˚ x y z
x x 0 y
y 0 0 x
z y x z

The subobject K generated by x and y is an ideal of A, whereas the commutator
rK,Ks, which is the subobject generated by x is not, because it is not closed
under multiplication with external elements: x ˚ z “ y R rK,Ks.

Since the category NARng is strongly protomodular (being a variety of dis-
tributive Ω2-groups [26]), it follows that strong protomodularity [5, 8] does not
imply (NH). In particular, since a strongly protomodular semi-abelian category
always satisfies (SH) it follows that a semi-abelian category may satisfy (SH)
but not (NH).

Example 5.5. Let C be the category whose objects are abelian groups endowed
with a symmetric and distributive ternary operation t satisfying the following
associativity property:

tptpx, y, zq, u, vq “ tptpx, u, vq, y, zq.

Morphisms are as usual maps preserving all operations. Since C is a variety
of distributive Ω-groups, we know from [21, Theorems 4A, 4C] that, given K,
L ď X in C :

(i) K �X if and only if for all k P K and x1, x2 P X also tpk, x1, x2q P K;

(ii) rK,Ls is generated by elements of type tpk1, k2, l2q or tpk1, l1, l2q, where
k1, k2 P K and l1, l2 P L.

For K ď X, if k1, k2, k3 are elements of K and x1, x2 are elements of X such
that tpki, x1, x2q P K, then

tpk1 ` k2, x1, x2q “ tpk1, x1, x2q ` tpk2, x1, x2q P K

tptpk1, k2, k2q, x1, x2q “ tptpk1, x1, x2q, k2, k3q P K.

Hence it is sufficient to check (i) on generators. As a consequence, if K, L�X
then rK,Ls is normal in X, since

tptpk1, k2, l2q, u, vq “ tptpk1, u, vq, k2, l2q P rK,Ls

for all u, v P X, and a similar argument holds for the terms of second type.
This shows that (NH) holds in C .

Consider now the object of C consisting of the abelian group Z with the
operation tpx, y, zq “ xyz. Then, if we consider the subobjects 2Z and 4Z, it
happens that r2Z, 4Zs “ 16Z, while r2Z, 4Z,Zs “ 8Z. So r2Z, 4ZsS “ r2Z, 4Zs_
r2Z, 4Z,Zs ą r2Z, 4Zs showing that C does not satisfy (SH).
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6. Equivalent characterisations of (SH) + (NH)

Many categories—all categories of interest, for instance, as explained in 4.4
and 5.1—do actually satisfy both (SH) and (NH). These two conditions, when
required together, may be characterised in terms of the fibration of points as
shown in Theorem 6.5. We begin with a straightforward characterisation in
terms of ternary commutators.

Proposition 6.1. A semi-abelian category C satisfies (SH) + (NH) if and only
if for all K, L�X in C ,

rK,L,Xs ď rK,Ls.

Proof. This follows from the chain of inclusions

rK,Ls ď rK,LsX ď rK,Ls _ rK,L,Xs

and the fact that the Smith commutator of the equivalence relations corres-
ponding to K and L has the join on the right as its normalisation [20].

This immediately implies that any semi-abelian category C which satisfies
(SH) + (NH) is peri-abelian in the sense of [9], since, via the characterisation
in [18], C is such if and only if for all K �X we have rK,K,Xs ď rK,Ks.

It was proved in [13, 28] that (SH) is equivalent to the condition that kernel
functors reflect Huq commutativity of normal subobjects. By (vii) in The-
orem 2.8, condition (NH) is equivalent to the condition that Huq commutators
of cospans of normal monomorphisms which are the image of cospans of nor-
mal monomorphisms under a kernel functor are themselves images of normals
subobjects under the same kernel functor. Hence we are able to study these
properties together using an abstract functor as in Lemmas 6.3 and 6.4 below,
and make conclusions about the condition (NH) + (SH) in Theorem 6.5.

Definition 6.2. A class C of cospans in C is closed under (direct) images
when for any cospan pk : K Ñ X, l : LÑ Xq in C and any regular epimorphism
e : X Ñ X 1 in C , the cospan pk1, l1q where k1 and l1 are the images of e˝k and
e˝l, respectively, is in C.

Recall that a functor is said to be conservative when it reflects isomorph-
isms.

Lemma 6.3. Let C and D be semi-abelian categories, let C be a class of cospans
in C which is closed under images, let F : C Ñ D be a conservative functor
which preserves limits and regular epimorphisms, and let D be the image of C
under F . The following are equivalent:

(i) F reflects Huq commutativity of those cospans in D;

(ii) F reflects Huq commutators of those cospans in D.
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Proof. The implication (ii) ñ (i) follows from the fact that the functor F pre-
serves the zero object. To prove (i) ñ (ii), let pk : K Ñ X, l : L Ñ Xq be a
cospan in C and suppose there exists a normal monomorphism w : W Ñ X such
that F pwq is the Huq commutator of F pkq and F plq. Let e be the cokernel of w
as displayed in the the short exact sequence

0 ,2 W
w ,2 X

e ,2 X{W ,2 0

and let k1 and l1 be the images of e˝k and e˝l. Since F preserves limits and regu-
lar epimorphisms it preserves short exact sequences (since regular epimorphisms
are normal in D), and so F peq is the quotient of the Huq commutator of F pkq
and F plq, which by definition means that F pe˝kq and F pe˝lq and so by [2] that
F pk1q and F pl1q commute. Since C is closed under images, pk1, l1q is in C and so,
by (i), k1 and l1 and therefore e˝k and e˝l commute. It follows that rK,LsX ďW
and therefore that F prK,LsXq ď F pW q. Since F preserves Huq commutativity
(since it preserves limits) and short exact sequences it follows that

F pW q “ rF pKq, F pLqsF pXq ď F prK,LsXq,

meaning that F prK,LsXq “ F pW q, and therefore since F reflects isomorphisms
rK,LsX “W as required.

Lemma 6.4. Let C and D be semi-abelian categories, let C be a class of cospans
in C which is closed under images, let F : C Ñ D be a conservative functor
which preserves limits and regular epimorphisms, and let D be the image of C
under F . The following are equivalent:

(i) F reflects Huq commutativity of cospans in D, and Huq commutators of
cospans in D are the image of normal subobjects under F ;

(ii) F reflects Huq commutators of cospans in D, and Huq commutators of
cospans in D are the image of normal subobjects under F ;

(iii) F preserves Huq commutators of cospans in C.

Proof. The equivalence of (i) and (ii) follows from Lemma 6.3. Since F reflects
isomorphisms, it easily follows that (iii) ñ (ii). To prove that (ii) ñ (iii), let
pk : K Ñ X, l : LÑ Xq be a cospan in C. By the second part of (ii), there exists
a normal monomorphism w : W Ñ X such that F pwq is the Huq commutator
of F pkq and F plq. It follows that since F reflects such commutators, w is the
commutator of k and l meaning that F preserves commutators of cospans in C
as required.

Now we apply this to the situation where F “ Ker: PtZpC q Ñ C is a kernel
functor and C is the class of cospans of normal monomorphisms.

Theorem 6.5. For a semi-abelian category C , the following are equivalent:

(i) C satisfies (SH) + (NH);

(ii) C satisfies (NH) and the kernel functors Ker: PtZpC q Ñ C reflect Huq
commutators of pairs of normal subobjects;
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(iii) the kernel functors Ker: PtZpC q Ñ C preserve Huq commutators of pairs
of normal subobjects;

(iv) C satisfies (NH) and the change of base functors f˚ : PtZpC q Ñ PtW pC q
of the fibration of points reflect Huq commutators of pairs of normal sub-
objects;

(v) the change of base functors f˚ : PtZpC q Ñ PtW pC q of the fibration of
points preserve Huq commutators of pairs of normal subobjects;

(vi) for each Z in C the category PtZpC q satisfies (SH) + (NH).

Proof. As explained above, (i) is equivalent to (ii). The equivalence between
(ii) and (iii) follows from Lemma 6.4. Next we will show that (ii) + (iii) implies
(iv) + (v). Let f : W Ñ Z be a morphism C . Consider the diagram of induced
pullback functors

PtZpC q
f˚ ,2

!˚Z“Ker

2:PtW pC q
!˚W“Ker ,2 C

which commutes (up to natural isomorphism). It is clear that f˚ preserves
Huq commutators of pairs of normal subobjects because the kernel functor !˚Z
preserves them and !˚W reflects them. On the other hand, f˚ reflects Huq
commutators of pairs of normal subobjects because !˚W preserves them and !˚Z
reflects them. The implications (vi)ñ (i), (v)ñ (iii) and (iv)ñ (ii) are obvious.
Finally, since there is an isomorphism of categories PtpA,p,sqpPtBpC qq – PtApC q
making the diagram

PtpA,p,sqpPtBpC qq
– ,2

Ker #+

PtApC q

s˚u�
PtBpC q

commute, it follows that (v) for C implies (iii) for PtBpC q which then implies
(i) for PtBpC q.
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