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In the framework of ab initio simulations, the search for energy minimum atomic structures is the first
step to perform in studying the properties of a system. One of the most used and efficient optimization
algorithm is a quasi-Newton line-search scheme based on Broyden-Fletcher-Goldfarb-Shanno (Bfgs)
Hessian updating formula. However, recent studies [E. Bitzek et al., Phys. Rev. Lett. 97, 170201 (2006)
and J. Guénolé et al., Comput. Mater. Sci. 175, 109584 (2020)] suggested that minimization methods
based on Molecular Dynamics concepts, such as the Fast Relaxation Inertial Engine (Fire) algorithm,
often exhibit better performance and accuracy in finding local minima than line-search based schemes.
In the present work, the implementation of Fire, in the framework of Crystal ab initio quantum
mechanical simulation package, [R. Dovesi et al., Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1360
(2018)] has been described. Its efficiency and performance in comparison with Bfgs quasi-Newton
scheme has been assessed, using Hartree-Fock and Density Functional Theory with Perdew-Burke-
Ernzerhof and hybrid functionals to model the potential energy surface. Fire shows good convergence
behavior for all the considered systems, well reproducing the minimum energy structures obtained by
Bfgs approach. As regards the computational cost, Fire requires more iterations to converge with
respect to Bfgs, but each Fire iteration is faster than the Bfgs one. The overall efficiency of Fire
improves as the size of the system increased, so that this minimization method seems very promising
for systems without symmetry (space group P1) with a large number of atoms.

I. INTRODUCTION

Structural optimization of molecular and crystalline
systems becomes an increasingly more common task
in solid state physics, chemistry, biology and materials
science. In fact, it is the obligatory starting point for
the calculation of any of the ground state properties of
a system, such as electronic, mechanical, optical and
transport properties. The optimized structure corre-
sponds to a local minimum energy configuration in
the Potential Energy Surface (Pes) and, as the size
and complexity of the systems rise up, the modeling
of such multidimensional shape and the search of its
critical points becomes more and more challenging.
As a matter of fact, a variety of well-established mul-
tidimensional minimization methods are adopted to
find optimized configurations, among which the quasi-
Newton algorithm1,2 in conjunction with the efficient
Broyden-Fletcher-Goldfarb-Shanno (Bfgs) updating
scheme for the Hessian matrix,3–7 is heralded as a
benchmark method.
The Crystal code,8 an ab initio computational pack-
age for the study of molecular and crystalline sys-
tems, based on Hartree Fock (Hf) method and Den-
sity Functional Theory (Dft), performs structural
optimizations through a quasi-Newton procedure, in
which the default choice for the initial Hessian ma-
trix is obtained from a model Hessian, as proposed
by Schlegel,9,10 and its update is performed by using
the Schlegel’s (Sh) scheme11 or the efficient Broyden-
Fletcher-Goldfarb-Shanno (Bfgs) algorithm.3–7

This method has proved to be effective in a wide range
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of different applications. Nevertheless, it is worth to
note that (i) the potential energy surface is locally
described with a function expanded up to its sec-
ond order derivative (i.e. the Pes is approximated
to be of quadratic form) and (ii) the calculation of
the approximated Hessian matrix requires a compu-
tational cost which scales approximately linearly with
the system size. At the same time, the recent de-
velopment of a molecular dynamics module12 in the
Crystal code paved the way for an exploration of
methods based on Md techniques, such as the search
for transition states and global minimization algo-
rithms. The interest in these methods is driven by
the purpose of testing the Md module reliability and
efficiency, extending its capabilities in order to pro-
vide the Users a robust and complete Md package.
In this context, with the aim to complement Crys-
tal’s abilities and overcome some of its limitations,
we turned our attention to a novel approach recently
proposed by E. Bitzek et al.,13 called the Fast Inertial
Relaxation Engine (Fire). This simple and robust
algorithm is based on molecular dynamics (Md) con-
cepts and seems to be promising both in its basic13

and improved14 implementation. It has been demon-
strated to be a useful tool in numerous atomistic stud-
ies, including Dft based simulations of chemically
complex systems,15–18 significantly faster than stan-
dard implementation of the Conjugate Gradient (Cg)
algorithm and often competitive with more sophisti-
cated quasi-Newton schemes as typified by the Bfgs
method.13,19 Moreover, it seems very well suited for
transition state calculations in conjunction with the
Nudged Elastic Band method,20 and apparently it
works efficiently in the case of noisy potential energy
surface, where Bfgs minimization often fails.21

Furthermore, the Fire scheme (i) does not require
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any approximation of the shape of the potential en-
ergy surface, possibly resulting in better performances
for systems which are far from the equilibrium and
(ii) does not involve the approximation of the Hessian
matrix, conceivably leading to a reduction of the com-
putational cost as the size of the system increases.
On the heels of these results, Fire algorithm has been
implemented in several atomistic simulation pack-
ages, like Lammps,22 Gromacs,23 Imd,24 Dl poly,25

Eon,26 or Ase.27

In the present work, the implementation of the Fire
algorithm in the Crystal code is described and its
efficiency, in terms of accuracy and timing, is as-
sessed. The results obtained with the basic and im-
proved version of Fire are compared with the quasi-
Newton minimization methods based on Sh and Bfgs
updating schemes. The effect of the exchange and
correlation functional, which determines the shape of
the Pes, is explored, adopting different Hamiltonian
forms such as Hf, pure Dft and hybrids. Different
kind of systems are considered, covering various di-
mensionalities and the whole range of chemical inter-
actions, with the aim of investigating the portability
of the method, its advantages and limitations.
The article is structured as follows. In Section II the
Fire algorithm and its implementation in the Crys-
tal code is outlined. Then, in Section III, the mean-
ing and tuning of Fire specific parameters is dis-
cussed, some default values are suggested and a gen-
eral strategy for their optimization is proposed. In
Section IV, the results of the structural minimizations
performed with Fire are shown and compared with
those obtained with the Sh and Bfgs schemes. Fi-
nally, in Section VI, the general computational details
used to perform the calculations are provided.

II. THE FIRE ALGORITHM

In a system with N nuclei of mass m, whose positions
is associated to the coordinates x = (x1, x2, ..., x3N ),
the potential energy surface described by E(x) is a
map E : R3N → R that assigns to each atomic config-
uration x a potential energy value E(x).
Fire algorithm is based on the equation of motion
for the nuclei as proposed by E. Bitzek et al.,13 that
determines the motion of the system in the potential
energy surface by introducing a corrected acceleration

v̇(t) =
F(x(t))

m
− γ(t) ‖v(t)‖ [v̂(t) − F̂(x(t))] (1)

where hat indicates unit vectors, ‖v(t)‖ is the eu-
clidean norm of the 3N velocity vector and γ(t) is
a scalar function of time. The first term on the right
hand side in Eq. (1) represents regular classical New-
tonian dynamics. The effect of the second term is to
direct the trajectory towards the steepest descent at
x(t) by reducing the angle between v(t) and F(x(t)).
The explicit-Euler discretization of the equation of
motion in Eq. (1), with initial condition v(t = 0) = 0,

leads to the following velocities updating expression

v(t+ dt) = v(t) + v̇(t)dt

= v(t) +

{
F(x(t))

m
− γ(t)[v(t)− ‖v(t)‖ F̂(x(t))]

}
dt

= (1− α)v(t) + α‖v(t)‖ F̂(x(t)) +
F(x(t))

m
dt

= ṽ(t) +
F(x(t))

m
dt (2)

with α = γ(t) dt and

ṽ(t) = (1− α)v(t) + α‖v(t)‖ F̂(x(t)) (3)

Eq. (2) can be thus interpreted as the classical New-
ton equation in which the velocity v(t) of each atom
at the time t has been replaced by the modified veloc-
ity ṽ(t). Then, after the redefinition of v(t) through
Eq. (2), a conventional molecular dynamics integra-
tor, as the one recently implemented in the Crystal
code,12 can be used to compute the velocities v(t+dt)
at time (t+ dt).
In the Crystal code, the forces acting on the nu-
clei, F(x(t)) = −∇E(x(t)), are computed analyti-
cally through the Hellmann-Feynman theorem,28 so
that the energy E(x(t)) involved corresponds to the
electronic ground state total energy of the system for
a particular nuclear configuration.
A global quantity called power factor, P (t), defined
as

P (t) =

3N∑
i=1

Fi(x(t)) · vi(t) = F(x(t)) · v(t) (4)

is used to monitor and direct the optimization pro-
cess. P (t) corresponds to the power being delivered
to the nuclei by the force acting on them. Since the
total force acting on the system and the total energy
gradient have opposite directions, if the global veloc-
ity of the system points in a direction of higher energy,
the scalar product between the force and the velocity,
i.e. P (t), is negative. So, the motion of the system in
the Pes is forced to change according to the sign of
P (t), with both the timestep dt and the mixing fac-
tor α treated as dynamically adaptive quantities. If
P (t) > 0, the α mixing parameter is decreased by a
factor αdec and the timestep is increased by a factor
dtinc, with an upper bound equal to the largest possi-
ble timestep dtmax. As a consequence, the system is
accelerated in the direction of the energy minimum.
Otherwise, when P (t) ≤ 0, the algorithm reacts as
follows: (i) the system is immediately frozen by set-
ting all the velocities to zero (v = 0) to avoid uphill
motions, (ii) the timestep is reduced by a factor dtdec
to ensure a smooth restart, (iii) the α parameter is
reset to its initial value αin and (iv) to ensure better
stability, a short latency time of Ndel steps can be im-
posed before accelerating the dynamics again.
As a side note, it should be underlined that the Fire
minimization optimizes only the nuclei positions, let-
ting the volume and the lattice parameters unchanged.
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A. The FIRE2.0 algorithm

The Fire2.0 scheme is an improvement of the previ-
ously described basic version of the algorithm, by in-
troducing five main variations to the Fire procedure
as listed below.14

(a) In order to correct uphill motion when P (t) ≤ 0
is detected, the trajectory of the atomic system
on the Pes is moved backward by half a timestep
by means of the formula

x(t) → x(t)− dt

2
v(t) (5)

(b) The mixing of the velocity and force vectors de-
scribed by Eq. (3) is performed just after the ve-
locities updating by half a timestep v(t+ 0.5 dt)
in the Velocity Verlet algorithm, instead of be-
fore the integration of the equations of motions
through the Velocity Verlet scheme.

(c) The minimization is stopped if the number of
consecutive iterations with P (t) ≤ 0 exceeds a
threshold given by Nple,max. This additional
stopping criterion has the aim to avoid unneces-
sary looping, when further minimization of the
geometry of the system does not appear to be
feasible. This is the case for regions of the Pes
which can be described as narrow valleys, where
the system could eventually be trapped without
finding a different minimum.

(d) A minimum value for the timestep is defined,
so that the timestep used for the integration
can not be decreased below an established value
dtmin.

(e) In the case of P (t) ≤ 0 and if the minimum
timestep is not yet reached, the timestep is de-
creased only when the number of Fire itera-
tions is greater than Ndel, i.e., if P (t) ≤ 0 the
decrease of the timestep is performed only after
Ndel optimization steps.

In particular, modifications (a) and (b) are supposed
to introduce the major discrepancies and differences in
Fire2.0 minimization with respect to the basic Fire
one.

III. FIRE IN CRYSTAL CODE

A. Molecular Dynamics integrator

As highlighted by F. Shuang et al.,19 the Md integra-
tor chosen to update positions and velocities at each
iteration has a relevant influence on the performance
of Fire minimization procedure. In particular, the
Velocity Verlet integrator has been demonstrated to
be an optimal choice along with Fire optimization,
showing good efficiency and convergence.19 Thanks to

its robust behavior, the Velocity Verlet integrator has
been adopted as default molecular dynamics integra-
tor in the implementation of Fire algorithm. For the
case of Fire2.0 scheme, a slightly modified Velocity
Verlet procedure is implemented, where the velocities
updating by means forces and velocity mixing given
by Eq. (3) is embedded in the Md integrator, as ex-
plained in point (b) of Section II A.

B. Convergence criteria

Four kind of convergence criteria are implemented in
the Crystal code for Fire structural minimization,
respectively based on (i) the normalized euclidean
norm (i.e. the root mean square) of nuclear forces
vector, given by

Frms =
1√
3N

[
N∑
i=1

(F 2
x,i + F 2

y,i + F 2
z,i)

]1/2
(6)

and computed in cartesian coordinates, (ii) the differ-
ence in energy between two consecutive optimization
steps, (iii) the maximum and (iv) root-mean-square
displacement of the atomic positions between the n-
th step and the previous (n−1)-th one, both computed
in cartesian coordinates. By default, when these four
conditions are all satisfied at a time, Fire optimiza-
tion is considered complete. However, it is also pos-
sible for the Users to adopt only one of these conver-
gence criteria, and to modify the default values of the
thresholds, using specific Input keywords.
Nevertheless, the normalized euclidean norm of carte-
sian nuclear forces, computed as in Eq. (6), has proven
to be a reliable and sufficiently strict check to assess
the degree of relaxation in Fire and Fire2.0,14 and
is therefore used in this work as the only convergence
criterion.

C. Setting of Fire default parameters

The adjustable parameters in Fire algorithm are (i)
the initial value αin of the mixing parameter to be
used in Eq. (2), (ii) the initial timestep dtin, (iii) its
maximum value dtmax = dtin · tmax, and (iv) Ndel, i.e.
the number of self-consistent cycles (SCF) and force
evaluations (GRAD) to be performed, after a stop due
to P (t) ≤ 0, before accelerating the dynamics again.
It is worth to note that a good assessment of the set of
parameters, namely (αin, dtin, tmax, Ndel), is essen-
tial to fully exploit the efficiency of Fire optimization
scheme, but, within a wide range of variability of these
parameters, it does not affect the reliability of the final
results. Based on our experience, and with reference
to four systems of different dimensionality, i.e. a wa-
ter molecule, a water polymer, a 2D slab of ice and a
urea crystal, modeled through a Pbe functional, a 3-
steps procedure is proposed to disentangled the effect
of the different parameters and adjust their values. In
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all cases, the goal is to minimize the number of itera-
tions Nstep (in each step, a self-consistent cycle (SCF)
procedure and an energy gradient calculation (GRAD)
are performed), as follows:
(i) for a given dtin and Ndel, different values of tmax

are explored (as in Figs. 1a,d and 2a,d) in order to
choose its optimal value;
(ii) then, given the best value of tmax (and fix-
ing Ndel), different dtin are evaluated in the range
[0.1, 3.0] fs, to define its best value (Figs. 1b,e and
2b,e);
(iii) finally, having fixed the optimal values of tmax

and dtin, Ndel can be varied in the range [0, 10], as
shown in Figs. 1c,f and 2c,f. The best value for αin is
automatically derived from the overall analysis of all
the trends obtained.
A very similar behavior of the number of total itera-
tions Nstep as a functions of the initial mixing factor
αin for points (i), (ii) and (iii) is obtained with all
the atomic systems considered, suggesting that the
best set of Fire parameters does not depend on the
dimensionality of the system. Furthermore, despite
the difference in the number of iterations necessary to
reach convergence, the reliability of Fire in finding
the minimum energy structure is preserved.
As regards the Fire2.0 version, the scan of the perfor-
mance dependency on the input parameters leads to a
trend analogous as the one found for the basic Fire,
with a general translation of the observed curves to-
wards low values number of optimization steps Nstep

due to the higher efficiency of Fire2.0 with respect
to the basic implementation. Therefore, the same de-
fault input parameters can be used for both Fire and
Fire2.0 minimizations. As a result of this analysis, it
becomes clear that a set of parameters which provides
excellent performance and is optimal for a wide range
of systems, different in size, dimension and chemical-
physical properties, can be defined. Finally, the de-
fault values for αdec, dtinc and dtdec factors, used to
accelerate or decrease the entity of the atomic motion,
and for the parameters tmin and Nple,max, introduced
in the Fire2.0 algorithm, are taken to be equal to
those originally proposed by Bitzek et al.13,14 These
default values, obviously modifiable from Input, are
shown in Table I.
It is worth to note that all the Fire parameters screen-
ing is here performed using PBE functional. How-
ever, from a preliminary analysis in the case of water
molecule and urea crystal with B3LYP functional, the
best set of Fire parameters results slightly dependent
on the kind of exchange-correlation functional em-
ployed. For the case of water molecule, for instance,
the best set of Fire parameters (αin, dtin, tmax, Ndel)
with PBE and B3LYP functional is, respectively,
(0.35, 2.0, 1.0, 0) and (0.20, 1.0, 1.0, 0), leading to a
corresponding total number of optimization steps
equal to 26 and 32.

TABLE I: Crystal default values for Fire algorithm
parameters, with the correspondent keywords that can be

used in Input to modify their values. The last two
parameters are defined only for Fire2.0 version of the

algorithm.

Parameter Keyword Default value

F
ir
e

αin Alphastart 0.30

F
ir
e
2
.0

dtin Dtstart 1.0 (fs)

tmax Tmax 1.0

Ndel Ndelay 0

αdec Alphashrink 0.99

dtinc Dtgrow 1.1

dtdec Dtshrink 0.5

Nple,max Nplezeromax 2000

tmin Tmin 0.02

IV. RESULTS AND DISCUSSION

The performance of Fire algorithm, at constant
volume and lattice parameters, has been evaluated
for systems with different dimensionality, number of
atoms and kind of chemical bond. The geometry
optimization on the same set of systems has been
also performed with quasi-Newton Sh and Bfgs up-
dating schemes, removing the symmetry of the sys-
tems, if necessary, to allow a reliable comparison with
Fire procedure. Information on each system (geome-
try structures, basis sets and computational settings)
are reported in the Supplementary Material (SM).
The number of optimization steps up to convergence,
Nstep, the mean number of self consistent cycle N̄w

performed in the calculation of the ground state solu-
tion at each optimization step, the root mean square
of final forces, Frms, of last iteration atomic displace-
ments, d e

rms, and of bond lengths difference between
Sh or Fire and Bfgs, ∆brms, are summarized in Ta-
ble II. The number of degrees of freedom in Fire
structural optimizations is equal to three times the
number of atoms Nat in the reference cell unit, while
for Sh and Bfgs equals (3Nat − 6) for molecules and
(3Nat − 3) for periodic systems.
The specific parameters adopted in Fire for each sys-
tem are reported in Table 3 of the SM. As regards the
general performances, the results show that each sin-
gle Fire optimization cycle (which also involves SCF

⊕ GRAD calculations) has a less computational cost
than the corresponding Sh and Bfgs one. Indeed, in
Fire minimization the mean number of self-consistent
iterations N̄w employed to reach convergence for the
ground state wavefunction calculations at each iter-
ation is less than the correspondent number for the
quasi-Newton methods, as reported in Table II. On
average, this means that Fire method displaces the
nuclei at each iteration less than Sh and Bfgs. The
less the displacement at each step, the better the
wavefunction input guess at the next iteration, the
less the number of self-consistent cycles needed for
ground-state wavefunction convergence. This inter-
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FIG. 1: Fire parameters (αin, dtin, tmax, Ndel) for (left panel: a,b,c) water molecule (0D system, 3 atoms) and (right
panel: d,e,f) water polymer (1D system, 6 atoms): screening and setting of the default values.

pretation is confirmed by the average values of the
root-mean-square nuclei displacements d̄rms in Fire
optimization, which is roughly one order of magni-
tude smaller than the correspondent values for quasi-
Newton methods Sh and Bfgs, for almost all the ex-
amined atomic systems (see Tables III, IV and Table
13 of the Sm). To a minor extent, the better effi-
ciency of a single Fire step can also be explained by
the fact that the updating of nuclei velocities and po-
sitions involved in Fire are very fast operations, while
the approximation of the Hessian matrix at each iter-
ation in Sh and Bfgs methods is slightly more com-
putational expensive, so that the Fire saving in Cpu
time increases with the system size. However, since
the computational time for the calculation of ground
state wavefunction and forces greatly overwhelms the
time exploited by all the other remaining operations at
each step, the greater efficiency of a single Fire iter-

ation can be almost entirely ascribed to the reduction
of system displacement in the Pes at each iteration.
At the same time, Fire takes more iterations to reach
convergence, so that its efficiency is comparable with
the Bfgs one when the increasing in the number of
iterations is counterbalanced by the decreasing in the
computational cost of each step. Nevertheless, for al-
most all the systems, Fire performs better than quasi-
Newton Sh updating scheme.
As for the reliability of the results, i.e. the capability
of finding stationary minima in the Pes, the agree-
ment on the final energies and atomic positions be-
tween Fire and Bfgs is within the accuracy of the
computational set up. The overall root mean square
differences between bonds of the structures obtained
with Fire and Bfgs, ∆brms, are of the same order
of magnitude of the final root mean square displace-
ments, d e

rms, suggesting that the optimized geometries
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FIG. 2: Fire parameters (αin, dtin, tmax, Ndel) for (left panel: a,b,c) water slab (2D system, 24 atoms) and (right
panel: d,e,f) urea molecular crystal (3D system, 16 atoms): screening and setting of the default values.

obtained with the two procedures can be considered
equivalent.
Different behaviors in the minimization process were
observed and deserve few comments. With reference
to the prototypical cases of tempered ice and urea
bulk, the mixing factor α, timestep dt, euclidean norm
of the 3N velocities vector and the power factor are
plotted in Fig. 3 as a functions of the number of min-
imization steps.
In the tempered ice, left panel, after the initial bal-
ancing of the system obtained in 10 iterations by
efficiently accumulating the inertia, the maximum
timestep is reached and both the mixing factor α and
the velocities decrease monotonously till convergence.
On the contrary, the velocity v(t) of the urea crystal,
right panel, brings the trajectory to an uphill motion
in the Pes several times, so that the timestep is pe-
riodically decreased by a factor dtdec, and reaches its

maximum value in a nearly stable way only after 27
iterations. A change in the number of equilibration
steps, Ndel, from 0 to 5, does not modify the behavior
of α and dt during the minimization of both systems
but, within the accuracy on energies and forces, the
number of iterations Nstep increases slightly, passing
from 84 to 86 and from 37 to 44, respectively, for tem-
pered ice and urea crystal.

Then, in order to test the robustness and scalability
of Fire and Fire2.0, given the same set of compu-
tational parameters (basis set, Dft functional, Fire
setting as in Table I), structural optimizations of crys-
talline urea supercells of increasing size were per-
formed. The results, reported in Table III, show
that, in the case of Fire and Fire2.0 algorithms,
the number of iterations does not depend on the sys-
tem size, so that their efficiency gradually reaches the
Bfgs one, succeeded in overtaking Bfgs computa-
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TABLE II: Number of optimization steps Nstep, average number of wavefunction self-consistent iterations N̄w required
to ground-state convergence, computational time ratio Tratio = TFire,Sh/TBfgs, root mean square of final forces

Frms = ‖F‖/
√

3N and of atomic displacements d e
rms in the last cycle, root mean square of bond lengths differences

∆b = bFire,Sh − bBfgs, and energy difference ∆E = EFire − EBfgs which results from structural optimizations performed
within Sh, Bfgs and Fire schemes for different atomic systems with Nat atoms. Cartesian coordinates of optimized

atomic structures are reported in Figures 10-18 of the Supplementary Material.

System Nat Nstep N̄w Tratio
Frms d e

rms ∆brms ∆E
[Ha/Bohr] [Bohr] [Bohr] [eV/atom]

H2O (0D)
Sh 7 6 1.1 1.76 ·10−7 1.0 ·10−5 1.9 ·10−5 1.0 ·10−12

3 Bfgs 6 6 – 3.74 ·10−6 4.3 ·10−4 – –
Fire 26 5 2.8 4.31 ·10−7 2.8 ·10−6 1.9 ·10−5 -9.1 ·10−10

Water Polymer (1D) 6
Sh 26 6 1.3 1.60 ·10−5 1.0 ·10−3 7.0 ·10−4 1.8 ·10−7

Bfgs 21 6 – 1.32 ·10−5 8.6 ·10−4 – –
Fire 65 5 2.6 5.62 ·10−6 2.4 ·10−5 2.2 ·10−4 3.4 ·10−7

Urea (0D) 8
Sh 42 8 9.0 9.04 ·10−5 8.1 ·10−4 1.6 ·10−2 -1.0 ·10−2

Bfgs 5 6 – 1.39 ·10−5 2.8 ·10−4 – –
Fire 55 5 8.2 9.29 ·10−6 9.8 ·10−7 1.0 ·10−4 -4.0 ·10−8

Urea (3D) 16
Sh 43 7 2.7 3.13 ·10−6 1.9 ·10−4 5.7 ·10−5 7.8 ·10−7

Bfgs 17 6 – 1.24 ·10−5 4.6 ·10−4 – –
Fire 37 5 2.1 9.85 ·10−6 5.4 ·10−6 5.0 ·10−4 -5.2 ·10−8

Water Slab (2D) 24
Sh 78 7 2.5 1.10 ·10−5 5.9 ·10−4 2.5 ·10−4 2.9 ·10−7

Bfgs 32 6 – 1.42 ·10−5 1.1 ·10−3 – –
Fire 139 5 4.1 9.93 ·10−6 4.1 ·10−5 2.2 ·10−4 -5.6 ·10−7

Tempered Ice (3D) 24
Sh 106 7 2.6 9.14 ·10−6 4.1 ·10−4 2.6 ·10−4 -7.6 ·10−8

Bfgs 41 7 – 1.12 ·10−5 9.2 ·10−4 – –
Fire 84 6 1.9 9.85 ·10−6 5.2 ·10−4 2.6 ·10−4 -6.7 ·10−6

Ice Slab with CO (2D) 32
Bfgs 234 8 – 5.31 ·10−5 5.0 ·10−4 – –
Fire 1180 6 4.1 1.27 ·10−4 8.6 ·10−4 5.3 ·10−3 -2.6 ·10−4

Amorphous Ice (3D) 126
Bfgs 125 6 – 2.90 ·10−5 8.1 ·10−4 – –
Fire 177 4 1.2 9.80 ·10−6 1.0 ·10−3 1.4 ·10−2 1.3 ·10−4

Crambin (0D) 642
Bfgs 530 6 – 1.18 ·10−5 3.1 ·10−4 – –
Fire 530 5 0.8 8.54 ·10−5 2.1 ·10−3 3.5 ·10−3 6.7 ·10−4

tional cost for a number of atoms greater than 192
(3×2×2 supercell). The comparison between Fire2.0
and the basic Fire algorithm confirms the higher ef-
ficiency of Fire2.0, which converges to the minimum
into a fewer number of optimization steps, retaining
at the same time the reliability of the results. Inter-
estingly enough, both the internal accuracy, ∆Ẽ, and
the agreement with Bfgs results, ∆E, are preserved,
moving from 16 to 192 atoms (with a corresponding
number of atomic orbitals in the basis set equal to 152
and 1824, respectively).

Finally, the dependence of Fire efficiency on different
exchange-correlation functionals, which determine the
shape of the Pes, was investigated. The influence of
the functional on the best setting of Fire computa-
tional parameters (i.e. αin, dtin, tmax and Ndel) was
already pointed out in Section III C. Nevertheless, in
order to perform a comparison on the same ground,
the structural optimization of urea crystal was per-
formed with PBE, B3LYP, HSE06 and PBE0 function-
als, adopting the Fire default values optimized for

PBE (see Table I). The results, summarized in Ta-
ble IV, show that, despite the predictable increase in
the computational time due to the non-optimal tun-
ing of the Fire parameters, the geometries and en-
ergies obtained with different functionals are in good
agreement with the corresponding Bfgs ones, con-
firming the general portability and robustness of the
Fire optimization procedure. Moreover, the Fire2.0
algorithms performs better, in terms of number of it-
erations up to convergence and computational cost,
than the basic Fire, especially for HSE06 and PBE0

hybrid functionals.

V. CONCLUSIONS AND PERSPECTIVES

In this work, we have described the implementation of
Fire algorithm, in its basic and improved (Fire2.0)
versions, and assessed its efficiency and reliability in
the Crystal code. Fire is a structural optimization
method based on Molecular Dynamics concepts, intro-
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FIG. 3: Behavior of Fire parameters during the structural optimization of the tempered ice (left panel) and urea
molecular crystal (right panel). The values of power factor and of euclidean norm of velocities vector have been

amplified by a factor 1.5 · 103 and 150, respectively, to allow comparison with the other parameters.

TABLE III: Number of atoms Nat in the supercell, number of atomic orbitals NAOs in the basis set, number of
optimization steps Nstep, average of self-consistent cycles for ground state wavefunction calculation N̄w, ratio of total
computational times Tratio = TFire/TBfgs, mean of root-mean-square of atomic displacements d̄rms, internal check on

energy ∆Ẽ = E16
opt/16− ENat

opt /Nat and final energy difference between the two methods ∆E = EFire − EBfgs, for

different urea molecular crystal (3D) supercell size. The mean values N̄w and d̄rms are computed by averaging over,
respectively, the Nw and drms values for all the optimization steps. Cartesian coordinates of optimized atomic

structures are reported in Figures 19-24 of the Supplementary Material.

Supercell Nat NAOs Nstep N̄w Tratio d̄rms [Bohr] ∆Ẽ [ eV
atom

] ∆E [ eV
atom

]

1×1×1 16 152
Bfgs 17 6 – 1.20 ·10−2

– –
Fire 37 5 2.11 1.61 ·10−3

– -5.95 ·10−8

Fire2.0 36 5 1.93 1.81 ·10−3
– 6.86 ·10−7

2×1×1 32 304
Bfgs 21 7 – 1.56 ·10−2 9.42 ·10−7

–
Fire 37 5 1.68 1.60 ·10−3 -2.76 ·10−7

1.16 ·10−6

Fire2.0 35 6 1.52 1.85 ·10−3 2.79 ·10−7 1.35 ·10−6

2×2×1 64 608
Bfgs 20 8 – 2.03 ·10−2 3.38 ·10−6

–
Fire 37 6 1.59 1.60 ·10−3 -5.21 ·10−7

3.84 ·10−6

Fire2.0 35 6 1.47 1.85 ·10−3 7.60 ·10−8 3.99 ·10−6

3×2×1 96 912
Bfgs 29 7 – 9.73 ·10−3 1.34 ·10−6

–
Fire 37 6 1.05 1.61 ·10−3 -4.56 ·10−7

1.73 ·10−6

Fire2.0 35 6 1.01 1.85 ·10−3 4.59 ·10−9 2.02 ·10−6

2×2×2 128 1216
Bfgs 25 8 – 1.48 ·10−2 6.01 ·10−6

–
Fire 37 7 1.11 1.61 ·10−3 1.92 ·10−6

4.03 ·10−6

Fire2.0 33 7 1.04 1.96 ·10−3 2.48 ·10−6 4.22 ·10−6

3×2×2 192 1824
Bfgs 29 9 – 1.00 ·10−2 3.19 ·10−6

–
Fire 37 7 0.95 1.61 ·10−3 1.90 ·10−6

1.23 ·10−6

Fire2.0 33 7 0.90 1.96 ·10−3 2.51 ·10−6 1.37 ·10−6

duced by E. Bitzek et al.13 as an alternative scheme
to quasi-Newton line-search based minimization algo-
rithms. The interest for this novel method is twofold.
Firstly, it does not rely on any approximation on the
shape of the Pes, possibly resulting in good conver-
gence behavior regardless the Pes form. Secondly,
it does not involve the Hessian approximation, maybe
leading to a less computational cost than Sh and Bfgs
schemes.
First of all, a screening of the four Fire adjustable

parameters has been realized through structural opti-
mizations of atomic systems with different dimension-
ality, identifying a set of robust default values. Then,
structural optimizations of atomic systems with dif-
ferent number of atoms, dimensionality and kind of
bonds have been performed with Fire algorithm. The
accuracy of Fire in finding energy minima of the Pes
for these systems has been demonstrated comparing
the total energy and geometry of Fire final structures
with those obtained with quasi-Newton Sh and Bfgs
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TABLE IV: Number of optimization steps Nstep, average of self-consistent cycles for ground state wavefunction
calculation N̄w, computational time ratio Tratio = TFire/TBfgs, mean of root-mean-square of atomic displacements d̄rms,

final root mean square of nuclear forces Frms = ‖F‖/
√

3N and of last step atomic displacements d e
rms, and energy

difference ∆E = EFire − EBfgs which results from structural optimizations of urea crystal (16 atoms) performed with
Fire and Bfgs, for different exchange-correlation functionals. Cartesian coordinates of optimized atomic structures are

reported in Figures 25-28 of the Supplementary Material.

Functional Nstep N̄w Tratio d̄rms [Bohr] Frms [ Ha
Bohr

] d e
rms [Bohr] ∆E [ eV

atom
]

PBE
Bfgs 17 6 – 1.20 ·10−2 1.24 ·10−5 4.6 ·10−4 –
Fire 37 5 2.1 1.61 ·10−3 9.85 ·10−6 5.4 ·10−6

-5.20 ·10−8

Fire2.0 36 5 1.9 1.81 ·10−3 8.47 ·10−6 1.3 ·10−6 6.95 ·10−7

B3LYP
Bfgs 17 5 – 3.62 ·10−3 2.81 ·10−5 3.1 ·10−4 –
Fire 43 4 2.4 7.15 ·10−4 8.54 ·10−6 1.5 ·10−4

1.56 ·10−8

Fire2.0 43 4 2.4 7.79 ·10−4 9.62 ·10−6 1.7 ·10−4 -2.64 ·10−7

HSE06
Bfgs 16 5 – 4.43 ·10−3 2.44 ·10−5 5.6 ·10−4 –
Fire 58 4 3.4 4.61 ·10−4 9.61 ·10−6 1.8 ·10−4

1.95 ·10−6

Fire2.0 50 4 3.0 5.30 ·10−4 9.62 ·10−6 1.8 ·10−4 2.08 ·10−6

PBE0
Bfgs 14 6 – 4.49 ·10−3 2.69 ·10−5 4.6 ·10−4 –
Fire 56 4 3.7 4.60 ·10−4 9.73 ·10−6 1.4 ·10−4

6.34 ·10−7

Fire2.0 48 4 3.2 5.31 ·10−4 9.37 ·10−6 1.5 ·10−4 9.41 ·10−7

schemes. The reliability of Fire and Fire2.0 in min-
imize the Pes shaped by different functionals, such as
PBE, B3LYP, HSE06 and PBE0 has been proven for the
case of urea molecular crystal. The Fire2.0 improved
version has proven to be less computational expensive
than the basic Fire one, while maintaining the same
accuracy and reliability in finding energy minimum.
Finally, as regards the computational time, we can
conclude that Fire and Fire2.0 structural optimiza-
tions have generally a greater computational cost than
the correspondent Bfgs one, due to the fact that they
employ more iterations to reach convergence. Never-
theless, a single Fire and Fire2.0 step has a less
computational cost than a Sh or Bfgs one, so that
the overall Fire minimization becomes the most ef-
ficient one when the increasing of the computational
cost due to a greater number of iterations is compen-
sated for by a reduction of timings in performing each
single step.
This study sets the ground for further improvements
of a well-structured Md module in the Crystal code.
Furthermore, the fact that Fire algorithm is based on
Md concepts could paved the way for other important
implementations, namely, a finite temperature struc-
tural optimization algorithm and the Nudged Elastic
Band method for transition states calculations.

VI. COMPUTATIONAL DETAILS

The new implementation of the Fire algorithm de-
scribed in this work has been performed in a beta ver-
sion of the Crystal package for ab initio quantum
chemistry and physics of solid state, based on the last
public release of the code.8 The beta version with Fire

structural minimization embedded in can be available
for code development or testing purposes by contact-
ing the authors of this article, while a public version
of the Crystal program with included the Fire al-
gorithm will become available in a next public release
of the program (conceivably in version Crystal26),
that will be obtained through an academic license at
a symbolic price for Gnu/Linux, MacOsx and Win-
dows operating systems. All the calculations reported
in the manuscript are performed with the beta ver-
sion of the program, based on the Crystal17 public
release.8

All the atomic systems considered in this article are
treated in the frame of the Density Functional The-
ory (Dft), adopting the gradient-corrected Perdew-
Burke-Ernzerhof (Pbe) functional,29 except the cram-
bin molecule that is described through Hartree-Fock
(Hf) Hamiltonian with three semi-classical correc-
tions (D3, gCP, SRB), which are added to the
Hf energies (and atomic and cell gradients) within
the so called Hf3c method.30–32 Moreover, to bet-
ter describe the ice slab with CO molecules and
the amorphous ice, in conjunction with Pbe func-
tional, London-type pairwise empirical correction to
the energy for dispersive interactions as proposed by
Grimme33 and as modified for molecular crystals,34 is
considered, in order to include long-range dispersion
contributions to the computed ab initio total energy
and gradients. Furthermore, hybrid functionals such
as B3LYP,35 HSE0629,36 and PBE037 have been used
to model the crystalline urea system.
All-electron basis sets, consisting of contracted
Gaussian-type atomic orbital functions (A.O.) are
used for all the atoms and are reported in the SM.
The Dft exchange-correlation contribution was eval-
uated by numerical integration over the unit cell vol-
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ume, using a pruned grid,38,39 with a number of radial
and angular points reported in Table 2 of the SM for
the different analyzed atomic systems.
The diagonalization of the Hamiltonian matrix and
the integration over the reciprocal space is carried out
using the Monkhorst-Pack mesh,40 consisting in a grid
of k-points defined in the Irreducible part of the first
Brillouin Zone (Ibz). The Coulomb and exchange se-
ries, summed in direct space, are truncated using over-
lap criteria thresholds. The number of k-points in the
Ibz, together with the overlap criteria thresholds for
Coulomb and exchange series, and the thresholds for
the self-consistent field algorithm convergence on the
total energy per unit cell, used for the different atomic
systems, are reported in Table 2 of the SM.
The tempered ice 3D system has been obtained us-
ing a beta version of Crystal Molecular Dynamics
module,12 starting from the initial configuration of
crystalline ice and performing a 80 steps (16 fs) Nve
Md simulation, with a timestep of 0.2 fs and an initial
temperature of 1800 K (the temperature at the 80-th
step is equal to 816.5 K).
Geometry optimization is performed using analytical
gradients with respect to atomic coordinates, within a
quasi-Newtonian algorithm combined with two kinds
of Hessian updating schemes: the Schlegel’s (Sh)11

and the Broyden-Fletcher-Goldfarb-Shanno (Bfgs)
formulae.3–7 Only atomic coordinates are optimized,
to allow comparison with Fire structural minimiza-
tion. Convergence criteria for Sh and Bfgs structural
optimizations are based on the root mean square and
absolute value of the largest component of both the
estimated displacements and the gradients of energy
functional with respect to the nuclear positions, both
computed in normal coordinates. In this framework,
the Crystal17 default convergence thresholds and
minimization parameters have been adopted.8,41

VII. SUPPLEMENTARY MATERIAL

The Supplementary Material (Sm) made available
contains geometry information about the cell parame-
ters and the atomic coordinates of the structures opti-
mized with both Fire or Fire2.0 and Bfgs schemes,
for each atomic system tested and analyzed in this
work. Computational details adopted in the struc-
tural optimization calculations are also reported, to-
gether with some blocks of the Crystal Input files
used for simulations. Further details about average
root-mean-square atomic displacements d̄rms in Sh,
Bfgs and Fire optimizations for the systems consid-
ered in Table II are also given in Table 13 of the Sm.
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