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ABSTRACT
The rate of structure formation in the Universe is different in homogeneous and clustered
dark energy models. The degree of dark energy clustering depends on the magnitude of its
effective sound speed c2

eff and for c2
eff = 0 dark energy clusters in a similar fashion to dark

matter while for c2
eff = 1 it stays (approximately) homogeneous. In this paper we consider two

distinct equations of state for the dark energy component, wd = const and wd = w0 + w1
(

z
1+z

)
with c2

eff as a free parameter and we try to constrain the dark energy effective sound speed
using current available data including Type Ia supernovae, baryon acoustic oscillation, cosmic
microwave background shift parameter (Planck and WMAP), Hubble parameter, big bang
nucleosynthesis and the growth rate of structures fσ 8(z). At first we derive the most general
form of the equations governing dark matter and dark energy clustering under the assumption
that c2

eff = const. Finally, performing an overall likelihood analysis we find that the likelihood
function peaks at c2

eff = 0; however, the dark energy sound speed is degenerate with respect to
the cosmological parameters, namely �m and wd.

Key words: Methods: analytical – cosmological parameters – cosmology: theory – dark
energy.

1 IN T RO D U C T I O N

We are living in a special epoch of the cosmic history where the
expansion of the Universe is accelerated due to an unknown energy
component, usually dubbed dark energy (DE). This acceleration
has been discovered observationally using the luminosity distance
of Type Ia supernovae (SnIa; Perlmutter et al. 1997, 1998, 1999;
Riess et al. 2004; Astier et al. 2006; Jha, Riess & Kirshner 2007).
In addition to this, other observations including the cosmic mi-
crowave background (CMB; Bennett et al. 2003; Spergel et al. 2003,
2007; Planck Collaboration XIII 2015; Planck Collaboration XIV
2015), large-scale structures (LSS; Hawkins et al. 2003; Tegmark
et al. 2004; Cole et al. 2005) and baryon acoustic oscillation (BAO;
Eisenstein et al. 2005; Seo & Eisenstein 2005; Blake et al. 2011)
support an accelerated expansion. At a fundamental level there are
two different approaches to describe the phenomenon of the cosmic
acceleration and indeed many efforts are devoted to investigate its
deep nature both observationally and theoretically. One way is to
consider a fluid with a sufficiently negative pressure dubbed DE
and the other is based on the modification of the laws of gravity
on large scales. The first approach comes in many different sce-
narios. The simplest one is a very tiny cosmological constant � in
Einstein field equations that has a (negative) pressure equal to its
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energy density and equation-of-state (EoS) parameter wd = pd
ρd

=
−1 (Weinberg 1989; Sahni & Starobinsky 2000; Peebles & Ratra
2003). The overall theoretical cosmological model (cosmological
constant plus cold dark matter to explain galaxy rotation curves and
the potential well for structure formation) is called �CDM model.
Despite being highly consistent with observational data, the �CDM
model suffers of two theoretical problems, namely the fine-tuning
and the cosmic coincidence problem (Weinberg 1989; Sahni &
Starobinsky 2000; Peebles & Ratra 2003). Differently from the cos-
mological constant case with EoS wd =−1, other dynamical models
have been largely studied in the literature and usually categorized in
two branches, quintessence models (Armendariz-Picon, Mukhanov
& Steinhardt 2000; Copeland, Sami & Tsujikawa 2006) and
k-essence models (Armendariz-Picon, Damour & Mukhanov 1999;
Armendariz-Picon et al. 2000; Chiba, Okabe & Yamaguchi 2000;
Chiba, Dutta & Scherrer 2009; Amendola & Tsujikawa 2010).

The simplest way to modify gravity is to consider Einstein–
Hilbert Lagrangian as a generic function of the Ricci scalar R (f(R)
theories; Schmidt 1990; Magnano & Sokolowski 1994; Dobado
& Maroto 1995; Capozziello, Carloni & Troisi 2003; Carroll et al.
2004) or add extra-dimension models like in the DGP model (Dvali,
Gabadadze & Porrati 2000). Understanding which class of models
is the real one is one of the biggest challenges for cosmology.

In addition to the background evolution, LSS provide valuable
information about the nature of DE (Tegmark et al. 2004, 2006).
Primordial matter perturbations grow throughout the cosmic history
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and their growth rate depends on the overall energy budget and on
the properties of the cosmic fluids. DE slows down the growth
rate of LSS. Structures grow due to gravitational instability and
DE acts opposing and reducing the growth rate. The growth rate
of structures can be measured from the redshift space distortion
(RSD). Inward peculiar velocities of LSS generate a distortion that
is directly related to the matter density contrast.

Since the cosmological constant does not change in space and
time, it cannot cluster like dark matter (DM) and it has a negligible
contribution to the energy density of the universe at high redshift.
On the other hand, dynamical DE can cluster and the amount of
clustering depends strongly on its effective sound speed. The ef-
fective sound speed is defined as c2

eff = ce = δpd
δρd

(hereafter we use
ce) where δpd and δρd are the pressure and energy density pertur-
bations for DE, respectively, and coincides with the actual sound
speed in the DE comoving rest frame (Hu 1998). In quintessence
models we have ce � 1 so DE perturbations cannot grow on
sub-horizon scales while in k-essence models the effective sound
speed can be tiny (ce � 1; Armendariz-Picon et al. 1999, 2000;
Garriga & Mukhanov 1999; Babichev, Mukhanov & Vikman 2006;
Akhoury, Garfinkle & Saotome 2011) and DE perturbations grow
similarly to DM perturbations. The possibility of DE clustering has
been studied by many authors (Erickson et al. 2002; Bean & Doré
2004; Hu & Scranton 2004; Ballesteros & Riotto 2008; de Putter,
Huterer & Linder 2010; Sapone & Majerotto 2012; Batista & Pace
2013; Dossett & Ishak 2013; Basse et al. 2014; Batista 2014; Pace,
Batista & Del Popolo 2014; Steigerwald, Bel & Marinoni 2014).
In particular, it has been shown that the homogeneous DE scenario
fails to reproduce the observed concentration parameter of the mas-
sive galaxy clusters (Basilakos, Bueno Sanchez & Perivolaropoulos
2009). In this framework, de Putter et al. (2010) pointed out that
CMB and LSS slightly prefer dynamical DE with ce �= 1 and re-
cently Mehrabi, Malekjani & Pace (2015) and Basilakos (2015)
have shown that clustering DE reproduces the growth data better in
the framework of the spherical collapse model. A similar conclusion
was suggested also by Nesseris & Sapone (2015).

The growth rate f = d ln δm
d ln a

is usually approximated by f = �γ
m

as first introduced by Peebles (1993). In this parametrization γ is
the so-called growth index and can be used to distinguish between
DE and modified gravity models (Linder 2005; Huterer & Linder
2007; Basilakos & Pouri 2012; Rapetti et al. 2013). It is well known
that for a �CDM model γ is independent of redshift and equal
to 6/11. The evolution of the matter density �m depends on the
evolution of the Hubble parameter H(a) and hence on the particular
cosmological model adopted. In this paper we consider two distinct
models, a constant wd and a dynamical wd(z), and we consider ceff

as a free parameter. Then based on the linear regime we numerically
solve the perturbed general relativity (GR) equations to evaluate the
growth rate of matter in the presence of DE clustering. Using a
Markov Chain Monte Carlo (MCMC) method we can constrain the
cosmological parameters using SnIa, BAO, CMB shift parameter,
the Hubble parameter, the big bang nucleosynthesis (BBN) and
growth rate data fσ 8(z).

The structure of this paper is as follows. In Section 2, we derive
the equations governing the linear growth of matter perturbations
in a general relativistic framework and show the effects of DE
clustering on the growth rate of matter. In Section 3, we present all
the details of the observational data used in this work to constrain
the cosmological parameters including the DE sound speed and
their uncertainties. In Section 4, we provide for the first time (to
our knowledge) an approximated solution of the growth index of
matter fluctuations as a function of the cosmological parameters, DE

perturbations and ce. Finally in Section 5 we conclude and discuss
our results.

2 E F F E C T O F D E S O U N D S P E E D
O N T H E G ROW T H R AT E O F MAT T E R
P E RT U R BAT I O N S

In this section we revise the fundamental equations necessary to our
analysis. The sound horizon of DE with effective sound speed ce in
an Friedmann-Robertson-Walker (FRW) universe is given by

λs(a) =
∫ a

ai

ce(x)

xH(x)
dx, (1)

where H = a′
a

, the prime being the derivative with respect to con-
formal time (η) and ai an initial scale factor. The nominal Hubble
parameter is given by H = ȧ

a
and thus H = aH which implies

H′

H2
= 1 + Ḣ

H 2
, (2)

where an overdot refers to a derivative with respect to the cosmic
time (t). In the case of ce � 1, pressure suppresses any DE pertur-
bation with the consequence that DE may cluster only on scales
comparable to the horizon.

The opposite situation holds if ce � 1. Indeed in this case DE can
cluster in analogy to the DM component and perturbations will grow
with time. DE clustering modifies the evolution of DM perturbation
and thus it affects the rate of structure formation in the universe.

We start our derivation of the relevant equations by considering
the line element of an expanding universe in the Newtonian gauge
without anisotropic stress:

ds2 = −(1 + 2φ)dt2 + a2(t)(1 − 2φ)dx2, (3)

where φ is the Bardeen potential. First-order Einstein equations in
Fourier space are

3Hφ′ + (
3H2 + k2

)
φ = −3H2

2
(�mδm + �dδd), (4)

φ′′ + 3Hφ′ +
(

2a′′

a
− H2

)
φ = 3H2

2
�d

δpd

δρd
δd, (5)

where �m = �DM + �b (�d = 1 − �m) is the matter (DE) density
parameter and δm (δd) is the corresponding density contrast. The
first-order energy-momentum conservation equations for a generic
fluid with EoS parameter w are (Ma & Bertschinger 1995)

δ′ = −(1 + w)(θ − 3φ′) − 3
a′

a

(
δp

δρ
− w

)
δ, (6)

θ ′ = −a′

a
(1 − 3w)θ − w′

1 + w
θ +

δp

δρ

1 + w
k2δ + k2φ. (7)

These equations are correct for any fluid with p = wρ (for dust
w = 0 and for DE w = wd), where δ is the density contrast, θ is the
divergence of the fluid velocity (θ = ikivi) and δp

δρ
can be written as

(Bean & Doré 2004)

δp

δρ
= ce + 3H(1 + w)(ce − c2

ad)
θ

δ

1

k2
, (8)

where c2
ad = ca is the DE adiabatic sound speed

ca = w − w′

3H(1 + w)
. (9)
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Note that the second term on the right-hand side of equation (8)
appears because we demand pressure perturbations to be a gauge
invariant quantity (Bean & Doré 2004). For a perfect fluid, per-
turbations in the pressure are purely determined by the adiabatic
sound speed but for an imperfect fluid, dissipative processes gen-
erate entropic perturbations and therefore we have a more general
relation. In this case, ce acts like a proxy for pressure perturbations
and the growth of perturbation in the DE component depends on
the effective sound speed and not on the adiabatic sound speed any
more. In the following this statement will be confirmed by solving
the perturbed equations numerically.

To study the effect of the DE sound speed on structure formation,
we consider a universe with pressure-less DM and a DE compo-
nent with varying EoS that we specialize to wd(z) = w0 + w1

z
1+z

.
The latter parametrization is the well-known Chevallier–Polarski–
Linder (CPL) parametrization (Chevallier & Polarski 2001;
Linder 2003). We eliminate θ from equations (6) and (7) and
find two second-order differential equations for the density con-
trast of DM and DE. In addition using d

dη
= aH d

da
and d2

dη2 =
a2H2 d2

da2 + (aH2 + aḢ) d
da

, these equations can be written in terms
of the scale factor. Finally our desired equations governing the
growth of DM and DE perturbations are

d2δm

da2
+ Am

dδm

da
+ Bmδm = Sm, (10)

d2δd

da2
+ Ad

dδd

da
+ Bdδd = Sd, (11)

and the coefficients (see also equation 2) are

Am = 1

a

(
2 + H′

H2

)
= 1

a

(
3 + Ḣ

H 2

)
,

Bm = 0,

Sm = 3
d2φ

da2
+ 3

a

[
2 + H′

H2

]
dφ

da
− k2

a2H2
φ,

Ad = 1

a

[
2 + H′

H2
+ 3ca − 6wd

]
,

Bd = 1

a2

[
3 (ce − wd)

(
1 + H′

H2
− 3wd + 3ca − 3ce

)

+ k2

H2
ce − 3a

dwd

da

]
,

Sd = (1 + wd)

[
3

d2φ

da2
+ 3

a

(
2 + H′

H2
− 3ca

)
dφ

da

− k2

a2H2
φ + 3

1 + wd

dφ

da

dwd

da

]
, (12)

where H′
H2 (or Ḣ

H 2 ) is a function of the scale factor and using Fried-
mann equations we have

H′

H2
= −1

2

�m + �d(1 + 3wd)

�m + �d
= −1

2
(1 + 3�dwd). (13)

These equations are not in agreement with equation (44) in
Abramo et al. (2009), which were obtained in the limit of a matter-
dominated universe ( H′

H2 = − 1
2 ) and a constant wd. To resolve this

discrepancy, see Appendix A.
We integrate equations (10) and (11) numerically from zi = 100

to z = 0, in order to obtain the density contrast of DM and DE. We
use the same procedure of Abramo et al. (2009) to find the initial

conditions. In the matter-dominated era φ′ � 0, so from equation
(4) we have

δm,i = −2φi

(
1 + k2

3Hi
2

)
, (14)

for the initial value of δm and

dδm,i

da
= −2

3

k2

Hi
2 φi, (15)

for its derivative. For δd the initial value is set using the adia-
batic perturbations condition (Kodama & Sasaki 1984; Amendola &
Tsujikawa 2010),

δd,i = (1 + wd)δm,i, (16)

and its derivative is set to

dδd,i

da
= (1 + wd)

dδm,i

da
+ dwd

da
δm,i. (17)

According to the above argument, by fixing the initial condition of
φi we have all the initial conditions. We set φi = −6 × 10−7 which
corresponds to δm = 0.1 at present time for k = 0.1 h Mpc−1. Our
results are robust under small changes of the initial conditions, and
we do not worry about the exact values. (For φi = −7 × 10−8, δm

reach to 0.01 at present time but fσ 8 differs less than 10−4 per cent.)
DE clustering affects the growth of matter perturbations through

the change of the potential φ. As we noticed the amount of DE
clustering is directly related to its effective sound speed. We re-
strict our analysis to the choice of k = 1/λ = 0.1 h Mpc−1 which
corresponds to λ = 10 h−1 Mpc (Zhang et al. 2012). Note that the
power-spectrum normalization σ 8 which is the rms mass fluctuation
on a scale R8 = 8 h−1 Mpc corresponds to k = 0.125 h Mpc−1. On
the other hand it has been common practice to assume that the shape
of the power spectrum recovered from galaxy surveys matches the
linear matter power spectrum shape on scales k ≤ 0.15 h Mpc−1

(Smith et al. 2003; Tegmark et al. 2004; Percival et al. 2007). Obvi-
ously the choice of k = 0.1 h Mpc−1 assures that we are in the linear
regime. We find that small variations around this value do not really
affect the qualitative evolution of the growth rate of clustering and
thus of γ (z).1

To compare these results with observations we calculate the
growth factor f (z) = − 1+z

δm(z)
dδm(z)

dz
and the growth index γ (z) =

d ln f (z)
d�m(z) using our numerical results. The growth index in the �CDM
model is redshift independent and approximately equal to γ = 0.55.
To compare this model to observational data we need to evalu-
ate f(z)σ 8(z), where σ 8(z) is the mass variance in a sphere of ra-
dius of 8 Mpc h−1. The variance σ 8(z) can be written in terms
of σ 8 at present time as σ8(z) = σ8(z = 0) δm(z)

δm(z=0) . Also, in order
to treat σ 8 ≡ σ 8(z = 0) properly for the DE models we rescale
the value of σ 8 by σ8 = δm(z=0)

δm,�(z=0) σ8,�. Regarding σ 8,� we utilize

σ 8,� = 0.818(0.30/�m)0.26 provided by the Planck analysis of
Spergel, Flauger & Hložek (2015) and it is also in agreement with
the results of Planck 2015 (Planck Collaboration XIII 2015).

DE perturbations not only depend on the sound speed but also
on the EoS wd. In the limit wd → −1 all DE perturbations are
washed out due to the 1 + wd factor in front of the source term
in the evolution equation of δd. To show how the DE sound speed
affects the linear evolution of DM, we consider �m = 0.28 and
h = 0.7 in the wCDM model to evaluate δd and d = δd

δm
, the

1 Since we are in the linear regime we verify that for different values of k
the differences in fσ 8 are practically negligible (∼10−5 per cent).
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Figure 1. The density contrast of DE as a function of the EoS at the present
time for four different values of the sound speed. The red solid curve shows
a fully clustering DE model with ce = 0. The green dashed (blue dotted)
curve is for ce = 10−5 (ce = 10−4). A non-clustering model with ce = 1 is
shown by a black dashed–dotted line.

Figure 2. The relative density contrast of DE as a function of the EoS at
the present time for four different values of the sound speed. Line style and
colours are as in Fig. 1.

relative DE density contrast, for a few distinct values of the DE
sound speed as a function of the EoS. In Fig. 1 the density contrast
of DE as a function of wd at the present time is presented. The
non-clustering case remains homogeneous but for small values of
the DE sound speed, the density contrast grows while increasing
the EoS. In contrast to the non-clustering case, the fully clustering
regime with ce = 0 gives a maximum value for the DE density
contrast. In Fig. 2 the relative DE density contrast is shown as a
function of EoS. The behaviour of this quantity is similar to that of
the density contrast.

As we stated the quantity fσ 8(z) is affected by DE clustering. To
show how fσ 8(z) changes with the DE sound speed, we evaluate
f σ8(z) = fhσ8,h(z)−f σ8(z)

f σ8(z) × 100 and γ (z) = γh(z)−γ (z)
γ (z) × 100 as a

function of the EoS parameter. In the previous equations, h stands
for homogeneous DE. For the growth rate, results at present time are
presented in Fig. 3. As expected, the deviation increases by increas-
ing the EoS and for wd < −0.9 the difference is less than 1 per cent.
The relative difference between homogeneous and clustering DE
for the growth index γ (z = 0) has been shown in Fig. 4. The
difference between the homogeneous and the clustering DE models
is also very small for wd very close to the �CDM model.

Figure 3. The relative difference of fσ 8 at the present time as a function of
EoS. Line style and colours are as in Fig. 1.

Figure 4. The relative difference of the growth index at present time as a
function of EoS. Line style and colours are as in Fig. 1.

3 O B S E RVAT I O NA L C O N S T R A I N T S O N TH E
DE SOUND SPEED

In this section we use current available observational data sets
to constrain the cosmological background parameters and the DE
sound speed. In this analysis we assume that the DE sound speed is
constant in time, regardless of the particular EoS parameter adopted.
Our cosmological model will be described by the following param-
eters: �0

m (matter density), �0
b (baryon density), h = H0/100 (nor-

malized Hubble constant), w0 and w1 (DE EoS parameters) and
ce (effective sound speed) to describe the DE perturbations. In our
analysis we assume a flat universe so that �DM + �b + �d = 1,
hence the amount of DE is known from the knowledge of the matter
and baryon density parameters.

The first data set we consider is the SnIa distance module from
Union 2.1 sample (Suzuki et al. 2012). This data set includes 580
SnIa and its χ2 is given by

χ2
sn =

∑
i

[μth(zi) − μob(zi)]2

σ 2
i

, (18)

where μth(z) = 5 log10

[
(1 + z)

∫ z

0
dx

E(x)

]
+ μ0, μ0 = 42.384 −

5log10h and σ i are the corresponding uncertainties. Before find-
ing the minimum of χ2

sn we can expand χ2
sn around μ0

χ2
sn = A + 2Bμ0 + Cμ2

0, (19)
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Table 1. The current available BAO data which we use in
our analysis.

z di Survey and references

0.106 0.336 6dF (Beutler et al. 2011)
0.35 0.113 SDSS-DR7 (Padmanabhan et al. 2012)
0.57 0.073 SDSS-DR9 (Anderson et al. 2013)
0.44 0.0916 WiggleZ (Blake et al. 2011)
0.6 0.0726 WiggleZ (Blake et al. 2011)
0.73 0.0592 WiggleZ (Blake et al. 2011)

where

A =
∑

i

[μth(μ0 = 0) − μob]2

σ 2
i

,

B =
∑

i

[μth(μ0 = 0) − μob]

σ 2
i

,

C =
∑

i

1

σ 2
i

.

Obviously, for μ0 = −B/C equation (19) has a minimum, namely
A − B2

C
. Now by defining χ̃2

sn = A − B2

C
, we can use the minimum

of χ̃2
sn which is independent of μ0 in order to find the best values of

the parameters. Of course both estimators provide the same results
(Nesseris & Perivolaropoulos 2005).

The second data set we consider is the BAO sample which in-
cludes six distinct measurements of the baryon acoustic scale. These
six data points and their references are summarized in Table 1. To
find the χ2

BAO we follow the same procedure as Hinshaw et al.
(2013). So the χ2

BAO is given by

χ2
BAO = YTC−1

BAOY, (20)

where Y = (d(0.1) − d1,
1

d(0.35) − 1
d2

, 1
d(0.57) − 1

d3
, d(0.44) −

d4, d(0.6) − d5, d(0.73) − d6) and

d(z) = rs(zdrag)

DV (z)
, (21)

with

rs(a) =
∫ a

0

cs(a)da

a2H (a)
, (22)

is the comoving sound horizon at the baryon drag epoch, cs(a) the
baryon sound speed and DV(z) is defined by

DV (z) =
[

(1 + z)2D2
A(z)

z

H (z)

]1/3

, (23)

and DA(z) is the angular diameter distance. We used the fitting
formula for zd from Eisenstein & Hu (1998) and the baryon sound
speed is given by

cs(a) = 1√
3(1 + 3�0

b

4�0
γ
a)

, (24)

where we set �0
γ = 2.469 × 10−5 h−2 (Hinshaw et al. 2013). The

covariance matrix C−1
BAO in equation (20) was obtained by Hinshaw

et al. (2013)⎛
⎜⎜⎜⎜⎜⎜⎝

4444.4 0.0 0.0 0.0 0.0 0.0
0.0 34.602 0.0 0.0 0.0 0.0
0.0 0.0 20.6611 0.0 0.0 0.0
0.0 0.0 0.0 24 532.1 −25 137.7 12 099.1
0.0 0.0 0.0 −25 137.7 134 598.4 −64 783.9
0.0 0.0 0.0 12 099.1 −64 783.9 128 837.6

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The position of the CMB acoustic peak provides useful data to
constrain DE models. The position of this peak is given by (la, R,
z∗), where R is the scale distance to recombination

la = π
DA(z∗)

rs(z∗)
, (25)

R =
√

�0
mH0DA(z∗), (26)

and rs(z) is the comoving sound horizon defined in equation (22). In
this case we used the formula for z∗ from Hu & Sugiyama (1996).
For the WMAP data set we have (Hinshaw et al. 2013)

XCMB =
⎛
⎝ la − 302.40

R − 1.7264
z∗ − 1090.88

⎞
⎠ , (27)

and

C−1
CMB =

⎛
⎝ 3.182 18.253 −1.429

18.253 11 887.879 −193.808
−1.429 −193.808 4.556

⎞
⎠ . (28)

In addition to this data set the Planck data provide more accurate
CMB data for which the position of the acoustic peak is given by
(Shafer & Huterer 2014)

XCMB =
⎛
⎝ la − 301.65

R − 1.7499
z∗ − 1090.41

⎞
⎠ , (29)

and

C−1
CMB =

⎛
⎝ 42.7044 −418.36 −0.7820

−418.36 573 66.3 −762.152
−0.7820 −762.152 14.6995

⎞
⎠ . (30)

In both cases the χ2
CMB is given by

χ2
CMB = XT

CMBC−1
CMBXCMB. (31)

A further data set used in this work is the Hubble evolution data
obtained from the evolution of galaxies (Simon, Verde & Jimenez
2005). We use the 12 available data points and the χ2 for this data
set is

χ2
H =

∑
i

[H (zi) − Hob,i]2

σ 2
i

. (32)

The BBN provides a data point (Burles, Nollett & Turner 2001;
Serra et al. 2009) which constrains mostly �0

b. The χ2
BBN is given

by

χ2
BBN = (�0

bh
2 − 0.022)2

0.0022
. (33)

The final data set used is the growth rate data. These data were de-
rived from RSDs from galaxy surveys including PSCs, 2DF, VVDS,
SDSS, 6dF, 2MASS, BOSS and WiggleZ and the data with their
references are shown in Table 2. We solve equations (10) and (11)
numerically to find f(z)σ 8(z) and compute χ2

fs with

χ2
fs =

∑
i

[f σ8(zi) − f σ8,ob]2

σ 2
i

. (34)

The overall likelihood function is given by the product of the
individual likelihoods:

Ltot = Lsn × LBAO × LCMB × LH × LBBN × Lfs, (35)

and the total chi-square χ2
tot is given by

χ2
tot = χ2

sn + χ2
BAO + χ2

CMB + χ2
H + χ2

BBN + χ2
fs. (36)
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Table 2. The fσ 8(z) data points including their references and surveys.

z fσ 8(z) Reference

0.02 0.360 ± 0.040 Hudson & Turnbull (2013)
0.067 0.423 ± 0.055 Beutler et al. (2012)
0.10 0.37 ± 0.13 Feix, Nusser & Branchini (2015)
0.17 0.510 ± 0.060 Percival et al. (2004)
0.35 0.440 ± 0.050 Song & Percival (2009); Tegmark et al. (2006)
0.77 0.490 ± 0.180 Guzzo et al. (2008); Song & Percival (2009)
0.25 0.351 ± 0.058 Samushia, Percival & Raccanelli (2012)
0.37 0.460 ± 0.038 Samushia et al. (2012)
0.22 0.420 ± 0.070 Blake et al. (2011)
0.41 0.450 ± 0.040 Blake et al. (2011)
0.60 0.430 ± 0.040 Blake et al. (2011)
0.60 0.433 ± 0.067 Tojeiro et al. (2012)
0.78 0.380 ± 0.040 Blake et al. (2011)
0.57 0.427 ± 0.066 Reid et al. (2012)
0.30 0.407 ± 0.055 Tojeiro et al. (2012)
0.40 0.419 ± 0.041 Tojeiro et al. (2012)
0.50 0.427 ± 0.043 Tojeiro et al. (2012)
0.80 0.47 ± 0.08 de la Torre et al. (2013)

Table 3. The best value parameters and their 1σ

uncertainty for the wCDM model.

Parameters Best (WMAP) Best (Planck)

h 0.6955+0.0040
−0.0037 0.7064+0.0011

−0.0012

�0
DM 0.2273+0.0027

−0.0029 0.2361+0.0010
−0.0010

�0
b 0.0470+0.0004

−0.0005 0.0482+0.0003
−0.0002

w0 −0.9436+0.0144
−0.0141 −0.9975+0.0055

−0.0053

ce 0.0 0.001
σ 8 0.837 0.829

Table 4. The best value parameters and their 1σ

uncertainty for the w(t)CDM model.

Parameters Best (WMAP) Best (Planck)

h 0.7001+0.0040
−0.0038 0.7070+0.0012

−0.0013

�0
DM 0.2234+0.0028

−0.0027 0.2361+0.0012
−0.0011

�0
b 0.0474+0.0005

−0.0005 0.0481+0.0003
−0.0003

w0 −1.0176+0.0128
−0.0124 −0.95204+0.0060

−0.0058

w1 0.3289+0.0395
−0.0405 −0.18512+0.0205

−0.0195

ce 0.002 0.0
σ 8 0.840 0.829

Table 5. The best value parameters and their
1σ uncertainty for the �CDM model.

Parameters Best (WMAP) Best (Planck)

h 0.7048+0.0042
−0.0041 0.7069+0.0011

−0.0010

�0
DM 0.2261+0.0030

−0.0029 0.2359+0.0010
−0.0011

�0
b 0.0456+0.0006

−0.0005 0.0481+0.0003
−0.0003

σ 8 0.839 0.829

We calculate the total chi-square χ2
tot and find the best value of

the parameters with an MCMC algorithm. The number of degrees
of freedom is ν = N − nfit − 1, where N = 616 and nfit is the
number of the fitted parameters. The results of this analysis for the
wCDM, w(t)CDM and �CDM are summarized in Tables 3, 4 and 5,
respectively.

Figure 5. The 1σ and 2σ contours of �m(wCDM), w(wCDM),
w0(w(t)CDM) and w1(w(t)CDM) versus DE sound speed using WMAP data.
The 1σ and 2σ contours correspond to χ2 − χ2

b = 2.3 and χ2 − χ2
b = 6.16.

The green (red) area correspond to 1σ (2σ ) using only fσ 8 data and purple
(blue) show 1σ (2σ ) using all data set.

To compare the DE models we have computed the corrected
Akaike information criterion (AIC) (Akaike 1974; Sugiura 1978)
which, in our case, due to N/nfit > 40, is given by

AIC = χ2
min + 2nfit. (37)

A smaller value of AIC indicates a better model-data fit. Of course,
it is well known that small differences in AIC are not necessarily
significant and therefore, in order to assess the effectiveness of the
different models in reproducing the data, we need to estimate the
model pair difference AIC = AICy − AICx. The higher the value
of |AIC|, the higher the evidence against the model with a higher
value of AIC. With a difference |AIC| ≥ 2 indicating a positive
evidence and |AIC| ≥ 6 indicating a strong evidence, while a
value |AIC| ≤ 2 indicates consistency among the two models.
The results of our analysis are the following.

(i) Using WMAP data:

(a) For the wCDM model, χ2
min = 586.53, nfit = 5, so AIC =

596.53
(b) For the w(t)CDM model, χ2

min = 585.32, nfit = 6, so AIC =
597.32

(c) For the �CDM model, χ2
min = 589.22, nfit = 3, so AIC =

595.32.

(ii) Using Planck data:

(a) For the wCDM model, χ2
min = 595.76, nfit = 5, so AIC =

605.76
(b) For the w(t)CDM model, χ2

min = 595.50, nfit = 6, so AIC =
607.50

(c) For the �CDM model, χ2
min = 595.79, nfit = 3, so AIC =

601.79.

Concerning the best value of the DE sound speed we find that it
tends to zero but the corresponding error bars remain quite large
within 1σ . In particular ce lies in the range ∈ [0, 1].

In order to investigate the range of validity for ce, in Figs 5 and 6
we provide the 1σ and 2σ contours of our analysis. Note that in
both plots the upper panels are for wCDM in which we present
the confidence levels in the (ce, �m) and (ce, w) planes, where
�m = �0

DM + �0
b. In the bottom panels of Figs 5 and 6 the contours

for w0 and w1 in the CPL model are shown with respect to the
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Figure 6. Same as Fig. 5 but using the Planck shift parameter.

Figure 7. The fσ 8(z) quantity (using Planck data), for the best values
cosmological parameters for the wCDM (green dot–dashed curve) and
w(t)CDM (red solid curve) models. The �CDM model is shown by the
violet short dashed curve.

DE sound speed. From this analysis it becomes clear that there is
a strong degeneracy between ce and (�m, w) which implies that
all values in the interval 0 ≤ ce ≤ 1 are acceptable within the 1σ

uncertainty.
In Figs 7 and 8 we present the quantity fσ 8(z) for our best value pa-

rameters by considering the Planck and WMAP data for the wCDM,
w(t)CDM and the �CDM models, respectively. We also show the
observational data points. In addition to this quantity in Figs 9 and 10
the growth index for the best values of the parameters have been
shown. Note that using Planck CMB data our likelihood analysis
indicates that all three models are very close to each other.2

Previous works in literature tried to put constraints on the DE
effective sound speed ce using different kind of data. de Putter et al.
(2010) used a combination of CMB temperature power spectrum
data, their cross-correlation with several mass-density tracers and
the SDSS LRG auto-correlation function. Supernovae data were
used to break degeneracies with background cosmological parame-
ters. Hannestad (2005) used a set of supernova data, LSS and CMB
power spectra. Finally, Xia et al. (2008) performed a similar analy-
sis for a single perfect fluid and a two-field Quintom DE model with

2 See the results of χ2 for the Planck case.

Figure 8. The fσ 8(z) quantity (using WMAP data), for the best values
cosmological parameters for the wCDM (green dot–dashed curve) and
w(t)CDM (red solid curve) models. The �CDM model is shown by the
violet short dashed curve.

Figure 9. The growth index (using Planck data), for the best values cosmo-
logical parameters for the wCDM (green dot–dashed curve) and w(t)CDM
(red solid curve) models. The �CDM model is shown by the violet short
dashed curve.

Figure 10. The growth index (using WMAP data), for the best values cosmo-
logical parameters for the wCDM (green dot–dashed curve) and w(t)CDM
(red solid curve) models. The �CDM model is shown by the violet short
dashed curve.
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w = −1 crossing by analysing CMB anisotropy data, LSS and SNIa
observational data. In all these studies, using a similar approach to
the one used in this work, the authors reach our same results. While
previous and current data can constrain at a good level the current
EoS parameter of the DE component, the quality of the observations
is unfortunately still not sufficient enough to put any constraint on
the DE effective sound speed. Note, however, that this is also due
to the negligible contribution of DE at early times on one side, and
to the fact that current observations favour w � −1. As pointed out
by de Putter et al. (2010), if one considers the case of early DE
models (Doran & Robbers 2006) where the contribution of DE at
early times, i.e. CMB, is not negligible, then more stringent limits
can be set on ce.

4 G ROW T H IN D E X A NA LY T I C SO L U T I O N

In Section 2 we investigated the evolution of the growth index by
solving numerically the system of equations (5), (10) and (11). Here
our aim is to extend the work of Basilakos (2015) in order to provide
a general γ (z) approximated solution which can be used in studies
of structure formation. On sub-horizon scales, namely k2

a2 � H 2 (or
k2 � H2), Poisson equation (see Appendix B) takes the form

− k2

a2
φ = 3H 2

2
[�mδm + �dδd(1 + 3ce)] . (38)

Under the above conditions, equation (10) becomes

a2 d2δm

da2
+ a

(
3 + Ḣ

H 2

)
dδm

da
= 3

2
[�mδm + (1 + 3ce)�dδd] (39)

In this framework, for δd = 0, the latter equation reduces to the
well-known scale-independent equation which is also valid for the
concordance � cosmology.

Concerning the EoS parameter, it is well known that one can
express it in terms of the Hubble parameter (Saini et al. 2000;
Huterer & Turner 2001)

wd(a) = −1 − 2
3 a d ln H

da

1 − �m(a)
, (40)

or

a
dlnH

da
= Ḣ

H 2
= −3

2
− 3

2
wd(a)�d(a), (41)

where �m(a) = 1 − �d(a) = �m0
a3E2(a)

and E(a) = H(a)/H0. Now,
substituting equation (41) and f = dlnδm/dlna into equation (39)
we obtain the basic differential equation which governs the growth
rate of clustering

a
df

da
+ f 2 +

(
1

2
− 3

2
wd�d

)
f = 3

2
[�m + (1 + 3ce)d�d] (42)

where d(a) ≡ δd/δm. To this end, changing the variables in equa-
tion (42) from a(z) to redshift [ df

da
= −(1 + z)−2 df

dz
] and utilizing

f(z) = �m(z)γ (z) we arrive to

− (1 + z)γzln(�m) + �γ
m + 3wd�d

(
γ − 1

2

)
+ 1

2
= 3

2
�1−γ

m X

(43)

where γ z = dγ /dz and

X(z) = 1 + �d(z)

�m(z)
d(z)(1 + 3ce). (44)

On the other hand, the parametrization f(a) = dlnδm/dlna �
�m(a)γ (a) has a great impact in cosmological studies because it can

be used in order to simplify the numerical calculations of equation
(39). Obviously, a direct integration gives

δm(a, γ ) = a(z) exp

[∫ a(z)

ai

du

u

(
�γ

m(u) − 1
)]

, (45)

where a(z) = 1/(1 + z) and ai is the scale factor of the universe at
which the matter component dominates the cosmic fluid (here we
use ai � 10−1 or zi � 10). Hence, the linear growth factor normalized
to unity at the present epoch is D(a) = δm(a,γ )

δm(1,γ ) . Therefore, in order to
proceed with the analysis we need to somehow know the functional
form of γ (z). From the phenomenological point of view we may
parametrize γ (z) as follows:

γ (z) = γ0 + γ1y(z). (46)

This equation can be seen as a first-order Taylor expansion around
some cosmological quantity such as a(z) and z.

Recently, it has been found (Basilakos 2012; Basilakos & Pouri
2012, and references therein) that for those y(z) functions which
satisfy the condition y(0) = 0 [or γ (0) = γ 0], the parameter γ 1

is written as a function of γ 0. For example, at the present epoch
[z = 0, γ z(0) = γ 1yz(0), X0 = X(0), w0 = wd(0)], equation (43) is
written as

γ1 = �
γ0
m0 + 3w0(γ0 − 1

2 )�d0 + 1
2 − 3

2 �
1−γ0
m0 X0

yz(0) ln �m0
, (47)

where yz = dy/dz. Note that a similar equation has been found in
Basilakos (2015) in the case of ce ≡ wd with wd = const. As it is
expected, for the homogeneous DE case (d = 0, X = 1), we verify
that the above formula boils down to that of Polarski & Gannouji
(2008) for y(z) = z. Within this framework, assuming y(z) = 1 −
a(z) = z

1+z
(Ballesteros & Riotto 2008), we fully recover results

in literature (Ishak & Dossett 2009; Bueno Belloso, Garcı́a-Bellido
& Sapone 2011; di Porto, Amendola & Branchini 2012). Notice
that below we focus on y(z) = 1 − a(z) = z

1+z
with yz(0) = 1.

The fact that �d(z) � 0 at z � 1 implies that the asymptotic
value of the growth index γ ∞ = γ 0 + γ 1 is not really affected
by the DE clustering. Therefore, plugging γ 0 = γ ∞ − γ 1

3 into
equation (47) we can obtain the constants γ 0, 1 in terms of (�m0,
w0, d0, ce). In Fig. 11 we present (γ 0, γ 1) as a function of d0. The
curves are constructed using the parameters from Tables 3 and 4
(third column) and they correspond to w(t)CDM (solid) and wCDM
(dashed) models. We observe that for d0 > 0 the growth index starts
to deviate from that of the �CDM model, namely γ 0 < 0.55 and
γ 1 > 0. In the case of d0 < 0 the value of γ 0 is greater than that of
the homogeneous case (γ 0 > 0.55). In this context, concerning the
value of γ 1 we find that it becomes negative. Of course for d0 = 0
the pair (γ 0, γ 1) reduces to that of the homogeneous case (see solid
points in Fig. 11), as it should.

5 C O N C L U S I O N S

To summarize, we study the impact of DE clustering on the growth
index of matter fluctuations. Initially we provide the most general
form of the equations governing DM and DE clustering within the
framework of ce = const. Then using the well-known EoS param-
eters, namely wd(z) = w0 + w1z/(1 + z), wd(z) = const and the

3 Regarding the asymptotic value of the growth index we use γ ∞ ≈ 3(w
− 1)/(6w − 5) for the wCDM model (see Linder & Cahn 2007; Nesseris
& Perivolaropoulos 2008) and γ ∞ ≈ 0.55 + 0.05[1 + w(z = 1)] for the
w(t)CDM model (Linder 2005).
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Figure 11. The pair (γ 0, γ 1) as a function of d0. The solid and the dashed
lines correspond to the w(t)CDM and wCDM DE models, respectively. The
homogeneous case d0 = 0 is shown by the solid point. For the cosmological
parameters, we use the values of Tables 3 and 4 (third column).

current cosmological data we place constrains on the cosmological
parameters, including that of the effective sound speed ce. Although
the likelihood function peaks at ce ∼ 0, which indicates that the DE
component clusters in analogy to the matter component ce ∼ 0,
the corresponding error bars are quite large within 1σ uncertain-
ties which implies that ce remains practically unconstrained. We
also compared our findings with previous work reaching the same
conclusion that at the moment the quality of cosmological data is
not sufficient enough to put constraint on the DE effective sound
speed. Future cosmological data, based for example on Euclid, are
expected to improve even further the relevant constraints on ce and
thus the validity of clustered DE will be effectively tested. Finally,
we have derived a new approximated solution of the growth index
in terms of the cosmological parameters, DE perturbations and ce.
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A P P E N D I X A : PRO O F O F E QUAT I O N ( 1 2 )

We start with equations (6) and (7). The term δp

δρ
appears in both

equations but it behaves very differently in these equations. In the
first equation we have

− 3H δp

δρ
δ = −3Hceδ − 9

H2

k2
(1 + wd)(ce − ca)θ, (A1)

and on sub-horizon scale we can neglect the latter term (k2 � H2),
but in equation (7) we have

k2 δp

δρ
δ = k2ceδ + 3H(1 + wd)(ce − ca)θ, (A2)

where the latter term cannot be neglected. Differentiating equation
(6) with respect to conformal time we have

δ′′ + w′
dθ + (1 + wd)θ ′ + 3H′ceδ

+ 3Hceδ
′ − 3H′wdδ − 3Hw′

dδ

− 3Hwdδ
′ = 3w′

dφ
′ + 3(1 + wd)φ′′ (A3)

Now from equation (7)

θ ′ = −H(1 − 3wd)θ − w′
d

1 + wd
θ

+ k2 ceδ

1 + wd
+ 3H(ce − ca)θ + k2φ (A4)

and from equation (6)

θ = 3φ′ − δ′

1 + wd
− 3Hceδ

1 + wd
+ 3Hwdδ

1 + wd
. (A5)

Substituting equations (A4) and (A5) into equation (A3), we have a
second-order equation governing the evolution of DE. Changing the
independent variable to the scale factor, the coefficients in equations
(12) can be retrieved. On the other hand if we consider δp

δρ
= ce and

ignore the second term in equation (A2), we find

Ad = 1

a

[
2 + H′

H2
+ 3ce − 6wd

]
,

Bd = 1

a2

[
3 (ce − wd) (1 + H′

H2
− 3wd) + k2

H2
ce − 3a

dwd

da

]
,

Sd = (1 + wd)

[
3

d2φ

da2
+ 3

a

(
2 + H′

H2
− 3wd

)
dφ

da

− k2

a2H2
φ + 3

1 + wd

dφ

da

dwd

da

]
,

which coincide with the values in Abramo et al. (2009) for
wd = const and H′

H2 = − 1
2 (matter dominated). We notice that for

wd = ce = ca = 0 the coefficients for matter density contrast are
recovered.

APPENDI X B: POI SSON EQUATI ON

On sub-horizon scales, the basic equation describing the evolution
of linear matter fluctuations is

δ̈m + 2H (t)δ̇m + k2

a2
φ = 0. (B1)

In this context the Poisson equation in the Fourier space is written
as (Lima, Zanchin & Brandenberger 1997)

k2φ = −4πGa2(δρ + 3δp). (B2)

where δρ = δρm + δρd and δp = δpm + δpd. Now using δpm = 0,
δpd = ceδρd, δρm = ρmδm, δρd = ρdδd, and inserting the above
quantities into equation (B2), we arrive to

− k2

a2
φ = 4πG[ρmδm + (1 + 3ce)ρdδd], (B3)

or

− k2

a2
φ = 3

2
H 2[�mδm + (1 + 3ce)�dδd]. (B4)

Utilizing the above equations it is easy to check that

δ̈m + 2H (t)δ̇m = 3H 2

2
[�mδm + �dδd(1 + 3ce)] . (B5)

Obviously for ce = wd = const, the latter equation reduces to that
of Abramo et al. (2009) and Mehrabi et al. (2015). Changing the
variables from t to a we finally obtain equation (39).
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