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Can observational growth rate data favour the clustering
dark energy models?

Ahmad Mehrabi1 • Mohammad Malekjani1 •

Francesco Pace2

Abstract Under the commonly used assumption that
clumped objects can be well described by a spherical
top-hat matter density profile, we investigate the evo-
lution of the cosmic growth index in clustering dark en-
ergy (CDE) scenarios on sub-horizon scales. We show
that the evolution of the growth index γ(z) strongly
depends on the equation-of-state (EoS) parameter and
on the clustering properties of the dark energy (DE)
component. Performing a χ2 analysis, we show that
CDE models have a better fit to observational growth
rate data points with respect to the concordance ΛCDM
model. We finally determine γ(z) using an exponential
parametrization and demonstrate that the growth in-
dex in CDE models presents large variations with cos-
mic redshift. In particular it is smaller (larger) than
the theoretical value for the ΛCDM model, γΛ ≃ 0.55,
in the recent past (at the present time).

1 Introduction

The current accelerated expansion of the universe is one
of the biggest challenges in modern cosmologies. A wide
range of astronomical data, including supernova type Ia
(SNeIa) (Perlmutter et al. 1997, 1998, 1999; Riess et al.
2004, 2007), cosmic microwave background (CMB)
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(Bennett et al. 2003; Spergel et al. 2003, 2007), large

scale structures (LSS) (Hawkins et al. 2003; Tegmark et al.

2004; Cole et al. 2005) and baryon acoustic oscillations
(BAO) (Eisenstein et al. 2005) confirm the current ac-

celerated expansion of the universe. This is a surprising

result, since in a universe dominated by matter, and
therefore where gravity is attractive, we should expect

the acceleration to slow down. Within the framework of

General Relativity (GR), the accelerated expansion can

be accommodated by the introduction of an unknown
form of energy with sufficiently negative pressure, the

so called dark energy (DE). Observational results of the

Planck satellite (Planck Collaboration et al. 2013) indi-

cate that DE is ≈ 68% of the total energy budget of the
universe, while pressureless matter (baryons and cold

dark matter) amount to ≈ 32%. Hence, at the present

time the dominant component is the DE with a negative

equation of state (EoS) wde = pde/ρde < −1/3.
A very simple and important example of fluid with

negative EoS is Einstein’s cosmological constant, Λ,

with wΛ = −1 independent of time (Weinberg 1989;

Sahni & Starobinsky 2000; Peebles & Ratra 2003). Al-
though the cosmological constant is consistent with

observational data, it suffers from the fine-tuning

and the cosmic coincidence problems (Weinberg 1989;
Sahni & Starobinsky 2000; Peebles & Ratra 2003). Al-

ternatively, extensions and/or modifications of Einstein

gravity theory, such as f(R) and f(T ) models, can ex-

plain the present cosmic acceleration (Amendola et al.
2007; Hu & Sawicki 2007; Appleby & Battye 2007;

Starobinsky 2007; Tsujikawa et al. 2008; Cognola et al.

2008; Linder 2009). In a general relativistic framework,

DE models with equation of state wde 6= −1 have been
proposed, usually in the context of scalar fields such

as quintessence models, in order to solve or alleviate

the cosmological constant problems (Peebles & Ratra

2003). Moreover, phenomenological models with time
evolving EoS parameter wde(z) have been suggested

http://arxiv.org/abs/1411.0780v1
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(Linder 2003; Sahni et al. 2003; Alam et al. 2003;
Lazkoz et al. 2005).

DE not only accelerates the expansion rate of the
universe but also changes the growth rate of matter
perturbations of cosmic structures. In fact, the growth
of matter perturbation δm of overdense regions is slowed
down by the Hubble drag in an expanding universe
(Peebles 1993). Hence, increasing the Hubble param-
eter in DE cosmologies causes an increasingly lower
growth of structures. If DE is not the cosmological
constant, we can assume fluctuations in both time and
space (Pace et al. 2010), in a similar fashion to what
happens for matter. These fluctuations will therefore
have an impact on the growth of matter perturbation
(Abramo et al. 2009). This is due to the fact that DE is
now not only important at the background level, but its
fluctuations can enhance or dampen also fluctuations in
the dark matter fluid.

The key parameter to describe perturbations for the
DE fluid is the effective sound speed c2eff = δpde/δρde.
In the context of canonical scalar fields, c2eff = 1 (in
units of the light speed, c), so that DE perturbations
take place on scales equal to or larger than the horizon
and are totally negligible on smaller scales (Hu 1998).
However, for non-canonical scalar fields, like k-essence
models, the effective sound speed is different from 1, so
that we can consider c2eff < 1. In this case, DE pertur-
bations can grow and be significant also on sub-horizon
scales (Armendariz-Picon et al. 2001). In particular,
when c2s ≪ 1, perturbations can grow at the same rate
as matter perturbations (Abramo et al. 2009). Hence,
one can consider the impact of DE perturbations on the
formation of cosmic structure on sub-horizon scales. In
this work we focus on the effect of DE perturbations on
the growth rate of matter in linear regime.

The growth of matter perturbation is described
by the growth rate function f = d ln δm/d ln a, usu-
ally parametrized with the phenomenological functional
form f = Ωγ

m, where Ωm is the fractional energy
density of matter in the universe and γ is the so-
called growth index (Peebles 1980, 1984; Lahav et al.
1991). The growth index for the concordance ΛCDM
model is approximately scale independent and con-
stant with value γ ≃ 0.55 (Wang & Steinhardt 1998;
Linder 2005; Linder & Cahn 2007). Modified grav-
ity models have 0.40 ≤ γ ≤ 0.43 at the present
time z = 0 (Tsujikawa et al. 2009; Gannouji et al.
2009). In the context of the Dvali-Gadabadze-Porrati
(DGP) braneworld gravity model (Dvali et al. 2000),
the growth index is γ ≃ 11/16 ≃ 0.68 (Linder & Cahn
2007). Note, however, that this model has essentially
been ruled out by observations, e.g. by the WiggleZ
Dark Energy survey (Shi et al. 2012; Lombriser et al.
2013).

In the framework of General Relativity with dark
energy characterised by a constant equation-of-state
parameter, the growth index γ is theoretically ap-
proximated by γ ≃

3(wde−1)
6wde−5 (Silveira & Waga 1994;

Wang & Steinhardt 1998; Linder 2004; Linder & Cahn
2007; Nesseris & Perivolaropoulos 2008; Lee & Ng 2010)
which explicitly reduces to the well known value
γΛ ≃ 6/11 in the traditional ΛCDM cosmology
with wΛ = −1. Observationally, the growth rate
f(z) has been used to constrain DE models and
the growth index γ (Nesseris & Perivolaropoulos 2008;
Cai et al. 2012). On the basis of observations, a
wide range of values for γ = (0.58 − 0.67)+0.11+0.20

−0.11−0.17

has been obtained (Nesseris & Perivolaropoulos 2008;
Guzzo et al. 2008; Dossett et al. 2010; Samushia et al.
2012; Hudson & Turnbull 2012).

The weakness in using the observed values fobs(z)
of the growth rate is due to the fact that it is model
dependent, so that they can only be used to test the
consistency of the ΛCDM model. Here, we rather pre-
fer to use the quantity f(z)σ8(z), where σ8(z) is the
time-dependant rms amplitude of the overdensity δm
at the comoving scale of 8 h−1 Mpc. The advan-
tage is that this quantity is almost model independent
and therefore suits better in constraining DE mod-
els (Song & Percival 2009). Using the observational
growth data f(z)σ8(z), we will constraint CDE mod-
els with equation of state wde. As mentioned before,
in CDE models the sound horizon of DE perturbations
is well within the Hubble scale H−1 and DE clusters
on scales outside its sound horizon and smaller than
the Hubble length (Appleby et al. 2013). In the same
way, cold dark matter clumps on scales greater than
its own Jeans scale. Instead for canonical DE models,
the sound horizon is equal to or larger than the Hub-
ble length and DE perturbations cannot grow on sub-
Horizon scales. In this work we explore the signature of
CDE models on the growth index of cosmic structures.
We put constraints on the growth index γ for a given
CDE model and compare the results with the standard
ΛCDM scenario. We will show that in CDE models, γ
may have substantial variations with cosmic redshift, so
that the usual constant growth index parametrization is
in general not suitable in these cases. Due to the inac-
curacy of a constant γ parametrization in CDE, we use
a general redshift dependent exponential parametriza-
tion and obtain the best fit values of the parameters.

The plan of the paper is as follows. In Sect. 2 we
present the coupled differential equations governing the
perturbations of matter and DE and argue about the
growth index in such a system. The effect of DE per-
turbations on the growth index is discussed. In Sect. 3
we constrain the EoS parameter of DE for two differ-
ent models, with constant and time-varying equation
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of state, by means of the χ2 analysis. We then eval-

uate f(z)σ8(z) and compare our theoretical prediction
with observational data. Our results show that per-

turbations in the DE component give a better fit to

observational data with respect to the ΛCDM model.

We finally conclude in Sect. 4.

2 Growth index and dark energy perturbation

In an Einstein-de Sitter (EdS) universe, in the linear
perturbation theory for scales much smaller than the

Hubble radius, the following differential equation de-

scribes the evolution of the perturbations of pressure-

less matter overdensities δm = δρm/ρm (Linder & Cahn
2007; Linder 2005; Huterer & Linder 2007; Wang & Steinhardt

1998; Nesseris & Perivolaropoulos 2008; Chiba & Takahashi

2007):

δ̈m + 2Hδ̇m − 4πGρmδm = 0. (1)

It is well known that Eq. (1) is still valid for DE

cosmologies where its effects are only at the background

level. In this case the DE fluid only modifies the Hubble

function H. This is not the case any more when DE
perturbations kick in.

In the case of CDE models, we use the following

set of linear coupled differential equations obtained in

the framework of the spherical collapse model with the

usual top-hat approximation by Abramo et al. (2009):

δ̈m + 2Hδ̇m =

3H2

2
[Ωmδm +Ωdeδde(1 + 3wde)] , (2)

δ̈de +

(

2H −
ẇde

1 + wde

)

δ̇de =

3

2
H2(1 + wde) [Ωmδm +Ωdeδde(1 + 3wde)] , (3)

where overdot denotes the derivative with respect to

cosmic time t, δde and wde indicate the perturbations
and the EoS parameter of DE, respectively. Under

the Top-Hat approximation, δm and δde are uniform

inside the perturbed region and therefore are a func-

tion of cosmic time only. It should be emphasized that
perturbation theory based on the Top-Hat approxima-

tion is fully consistent with GR and Pseudo-Newtonian

cosmology in the linear regime (Abramo et al. 2009).

Indeed, Abramo et al. (2009) showed that the grow-

ing modes of perturbations in GR and in the Pseudo-
Newtonian formalism are the same and differences ap-

pear only in the decaying mode. Using the relation

d
dt = aH d

da , Eqs. (2 & 3) can be written as

a2δ′′m +
3

2
a(1− Ωdewde)δ

′

m =

3

2
[Ωmδm +Ωdeδde(1 + 3wde)] , (4)

a2δ′′de +
3

2
a

(

1− Ωdewde −
aw′

de

1 + wde

)

δ′de =

3

2
(1 + wde) [Ωmδm +Ωdeδde(1 + 3wde)] , (5)

where a is the scale factor and primes denote the deriva-

tive with respect to a. To derive Eqs. (2 and 3), the EoS

parameter of DE, wde is assumed to be the same inside

and outside the perturbed region. We therefore note

that it is possible to derive this set of equations sim-
ply by modifying the source term in Poisson equation

(Eq. 4) in Pace et al. (2010). To evaluate the impact of

DE perturbations as well as the EoS parameter wde on

the growth rate of structures in CDE models, we solve
Eqs. (4 and 5) numerically and obtain δm(z) and δde(z)

where z is the cosmic redshift related to the scale factor

by z = 1/a− 1.

For simplicity, in this section we choose a con-

stant EoS parameter for the dark energy models in-
vestigated. We analyse two different regimes: the

phantom one (wde = −1.2) and the quintessence one

(wde = −0.8). A more general dark energy model

with time varying EoS parameter wde(z) will be dis-
cussed in next section. We chose the following adi-

abatic initial conditions at early times (zi = 1000):

δm(zi) ≃ 1.4 × 10−4, δ′m(zi) ≃ −δm(zi)/(1 + zi) and

δde(zi) = (1+wde)
1+3wde

δm(zi), δ′de(zi) ≃ −δde(zi)/(1 + zi)

(Spergel et al. 2007). To solve the equations, we set
the present values for the matter and the DE den-

sity parameters as Ωm,0 = 0.3175 and Ωde,0 = 0.6825

provided by the WMAP experiments (Komatsu et al.

2011). By calculating δm(z) and using the definition

f(z) = d ln δm(z)/d ln a together with the parametriza-
tion f(z) = Ωm(z)

γ(z), we obtain the growth index γ(z)

from the coupled Eqs. (4 & 5). In Fig. (1) we show the

evolution of γ(z) as a function of redshift z for both

phantom wde = −1.2 and non-phantom wde = −0.8
EoS parameters. The concordance ΛCDM cosmology is

approximately constant, γ ≃ 0.55 (dashed green line)

as expected. Analogously to the ΛCDM model, the

growth index in non-clustering dark energy (Non-CDE)

models is largely redshift-independent, both for phan-
tom (blue dotted line) and quintessence (black short-

dashed line) regimes. We also see that differences from

the ΛCDM model are negligible in Non-CDE mod-

els. However, in CDE models, where δde(z) 6= 0 and
non-negligible, the growth index changes with redshift

and can become as high as γ(z = 0) ≃ 0.71 for the
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quintessence case (violet solid curve) and as low as

γ(z = 0) ≃ 0.38 in the phantom case (dot-dashed red
curve). It is also possible to appreciate the large de-

viation of γ(z) in CDE models from the concordance

ΛCDM value 0.55 as well. Here we conclude that the

impact of DE perturbations on the growth rate of struc-
tures is comparable to the influence of the EoS param-

eter. Moreover, γ(z) is larger (smaller) than ΛCDM

value 0.55 in the case of quintessence (phantom) EoS

parameter.

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0  0.5  1  1.5  2

γ(
z
)

z

CDE w=-0.8
Non-CDE w=-0.8

ΛCDM
Non-CDE w=-1.2

CDE w=-1.2

Fig. 1 The variation of the growth index γ(z) as a func-
tion of the cosmic redshift z for different CDE and Non-CDE
models. The solid violet (black short-dashed) curve repre-
sents the clustering (non-clustering) quintessence model, the
dashed green curve the reference ΛCDM model, while the
blue dotted (red dot-dashed) curve stands for the clustering
(non-clustering) phantom dark energy model.

3 Observational constraint on the growth

index in CDE models

In this section we use the current observational growth

data reported in table (1) to find the best fit value for

the parameters of the CDE models here studied. We
first consider the CDE model with constant EoS param-

eter, namely the wCDE model. We then assume a time

varying EoS parameter using the Chevallier-Polarski-

Linder (CPL) parametrization (Chevallier & Polarski
2001; Linder 2003)

wde(z) = w0 + w1(
z

1 + z
) , (6)

the so-called w(t)CDE model. In the wCDE model,

there is one free parameter (the equation of state wde)
while for the w(t)CDE model we have two free param-

eters (w0, w1). Considering these two models, we solve

the system of Eqs. (4 & 5) numerically to obtain the

theoretical value for growth factor f(z)the, where the

subscript ”the” indicates the theoretical value.
We also calculate σ8(z)the as

σ8(z = 0) =
δm(z = 0)

δm,Λ(z = 0)
σ8,Λ(z = 0) , (7)

σ8(z) = D+(z)σ8(z = 0) , (8)

where D+(z) = δm(z)/δm(z = 0) is the growth factor.

We assume σ8,Λ(z = 0) = 0.811, in agreement with the
WMAP-7 results (Komatsu et al. 2011).

We also calculate the least square parameter χ2 ac-

cording to the definition

χ2 =
∑

i

([f(z)σ8(zi)]obs − [f(z)σ8(zi)]the)
2

σ2
i

, (9)

where the subscript ”obs” stands for the observational

value and σi is the uncertainty of the observational

data. Currently there are only 10 data points for f(z)σ8

in the redshift range 0.067 ≤ z ≤ 0.80 as shown in ta-
ble (1).

In Fig. (2) we show the evolution of χ2(w) as a func-

tion of the dark energy equation of state wde for the

wCDE models. Here we set the best value of χ2 to

zero and show the 1 − σ and 2 − σ confidence levels
by a cyan and an orange line, respectively. For the

wCDE model we obtain the following best fit value

for the EoS parameter: wde = −0.764+0.073+0.169
−0.072−0.136 with

a χ2
best = 6.39, while for w(t)CDE model we obtain

w0 = −0.439+0.078+0.109
−0.132−0.192,w1 = 0.375+0.175+0.239

−0.275−0.136 with a

χ2
best = 4.05. In the case of the concordance ΛCDM

model we find χ2
best = 18.58 and for comparison we ob-

tain a χ2
best = 147.09 for the EdS model. The results of

the χ2 analysis for the w(t)CDE model is presented in
Fig. (3). As mentioned before, in this case there are two

free parameters w0 and w1 to be constrained. The star

symbol shows the location of the best fit value and the

inner and outer contours represent the 1− σ and 2− σ
confidence levels, respectively. In Fig. (4) we instead

present results for the quantity f(z)σ8(z) for both the-

oretical models (lines) and observational data (points

with error bars).

In order to select the best model among the ones here

studied, we should compute the reduced chi-squared pa-

rameter χ2
red = χ2

best/ν, where ν represents the number

of degrees of freedom and it is given by ν = N − n− 1,
where N is the number of data points and n is the num-

ber of fitted parameters. The deviation from χ2
red = 1

measures how good the model is. For all the models

N = 10. For the wCDE model n = 4 (Ωm,0, Ωde,0,

σ8, wde). In the case of w(t)CDE models, n = 5
(Ωm,0, Ωde,0, σ8, w0, w1). For the concordance ΛCDM
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Fig. 2 Variation of χ2
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best as a function of w for the
wCDE models. The two horizontal lines show the 1−σ and
the 2− σ confidence levels.
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Fig. 3 Best parameter values and 1 − σ and 2 − σ confi-
dence levels for the w(t)CDM model. The location of the
minimum χ2 is shown a star.

model n = 3 (Ωm,0, Ωde,0, σ8) and for the EdS model

n = 1 (σ8). We find the following values for the re-

duced chi-squared χ2
ν = 6.39/5 = 0.79 for the wCDE

models, ν = 4.05/4 = 1.01 for the w(t)CDE models,
ν = 18.58/6 = 3.09 for the concordance ΛCDM and

ν = 147.09/8 = 18.38 for EdS scenarios. We can ex-

plicitly see that the CDE models fit better the data

points than the standard ΛCDM and EdS scenarios.
Moreover, the w(t)CDE model is the best model with

0.01 deviation from χ2
red = 1.

We can now evaluate the growth index γ(z) = ln f(z)
lnΩm

on the basis of best fit value for wde for both wCDE and
w(t)CDE models. Results are shown in Fig. (5). The

ΛCDM model is shown by the green dashed line and

as expected is practically a constant. The pink dotted

curve represents the wCDE model (0.66 ≤ γ(z) ≤ 0.73

in the redshift interval 0 ≤ z ≤ 2) and is 32% bigger
than the present value of the ΛCDM model (γ = 0.55).

z f(z)σ8(z) Survey and Refs

0.067 0.42± 0.06 6dFGRS (Beutler et al. 2012)

0.17 0.51± 0.06 2dFGRS (Percival et al.

2004)

0.22 0.42± 0.07 WiggleZ (Blake et al. 2011)

0.25 0.39± 0.05 SDSS-LRG (Samushia et al.
2012)

0.37 0.43± 0.04 SDSS-LRG (Samushia et al.

2012)

0.41 0.45± 0.04 WiggleZ (Blake et al. 2011)
0.57 0.43± 0.03 BOSS-CMASS (Reid et al.

2012)

0.60 0.43± 0.04 WiggleZ (Blake et al. 2011)

0.78 0.38± 0.04 WiggleZ (Blake et al. 2011)

0.80 0.47± 0.08 VIPERS (de la Torre et al.
2013)

Table 1 The f(z)σ8(z) data points including their refer-
ence and survey.

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55
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 0.65
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 0.85

 0  0.2  0.4  0.6  0.8  1

f(
z
)σ

8
(z

)

z

EdS
ΛCDM

w(t)CDE
wCDE

Growth data

Fig. 4 The observed and the theoretical evolution of
f(z)σ8. The solid cyan curve stands for the Einstein-de Sit-
ter (EdS) model, the green-dashed one indicates the ΛCDM
model, the pink and blue-dotted lines represent the wCDE
and the w(t)CDE models, respectively. Circles with error-
bars are the observed data points from table (1).

In the case of the w(t)CDE model, γ(z) is 0.33 ≤ γ(z) ≤

0.59 which is 9% bigger than the present value of the

ΛCDM model (blue short-dashed curve). In this case
γ(z) crosses the constant ΛCDM line at z ≃ 0.15 rep-

resenting a smaller growth index for z > 0.15 and a

bigger one for z < 0.15 compared to the ΛCDM model.

It is important to note that, unlike ΛCDM cosmologies,
in CDE models the growth index γ has a wide range of

values, in particular in the case of w(t)CDE models. It

should also be noted that for CDE models, due to the

large variation of γ(z) with respect to the redshift z,

the constant γ0 parametrization is not accurate enough.
Hence, it is worth using a parametrized function of γ(z)
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in order to discuss the best fit value of the growth index

in CDE models. Using the fact that the growth index
should be nearly constant at early times and change at

late times, we apply the following general exponential

parametrization (Dossett et al. 2010):

γ(z) = γ∞ + γbe
−z/zt (10)

where zt represents the transition redshift from an al-

most constant γ∞ at early times to a varying growth

index γ(z) at late times. In the case of the concor-

dance ΛCDM cosmology, the exponential parametriza-
tion yields the best fit parameters γ∞ = 0.5457, γb =

0.0103 and zt = 0.61 (Dossett et al. 2010). In ta-

ble 2, we show the best fit parameters of γ∞, γb and

zt with the corresponding error-bars for the wCDE
and w(t)CDE models. A large value of γb represents

a strong variation of γ(z) with redshift for w(t)CDE

model.

Model wCDM w(t)CDM

γ∞ 0.648984+0.00006
−0.00006 0.253179+0.0004126

−0.0004126

γb 0.0750995+0.00021
−0.00021 0.318083+0.00055

−0.00055

zt 0.698723+0.003559
−0.003559 1.39674+0.006793

−0.006793

Table 2 The best fit parameters for γ(z) on the basis of
the parametrization of Eq. (10).
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Fig. 5 Growth index for different cosmological models on
the basis of best fit values of the EoS parameter.

4 Conclusions

In this work we studied the evolution of density per-

turbations of pressureless dark matter and dark energy

on sub-horizon scales by solving the linear equations of

structure formation with a density profile assumed to
be described by a Top-Hat profile. We showed that the

matter growth index γ is strongly affected by perturba-

tions of the DE component, while for smooth DE mod-

els it is almost constant with cosmic time. It has been
shown that for CDE models, the growth index γ can

be larger (for quintessence EoS wde > −1) or smaller

(for the phantom EoS wde < −1) than the concordance

ΛCDM predicted value γΛ ≃ 0.55. We performed a

reduced χ2 minimization analysis between the observa-
tions and the theoretical expectations of f(z)σ8(z) and

found that for CDE with constant EoS parameter, i.e.,

wCDE model: wde = −0.764+0.073+0.169
−0.072−0.136 with a reduced

χ2
red = 0.79, while for w(t)CDE model with a CPL

parametrization for wde(z) (Chevallier & Polarski 2001;

Linder 2003), we found:(w0 = −0.439+0.078+0.109
−0.132−0.192,w1 =

0.375+0.175+0.239
−0.275−0.136) with a χ2

red = 1.01. For compari-

son, the concordance ΛCDM model has χ2
red = 3.09.

Hence the w(t)CDE model fits better to the observa-
tional growth data with respect to other models.

We also discussed the growth index γ in the frame-

work of clustering dark energy models and we found

a strong variation with respect to redshift, particu-
larly in the case of the w(t)CDE model. We showed

that for the best fit value of wde, the w(t)CDE model

crosses the ΛCDM solution at z ≃ 0.15, with lower

values for z > 0.15 and higher values for z < 0.15

when compared to the ΛCDM result. Finally, we ap-
plied the general exponential parametrization for γ(z)

in Eq. (10) and predicted that for the wCDE model

analysed γ∞ > γΛCDM
∞

, while for the w(t)CDE model

γ∞ < γΛCDM
∞

(see table 2). Hence the growth index at
early times is larger for wCDE and smaller for w(t)CDE

models compare with the ΛCDM model. The large

value of γb in table 2 indicates a strong variation of

the growth index in w(t)CDE cosmologies.
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