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This paper provides a unified treatment of two distinct 
viewpoints concerning the classification of group extensions: 
the first uses weak monoidal functors, the second classifies 
extensions by means of suitable H2-actions. We develop our 
theory formally, by making explicit a connection between 
(non-abelian) G-torsors and fibrations. Then we apply our 
general framework to the classification of extensions in a semi-
abelian context, by means of butterflies [1] between internal 
crossed modules. As a main result, we get an internal version 
of Dedecker’s theorem on the classification of extensions of 
a group by a crossed module. In the semi-abelian context, 
Bourn’s intrinsic Schreier–Mac Lane extension theorem [13]
turns out to be an instance of our Theorem 6.3. Actually, even 
just in the case of groups, our approach reveals a result slightly 
more general than classical Schreier–Mac Lane theorem.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let K and Y be groups. It is well known that the set of (equivalence classes of) split 
extensions of Y by K is in bijection with the set of Y -actions on K. One way of realizing 
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this bijection consists in considering a homomorphic section s of f , and then composing 
with the canonical conjugation action of X on its normal subgroup K, denoted by χ in 
the diagram below:

K
k

X
f χ

Y
s

Aut(K)

�→ Y
χ·s

Aut(K)

When the extension K
k

X
f

Y is no longer split, the homomorphism s
fails to exist. Still, since f is surjective, one can find a set-theoretical section s′ of f , and 
consider the composite χ · s′:

K
k

X
f χ

Y
s′ Aut(K)

�→ Y
χ·s′

Aut(K)

However, in this case χ · s′ is no longer an action, in general.
The group Aut(K) determines the internal groupoid in Gp

AUT(K) =

K � Aut(K)

d c

Aut(K)

and the map χ · s′ underlies a (possibly weak) monoidal functor

D(Y ) → AUT(K) ,

where D(Y ) is the discrete internal groupoid associated with Y . In other words, χ · s′
is the object map of a functor between the underlying groupoids in Set. Notice that 
different choices of s′ give rise to different but isomorphic monoidal functors. This way, 
we extend the equivalence between split extensions and actions

SPLEXT(Y,K) � Gp(Y,Aut(K))

to the equivalence

EXT(Y,K) � 2Gp(D(Y ),AUT(K)) ,
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where 2Gp denotes the 2-category of groupoids in Gp, monoidal functors, and monoidal 
transformations. In this fashion, the map χ ·s′ can be considered as a sort of weak action, 
a notion introduced by Blanco, Bullejos and Faro in [5].

Now, let us turn our attention to the structure of the set of equivalence classes of 
extensions Ext(Y, K), which is described by the classical Schreier–Mac Lane extension 
theory.

According to Mac Lane, an abstract kernel φ : Y → Out(K) is associated with any 
extension (k, f), where Out(K) ∼= Aut(K)/Inn(K) is the group of the outer homomor-
phisms of K, and φ induces a Y -action φ on the center Z(K) of the group K. Moreover, 
we have the following result, which merges Theorems 8.7 and 8.8 in [31, Chapter IV].

Theorem 1.1 (Schreier–Mac Lane). Given a morphism φ : Y → Out(K), let
OpExt(Y, K, φ) be the set of extensions inducing the abstract kernel φ.

• OpExt(Y, K, φ) �= ∅ if, and only if, [φ] = 0, where [φ] ∈ H3(Y, Z(K), φ) is uniquely 
determined by φ;

• If OpExt(Y, K, φ) �= ∅, then H2(Y, Z(K), φ) operates simply and transitively on 
OpExt(Y, K, φ), so that there is a bijection OpExt(Y, K, φ) ∼= H2(Y, Z(K), φ).

The Schreier–Mac Lane theorem gives a description of the set of (equivalence classes 
of) extensions as indexed by abstract kernels:

Ext(Y,K) =
∐
φ

OpExt(Y,K, φ) .

So far, we recalled two rather different points of view:

• extensions are classified by (some specific) weak monoidal functors,
• extensions are classified by H2-actions.

The aim of this article is to show how the theory of classification of extensions is an 
instance of a more general one where these two viewpoints converge.

An intrinsic version of Schreier–Mac Lane theory has been introduced by Bourn in [14]
for exact action representative categories. In this article, Bourn presents a cohomological 
classification of extensions by considering suitable groupoids of pretorsors (see also [13]) 
that give an internal description of the H2(Y, Z(K), φ)-actions.

We will extend Bourn’s result to the wider class of extensions of a (discrete) object 
by a crossed module. This subject has been studied, in the case of group extensions by 
Dedecker ([23], see also [37]). Actually, in semi-abelian action representative or action 
accessible categories (see [9,17]), Bourn’s result is a consequence of Theorem 6.3 (see 
Corollary 6.5).

Our main tool will be internal butterflies. Butterflies have been introduced by Noohi in 
[37] in order to deal with monoidal functors between 2-groups (see also [2]). An intrinsic 
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version for semi-abelian contexts has been developed in [1], where the authors show 
that butterflies are the morphisms in the bicategory of fractions of crossed modules, 
with respect to weak equivalences, or equivalently, of internal groupoids with respect to 
internal weak equivalences (i.e. internal functors which are fully faithful and essentially 
surjective on objects).

Indeed, in [34] the authors show that butterflies are the crossed module counterpart 
of a specific class of internal profunctors (where the last are the internal version of Bén-
abou’s distributors [4]). The algebra of internal profunctors is a remarkable ingredient in 
Bourn’s theory of extensions, nonetheless, the present work shows that in order to effec-
tively perform computations, it is convenient to switch to butterflies. Our approach gives 
a recipe to deal with the theory of extensions in varieties of semi-abelian algebras where 
a simple notion of crossed module is defined, such as, for instance, groups, Lie-algebras 
over a field, rings and all categories of interest in the sense of Orzech [38].

A reason for this fact is the point of view according to which crossed modules general-
ize extensions since they generalize normal monomorphisms. For extensions with abelian 
kernel, it turns out that this generalization reduces the Baer sum of extensions to butter-
flies composition. A similar phenomenon can be described for the H2-torsor structure of 
the set of equivalence classes of general extensions, thus making the calculus of butterflies 
a natural tool in the theory of extensions.

The paper is organized as follows. In Section 2, we present some basic results about 
torsors and fibrations. These will serve as a general framework from which the classifi-
cation of extensions will follow in a purely formal way. In Section 3 we recall the needed 
results and properties about internal crossed modules in a semi-abelian category C. Sec-
tion 4 is devoted to the description of the bicategory of butterflies in a semi-abelian 
context. Section 5 is preparatory for the last one and provides the link between the 
general framework of Section 2 and the problem of classification of extensions, which is 
faced in Section 6.

2. The general framework

In this section we recall some basic notions from the theory of torsors, and we show 
how a fairly general situation produces canonically a setting that contextualizes the 
classification of extensions.

Let us consider the following elementary result.

Lemma 2.1. Let G be a groupoid, and x, y be objects of G. Then:

(i) either G(x, y) is empty, or arrow composition in G

G(x, y) × G(x, x) → G(x, y)

defines a simply transitive (right) action ∗ of the group G(x, x) on the set G(x, y);
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(ii) if G is a subgroup of G(x, x), and f is in G(x, y), the action above restricts to a 
simply transitive action

fG×G → fG

where fG is the orbit 
{
f ∗ g | g ∈ G

}
.

In [14], Bourn presents a cohomological classification of extensions by considering 
suitable groupoids of pretorsors (see also [13]). The starting point of the present work is 
the observation that Bourn’s result, and consequently the classical Schreier–Mac Lane 
Theorem on the classification of extensions, can be viewed as an instance of the very 
general Lemma 2.1 above.

2.1. G-torsors and fibrations

Definition 2.2. Let G be a group. A (right) G-torsor is a non-empty set S equipped with 
a simply transitive (right) G-action ∗.

This means that the action is such that only the identity element of the group acts 
trivially and there is only one orbit. One can easily see that a G-set S is a G-torsor if 
and only if the assignment (x, g) �→ (x, x ∗ g) establishes a bijection between the sets 
S ×G and S × S.

With this characterization in mind, one can state an internal notion of G-torsor. 
Notice that, in the internal case, the non-emptiness request translates into the condition 
that S is inhabited (i.e. with a strong epimorphism to the terminal object).

Definition 2.3. Let C be a category with finite products and G a group object in C. A 
(right) G-torsor in C is an inhabited object S equipped with a (right) G-action ξ : S×G →
S, such that the following map is an isomorphism:

〈πS×G
1 , ξ〉 : S ×G → S × S .

For instance, one can choose a set B and define G-torsors in Set ↓ B, where G is a 
group in Set ↓ B. In particular one can choose a group G, and observe that

πG×B
2 : G×B → B

inherits from G a group structure in Set ↓ B.

Definition 2.4. Let G be a group and B a set. A (right) G-torsor over B is a πG×B
2 -torsor 

in Set ↓ B.

Notice that this definition can be stated in any category with finite products. It’s 
worth to make it more explicit in terms of the actions of G in Set: indeed, one can easily 
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prove that an object p : S → B in Set ↓ B is a G-torsor over B precisely when, for each 
b ∈ B, p−1(b) ⊂ S is a G-torsor. In other words, G acts on S fiberwise and the action is 
simply transitive on each fiber.

Such a situation appears naturally when we consider a functor

Π: G → M ,

where G is a groupoid and M is a category.
Let us fix two objects x and y in G. For an arrow α : Π(x) → Π(y), we shall denote 

by Gα(x, y) the subset of G(x, y) of all those arrows f : x → y such that Π(f) = α. If 
moreover Π(x) = Π(y) and α = 1Π(x), we shall adopt the simpler notation G1(x, y).

As pointed out in Lemma 2.1 (i), if the hom-set G(x, y) is not empty, it inherits a 
structure of G(x, x)-torsor from the arrow composition in G. Here we identify the groupoid 
with one object G(x, x) with the corresponding group of its arrows, composition law given 
again by the groupoid structure of G.

Furthermore, applying Lemma 2.1 (ii) to the group G = G1(x, x), we get immediately 
the following result.

Proposition 2.5. Let B = Π(G(x, y)) ⊂ M(Π(x), Π(y)) and G as above. Then

(i) either G(x, y) is empty, or it is a G-torsor over B;

or, equivalently,

(ii) for each φ ∈ M(Π(x), Π(y)), either Gφ(x, y) is empty, or it is a G-torsor.

Proof. (i) is equivalent to (ii) as noticed after Definition 2.4.
To prove (ii), it suffices to observe that, for any f : x → y such that Π(f) = φ, Gφ(x, y)

is nothing but the orbit fG. Then the thesis follows from point (ii) of Lemma 2.1. �
We can somehow relax the hypothesis that G is a groupoid, if we ask for some condi-

tions to hold for the functor Π.
Let us recall that a fibration

Π: E → M

is a functor with enough cartesian liftings, i.e. Π is such that, for every object y in E , 
and for every arrow φ with codomain Π(y), there exists a cartesian arrow dφ : x′ → y

such that Π(dφ) = φ.
It is worth to point out that cartesian arrows can be characterized according to the 

following statement (we follow here the terminology used by Borceux in [6], although 
some authors call hypercartesian what we call a cartesian arrow).
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Lemma 2.6. Let Π: E → M be a functor. An arrow dφ : x′ → y is cartesian over φ =
Π(dφ) if and only if, for every z in E and every α : Π(z) → Π(x′), the map

dφ · − : Eα(z, x′) → Eφ·α(z, y)

is a bijection.

We recall also that a morphism of fibrations is a commutative square of functors

E

Π

F E ′

Π′

M
G

M′

such that Π and Π′ are fibrations and F preserves cartesian arrows.

Proposition 2.7. Let us consider a fibration of categories Π: E → M, such that the fibers 
of Π are groupoids. Let us fix two objects x and y of E, and define

the set B = Π(E(x, y)) ⊂ M(Π(x), Π(y)),
the group G = E1(x, x).

Then

(i) either E(x, y) is empty or it is a G-torsor over B, the action given by arrow compo-
sition;

or, equivalently,

(ii) for each φ ∈ M(Π(x), Π(y)), either Eφ(x, y) is empty, or it is a G-torsor.

Proof. Again, it suffices to prove the second statement. To this end, let us consider an 
arrow f in Eφ(x, y), and a cartesian lifting dφ : x′ → y of φ at y. By Lemma 2.6, we have 
a bijection

dφ · − : E1(x, x′) → Eφ(x, y)

Now, it suffices to transport along this bijection the canonical G-torsor structure of 
E1(x, x′) described in Proposition 2.5. �

As we shall explain, for suitable choices of E , M and Π, the classical Schreier–Mac 
Lane Theorem is obtained as an application of Proposition 2.7 (ii). Indeed, the functor 
Π restricted to E(x, y) is specialized, for instance in the case of group extensions, to the 
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assignment that associates with any extension:

K
k

X
f

Y ,

its abstract kernel φ. Finally, the acting group G is nothing but the usual second Mac 
Lane-cohomology group of Y with coefficients in the center of K (the Baer group).

Indeed, even just in the case of groups, the setting developed above yields a result 
slightly more general than the Schreier–Mac Lane theorem. This is a consequence of 
point (i) of Proposition 2.7, that allows to interpret the action of the Baer group as 
fibred over the set of those abstract kernels which admit a lifting.

Remark 2.8. Our general setting seems to be robust enough to sharpen the theory in 
order to deal with the classification of extensions (possibly with coefficients in a given 
crossed modules), and not just, as it is reported in the classical literature, with the 
classification of equivalence classes of extensions.

This can be done by considering the 2-dimensional analogue of the situation described 
above: we can start with a bigroupoid G, so that G(x, y) is a weak categorical group, 
and the main action on the groupoid G(x, y) yields a categorical torsor, in the sense of 
[20]. Along these lines, one can further choose a bicategory M and a homomorphism of 
bicategories Π: G → M.

Although we do not develop specifically this approach in the present work, it is worth 
to observe that, by the coherence theorems that involve bicategorical constructions, one 
can actually deal with the numerous details of the definition of categorical torsor in quite 
a straightforward way.

3. Internal crossed modules

The context where we develop our theory is that of semi-abelian categories [29], i.e. 
categories which are pointed, Barr-exact, protomodular and with finite coproducts. For 
a detailed account, the reader is referred to [7].

In addition, we require that the so-called “Smith is Huq” condition (SH) holds (see 
[35]). Examples of such categories are those of groups, rings, associative algebras, Lie 
algebras, Poisson algebras and, in general, any category of interest in the sense of Orzech 
[38] (see also [36]).

3.1. Actions

Semi-abelian categories are a convenient setting for working with internal actions. 
Here we briefly recall their definition from [9].

Let C be a semi-abelian category. Let

PtA(C) = 1A ↓ (C ↓ A) ,



A.S. Cigoli, G. Metere / Journal of Algebra 458 (2016) 87–119 95
i.e. the category of points of C ↓ A. For every object A of C, the kernel functor 
KerA : PtA(C) → C is monadic. The corresponding monad is denoted by A�(−), de-
fined, for any object X of C, by the kernel diagram:

A�X
κA,X

A + X
[1,0]

A .

The A�(−)-algebras are called internal A-actions [9,16]. The category CA�(−) of algebras 
is denoted by Act(A, −). For an action ξ : A�X → X, the semidirect product of X with 
A, with action ξ is the split epimorphism corresponding to ξ via the canonical comparison 
Ξ: PtA(C) → Act(A, −). It is computed explicitly (see [33]) via the coequalizer:

A�X
κA,X

iX ·ξ
A + X

qξ
X �ξ A .

Canonical examples of internal actions follow:

• the trivial action of A on X is given by the composition

ρA,X = ρX : A�X
κA,X

A + X
[0,1]

X ;

• the conjugation action of X is given by the composition

χX : X�X
κX,X

X + X
[1,1]

X ;

• for a kernel K → X, the conjugation action of X restricts to an action:

χX,K : X�K K .

Both ρA,X and χX are natural in their variables.
Moreover, it is worth to observe that, for any action ξ : B�X → X and any morphism 

f : A → B, the composite

f∗(ξ) : A�X
f�1X

B�X
ξ

X

defines an action, called the pullback action of ξ along f (indeed, the above composition 
amounts to a pullback via the canonical comparison Ξ).

3.2. Crossed modules

Internal pre-crossed and crossed modules in a semi-abelian category were defined by 
Janelidze in [28]. A pre-crossed module G = (∂G, ξG) in C is a map ∂G together with an 
action ξG

G0�G
ξG

G
∂G

G0
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such that the following diagram commutes:

G0�G
ξG

1�∂G

G

∂G

G0�G0 χG0
G0

Whenever the condition (SH) holds (see [35]), a pre-crossed module is a crossed module 
if, in addition, the following diagram commutes:

G�G
χG

∂G�1

G

1

G0�G
ξG

G

We shall refer to the commutativity of the first diagram as the pre-crossed module con-
dition and to the commutativity of the second diagram as the Peiffer condition.

A morphism of pre-crossed modules H → G is a pair (f, f0) of maps making the 
following diagram commute:

H0�H
f0�f

ξH (i)

G0�G

ξG

H

∂H

f

(ii)

G

∂G

H0
f0

G0

(1)

We will refer to the commutativity of (i) above by saying that the pair (f, f0) is equiv-
ariant with respect to the actions involved. A morphism of crossed modules is just a 
morphism of the underlying pre-crossed modules.

In [28] it is proved that the category Gpd(C) of internal groupoids and internal 
functors is equivalent to the category XMod(C) of internal crossed modules, and in [1]
this equivalence is extended to a biequivalence of bicategories.

The process of associating a crossed module with a groupoid is described explicitly in 
[34]. Here we merely fix the notation. Given a groupoid G:

G1

c

d

G0 ,u
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its associated crossed module is

G0�G
ξG

G
∂G=c·h

G0 ,

where h = ker(d). We will often use the same notation for the groupoid G and the crossed 
modules associated with it, unless this would cause confusion.

Many relevant notions concerning crossed modules arise by direct translation of the 
corresponding notions for groupoids. For instance, a discrete fibration (f, f0) between 
crossed modules is a morphism that, considered as a functor between the corresponding 
groupoids, is a discrete fibration. One can easily verify that this is the case if, and only 
if, f is an isomorphism.

We recall now an interesting feature of crossed modules (also shared by pre-crossed 
modules): their underlying maps are proper, i.e. the image factorization of a crossed 
module map ∂G produces a normal monomorphism mG:

G
eG

∂G

Im(∂G)
mG

G0 .

Indeed, it is possible to show that this construction underlies a morphism of crossed 
modules

(eG, 1G0) : ∂G → mG .

Interpreted in terms of groupoids, this is nothing but the projection of G onto its support 
(i.e. the kernel pair of coeq(d, c)).

The following result concerning proper maps has some consequences when the proper 
maps are crossed modules (compare with Lemma A.1 in [13]).

Lemma 3.1. In a homological category C, we consider two proper maps d and d′, and a 
morphism (f, f0) between them:

d

f f0

d′

Then the following properties hold:

(i) if f and the corestriction to the cokernels of d and d′ of (f, f0) are isomorphisms, 
then f0 is a regular epimorphism;

(ii) if f0 and the restriction to the kernels of d and d′ of (f, f0) are isomorphisms, then 
f is a normal monomorphism.
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Proof. Let us consider the following diagram, where (e, m) and (e′, m′) are the (regular 
epi, mono) factorizations of d and d′ respectively, and the maps u, v and w are induced 
by the universal properties of kernels, cokernels and factorization:

(i) Suppose that f and v are isomorphisms. Then w is a regular epimorphism. Since 
the category is homological, we can apply Nine Lemma to the following commutative 
diagram:

thus proving that the central column is a short exact sequence, and in particular f0
is a regular epimorphism. Notice also that the square m′w = f0m is a pullback and a 
pushout.

(ii) Assume now that u and f0 are isomorphisms. The property follows by applying 
a dual argument to the squares e′f = we and f ker(d) = ker(d′)u. �
3.3. Homotopy invariants

If (∂G, ξG) is a crossed module in groups, with (∂G, ξG) it is possible to associate in a 
natural way the groups:

π0(∂G, ξG) = Coker(∂G) , π1(∂G, ξG) = Ker(∂G) . (2)

Moreover, the action ξG induces a π0(∂G, ξG)-module structure on π1(∂G, ξG), and this 
process gives rise to a functor

π0,1 : XMod(Gp) → Mod(Gp) ,

where the codomain is the full subcategory of XMod(Gp) whose objects are crossed 
modules whose underlying map in Gp is trivial. Namely, an object in Mod(Gp) is 
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nothing but the zero map 0: A → Y between a Y -module A and the acting group Y , 
together with the given action.

The aim of the present section is to give an analogue of this construction in the 
intrinsic setting.

Let us be given a crossed module (∂G, ξG) in a semi-abelian category C, and its 
associated internal groupoid G. Let π0 and π1 be defined as in (2). It is not difficult to 
see that π0(∂G, ξG) = π0(G), i.e. the coequalizer of the pair (d, c), domain and codomain 
maps of G, while π1(∂G, ξG) = π1(G), i.e. the intersection Ker(c) ∩ Ker(d).

In [13, Definition 1.5], the author defines a global direction functor. In our setting, the 
global direction of a groupoid G is the totally disconnected groupoid produced on the 
right hand side by the following pushout of solid arrows:

R[〈d, c〉]

r2r1

d1(G)

G1

〈d,c〉

π0(G)

G0 ×G0

(3)

where G1 = G �G0. Bourn also shows that the two downward directed squares are pull-
backs. This gives us a discrete fibration of groupoids, which corresponds to the following 
morphism of crossed modules:

where i is the normal inclusion. Indeed, Ker(〈d, c〉) = π1(G) = Ker(c) ∩Ker(d), and this 
yields a π0(G) module structure on π1(G). Let us observe that the equivariance condition 
here means precisely that the action of π0(G) on π1(G) is induced by ξG. The previous 
discussion is summarized by the following result.

Lemma 3.2. Let C be a semi-abelian category, and let G be an internal groupoid in 
C. The global direction of G is the totally disconnected groupoid corresponding to the 
π0(G)-module structure on π1(G).

A morphism of crossed modules (an internal functor) is called weak equivalence if it 
induces isomorphisms on π0 and π1. Indeed, these correspond precisely to fully faithful 
and essentially surjective internal functors (see [24]).
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3.4. Two factorization systems

In what follows, we will need two factorization systems which have been developed 
for internal groupoids (see [10,19]). The first one is the factorization system canonically 
associated with the fibration π0. The second one, (final, discrete fibration), was intro-
duced for general categories in [40]. In the case of internal groupoids final functors are 
conveniently defined as the orthogonal class with respect to discrete fibrations. We recall 
from [21] their translation for internal crossed modules.

The (π0-invertible, π0-cartesian) factorization.
Let us consider a morphism of internal crossed modules

f = (f, f0) : H → G

We proceed as follows.

H
f

∂H

G
1

∂′

G

∂G

H0
f ′
0

coker(∂H)

G′
0

f ′′
0

�
G0

coker(∂G)

π0(H)
1

π0(H)
π0(f)

π0(G)

(4)

First we compute the bottom right pullback, and construct the comparison maps 
f ′
0 = 〈coker(∂H), f0〉 and ∂′ = 〈0, ∂G〉. It can be shown that ∂′ inherits a crossed mod-

ule structure from that of G, in a way such that the two upper squares are crossed 
module morphisms. Finally, since crossed modules are proper morphisms, the vertical 
unlabelled arrow is the cokernel of ∂′, so that the two upper morphisms form the desired 
factorization.

Remark 3.3. Let us observe that the morphism (1G, f ′′
0 ) produced on the right hand side 

is not only a discrete fibration, but it is a cartesian map with respect to the functor 
π0. Moreover, the construction above explains that π0-cartesian maps induce isomor-
phisms on π1 (it suffices to observe that ∂′ and ∂G are proper maps with isomorphic 
images).

The (final, discrete fibration) factorization.
Again, let us consider the morphism of internal crossed modules

f = (f, f0) : H → G
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As explained in [21], a push forward construction for crossed modules is available, under 
suitable hypothesis, in any semi-abelian category. In particular, given a morphism (f, f0), 
we can compute the push forward G′ = (∂′

G, ξ
′
G) of H = (∂H , ξH) along the map f .

H

∂H

f

p.f.

G

∂′
G

1
G

∂G

H0
g′
0

f0

G′
0

g′′
0

G0

By the universal property of the push forward, we get the factorization f0 = g′′0 · g′0, 
that induces the factorization of f in the diagram. In particular, the morphism (f, g′0)
is final, while the morphism (1G, g′′0 ) is a discrete fibration. We recall from [21] that the 
following characterization holds:

Proposition 3.4. A morphism of crossed modules f is final if and only if π0(f) is an 
isomorphism, and, π1(f) is a regular epimorphism.

4. Internal butterflies

Internal butterflies have been introduced in [1] in order to describe a notion of 
weak map between crossed modules in a semi-abelian category. The interested reader 
is referred to [1] for the notations and basic results. The groupoidal version of but-
terflies are called fractors in [34], and they are a special kind of internal profunctors 
between internal groupoids. In the case of groups, fractors correspond to monoidal func-
tors, i.e. functors between the underlying groupoids in Set that preserve the group 
structure up to (coherent) isomorphism. More generally, also in the case of rings 
and of Lie algebras, fractors represent functors weakly preserving the algebraic struc-
ture, so that we can legitimately recognize fractors (respectively butterflies) as weak 
maps between internal groupoids (respectively crossed modules). A further evidence 
of this is the fact that the inclusion of the 2-category of groupoids in the bicategory 
of fractors is the bicategorical localization of the first with respect to weak equiva-
lences.

4.1. The bicategory of butterflies

Definition 4.1. Let C be a semi-abelian category satisfying (SH), and consider two internal 
crossed modules H = (∂H , ξH) and G = (∂G, ξG). A butterfly Ê : H � G is a commutative 
diagram of the form
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H
κ

∂H

G

∂G

ι

E

δ γ

H0 G0

(5)

such that

i. (κ, γ) is a complex, i.e. γ · κ = 0,
ii. (ι, δ) is a short exact sequence, i.e. δ = cokerι and ι = ker δ,
iii. The action of E on H induced by that of H0 on H via δ makes κ : H → E a 

pre-crossed module,
iv. The action of E on G induced by that of G0 on G via γ makes ι : G → E a pre-crossed 

module.

A morphism of butterflies Ê, Ê′ : H � G is an arrow α : E → E′ commuting with the 
κ’s, the ι’s, the δ’s and the γ’s.

It is easy to see that the definition of butterfly implies that κ and ι are indeed crossed 
modules, and that the definition of morphism of butterflies implies that α is an isomor-
phism.

In order to obtain a bicategory Bfly(C) of crossed modules and butterflies, we de-
scribe now the composition of butterflies. Let us consider two butterflies Ê : H � G and 
Ê′ : G � K. The composite Ê′ · Ê : H � K is defined by the following construction:

Q

γ′sδr E ×γ,δ′ E
′

q

r s
H

〈κ,0〉

∂

κ

G
〈ι,κ′〉

ι κ′

∂

K

〈0,ι′〉

ι′

∂E

δ γ

E′

δ′ γ′

H0 G0 K0

(6)

where E×γ,δ′E
′ is the pullback of γ and δ′, and Q is the cokernel of 〈ι, κ′〉. The morphisms 

that give the structure of the composite Ê′ ·Ê are q ·〈κ, 0〉, q ·〈0, ι′〉, and δr, γ′s, obtained 
by the universal properties of the (co)limits involved.
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For each crossed module G = (∂G, ξG), its identity butterfly is given by the diagram

G
i·g

∂

G

∂

g

G1

d c

G0 G0

(7)

where (G1, G0, d, c, u) is the groupoid associated with (∂G, ξG), i its inversion morphism 
and g = ker(d). Butterfly composition extends to 2-cells, and these data form a bicategory 
Bfly(C), which is locally groupoidal, i.e. hom-categories are groupoids.

The 2-category of crossed modules embeds in the bicategory of butterflies:

B : XMod(C) → Bfly(C) . (8)

The homomorphism B is the identity on objects; for a morphism of crossed modules 
f = (f, f0) : (∂H , ξH) → (∂G, ξG), one defines:

B(f) =

H

∂

〈∂,i·g·f〉

G

〈0,g〉

∂E

d c·f

H0 G0

,

where

E
f

d
�

G1

d

H0
f0

G0

is a pullback. The universal property of pullbacks determines the action of B on 2-arrows.
Consider that the regular epimorphism d is indeed a split epimorphism. It can be 

shown that any butterfly where the sequence (κ, δ) is split come from a (strict) morphism 
of crossed modules. Such butterflies are called representable.

Remark 4.2. If we remove the exactness condition from the diagonal, i.e. if we require 
the two diagonals to be just complexes, we get what is called a crossed profunctor, i.e. 
the crossed module version of an internal profunctor (see [1]). Crossed profunctors form 
a bicategory XProf(C) (compositions and identities as for butterflies), and one has an 
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inclusion of bicategories

Bfly(C) ↪→ XProf(C) .

Let us observe that if we flip a butterfly Ê horizontally, i.e. if we exchange domain and 
codomain of the butterfly, the outcome is no longer a butterfly, but it is still a crossed 
profunctor. This is denoted by Ê◦.

A special kind of butterfly is the class of flippable butterflies, i.e. those butterflies 
such that also the pair (κ, γ) is short exact. It is not difficult to see that these are indeed 
equivalences in Bfly(C). In fact, we have more.

Proposition 4.3. A butterfly Ê : H � G is an equivalence in Bfly(C) if and only if it is 
flippable.

Proof. The “if” part is Proposition 3.8 in [1], so it only remains to prove that every 
equivalence is a flippable butterfly.

Suppose that Ê : H � G and Ê′ : G � H are quasi-inverse to each other:

H
κ

∂

G

∂

ι

E

δ γ

H0 G0

G
κ′

∂

H

∂

ι′

E′

δ′ γ′

G0 H0

First of all, we prove that γ = coker(κ). Indeed, if we compute the composite Ê ·Ê′ ∼= idG:

Q′

γs′δ′r′ E′ ×γ′,δ E

q′

r′ s′
G

〈κ′,0〉

∂

κ′

H
〈ι′,κ〉

ι′ κ

∂

G

〈0,ι〉

ι

∂E

δ′ γ′

E

δ γ

G0 H0 G0

we have that the arrow γs′ is a regular epimorphism, being isomorphic to the codomain 
projection of the groupoid G. Since q′ is a cokernel, then also γs′ · q′ = γ · s′ is a regular 
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epimorphism, and consequently so is γ. By symmetry, γ′ is also a regular epimorphism, 
hence so is its pullback s′. Then, having in mind that γs′ is the cokernel of q′ · 〈κ′, 0〉
and s′ · 〈κ′, 0〉 = 0, it is easy to see that the square γ · s′ = γs′ · q′ is a pushout. As a 
consequence, since q′ = coker(〈ι′, κ〉), we have that γ = coker(s′ · 〈ι′, κ〉) = coker(κ).

Now, if we consider the composite Ê′ · Ê ∼= idH (look at diagram (6) replacing K with 
H), we have that q · 〈k, 0〉 is a monomorphism, being isomorphic to the kernel of the 
codomain projection of the groupoid H. Then 〈k, 0〉 is also a monomorphism. Now, let 
us consider the following diagram:

Since the right hand square is a pullback, ker(s) = ker(γ). Then, since s · 〈κ, 0〉 = 0, there 
is a monomorphic comparison between H and K. On the other hand, κ is a pre-crossed 
module and γ = coker(κ), so that ker(γ) is the monomorphic part of the (regular epi, 
mono) factorization of κ. Hence, the comparison between H and K is also a regular 
epimorphism, thus an isomorphism. We have just proved that (κ, γ) is a short exact 
sequence as desired. �

We denote by Bflyeq(C) the sub-bicategory (actually a sub-bigroupoid) of Bfly(C)
formed by flippable butterflies. The corresponding profunctors are called regularly fully 
faithful in [14].

4.2. Homotopy invariants for butterflies

In [1], it is shown that every butterfly induces a span of crossed modules. The related 
construction is represented in the diagram below:

H ×G
p1 p2

κιH

κ

∂H

G

∂G

ι

E

δ γ

H0 G0

(9)
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where the crossed module κ�ι is the cooperator (see [7]) of the two maps κ and ι, which 
exists since H and G commute in E (see [1] for details), and the morphism (p1, δ) is a 
weak equivalence. The universal property of the bicategory of fractions (see [39]) allows 
us to extend the definition of π0 and π1 to butterflies:

Definition 4.4. Let C be a semi-abelian category satisfying (SH). For the butterfly 
Ê : H � G in diagram (9) π0,1 is given by:

π0(Ê) = π0(p2, γ) · (π0(p1, δ))−1 , π1(Ê) = π1(p2, γ) · (π1(p1, δ))−1 .

5. Crossed extensions

As observed in Section 3.4, every morphism of crossed modules can be factored through 
a π0-cartesian arrow. Indeed, given a crossed module G = (∂G, ξG) and a morphism 
φ : B → π0(G), one can perform the same construction as in the right hand side of 
diagram (4), replacing π0(f) with φ, in order to produce a π0-cartesian lifting ∂′ of φ
at G. This shows that π0 is a fibration only up to isomorphism, since a priori π0(∂′) is 
only isomorphic to and not equal to B.

In this section, we show how it is possible to replace π0 with a true fibration and, 
afterwards, how to get a fibration in groupoids out of this, i.e. a fibration whose fibers 
are groupoids. This procedure will allow us to apply the general framework of Section 2
to the problem of classification of extensions, which is treated in Section 6.3.

First of all, we define the category XExt(C), whose objects are internal crossed ex-
tensions in C, i.e. sequences of morphisms in C of the form:

A
k

G
∂G

G0
q

B

where (∂G, ξG) is a crossed module, k is a kernel of ∂G and q is a cokernel of ∂G. We 
use the notation (∂G, ξG, A, B) or (G, A, B) to indicate the crossed extension above. A 
morphism between two objects in XExt(C) is just a morphism of the underlying crossed 
modules, together with the induced arrows on the chosen kernels and cokernels. As for 
crossed modules, we denote morphisms of crossed extensions with underlined letters. A 
forgetful functor U : XExt(C) → XMod(C) is defined in the obvious way and it is an 
equivalence of categories. We will freely use the terminology of crossed modules also for 
crossed extensions, so, for example, a weak equivalence in XExt(C) is a morphism whose 
underlying arrows on A′s and B′s are isomorphisms.

We can define a functor Π0 : XExt(C) → C acting on objects as follows (and in the 
obvious way on arrows):

Π0(G, A,B) = B.

It is easy to see that Π0 is a fibration. A cartesian lifting at (G, A, B) of a morphism 
φ : B′ → B is the following (compare with the right hand side of diagram (4)):
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A
k

1

G

1

〈0,∂G〉
B′ ×B G0

dφ

B′

φ

A
k

G
∂G

G0 q
B

(10)

Of course, π0 · U ∼= Π0. Let us notice that the choice of switching from XMod(C) (and 
π0) to the equivalent category XExt(C) (and the equivalent functor Π0) is not only 
convenient, since Π0 is a true fibration, but also necessary in order to get a cohomology 
classification of extensions, for which purpose we need to fix the coefficients (A and B) 
once and for all.

However, in order to apply the general framework of Section 2, we need a further 
step. Let BExt(C) be the category whose objects are crossed extensions in C and whose 
arrows are equivalence classes of butterflies between the underlying crossed modules, 
together with the induced morphisms on the chosen kernels and cokernels, defined like 
in Definition 4.4 (one can show that these are well defined on equivalence classes of 
butterflies).

The homomorphism of bicategories (8) sends every morphism of crossed modules to 
a butterfly, and this assignment preserves associativity up to 2-cells. Hence, a functor is 
defined:

F : XExt(C) → BExt(C)

which is the identity on objects and takes any morphism f of crossed extensions to the 
class [B(Uf)] of butterflies, together with the induced morphisms on the chosen kernels 
and cokernels (one can show that these are the same as in the original morphism of 
crossed extensions).

Now, given a butterfly Ê representing a morphism [Ê] in BExt(C), we can associate 
with it a span (s, f) in XExt(C), obtained extending the construction of Section 4.2 to 
crossed extensions. Moreover, since s is a weak equivalence, B(Us) has a quasi-inverse 
and, as proved in Theorem 5.6 in [1], Ê · B(Us) ∼= B(Uf). This implies that F (s) is 
invertible and F (f) · F (s)−1 = [Ê].

Theorem 5.1. There exists a unique functor Π̂0 : BExt(C) → C making the following 
triangle a morphism of fibrations over C:

XExt(C) F

Π0

BExt(C)

Π̂0

C

Proof. Given a morphism in BExt(C) represented by a butterfly Ê, with (s, f) a corre-
sponding span in XExt(C), we are forced to define Π̂0([Ê]) = Π0(f) · Π0(s)−1.
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Now, let φ : B′ → B be a morphism in C, (G, A, B) an object in XExt(C) and let us 
call dφ the cartesian lifting of φ at (G, A, B) described above. Suppose [Ê] : (H, A′, B′) →
(G, A, B) is such that Π̂0([Ê]) = φ. If (s, f) is a span corresponding to Ê, as above, then 
Π0(f) = φ ·Π0(s). Since dφ is cartesian, there exists a unique h such that f = dφ · h and 
Π0(h) = Π0(s). Moreover, it is easy to see that the span (s, h) is also associated with a 
butterfly. It suffices to consider the following diagram:

A′

k′

ψ
A

k

1
A

k

H

κ

∂H

G

〈0,∂G〉

ι

1
G

ι

∂GE

σ 〈c′σ,ρ〉
ρ

H0

c′

B′ ×B G0
dφ

G0

c

B′
1

B′
φ

B

In order to prove that the 4-tuple (ι, σ, κ, 〈c′σ, ρ〉) still forms a butterfly, we only have 
to show that 〈c′σ, ρ〉 · κ = 0. But this is true by composition with the jointly monomor-
phic pair of projections of the pullback B′ ×B G0. We denote this new butterfly as Ê′. 
Completing the diagram with the corresponding span of crossed modules and extending 
it suitably to crossed extensions, we get precisely the span (s, h).

We are now ready to prove that F (dφ) is a cartesian lifting of φ at G with respect 
to Π̂0. Indeed, by functoriality, F (f) = F (dφ) · F (h) and we have the following chain of 
equalities in BExt(C):

F (dφ) · [Ê′] = F (dφ) · F (h) · F (s)−1 = F (f) · F (s)−1 = [Ê].

This proves that any morphism [Ê] in BExt(C) such that Π̂0([Ê]) = φ factors through 
F (dφ) in a unique way by a morphism [Ê′] with Π̂0([Ê′]) = 1.

In conclusion, we have just shown that Π̂0 is a fibration and F preserves cartesian 
morphisms. �

In the same way we defined Π0 to extend π0, we can also define a functor 
Π1 : XExt(C) → C acting on objects as follows (and in the obvious way on arrows):

Π1(G, A,B) = A.
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Clearly, π1 ·U ∼= Π1, and this functor also extends to butterflies in the same way as Π̂0:

Π̂1 : BExt(C) → C, Π̂1([Ê]) = Π1(f) · Π1(s)−1,

where, as above, (s, f) is a span in XExt(C) associated with Ê.
Since it will be necessary later, we focus now on the kernel of Π̂1, i.e. the full subcat-

egory of BExt(C) given by those morphisms which are mapped to identities by Π̂1. We 
denote this subcategory by I : Ker(Π̂1) → BExt(C).

Proposition 5.2. The functor Π̂0 · I : Ker(Π̂1) → C is a fibration in groupoids.

Proof. The construction of diagram (10), together with the observation that Π̂0 ·F = Π0, 
explain that cartesian liftings with respect to Π̂0 can be chosen to induce identity on 
Π̂1, and this proves that Π̂0 · I is also a fibration. Moreover, the fibers are formed by 
equivalence classes of butterflies inducing identities on Π̂0 and Π̂1, i.e. invertible arrows 
in BExt(C). �
6. Extensions

A connection between the cohomology classification of group extensions and the no-
tion of monoidal functor has been already recalled in the introduction (see [41] for a 
detailed account). More specifically, as we are going to show, it is possible to embed 
group extensions into some specific hom-categories of 2Gp. This can be efficiently de-
scribed in terms of crossed modules, and furthermore the same scheme applies in the 
internal setting.

6.1. Extensions as butterflies

For groups K and Y , let AUT(K) be the groupoid associated with the canonical 
crossed module of inner automorphisms

IK : K → Aut(K) ,

sending each element k of K to the automorphism (x �→ k−1xk), and let D(Y ) be the 
discrete groupoid associated with the canonical trivial crossed module

ΔY : 0 → Y .

There is an isomorphism of categories

EXT(Y,K) ∼= 2Gp(D(Y ),AUT(K))

between the groupoid of extensions of Y by K and the hom-groupoid of monoidal functors 
from D(Y ) to AUT(K).
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In the language of butterflies, this isomorphism sends the short exact sequence

K
k

X
f

Y

to the butterfly X̂ : ΔY � IK :

0 K
k

IKX
f

χ

Y Aut(K)

(11)

where χ is the group homomorphism corresponding to the conjugation action of X on 
its normal subgroup K. One can always complete the diagram above to a butterfly of 
crossed extensions, getting the trivial map 0 → Z(K) on kernels, and, on cokernels, the 
so called abstract kernel of the extension:

φ : Y → Out(K) ,

where Out(K) = Aut(K)/Inn(K).

Remark 6.1. From this point of view, the cohomology classification of the extensions 
inducing a given abstract kernel φ becomes an instance of the homotopy classification 
of weak maps between groupoids in groups (see for example [3]). We recall that the last 
has been studied (and exhaustively described) by Vitale in [41].

The previous discussion carries on almost verbatim in all semi-abelian categories with 
representable object actions (see [9] and also [8], where they are called action represen-
tative), i.e. those semi-abelian categories where, for any K, the functor Act(−, K) (see 
Section 3.1) is represented by a suitable object [K], called the actor, as for Aut(K) in 
the case of groups.

We denote by

IK : K → [K]

the crossed module associated with the actor determined by K.
For any Y and K in an action representative semi-abelian category C, we identify the 

groupoid:

EXT(Y,K) = Bfly(C)(ΔY , IK) .

We use lowercase letters for its classifying set Ext(Y, K). Finally, for a given abstract 
kernel φ, we use the notation OPEXT(Y, K, φ) and OpExt(Y, K, φ) for the groupoid, 
and the set of equivalence classes, of extensions inducing φ : Y → Out(K).
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In order to emphasize the connection with the classical case of extensions with abelian 
kernel, we speak of extensions of Y with coefficients in the crossed module IK , in-
ducing the abstract kernel φ, so that abuses of notation such as OpExt(Y, IK , φ) or 
OpExt(Y, K, φ) will be allowed.

If the semi-abelian category C is not action representative, but it is still action acces-
sible (see [17]), we do not have, in general, IK , for every K. Nevertheless, the theory can 
be developed very closely to the action representative case (see [18,22]) by considering 
the crossed module associated with the canonical faithful groupoid determined by the 
extension.

Actually, a cohomological classification of weak maps can be performed also when 
the base category is not even action accessible. On the side of extensions, generalizing 
the approach described above, we will be able to classify extensions with coefficients in 
an arbitrary crossed module, inducing a given abstract kernel. Before developing such a 
classification, we shall revisit the classical Baer sums.

6.2. Baer sums as butterfly compositions

Let us consider a short exact sequence of groups with abelian kernel:

A
k

X
f

Y

It is well known that A is endowed with a Y -module structure φ : Y �A → A. The groupoid 
of extensions of Y by A inducing the same structure φ is denoted by OPEXT(Y, A, φ). 
It is a classical result (see [31], for instance) that its classifying set OpExt(Y, A, φ) is 
endowed with an abelian group structure, the group operation given by the Baer sum. 
Indeed, this abelian group structure comes from a monoidal structure ⊕ that makes 
OPEXT(Y, A, φ) into a symmetric categorical group.

Baer sums can be easily described in terms of butterflies, since butterfly composition 
is actually a generalization of the Baer sum construction. Indeed, an extension (k, f)
determines canonically, together with the action φ, a butterfly of crossed extensions:

A

1

1
A

1

A
−k

0

A

0

k

X

f f

Y

1

Y

1

Y
1

Y

(12)
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It is a simple, but interesting, exercise to show that, if we consider another extension 
(k′, f ′) in OPEXT(Y, A, φ), their composite X̂ ′ · X̂ as butterflies corresponds to their 
Baer sum (k, f) ⊕ (k′, f ′). This way, we get a group homomorphism

OpExt(Y,A, φ) → BExt(Gp)((0, φ, Y,A), (0, φ, Y,A)).

The discussion above can be internalized. Let C be a semi-abelian category satisfy-
ing (SH). As for the case of groups, we can still embed extensions with abelian kernel 
as butterflies described by diagram (12). In this a case, we have Π̂0(X̂) = 1Y and 
Π̂1(X̂) = 1A, so that we shall denote by BExt1(C)((0, φ, Y, A), (0, φ, Y, A)) the group of 
(equivalence classes of) such butterflies. This group bijectively corresponds to the group 
OpExt(Y, A, φ) of extensions with abelian kernel inducing φ : Y �A → A. The proof is a 
consequence of the following lemma.

Lemma 6.2. Let A be a Y -module, with action φ : Y �A → A, and

X̂ : (0, φ, Y,A) � (0, φ, Y,A)

a butterfly such that

Π̂0(X̂) = 1Y , Π̂1(X̂) = 1A .

Then X̂ is of the form of diagram (12).

Proof. Let X̂ be as in the hypothesis, and consider its corresponding span of crossed 
module morphisms:

A×A
p1 p2

hkA

h

0

A

0

k

X

f g

Y Y

Then, on cokernels, since Π̂0(X̂) = Π0(p2, g) · (Π0(p1, f))−1 = 1Y , we get a corestriction 
map ϕ such that the following diagram commutes:

Y

1

X
f g

q

Y

1

Y π0(h�k)
ϕ ϕ

Y
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hence f = ϕ · q = g. Similarly, on kernels, we get a restriction map ψ such that the 
following diagram commutes:

A

1

π1(h�k)
ψ ψ

j

A

1

A A×A
p1 p2

A

Then p1 · j · ψ−1 = p2 · j · ψ−1 = 1A, i.e. j · ψ−1 = 〈1, 1〉, and as a consequence 
h + k = (h�k) · 〈1, 1〉 = (h�k) · j · ψ−1 = 0, that is h = −k. �

In the following, we will denote

H2(Y,A, φ) = BExt1(C)((0, φ, Y,A), (0, φ, Y,A)).

Notice that this definition is consistent with the crossed module version of Bourn’s 
groupoid cohomology of [15].

6.3. Cohomology classification of extensions with coefficients in a crossed module

In a semi-abelian category C satisfying (SH), we consider the following problem: given 
a crossed module

K = ( K0�K
ξK

K
∂K

K0 ) ,
and a morphism

Y
φ

π0(K) ,

determine the set OpExt(Y, K, φ) of all the extensions of Y by K inducing φ. In the spirit 
of Section 6.1, this amounts to classifying all the butterflies that fits into the diagram:

0 π1(K)
i

0 K
k

∂KX

f g

Y

1Y

K0

q

Y
φ

π0(K)

(13)

The answer is a consequence of the following result.
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Theorem 6.3. In a semi-abelian category C satisfying (SH), we consider a crossed module 
K = (∂K , ξK), together with an arrow φ : Y → π0(K). Then, either OpExt(Y, K, φ) is 
empty, or it is a simply transitive H2(Y, π1(K), φ

)
-set, where

• φ = φ∗(ξK) is the pullback along φ of the action of π0(K) on π1(K) induced by ξK
(see Lemma 3.2).

Proof. Suppose that the set OpExt(Y, K, φ) is not empty, and let (k, f, g) be an extension 
of Y by K inducing φ, as in diagram (13). Then, denoting h = k · i, we get a factorization 
of the butterfly (13):

0 π1(K)
1

1
π1(K)

i

0 π1(K)

0

−h

K
k

∂KX

f g

Y
1

1

Y

1

K0

q

Y
1

Y
φ

π0(K)

(14)

(observe that as a kernel of h�k we can choose 〈1, i〉 : π1(K) → π1(K) × K). This fac-
torization provides a canonical way to associate with any extension (k, f, g) a butterfly 
between crossed extensions inducing an identity on kernels.

Let now E be the category Ker(Π̂1) of (equivalence classes of) butterflies between 
crossed extensions inducing identity on kernels, introduced in Section 5, and Π the func-
tor Π̂0 · I. Proposition 5.2 says precisely that Π: E → C is a fibration in groupoids.

Moreover, if we take x and y to be the domain and codomain of the butterfly on 
the right hand side of diagram (14), i.e. the crossed extensions (0, φ, Y, π1(K)) and 
(∂K , ξK , π0(K), π1(K)) respectively, then the factorization above yields a bijection:

OpExt(Y,K, φ) ∼= Eφ(x, y).

We are now ready to apply Proposition 2.7 to our data Π, φ, x and y. Thanks to 
Lemma 6.2, the group G, in this case, is just H2 (Y, π1(K), φ

)
. The thesis follows from 

point (ii) of Proposition 2.7. �
We can reformulate the theorem as follows.
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Corollary 6.4. With the same hypotheses and notation of Theorem 6.3, if we denote by 
Φ the set of all ψ : Y → π0(K) such that ψ = φ, then either the set

S =
∐
ψ∈Φ

OpExt(Y,K, ψ)

is empty, or it is an H2(Y, π1(K), φ
)
-torsor over its image

Π̂0(S) ⊂ C(Y, π0(K))

Proof. Point (i) of Proposition 2.7. �

Finally, we recover an intrinsic version of the classical Schreier–Mac Lane theorem on 
the classification of non-abelian extensions. The same result was proved by Bourn in [13]
in the (larger) context of exact action representative categories.

Corollary 6.5. Let C be an action representative semi-abelian category. Then, following 
the notation of Section 6.1, we consider two objects Y and K, together with an arrow 
φ : Y → π0(IK). Then, either OpExt(Y, K, φ) is empty, or it is a simply transitive 
H2(Y, Z(K), φ)-set, where

• Z(K) = π1(IK) (the center of K),
• φ is the pullback along φ of the (canonical) action of π0(IK) on Z(K).

Proof. In this context, one can apply Theorem 6.3 to the case where K = IK . Moreover, 
the set OpExt(Y, K, φ) of extensions inducing the abstract kernel φ is in bijection with 
OpExt(Y, IK , φ), since there is no arbitrary choice for the crossed module K → [K]. �

6.4. An explicit description of the action

It is now possible to describe the action

H2 (Y, π1(K), φ
)
× OpExt(Y,K, φ) → OpExt(Y,K, φ)

For (a cohomology class determined by) an extension

π1(K) a
P

p
Y

in H2 (Y, π1(K), φ
)

it is obtained by the following composition:



116 A.S. Cigoli, G. Metere / Journal of Algebra 458 (2016) 87–119
0 π1(K)

1

1
π1(K)

1

1
π1(K)

i

π1(K)

i

0 π1(K)
−a

0

π1(K)
−h

0

a

K

k

∂φ

1K

K

∂KP

p p

X

f fφ

Y
1

1

Y

1

Y

1

Dφ

q

dφ

K0

q

Y
1

Y
1

Y
1

Y
φ

π0(K)

(15)

where the crossed module morphism (1K , dφ) is a π0-cartesian lifting of φ and fφ is the 
obvious comparison.

Hence, by Lemma 2.1, the action comes from the free transitive action obtained by 
composition in BExt(C):

BExt1(C)(Φ,Φ) × BExt1(C)(Φ,Ξ) BExt1(C)(Φ,Ξ)

where Φ = (0, φ, Y, π1(K)) and Ξ = (∂φ, ξφ, Y, π1(K)). The details are left to the reader.

6.5. Obstruction

Theorem 6.3 describes the set OpExt(Y, K, φ) when it is not empty, so it is natural 
to ask how to distinguish the empty case from the non-empty one. The answer to this 
question can still be expressed in terms of cohomology classes. In the same way as in [13]
and [22], we can apply Bourn’s n-groupoid cohomology theory to our situation (we refer 
the interested reader to [11] or [15] for a more detailed account). Accordingly, we can 
interpret every crossed module K → K0, or more precisely its corresponding groupoid 
K, as an element of a certain cohomology group, namely H2

C↓π0(K)(K). In the following 

we will denote this group H3(π0(K), π1(K), ξ), where ξ is the action of π0(K) on π1(K)
determined by the crossed module K. This notation is more consistent with the classical 
cohomology theories. Indeed, one can show that, when C is the category of groups, the 
object above coincides with the corresponding classical third cohomology group. The 
same happens, for example, with Hochschild cohomology groups of associative algebras 
and with Loday–Pirashvili cohomology groups of Leibniz algebras over a field (see [27]
and [30] respectively).

From this point of view, H3(Y, π1(K), φ) is defined as the set (or, more precisely, the 
abelian group) of connected components of Π−1

0,1(Y, π1(K), φ), i.e. the full subcategory of 
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XExt(C) given by those objects whose global direction is the module (0 : π1(K) → Y, φ)
(a global direction on crossed extensions can be defined likewise in Lemma 3.2) and 
those morphisms inducing identities on kernels and cokernels. This way, a class [∂] in 
H3(Y, π1(K), φ) is zero if and only if (∂, ξ) is connected with (0, φ). Then we get the 
following result.

Theorem 6.6. In a semi-abelian category C satisfying (SH), we consider a crossed module 
K = (∂K , ξK), together with an arrow φ : Y → π0(K). Then, with the same notation as 
in Theorem 6.3, the set OpExt(Y, K, φ) is non-empty if and only if [∂φ] = 0.

Proof. Suppose that an extension (k, f, g) of Y by K exists, such that φ is its abstract 
kernel. As in the description of the action given above, we can construct an equiva-
lence between (0, φ) and (∂φ, ξφ) (the butterfly (−h, k, f, fφ) in diagram (15)), hence the 
cohomology class of ∂φ is trivial.

Now, following the proof of Theorem 3.4 in [13] and translating the argument therein 
in terms of crossed modules, thanks to Theorem 12 in [12], we get that, whenever the 
cohomology class of ∂φ is trivial, there exists a morphism (u, u0) of crossed modules

where i is a normal monomorphism with Coker(i) ∼= Y . Computing the (final, discrete 
fibration) factorization of (u, u0), we obtain a normal monomorphism k, again with 
Coker(k) ∼= Y (i.e. the push forward of i along u), and the discrete fibration on the right 
hand side of the following commutative diagram

Taking f : X → Y a cokernel of k and g = dφ ·m, the triple (k, f, g) provides an extension 
of Y by K inducing φ as abstract kernel. �
6.6. A final remark

In his Historical Note [32] concerning the long-lasting quest for group-theoretical in-
terpretations for the cohomology groups Hn(G, A), Mac Lane acknowledges that, even 
before the exact theorem was explicitly stated by Gerstenhaber in [26] (see also [25]), 
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“Eilenberg, Mac Lane and Whitehead all knew that the elements of H3(G, A) were 
closely connected with Whitehead’s notion of “crossed modules””. In fact, the exposition 
of the subject given in his fundamental book Homology [31], presents the classical inter-
pretations of H1 and H2 in terms of crossed homomorphisms and factor sets, and the 
interpretation of H3, classical nowadays, in terms of obstructions to the construction of 
group extensions with non-abelian kernel. Nonetheless, in [31, IV.8], after the explicit 
cocycle description of the action of H2 on OpExt, he concludes the section asserting 
that such an action “may also be defined in invariant terms, without using factor sets”. 
What follows in his text is, mutatis mutandis, precisely the construction underlying the 
butterfly composition displayed in diagram (15) above, specialized in the case of groups.
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