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Abstract

Consider the ringR := Q[z, =1 of Laurent polynomials in the variabte The Artin’s pure braid
groups (or generalized pure braid groups) act ®vewhere the action of every standard generator is
the multiplication byz. In this paper we consider the cohomology of such groups with coefficients
in the moduleRr (it is well known that such cohomology is strictly related to the untwisted integral
cohomology of the Milnor fibration naturally associated to the reflection arrangement). We give a
sort of stability theorem for the cohomologies of the infinite seriesB and D, finding that these
cohomologies stabilize, with respdotthe natural inclusion, at ste number of copies of the trivial
R-moduleQ. We also give a formula which computes this number of copies.
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1. Introduction

Let (W, S) be a finite Coxeter system realized as a reflection grolp’in4(W) the
arrangement il€” obtained by complexifying the reflection hyperplane$\bflLet
Y (W) =Y(AW)) =C"\ U H.
He A(W)

be the complement to the arrangement, tiémcts freely ony (W) and the fundamental
groupGw of the orbit spacer (W) /W is the so-calledArtin group associated toW (see
[2]). Likewise the fundamental groupy of Y (W) is thePure Artin groupor the pure
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braid group of the seried/. It is well known [3] that these spac&qW) (Y (W)/W) are
of type K (r, 1), so there cohomologies equal thatRf (Gw).

The integer cohomology of (W) is well known (see [3,14,1,10]) and so is the integer
cohomology of the Artin groups associated to finite Coxeter groups (see [19,11,17]).

Let R = Q[t, 1] be the ring of rational Laurent polynomials. TiRecan be given a
structure of module over the Artin grou@y, where standard generators Gfy act as
T-multiplication.

In [4,5] the authors compute the cohomology of all Artin groups associated to finite
Coxeter groups with coefficients in the previous module.

In a similar way we define &y -moduleR,, where standard generators®jf act over
the ring R ast-multiplication.

Equivalently, one defines an Abelian local system (also callegdover Y (W) with
fiber R and local monodromy around each hyperplane given-byultiplication (for local
systems oryY (W) see [12,15]).

In this paper we are going to consider the cohomology @) with local coefficients
R, for the finite Coxeter groups of the serigs B and D (see [2]) (that is equivalent to
the cohomology ofPy with coefficients inR;).

Our aim is to give a sort ofstability’ theorem for these cohomologies (for stability in
the case of Artin groups see [7]).

Denote byy; theith cyclotomic polynomial and let be

{oi} :=Q[r, 7/ (w1) = Qlt1/(9)

thought ask-module. By its definitio{g1} =1 — 7 so that{p1} = Q.
Notice that by identificatiorQ[z, t 1] = Q[Z], the sums of copies ofg1} are the
unique trivialZ-modules. We obtain

Theorem 1.1.LetW be a Coxeter group of typ&,,, then forn > 3k — 2 the cohomology
group H*(Y (A,), R;) is a trivial Z-module.

Analog statement holds fa¥ of typeB,, in the rangn > 2k — 1 and forW of typeD,,
in the rangn > 3k — 1.

The proof of this theorem is obtained extending the methods developed in [4] and using
some known results about the global Milnor fikréW) of the complemenY (W).

We recall briefly that ifH € A = AW) anday € C[x1, ..., x,] is a linear form s.t.
H = ker(ay), then the global Milnor fibreF (W) is a complex manifold of dimension
n—1given byF (W) = 0~1(1) whereQ = Q(A) = [Txeq «n is thedefining polynomial
for A.

It is well known (see also [9]) that, ove®, there is a decomposition

HY(FW),Q) =~ @ (R/@)"= P {w},
iAW) i[4(AW))

the action on the left being that induced by monodromy.
Since F (W) is homotopy-equivalent to an infinite cyclic cover ¥fW), there is an
isomorphism ofR-modules

H*(F(W),Q) ~ H*(Y (W), R;)
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and then

H*(YW),R:)~ P (e} @)
iJ3(AW))

The other tool we use is a suitable filtration by subcomplexes of the algebraic Salvetti’s
CW-complex € (W), §) coming from [16] (see also [6,17]), which we recall in the next
paragraph.

Finally we use the universal coefficients theorem to compute the dimensions of the
above cohomologies as vector spaces over the rationals.

Theorem 1.2.In the range specified in Theorell one has

k
k(Y (W), Re) = Y (=D* 1k B (Y (W), Z).
i=0

So one reduces to compute the dimensions of the Orlik—Solomon algehra#\af,
A(Bn) and A(Dp) (see [13]).

2. Salvetti's complex

Let W be a finite group generated by reflections in the affine spEb@). Let
AW) = {H;};es be the arrangement in" defined by the reflection hyperplaneswf.
We need to recall briefly some notations aedults from [16] for the particular case of
Coxeter arrangementd(W) induces a stratificatio§ = S(W) of A” into facets (see [2]).
The setS is partially ordered by > F’ iff F’ c cl(F). We shall indicate by = Q(W)
the cellular complex which idualto S. In a standard way, this can be realized insidle
by barycentrical subdivision of #facets: inside each codimensipfacetF/ of S choose
one pointv(F/) and consider the simplexes

j j
s(Fio,..., Fii) = Mv(F*): Y “a=1, m €0, 1]},
k=0 k=0

whereFi+1 < Fik k=0,..., j — 1. The dimensior cell ¢/ (F/) which is dual toF/ is
obtained by taking the union

US(FO,...,Fj_l, Fj),

over all chainsF/ < F/1 < ... < FO, SoQ = J¢/ (F/), the union being over all facets
of S.

One can think of the BkeletornQ1 as a graph (with vertex-set theseletonQgp) and
can define the combinatoriaisiance between two verticesv’ as the minimum number
of edges in an edge-path connectingndv’. ' ’ ’

For each celk’ of Q one indicates by (e/) = Qo N e’ the Oskeletorof ¢/. One has
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Proposition 2.1. Given a vertex ve Qo and a celle’ € Q, there is a unique vertex
w(v, ') € V(e') with the lowest combinatorial distance frami.e..

d(v,w(v,ei)) <d@,V) ifv e V(ei) \ {w(v,ei)}.

If e/ C e thenw(v, e/) = w(w(v, e'), e/).

Let now.A(W) denote theomplexificatiorof A(W), andY (W) = C" \ Ujej H; c the
complement of the complexified arrangement. TNékV) is homotopy equivalent to the
complexX (W) which is constructed as follows (see [16]).

Take a celle/ = e/ (F/) = |Js(FO°, ..., Fi~1 FJ) of Q as defined above and let
v e V(e/). Embed each simplex F©, ..., F/) into C" by the formula

J J J
Du.e; (ZMU(F")) = Zkkv(Fk) +i Z)\k(w(v, ek) - v(Fk)). 2
k=0 k=0 k=0
Itis shown in [16] (see also [17]):

(i) the preceding formula defines an embeddi_ng/'oi’nto Y (W);
(i) if EY =E/(v,e’)isitsimage, then varying/ andv one obtains a cellular complex

X(W) = U E/
which is homotopy equivalent t6(W).

The previous result allows us to make cohomological computationsYo(# by using
the complexX (W).
In [17] (see also [8]) the authors give a new combinatorial description of the
stratificationS where the action otV is more explicit. They prove that if is the set
of reflections with respect to the walls of the fixed base charapethen a cell inX (W)
is of the formE = E(w, I') with I ¢ S andw € W. The action oW is written as

0.E(w,I"=E(@w,TI), (3

where the factos.w is just multiplication inW.

We prefer at the moment to deal with chain complexes and boundary operator coming
from X(W) instead of cochain and coboundary. Then we will deduce cohomological
results by standard methods.

We define a rank-1 local system &f{W) with coefficients in an unitary ringd by
assigning an unit; = r(H;) (thought as a multiplicative operator) to each hyperplane
H; € A. Call T the collection ofr; and Lz the corresponding local system. L&W, Lr)
be the free graduated-module with basis alE (w, I'").

We use the natural identification between the elements of the group and the vertices of
Qo, given byw < w.vg. Herev, € Qg is contained in the fixed base chamiagt

Then u(w, w’) will denote the“minimal positive path” joining the corresponding
verticesv andv’ in the 1-skeletorX (W)1 of X(W) (see [16]).

The local systent ; defines for each edge-patin X(W)1, ¢: w — w’ an isomorphism
¢ A — A such that for ald : w — w’ homotopic toc, ¢, = d, and for all f :w” — w,

(€f)s = cx fs.
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Then the se{so(w).E(w, I')} 1=k, Wheresg(w) := u(1, w)«(1), is a linear basis of
Cr(W, L7).
LetnowT = {wsw~!|s e S, we W}, the set of reflections iV and

W = {S(w) = (Sigs -5 Sig) | w=si; - -5i, EW},
then for eachs(w) € W andr € T, we set

(I) Y (s(w)) = (tilv ] tiq) with tij = (Si]_ o 'Si_,'_l)sij (Si]_ o 'Si_,'_l)_l eT;

(i) w(sw)) ={ti,....ti,};
(i) n(w, 1) = (=" with n(s(w), 1) =#{j | 1< j <q andy; =1}.

Moreover ift € T is the reflection relative to the hyperplafe then we set () = 1 (H).
We define

O (so(w).E(w, F))
=Y Y )OI, Bysowp).E(wh, I\ {o}), &

o€l gewl o)

wheret (w, 8) = Hrem,n(w’t):lt(t), andu(I',o)=#{iel|i <o}.
We have the following (see [8,18]).

Theorem 2.1.H,.(C(W), L7) = H,.(C(W, L), 9).

We have a similar result for the cohomology.

3. Afiltration for the complex (C (W), d)

Let (W, S) be a finite Coxeter system with= {51, ..., s,}. We are interested in the
cohomology ofC (W) (equivalentlyY (W)) with coefficients inR; (see introduction).
In this case the boundary operator defined in (4) becomes

AEW. D)= 3 (p @ s Py\(0),  (5)

o€l g\

wherer is the variable in the ring.
From (1) and universal coefficients theorem it follows that

H*(C(W), R;) = Hy,—1(C(W), R). (6)

For each integer & k < n denote bySy = {s1, ..., st} C S andS* = S\ Sx. We define
the graduate®-submodules o (W):

GiW):= > REw.T). FfW):= Y R.Ew.T).

weW weW
I CSk FDS”_k
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There is an obvious inclusion
inn: G W) — G (W) = C(W). 7

Each GX(W) is preserved by the induced boundary map and we get a filtration by
subcomplexes of (W):

CW)=G"W)>G" tW)>---2GIw)>6%w).

The quotient moduleG;;(W)/G;;‘l(W) is exactIyFnl(W) which becomes an algebraic
complex with the induced boundary map.

We give iteratively toF X (W), k > 2, a structure of complex by identifying it with the
cokernel of the map:

inlk]: G~ D W) [k] — FRw), i(E(w, M) =E(w, ['us"™").

Here M[k] denotes, as usuak-augmentation of a compleM; so i,[k] is degree
preserving.
By construction, [k] gives rise to the exact sequence of complexes

0— G~ ED W)k — Ff (W) — FFHHW) — 0. ®)

Let I C S and letW - be theparabolic subgroupf W generated by". Recall from
[2] the following

Proposition 3.1.Let (W, S) be a Coxeter system. Lét C S. The following statements
hold:

(i) W, I')is aCoxeter system.

(i) ViewingW - as a Coxeter group with length functiép, £ = £ onW .

(i) DefineW” %' (w e W | ¢(ws) > ¢(w) forall s € I'}. Givenw e W, there is a
uniqguex € W™ and a uniquev € W such thatw = uv. Their lengths satisfy
£(w) = £(u) + £(v). Moreoveru is the unique element of shortest length in the coset
er.

Forallw € W we setw = w! wr with w” e W andwr e W. Thenif g € W one
hasl(wp) =I(w!) + I(wrp).
From (5) it follows:

IEw, M) =w"d(Ewr, IN) (9)

where the action (3) is extended@W) by linearity.
As a consequence we have a direct sum decomposition into isomorphic factors:
WSk |

Hy(GK. R:)~ @) Hy(C(Ws,). Ry). (10)
j=1
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4. Preparation for the main theorem

Let my := [WSk| andW, := W, ; the exact sequences (8) with relations (10) give rise
to the corresponding long exact sequences in homology

Mpy—k—1
coo—> Hypa (FAN W), Ry) > @ Hy—«(C(Wss, ). Re)
j=1

— Hy(FX(W), R;) — Hy(FEPY(W), R;) — - - (11)
We have the following:

Lemmad4.1.0f H,_,(C(W,_,_1), R;) are trivial Z-modules for all h suchthadt< % < g,
thenH, (F*(W), R;) is also trivial.

Proof. From (8) and (10) one has the exact sequences of complexes

Mpy—k—1
0> @ CW, -1kl Fy (W) — Fy (W) — 0,
j=1
Mpy—k—2
0— 162 CW,_—2)[k 4+ 1] = FFLw) — FF2w) — 0, 12)
;nnqul
0= P CW,y-1lgl— F W) — Ew) —o.
j=1
The last sequence gives rise to the long exact sequence in homology:
mpy—g—1
RN @ Ho(C(W,—g—1), Rz) — Hy(F (W), R;) — 0. (13)
j=1

By hypothesisHo(C(W,_,-1), R;) is a trivial Z-module thean(F,f, R;) is also
trivial.

We get the thesis going backwards in (12) and considering, in a similar way of (13), the
long exact sequences induceda

Recall (see (1)) the decomposition:
H(CW),R)= B [R/(en]”.
r|E(AW))

It follows that if £(A(W)) and(A(W,_;)) are coprimes, the maps; of (7) give
rise to homology maps with images sums of copiewal ({¢1}° means that the map is
identically 0).

We have thati(A(An)) = n(n + 1)/2 andi(A(Bp)) = n? (see [2]). If we fix

(”l,h):(sCI“‘la 2) forAn,
(n,h)=(n,1) for By
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then

(2(A(A3q+1)), £(A(A3g-1))) = 1, (8(ABn)), 8(A(Bn-1))) =1

Sincei, ; are injective, we can complete (7) tba@t exact sequences of complexes
which give, by the above remark:

m3zg—1
0— Plo} > Hy(C(Azqr1), Re) — Hy (C(A3q+l)/ P cAsq-0. RT>
j=1
m3zg—1
— @ Hy-1(C(A3g-1). Rr) > Pler) — - (14)

j=1
in caseA,, and

my—1
0— P} — Hy(CBn). R:) > H, (c<Bn)/ P c@n-1. RT>
j=1
my—1
— P Hy-1(CBn-1). R:) > Pler} - - (15)
j=1
in caseB;,.
In order to prove Theorem 1.1, we need to study the compleXé&zq.1)/
@2 C(Asq-1) andC(Bn)/ B21' C(Bn_1).
The latter is exactly the complexl (Bn).
The farmer is the complex with basis ouer

Er={Ew,I'UT)|weAsqr1andl’ C S3;,-1},
for ¥ C T c $%~1. We remark thatf;, ) is the basis of a complex isomorphic to
(3q + 2) copies ofF31q (Azq), E(s3,41) 9ENETAtES the subcomplex given by the image of

Gggj(quH) by the mapiz, +1[1] and the elements (ﬂ{s3q+l,s3q} are the generators of
the moduIeF32q+l(A3q+1).
Now we set
(FYW)), :={Ew, ') € FY(W) | |I"| = h}

andakh (FK(W))p — (FX(W)),_1 the ith boundary map ik (W) (8,5 := 80h is the
boundary map ir€ (W);,).
Then theith boundary matrix o€ (Agq+1)/ @ijl’l C(Azq-1) is of the form

D78, 0 A1
5, — (G+1)3+2
h= 0 D1 93g—1,h—1 2Az ’
0 0 a3[1-§—l,h

whereA1 andA» are the matrices of the image of the generato&;g,saq+l} restricted to
Elsa,) ANAE]s,, 4y, respectively.
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Moreover all homology groups of the complexlé’s,(W) are torsion groups so the rank
of a[;ﬂh equals the rank of ke@fj’h_l). Then it is not difficult to see that the rank &f is

exactly the sum of3g + 2) times the rank oﬁéq’h, Mﬁ"”) times the rank 063, 1,1
and the rank oﬁ§q+1,h.

Remark 4.1.1t follows that in order to prove thatf (C (Asq+1)/ @?fl‘l C(Asg-1), Rr)
is sum of copies of¢p1}, i.e., a trivialZ-module, it is sufficient to prove the same result for

Hi(Fg,(Asq), Ro), Hi—1(C(A3q-1), Re) and H(F§, 1 (Agq+1), Re).

5. Proof of the main theorem

In this section we prove Theorem 1.1. This is equivalent to proveRhéf (An), R;)
is a trivial Z-module forn > 3k + 1, H.(C(Bp),R;) is trivial for n > 2k + 1 and
Hi(C(Dpn), R;) is trivial for n > 3k + 2 (see relation (6)).

For case®\, andB,, we use induction on the degree of homology. Cagewill follow
from An.

By standard methods (see also [18]) one gets the first step of induction, which is

Ho(C(An), R;) ~ Ho(C(Bn), Rr) =~ {¢1} (16)

foralln > 1.

One supposes thatl,_1(C(Ap), R;) and H;_1(C(Bp), R;) are trivial Z-modules,
respectively, foralh > 3(k — 1)+ 1andn > 2(k — 1) + 1.

We have to prove that(C(An), R;) and Hy(C(Bp), R;) are trivial Z-modules,
respectively, foralh > 3k + 1 andn > 2k + 1.

First we consider the cage= 3k + 1 (n = 2k + 1); using the sequence (14) (Eq. (15)),
one needs only to prove thaly(C(Ask+1)/ B2 " C(Ask-1), Re) (Hi(C(Baki1)/
@?’j‘l C(Boy), Ry)) is trivial.

The assertion in cadgyy.1 follows from Lemma 4.1 since

mok
H, (C(sz+1)/ @ C(B2k), Rr) = H*(F21k+1(32k+1), R;)
j=1

and Hy_, (C(Bak_n), Ry) is trivial for all 1 < & < k by inductive hypothesis.

The proof in casé\s. 1 is a consequence of Remark 4.1.

One has tha#H;_1(C(A3k_1), R;) is a trivial Z-module by induction and, from Lem-
ma4.1H(F3 (A, Rr) andHy (F3_ 1 (Ask+1). Rr) are trivial sinceHy_, (C (Azk—h—1),
R;) and H,_,(C(Ask—n), R;) are trivial by hypothesis, respectively, forli < k and
2<h<k.

Let nown > 3k + 1, we conclude the proof fék,, using induction om. One supposes
that H,(C(An_1), R;) is trivial asZ-module. MoreoveH;_;,(C(An_nh_1), R;) are trivial
by inductive hypothesis on the degree of homology, simce 2 — 1) > 3(k — h) + 1 for
all 1< h <k. ThenH;_,(C(An_h_1), R;) are trivial for 0< i < k and the thesis follows
from Lemma4.1.
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The proof in cas®,,, forn > 2k + 1, is exactly the same.
CaseDy, is a consequence of Lemma 4.1 applied to the exact sequence of complexes

my—1

0— @ C(Ds, ,) > C(Dn) > F,(Dn) - 0
j=1

since C(Ds,) = C(Ak) for all 0 < k < n — 1 (we use the standard Dynking diagram
of D). O
The last step is the

Proof of Theorem 1.2. From the universal coefficients theorem it follows
Hy (C(W), {91}) =~ Hi(C(W), R;) @ {1} @ Tor(Hi—1(C(W), R), {g1}).  (17)
If we set
rko(Hk(C(W), R;) ® {1}) =: ars1
then, in the range specified in Theorem 1.1
rkg[Tor(Hx-1(C(W), R:), {¢1})] =: ax.
We recall, also, thafip;} = Q, then
Hi(C(W), {1}) = Hy(C(W), Q),

moreover the rank offy (C (W), Q) equals the rank of/*(C(W), Z).
It follows that relation (17) gives

rk[H*(C(W), Z)] = ax41 + ax

and from a simple induction

k
Qep1= Z(_1)<’<—i) rkH' (C(W),Z). O
i=0

Remark 5.1.With the same technique used to prove Theorem 1.1, it is possible to prove a
more general result.

Let (W, S) be a finite Coxeter system witl§| =n andm € N s.t. m | o(A(W)). If
there exists an integérs.t.m t o(A(Wy)) for all h < k < n, then there exists an integer
p s.t., forallr < p, H (C(Wp), R;) is annihilated by a squarefree elemé€ht- 7*) with
s|o(AW)),s <m,and,forallg <p+ m— h — 1), H1(C(W), R;) is annihilated by
a squarefree elemeftt — %) with a | 0o(A(W)), a < m.

As corollaries we obtain:

o HIL(C(A3g), Ry) and HI*1(C(A3q-1), R;) are annihilated by the squarefree
element(1 — t3);

o if m | o(AW)) andm { o(A(Wy)) for all k < n then, fork < n, H"(C(W), R;) is
annihilated by a squarefree eleméht- ) with s | 0o (A(W)), s < m.
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