

Available online at www.sciencedirect.com

Topology and its Applications 139 (2004) 37–47

www.elsevier.com/locate/topol

A stability-like theorem for cohomology of pure braid groups of the series *A*, *B* and *D*

Simona Settepanella

Department of Mathematics, University of Pisa, Italy Received 18 June 2003; received in revised form 29 September 2003

Abstract

Consider the ring $R := \mathbb{Q}[\tau, \tau^{-1}]$ of Laurent polynomials in the variable τ . The Artin's pure braid groups (or generalized pure braid groups) act over R , where the action of every standard generator is the multiplication by τ . In this paper we consider the cohomology of such groups with coefficients in the module *R* (it is well known that such cohomology is strictly related to the untwisted integral cohomology of the Milnor fibration naturally associated to the reflection arrangement). We give a sort of *stability* theorem for the cohomologies of the infinite series *A*, *B* and *D*, finding that these cohomologies stabilize, with respect to the natural inclusion, at some number of copies of the trivial *R*-module Q. We also give a formula which computes this number of copies. 2003 Elsevier B.V. All rights reserved.

MSC: 20J06; 20F36

Keywords: Pure braid groups; Arrangements of hyperplanes; Cohomology with local coefficients; Milnor fibre

1. Introduction

Let (W, S) be a finite Coxeter system realized as a reflection group in \mathbb{R}^n , $\mathcal{A}(W)$ the arrangement in \mathbb{C}^n obtained by complexifying the reflection hyperplanes of **W**. Let

$$
\mathbf{Y}(\mathbf{W}) = \mathbf{Y}\big(\mathcal{A}(\mathbf{W})\big) = \mathbb{C}^n \setminus \bigcup_{H \in \mathcal{A}(\mathbf{W})} H.
$$

be the complement to the arrangement, then **W** acts freely on **Y***(***W***)* and the fundamental group G_W of the orbit space $\mathbf{Y}(\mathbf{W})/\mathbf{W}$ is the so-called *Artin group* associated to **W** (see [2]). Likewise the fundamental group *PW* of **Y***(***W***)* is the *Pure Artin group* or the pure

E-mail address: settepan@mail.dm.unipi.it (S. Settepanella).

^{0166-8641/\$ –} see front matter \degree 2003 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2003.09.003

braid group of the series **W**. It is well known [3] that these spaces $\mathbf{Y}(\mathbf{W}) (\mathbf{Y}(\mathbf{W})/\mathbf{W})$ are of type $K(\pi, 1)$, so there cohomologies equal that of P_W (G_W) .

The integer cohomology of $Y(W)$ is well known (see [3,14,1,10]) and so is the integer cohomology of the Artin groups associated to finite Coxeter groups (see [19,11,17]).

Let $R = \mathbb{Q}[\tau, \tau^{-1}]$ be the ring of rational Laurent polynomials. The *R* can be given a structure of module over the Artin group G_W , where standard generators of G_W act as *τ* -multiplication.

In [4,5] the authors compute the cohomology of all Artin groups associated to finite Coxeter groups with coefficients in the previous module.

In a similar way we define a P_W -module R_τ , where standard generators of P_W act over the ring R as τ -multiplication.

Equivalently, one defines an Abelian local system (also called R_{τ}) over **Y***(W)* with fiber *R* and local monodromy around each hyperplane given by *τ* -multiplication (for local systems on **Y***(***W***)* see [12,15]).

In this paper we are going to consider the cohomology of $Y(W)$ with local coefficients *Rτ* , for the finite Coxeter groups of the series *A*, *B* and *D* (see [2]) (that is equivalent to the cohomology of P_W with coefficients in R_τ).

Our aim is to give a sort of "*stability*" theorem for these cohomologies (for stability in the case of Artin groups see [7]).

Denote by φ_i the *i*th cyclotomic polynomial and let be

$$
\{\varphi_i\}:=\mathbb{Q}[\tau,\tau^{-1}]/(\varphi_i)=\mathbb{Q}[\tau]/(\varphi_i)
$$

thought as *R*-module. By its definition $\{\varphi_1\} = 1 - \tau$ so that $\{\varphi_1\} = \mathbb{Q}$.

Notice that by identification $\mathbb{Q}[\tau, \tau^{-1}] \cong \mathbb{Q}[\mathbb{Z}]$, the sums of copies of $\{\varphi_1\}$ are the unique trivial $\mathbb Z$ -modules. We obtain

Theorem 1.1. *Let* **W** *be a Coxeter group of type* A_n *, then for* $n \geq 3k - 2$ *the cohomology group* $H^k(\mathbf{Y}(A_n), R_\tau)$ *is a trivial* Z-module.

Analog statement holds for **W** *of type* B_n *in the rang* $n \ge 2k - 1$ *and for* **W** *of type* D_n *in the rang* $n \geq 3k - 1$.

The proof of this theorem is obtained extending the methods developed in [4] and using some known results about the global Milnor fibre $F(\mathbf{W})$ of the complement $\mathbf{Y}(\mathbf{W})$.

We recall briefly that if $H \in \mathcal{A} = \mathcal{A}(W)$ and $\alpha_H \in \mathbb{C}[x_1, \ldots, x_n]$ is a linear form s.t. $H = \text{ker}(\alpha_H)$, then the global Milnor fibre $F(\mathbf{W})$ is a complex manifold of dimension *n*−1 given by $F(\mathbf{W}) = Q^{-1}(1)$ where $Q = Q(\mathcal{A}) = \prod_{H \in \mathcal{A}} \alpha_H$ is the *defining polynomial* for A.

It is well known (see also [9]) that, over *R*, there is a decomposition

$$
H^*\big(F(\mathbf{W}),\mathbb{Q}\big)\simeq \bigoplus_{i\,|\sharp(\mathcal{A}(\mathbf{W}))} \big(R/(\varphi_i)\big)^{\alpha_i}=\bigoplus_{i\,|\sharp(\mathcal{A}(\mathbf{W}))} \{\varphi_i\}^{\alpha_i},
$$

the action on the left being that induced by monodromy.

Since $F(\mathbf{W})$ is homotopy-equivalent to an infinite cyclic cover of $\mathbf{Y}(\mathbf{W})$, there is an isomorphism of *R*-modules

$$
H^*(F(\mathbf{W}),\mathbb{Q}) \simeq H^*(\mathbf{Y}(\mathbf{W}),R_\tau)
$$

and then

$$
H^*(\mathbf{Y}(\mathbf{W}), R_{\tau}) \simeq \bigoplus_{i \mid \sharp(\mathcal{A}(\mathbf{W}))} {\{\varphi_i\}}^{\alpha_i}.
$$
 (1)

The other tool we use is a suitable filtration by subcomplexes of the algebraic Salvetti's CW-complex $(C(W), \delta)$ coming from [16] (see also [6,17]), which we recall in the next paragraph.

Finally we use the universal coefficients theorem to compute the dimensions of the above cohomologies as vector spaces over the rationals.

Theorem 1.2. *In the range specified in Theorem* 1.1 *one has*:

rk
$$
H^{k+1}(Y(\mathbf{W}), R_{\tau}) = \sum_{i=0}^{k} (-1)^{(k-i)} \text{rk } H^{i}(Y(\mathbf{W}), \mathbb{Z}).
$$

So one reduces to compute the dimensions of the Orlik–Solomon algebras of $A(\mathbf{A}_n)$, $\mathcal{A}(\mathbf{B_n})$ and $\mathcal{A}(\mathbf{D_n})$ (see [13]).

2. Salvetti's complex

Let **W** be a finite group generated by reflections in the affine space $\mathbb{A}^n(\mathbb{R})$. Let $\overline{A}(W) = {H_i}_{i \in J}$ be the arrangement in A^n defined by the reflection hyperplanes of W. We need to recall briefly some notations and results from [16] for the particular case of Coxeter arrangements. $\overline{A}(\mathbf{W})$ induces a stratification $S = \mathcal{S}(\mathbf{W})$ of \mathbb{A}^n into facets (see [2]). The set S is partially ordered by $F > F'$ iff $F' \subset cl(F)$. We shall indicate by $Q = Q(W)$ the cellular complex which is *dual* to S. In a standard way, this can be realized inside A^n by barycentrical subdivision of the facets: inside each codimension *j* facet F^j of S choose one point $v(F^j)$ and consider the simplexes

$$
s(F^{i_0},..., F^{i_j}) = \left\{ \sum_{k=0}^j \lambda_k v(F^{i_k}) : \sum_{k=0}^j \lambda_k = 1, \ \lambda_k \in [0,1] \right\},\
$$

where $F^{i_{k+1}} < F^{i_k}$, $k = 0, \ldots, j - 1$. The dimension *j* cell $e^{j}(\overline{F}^{j})$ which is dual to \overline{F}^{j} is obtained by taking the union

$$
\bigcup s(F^0,\ldots,F^{j-1},\overline{F}^j),
$$

over all chains $\overline{F}^j < F^{j_1} < \cdots < F^0$. So $\mathbf{O} = \left| \int e^j (F^j) \right|$, the union being over all facets of S .

One can think of the 1-*skeleton* \mathbf{Q}_1 as a graph (with vertex-set the 0-*skeleton* \mathbf{Q}_0) and can define the combinatorial distance between two vertices v, v' as the minimum number of edges in an edge-path connecting *v* and *v* .

For each cell e^j of **Q** one indicates by $V(e^j) = \mathbf{Q}_0 \cap e^j$ the 0-*skeleton* of e^j . One has

Proposition 2.1. Given a vertex $v \in \mathbf{Q}_0$ and a cell $e^i \in \mathbf{Q}_i$ there is a unique vertex *<u><i>w*(*v*, *e*^{*i*}) ∈ *V*(*e*^{*i*}) *with the lowest combinatorial distance from <i>v*, *i.e.*:</u>

$$
d(v, \underline{w}(v, e^i)) < d(v, v') \quad \text{if } v' \in V(e^i) \setminus \{\underline{w}(v, e^i)\}.
$$

If $e^{j} \subset e^{i}$ *then* $w(v, e^{j}) = w(w(v, e^{i}), e^{j})$ *.*

Let now $\mathcal{A}(\mathbf{W})$ denote the *complexification* of $\overline{\mathcal{A}}(\mathbf{W})$, and $\mathbf{Y}(\mathbf{W}) = \mathbb{C}^n \setminus \bigcup_{j \in J} H_{j, \mathbb{C}}$ the complement of the complexified arrangement. Then **Y***(***W***)* is homotopy equivalent to the complex **X***(***W***)* which is constructed as follows (see [16]).

Take a cell $e^j = e^j(F^j) = \bigcup s(F^0, \ldots, F^{j-1}, F^j)$ of **Q** as defined above and let $v \in V(e^j)$. Embed each simplex $\tilde{s}(F^0, \ldots, F^j)$ into \mathbb{C}^n by the formula

$$
\phi_{v,e_j}\left(\sum_{k=0}^j \lambda_k v(F^k)\right) = \sum_{k=0}^j \lambda_k v(F^k) + i \sum_{k=0}^j \lambda_k \left(\underline{w}(v,e^k) - v(F^k)\right). \tag{2}
$$

It is shown in $[16]$ (see also $[17]$):

- (i) the preceding formula defines an embedding of e^{j} into **Y***(W)*;
- (ii) if $E^j = E^j(v, e^j)$ is its image, then varying e^j and *v* one obtains a cellular complex

 $\mathbf{X}(\mathbf{W}) = \begin{pmatrix} \ \ \end{pmatrix} E^j$

which is homotopy equivalent to **Y***(***W***)*.

The previous result allows us to make cohomological computations over $Y(W)$ by using the complex **X***(***W***)*.

In [17] (see also [8]) the authors give a new combinatorial description of the stratification S where the action of **W** is more explicit. They prove that if S is the set of reflections with respect to the walls of the fixed base chamber C_0 , then a cell in $\mathbf{X}(\mathbf{W})$ is of the form $E = E(w, \Gamma)$ with $\Gamma \subset S$ and $w \in W$. The action of W is written as

$$
\sigma.E(w, \Gamma) = E(\sigma w, \Gamma),\tag{3}
$$

where the factor σw is just multiplication in **W**.

We prefer at the moment to deal with chain complexes and boundary operator coming from **X***(***W***)* instead of cochain and coboundary. Then we will deduce cohomological results by standard methods.

We define a rank-1 local system on **Y***(***W***)* with coefficients in an unitary ring *A* by assigning an unit $\tau_i = \tau(H_i)$ (thought as a multiplicative operator) to each hyperplane *H_i* \in *A*. Call $\bar{\tau}$ the collection of τ *_i* and $\mathcal{L}_{\bar{\tau}}$ the corresponding local system. Let $C(\mathbf{W}, \mathcal{L}_{\bar{\tau}})$ be the free graduated *A*-module with basis all *E(w, Γ)*.

We use the natural identification between the elements of the group and the vertices of **Q**₀, given by $w \leftrightarrow w.v_0$. Here $v_o \in \mathbf{Q}_0$ is contained in the fixed base chamber C_0 .

Then $u(w, w')$ will denote the *"minimal positive path"* joining the corresponding vertices *v* and *v'* in the 1-skeleton $\mathbf{X}(\mathbf{W})_1$ of $\mathbf{X}(\mathbf{W})$ (see [16]).

The local system $\mathcal{L}_{\bar{\tau}}$ defines for each edge-path *c* in $\mathbf{X}(\mathbf{W})_1$, $c : w \to w'$ an isomorphism c^* : *A* → *A* such that for all $d: w \to w'$ homotopic to *c*, $c^* = d^*$ and for all $f: w'' \to w$, $(cf)_{*} = c_{*} f_{*}.$

Then the set $\{s_0(w), E(w, \Gamma)\}_{|\Gamma|=k}$, where $s_0(w) := u(1, w)_*(1)$, is a linear basis of $C_k(\mathbf{W}, \mathcal{L}_{\overline{\tau}})$.

Let now $T = \{ wsw^{-1} | s \in S, w \in W \}$, the set of reflections in W and

$$
\overline{\mathbf{W}} = \{ \mathbf{s}(w) = (s_{i_1}, \dots, s_{i_q}) \mid w = s_{i_1} \cdots s_{i_q} \in \mathbf{W} \},
$$

then for each $\mathbf{s}(w) \in \overline{\mathbf{W}}$ and $t \in T$, we set

(i) $\Psi(\mathbf{s}(w)) = (t_{i_1}, \ldots, t_{i_q})$ with $t_{i_j} = (s_{i_1} \cdots s_{i_{j-1}}) s_{i_j} (s_{i_1} \cdots s_{i_{j-1}})^{-1} \in T$;

(ii)
$$
\overline{\Psi(\mathbf{s}(w))} = \{t_{i_1}, \ldots, t_{i_q}\};
$$

(iii) $\eta(w, t) = (-1)^{n(\mathbf{s}(w), t)}$ with $n(\mathbf{s}(w), t) = \sharp\{j \mid 1 \leq j \leq q \text{ and } t_{i_j} = t\}.$

Moreover if $t \in T$ is the reflection relative to the hyperplane H, then we set $\tau(t) = \tau(H)$. We define

$$
\partial_k (s_0(w), E(w, \Gamma))
$$
\n
$$
= \sum_{\sigma \in \Gamma} \sum_{\beta \in \mathbf{W}_{\Gamma}^{\Gamma \backslash \{\sigma\}}} (-1)^{l(\beta) + \mu(\Gamma, \sigma)} \tau(w, \beta) s_0(w\beta). E(w\beta, \Gamma \setminus \{\sigma\}), \tag{4}
$$

where $\tau(w, \beta) = \prod_{t \in \overline{\Psi(\mathbf{s}(w))}, \eta(w, t) = 1} \tau(t)$, and $\mu(\Gamma, \sigma) = \sharp\{i \in \Gamma \mid i \leq \sigma\}.$ We have the following (see [8,18]).

Theorem 2.1. $H_*(C(W), \mathcal{L}_{\overline{\tau}}) \cong H_*(C(W, \mathcal{L}_{\overline{\tau}}), \partial)$ *.*

We have a similar result for the cohomology.

3. A filtration for the complex $(C(W), \delta)$

Let (W, S) be a finite Coxeter system with $S = \{s_1, \ldots, s_n\}$. We are interested in the cohomology of $C(W)$ (equivalently $Y(W)$) with coefficients in R_{τ} (see introduction). In this case the boundary operator defined in (4) becomes

$$
\partial \big(E(w, \Gamma) \big) = \sum_{\sigma \in \Gamma} \sum_{\beta \in \mathbf{W}_{\Gamma}^{\Gamma \setminus \{\sigma\}}} (-1)^{l(\beta) + \mu(\Gamma, \sigma)} \tau^{\frac{l(\beta) + l(w) - l(w\beta)}{2}} E\big(w\beta, \Gamma \setminus \{\sigma\}\big),\tag{5}
$$

where τ is the variable in the ring R .

From (1) and universal coefficients theorem it follows that

$$
H^*(C(W), R_{\tau}) = H_{*-1}(C(W), R_{\tau}).
$$
\n(6)

For each integer $0 \leq k \leq n$ denote by $S_k = \{s_1, \ldots, s_k\} \subset S$ and $S^k = S \setminus S_k$. We define the graduated R -submodules of $C(W)$:

$$
G_n^k(\mathbf{W}) := \sum_{\substack{w \in \mathbf{W} \\ \Gamma \subset S_k}} R.E(w, \Gamma), \qquad F_n^k(\mathbf{W}) := \sum_{\substack{w \in \mathbf{W} \\ \Gamma \supset S^{n-k}}} R.E(w, \Gamma).
$$

There is an obvious inclusion

$$
i_{n,h}: G_n^{n-h}(\mathbf{W}) \to G_n^n(\mathbf{W}) = C(\mathbf{W}).
$$
\n⁽⁷⁾

Each $G_n^k(\mathbf{W})$ is preserved by the induced boundary map and we get a filtration by subcomplexes of *C(***W***)*:

$$
C(\mathbf{W}) = G_n^n(\mathbf{W}) \supset G_n^{n-1}(\mathbf{W}) \supset \cdots \supset G_n^1(\mathbf{W}) \supset G_n^0(\mathbf{W}).
$$

The quotient module $G_n^n(\mathbf{W})/G_n^{n-1}(\mathbf{W})$ is exactly $F_n^1(\mathbf{W})$ which becomes an algebraic complex with the induced boundary map.

We give iteratively to $F_n^k(\mathbf{W})$, $k \geq 2$, a structure of complex by identifying it with the cokernel of the map:

$$
i_n[k]: G_n^{n-(k+1)}(\mathbf{W})[k] \to F_n^k(\mathbf{W}), \qquad i(E(w, \Gamma)) = E(w, \Gamma \cup S^{n-k}).
$$

Here $M[k]$ denotes, as usual, *k*-augmentation of a complex M ; so $i_n[k]$ is degree preserving.

By construction $i_n[k]$ gives rise to the exact sequence of complexes

$$
0 \to G_n^{n-(k+1)}(\mathbf{W})[k] \to F_n^k(\mathbf{W}) \to F_n^{k+1}(\mathbf{W}) \to 0.
$$
\n
$$
(8)
$$

Let *Γ* ⊂ *S* and let **W***^Γ* be the *parabolic subgroup* of **W** generated by *Γ* . Recall from [2] the following

Proposition 3.1. *Let (***W***,S) be a Coxeter system. Let Γ* ⊂ *S. The following statements hold*:

- (i) $(\mathbf{W}_{\Gamma}, \Gamma)$ *is a Coxeter system.*
- (ii) *Viewing* W_Γ *as a Coxeter group with length function* ℓ_Γ , $\ell_\Sigma = \ell_\Gamma$ *on* W_Γ .
- (iii) *Define* $\mathbf{W}^{\Gamma} \stackrel{\text{def}}{=} \{w \in \mathbf{W} \mid \ell(ws) > \ell(w) \text{ for all } s \in \Gamma\}$ *. Given* $w \in \mathbf{W}$ *, there is a unique* $u \in \mathbf{W}^{\Gamma}$ *and a unique* $v \in \mathbf{W}_{\Gamma}$ *such that* $w = uv$ *. Their lengths satisfy* $\ell(w) = \ell(u) + \ell(v)$ *. Moreover, u is the unique element of shortest length in the coset w***W***^Γ .*

For all $w \in \mathbf{W}$ we set $w = w^T w_\Gamma$ with $w^\Gamma \in \mathbf{W}^\Gamma$ and $w_\Gamma \in \mathbf{W}_\Gamma$. Then if $\beta \in \mathbf{W}_\Gamma$ one has $l(w\beta) = l(w^{\Gamma}) + l(w_{\Gamma}\beta)$.

From (5) it follows:

$$
\partial \big(E(w, \Gamma) \big) = w^{\Gamma} . \partial \big(E(w_{\Gamma}, \Gamma) \big) \tag{9}
$$

where the action (3) is extended to $C(W)$ by linearity.

As a consequence we have a direct sum decomposition into isomorphic factors:

$$
H_q(G_n^k, R_\tau) \simeq \bigoplus_{j=1}^{|{\bf W}^{S_k}|} H_q(C({\bf W}_{S_k}), R_\tau).
$$
\n(10)

4. Preparation for the main theorem

Let $m_k := |\mathbf{W}^{S_k}|$ and $\mathbf{W}_k := \mathbf{W}_{S_k}$; the exact sequences (8) with relations (10) give rise to the corresponding long exact sequences in homology

$$
\cdots \to H_{q+1}(F_n^{k+1}(\mathbf{W}), R_{\tau}) \to \bigoplus_{j=1}^{m_{n-k-1}} H_{q-k}(C(\mathbf{W}_{S_{n-k-1}}), R_{\tau})
$$

$$
\to H_q(F_n^k(\mathbf{W}), R_{\tau}) \to H_q(F_n^{k+1}(\mathbf{W}), R_{\tau}) \to \cdots
$$
(11)

We have the following:

Lemma 4.1. *If* $H_{q-h}(C(\mathbf{W}_{n-h-1}), R_{\tau})$ are trivial \mathbb{Z} -modules for all h such that $k \leqslant h \leqslant q$, *then* $H_q(F_n^k(\mathbf{W}), R_{\tau})$ *is also trivial.*

Proof. From (8) and (10) one has the exact sequences of complexes

$$
0 \to \bigoplus_{j=1}^{m_{n-k-1}} C(\mathbf{W}_{n-k-1})[k] \to F_n^k(\mathbf{W}) \to F_n^{k+1}(\mathbf{W}) \to 0,
$$

\n
$$
0 \to \bigoplus_{j=1}^{m_{n-k-2}} C(\mathbf{W}_{n-k-2})[k+1] \to F_n^{k+1}(\mathbf{W}) \to F_n^{k+2}(\mathbf{W}) \to 0,
$$

\n
$$
\vdots
$$

\n
$$
0 \to \bigoplus_{j=1}^{m_{n-q-1}} C(\mathbf{W}_{n-q-1})[q] \to F_n^q(\mathbf{W}) \to F_n^{q+1}(\mathbf{W}) \to 0.
$$

\n(12)

The last sequence gives rise to the long exact sequence in homology:

$$
\cdots \to \bigoplus_{j=1}^{m_{n-q-1}} H_0(C(\mathbf{W}_{n-q-1}), R_\tau) \to H_q(F_n^q(\mathbf{W}), R_\tau) \to 0.
$$
 (13)

By hypothesis $H_0(C(\mathbf{W}_{n-q-1}), R_\tau)$ is a trivial Z-module then $H_q(F_n^q, R_\tau)$ is also trivial.

We get the thesis going backwards in (12) and considering, in a similar way of (13), the long exact sequences induced. \Box

Recall (see (1)) the decomposition:

$$
H_*\big(C(\mathbf{W}), R_\tau\big) = \bigoplus_{r \mid \sharp(\mathcal{A}(\mathbf{W}))} \big[R/(\varphi_r)\big]^{\alpha_r}.
$$

It follows that if $\sharp(\mathcal{A}(\mathbf{W}))$ and $\sharp(\mathcal{A}(\mathbf{W}_{n-h}))$ are coprimes, the maps $i_{n,h}$ of (7) give rise to homology maps with images sums of copies of $\{\varphi_1\}$ ($\{\varphi_1\}^0$ means that the map is identically 0).

We have that $\sharp(\mathcal{A}(A_{n})) = n(n+1)/2$ and $\sharp(\mathcal{A}(B_{n})) = n^{2}$ (see [2]). If we fix

$$
(n, h) = (3q + 1, 2)
$$
 for **A_n**,
 $(n, h) = (n, 1)$ for **B_n**

then

$$
\big(\sharp\big(\mathcal{A}(\mathbf{A}_{3q+1})\big),\sharp\big(\mathcal{A}(\mathbf{A}_{3q-1})\big)\big)=1,\qquad \big(\sharp\big(\mathcal{A}(\mathbf{B_n})\big),\sharp\big(\mathcal{A}(\mathbf{B_{n-1}})\big)\big)=1.
$$

Since $i_{n,h}$ are injective, we can complete (7) to short exact sequences of complexes which give, by the above remark:

$$
0 \to \bigoplus_{j=1}^{\{p\}} \{\varphi_1\} \to H_q(C(\mathbf{A}_{3q+1}), R_\tau) \to H_q\left(C(\mathbf{A}_{3q+1})/\bigoplus_{j=1}^{m_{3q-1}} C(\mathbf{A}_{3q-1}), R_\tau\right)
$$

$$
\to \bigoplus_{j=1}^{m_{3q-1}} H_{q-1}\left(C(\mathbf{A}_{3q-1}), R_\tau\right) \to \bigoplus \{\varphi_1\} \to \cdots
$$
 (14)

in case **An** and

$$
0 \to \bigoplus_{j=1}^m {\varphi_1} \to H_q(C(\mathbf{B_n}), R_{\tau}) \to H_q\left(C(\mathbf{B_n})/\bigoplus_{j=1}^{m_{n-1}} C(\mathbf{B_{n-1}}), R_{\tau}\right)
$$

$$
\to \bigoplus_{j=1}^{m_{n-1}} H_{q-1}\left(C(\mathbf{B_{n-1}}), R_{\tau}\right) \to \bigoplus \{\varphi_1\} \to \cdots \tag{15}
$$

in case **Bn**.

In order to prove Theorem 1.1, we need to study the complexes $C(\mathbf{A}_{3q+1})/$ $\bigoplus_{j=1}^{m_{3q-1}} C(\mathbf{A}_{3q-1})$ and $C(\mathbf{B_n})/\bigoplus_{j=1}^{m_{n-1}} C(\mathbf{B_{n-1}})$.

The latter is exactly the complex $F_n^1(\mathbf{B}_n)$.

The farmer is the complex with basis over *R*:

 $\mathcal{E}_T := \{ E(w, \Gamma \cup T) \mid w \in \mathbf{A}_{3q+1} \text{ and } \Gamma \subset S_{3q-1} \},\$

for $\emptyset \subsetneq T \subset S^{3q-1}$. We remark that $\mathcal{E}_{\{s_{3q}\}}$ is the basis of a complex isomorphic to $(3q + 2)$ copies of $F_{3q}^1(A_{3q})$, $\mathcal{E}_{\{s_{3q+1}\}}$ generates the subcomplex given by the image of G_{3q+1}^{3q-1} (**A_{3q+1}**) by the map $i_{3q+1}[1]$ and the elements of $\mathcal{E}_{\{s_{3q+1},s_{3q}\}}$ are the generators of the module $F_{3q+1}^2(A_{3q+1})$.

Now we set

$$
(F_n^k(\mathbf{W}))_h := \{ E(w, \Gamma) \in F_n^k(\mathbf{W}) \mid |\Gamma| = h \}
$$

and $\partial_{n,h}^k : (F_n^k(\mathbf{W}))_h \to (F_n^k(\mathbf{W}))_{h-1}$ the hth boundary map in $F_n^k(\mathbf{W})$ $(\partial_{n,h} := \partial_{n,h}^0$ is the boundary map in $C(W)_h$).

Then the *h*th boundary matrix of $C(\mathbf{A}_{3q+1})/\bigoplus_{j=1}^{m_{3q-1}} C(\mathbf{A}_{3q-1})$ is of the form

$$
\overline{\partial}_h = \begin{bmatrix} \bigoplus_{i=1}^{3q+2} \partial_{3q,h}^1 & 0 & A_1 \\ 0 & \bigoplus_{i=1}^{\frac{(3q+1)(3q+2)}{2}} \partial_{3q-1,h-1} & A_2 \\ 0 & 0 & \partial_{3q+1,h}^2 \end{bmatrix},
$$

where A_1 and A_2 are the matrices of the image of the generators in $\mathcal{E}_{\{s_{3a}, s_{3a+1}\}}$ restricted to $\mathcal{E}_{\{s_{3q}\}}$ and $\mathcal{E}_{\{s_{3q+1}\}}$, respectively.

Moreover all homology groups of the complexes $F_n^k(\mathbf{W})$ are torsion groups so the rank of $\partial_{n,h}^k$ equals the rank of ker $(\partial_{n,h-1}^k)$. Then it is not difficult to see that the rank of $\overline{\partial}_h$ is exactly the sum of $(3q + 2)$ times the rank of $\partial_{3q,h}^1$, $\frac{(3q+1)(3q+2)}{2}$ times the rank of $\partial_{3q-1,h-1}$ and the rank of $\partial_{3q+1,h}^2$.

Remark 4.1. It follows that in order to prove that $H_k(C(\mathbf{A}_{3q+1})/ \bigoplus_{j=1}^{m_{3q-1}} C(\mathbf{A}_{3q-1}), R_{\tau})$ is sum of copies of $\{\varphi_1\}$, i.e., a trivial $\mathbb Z$ -module, it is sufficient to prove the same result for $H_k(F_{3q}^1(A_{3q}), R_{\tau}), H_{k-1}(C(A_{3q-1}), R_{\tau})$ and $H_k(F_{3q+1}^2(A_{3q+1}), R_{\tau})$.

5. Proof of the main theorem

In this section we prove Theorem 1.1. This is equivalent to prove that $H_k(C(\mathbf{A}_n), \mathbb{R}_\tau)$ is a trivial Z-module for $n \ge 3k + 1$, $H_k(C(\mathbf{B}_n), \mathbb{R}_\tau)$ is trivial for $n \ge 2k + 1$ and $H_k(C(\mathbf{D}_n), \mathbb{R}_\tau)$ is trivial for $n \geq 3k + 2$ (see relation (6)).

For cases A_n and B_n we use induction on the degree of homology. Case D_n will follow from **An**.

By standard methods (see also [18]) one gets the first step of induction, which is

$$
H_0(C(\mathbf{A}_n), R_\tau) \simeq H_0(C(\mathbf{B}_n), R_\tau) \simeq {\varphi_1}
$$
\n(16)

for all $n \geqslant 1$.

One supposes that $H_{k-1}(C(\mathbf{A}_n), R_{\tau})$ and $H_{k-1}(C(\mathbf{B}_n), R_{\tau})$ are trivial Z-modules, respectively, for all $n \ge 3(k-1)+1$ and $n \ge 2(k-1)+1$.

We have to prove that $H_k(C(\mathbf{A}_n), R_\tau)$ and $H_k(C(\mathbf{B}_n), R_\tau)$ are trivial Z-modules, respectively, for all $n \ge 3k + 1$ and $n \ge 2k + 1$.

First we consider the case $n = 3k + 1$ ($n = 2k + 1$); using the sequence (14) (Eq. (15)), one needs only to prove that $H_k(C(\mathbf{A}_{3k+1})/ \bigoplus_{j=1}^{m'_{3k-1}} C(\mathbf{A}_{3k-1}), R_t)$ $(H_k(C(\mathbf{B}_{2k+1})/ \bigoplus_{j=1}^{m'_{3k-1}} C(\mathbf{A}_{3k-1}), R_t)$ $\bigoplus_{j=1}^{m_{2k}} C(\mathbf{B_{2k}}), R_{\tau})$ is trivial.

The assertion in case B_{2k+1} follows from Lemma 4.1 since

$$
H_*\left(C(\mathbf{B}_{2k+1})/\bigoplus_{j=1}^{m_{2k}} C(\mathbf{B}_{2k}), R_{\tau}\right) = H_*\left(F_{2k+1}^1(\mathbf{B}_{2k+1}), R_{\tau}\right)
$$

and $H_{k-h}(C(\mathbf{B}_{2k-h}), R_{\tau})$ is trivial for all $1 \leq h \leq k$ by inductive hypothesis.

The proof in case A_{3k+1} is a consequence of Remark 4.1.

One has that $H_{k-1}(C(\mathbf{A}_{3k-1}), R_{\tau})$ is a trivial Z-module by induction and, from Lem- $\text{ma } 4.1, H_k(F_{3k}^1(\mathbf{A}_{3k}), R_{\tau})$ and $H_k(F_{3k+1}^2(\mathbf{A}_{3k+1}), R_{\tau})$ are trivial since $H_{k-h}(C(\mathbf{A}_{3k-h-1}),$ *R_τ*) and $H_{k-h}(C(\mathbf{A}_{3k-h}), R_{\tau})$ are trivial by hypothesis, respectively, for $1 \leq h \leq k$ and $2 \leqslant h \leqslant k$.

Let now $n > 3k + 1$, we conclude the proof for A_n using induction on *n*. One supposes that $H_k(C(\mathbf{A_{n-1}}), R_\tau)$ is trivial as Z-module. Moreover $H_{k-h}(C(\mathbf{A_{n-h-1}}), R_\tau)$ are trivial by inductive hypothesis on the degree of homology, since $(n - h - 1) \geq 3(k - h) + 1$ for all $1 \leq h \leq k$. Then $H_{k-h}(C(\mathbf{A_{n-h-1}}), R_{\tau})$ are trivial for $0 \leq h \leq k$ and the thesis follows from Lemma 4.1.

The proof in case \mathbf{B}_n , for $n > 2k + 1$, is exactly the same.

Case **Dn** is a consequence of Lemma 4.1 applied to the exact sequence of complexes

$$
0 \to \bigoplus_{j=1}^{m_{n-1}} C(\mathbf{D}_{\mathbf{S}_{\mathbf{n}-1}}) \to C(\mathbf{D}_{\mathbf{n}}) \to F_n^1(\mathbf{D}_{\mathbf{n}}) \to 0
$$

since $C(\mathbf{D}_{\mathbf{S_k}}) = C(\mathbf{A_k})$ for all $0 \le k \le n - 1$ (we use the standard Dynking diagram of D_n). \Box

The last step is the

Proof of Theorem 1.2. From the universal coefficients theorem it follows

 \mathbf{r}

$$
H_k(C(\mathbf{W}), \{\varphi_1\}) \simeq H_k(C(\mathbf{W}), R_{\tau}) \otimes {\varphi_1} \oplus \text{Tor}(H_{k-1}(C(\mathbf{W}), R_{\tau}), \{\varphi_1\}).
$$
 (17)

If we set

$$
rk_{\mathbb{Q}}(H_k(C(\mathbf{W}), R_{\tau}) \otimes {\varphi_1}) =: a_{k+1}
$$

then, in the range specified in Theorem 1.1

 $\text{rk}_{\mathbb{Q}}[\text{Tor}(H_{k-1}(C(\mathbf{W}), R_{\tau}), \{\varphi_1\})]=:a_k.$

We recall, also, that $\{\varphi_1\} = \mathbb{Q}$, then

$$
H_k(C(\mathbf{W}), \{\varphi_1\}) = H_k(C(\mathbf{W}), \mathbb{Q}),
$$

moreover the rank of $H_k(C(\mathbf{W}), \mathbb{Q})$ equals the rank of $H^k(C(\mathbf{W}), \mathbb{Z})$.

It follows that relation (17) gives

 $\text{rk}[H^{k}(C(\mathbf{W}),\mathbb{Z})]=a_{k+1}+a_{k}$

and from a simple induction

$$
a_{k+1} = \sum_{i=0}^{k} (-1)^{(k-i)} \operatorname{rk} H^{i}(C(\mathbf{W}), \mathbb{Z}). \qquad \Box
$$

Remark 5.1. With the same technique used to prove Theorem 1.1, it is possible to prove a more general result.

Let *(W, S)* be a finite Coxeter system with $|S| = n$ and $m \in \mathbb{N}$ s.t. $m \mid o(\mathcal{A}(\mathbf{W}))$. If there exists an integer *h* s.t. $m \nmid o(\mathcal{A}(\mathbf{W}_k))$ for all $h < k < n$, then there exists an integer *p* s.t., for all $r < p$, $H^r(C(\mathbf{W}_h), R_\tau)$ is annihilated by a squarefree element $(1 - \tau^s)$ with $s \mid o(\mathcal{A}(\mathbf{W}))$, $s < m$, and, for all $q < p + (n - h - 1)$, $H^q(C(\mathbf{W}), R_\tau)$ is annihilated by a squarefree element $(1 - \tau^a)$ with $a \mid o(\mathcal{A}(\mathbf{W}))$, $a < m$.

As corollaries we obtain:

- $H^{q+1}(C(\mathbf{A}_{3q}), R_{\tau})$ and $H^{q+1}(C(\mathbf{A}_{3q-1}), R_{\tau})$ are annihilated by the squarefree element $(1 - \tau^3)$;
- if $m | o(A(\mathbf{W}))$ and $m \nmid o(A(\mathbf{W}_k))$ for all $k < n$ then, for $h < n$, $H^h(C(\mathbf{W}), R_\tau)$ is annihilated by a squarefree element $(1 - \tau^s)$ with $s \mid o(\mathcal{A}(\mathbf{W}))$, $s < m$.

Acknowledgement

Special thanks to prof. Mario Salvetti for very useful conversations.

References

- [1] A. Bjorner, G.M. Ziegler, Combinatorial stratification of complex arrangements, J. Amer. Math. Soc. 5 (1992) 105–149.
- [2] N. Bourbaki, Groupes et Algebres de Lie, Chapitres 4, 5, 6, Masson, Paris, 1981.
- [3] E. Brieskorn, Sur les groupes de tresses, in: Sem. Bourbaki (1971/1972), in: Lecture Notes in Math., vol. 317, Springer, Berlin, 1973, pp. 21–44.
- [4] C. De Concini, C. Procesi, M. Salvetti, Arithmetic properties of the cohomology of braid groups, Topology 40 (2001) 739–751.
- [5] C. De Concini, C. Procesi, M. Salvetti, F. Stumbo, Arithmetic properties of the cohomology of Artin groups, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (1999) 695–717.
- [6] C. De Concini, M. Salvetti, Cohomology of Artin groups, Math. Res. Lett. 3 (1996) 293–297.
- [7] C. De Concini, M. Salvetti, Stability for the cohomology of Artin groups, Adv. Math. 145 (1999) 291–305.
- [8] C. De Concini, M. Salvetti, Cohomology of Coxeter groups and Artin groups, Math. Res. Lett. 7 (2000) 213–232.
- [9] G. Denham, The Orlik–Solomon complex and Milnor Fibre homology, Topology Appl. 118 (2002) 45–63.
- [10] I.M. Gelfand, G.L. Ribnikov, Algebraic and topological invariants of oriented matroids, Dokladi 307 (1989) 791–795.
- [11] V.V. Goryunov, Cohomologies of groups of braid of series C and D and certain stratifications, Funk. Anal. Priloz. 12 (2) (1978) 138–140.
- [12] T. Khono, Homology of a local system on the complement of hyperplanes, Proc. Japan Acad. Ser. A 62 (1986) 144–147.
- [13] P. Orlik, H. Terao, Arrangements of Hyperplanes, vol. 300, Springer, Berlin, 1992.
- [14] P. Orlik, L. Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980) 167–189.
- [15] M.C. Prati, M. Salvetti, On local system over complements to arrangements of hyperplanes associated to Grassman strata, Ann. Mat. Pura Appl. 159 (1991) 341–355.
- [16] M. Salvetti, Topology of the complement of real hyperplanes in \mathbb{C}^n , Invent. Math. 88 (1987) 603-618.
- [17] M. Salvetti, The homotopy type of Artin groups, Math. Res. Lett. 1 (1994) 565–577.
- [18] S. Settepanella, Cohomologies of generalized pure Braid groups and Milnor fibre of reflection arrangements, Tesi di Dottorato, Universitá di Pisa, 2003.
- [19] F.V. Vainshtein, Cohomologies of braid groups, Funk. Anal. Priloz. 12 (2) (1978) 74–75.