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Abstract. We study the impact of Early Dark Energy fluctuations in the linear and non-
linear regimes of structure formation. In these models the energy density of dark energy is
non-negligible at high redshifts and the fluctuations in the dark energy component can have
the same order of magnitude of dark matter fluctuations. Since two basic approximations
usually taken in the standard scenario of quintessence models, that both dark energy den-
sity during the matter dominated period and dark energy fluctuations on small scales are
negligible, are not valid in such models, we first study approximate analytical solutions for
dark matter and dark energy perturbations in the linear regime. This study is helpful to
find consistent initial conditions for the system of equations and to analytically understand
the effects of Early Dark Energy and its fluctuations, which are also verified numerically. In
the linear regime we compute the matter growth and variation of the gravitational poten-
tial associated with the Integrated Sachs-Wolf effect, showing that these observables present
important modifications due to Early Dark Energy fluctuations, though making them more
similar to ΛCDM model. We also make use of the Spherical Collapse model to study the
influence of Early Dark Energy fluctuations in the nonlinear regime of structure formation,
especially on δc parameter, and their contribution to the halo mass, which we show can be
of the order of 10%. We finally compute how the number density of halos is modified in
comparison to ΛCDM model and address the problem of how to correct the mass function
in order to take into account the contribution of clustered dark energy. We conclude that
the inhomogeneous Early Dark Energy models are more similar to ΛCDM model than its
homogeneous counterparts.
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1 Introduction

The understanding of the accelerated expansion of the universe is one of the greatest chal-
lenges in physics. If we assume that General Relativity is our accepted theory of gravitation
we must introduce a new form of fluid with sufficiently negative pressure, p < −ρ/3, that
accounts for roughly 3/4 of the universe energy density today. The physical description of
this new form of matter, generically called dark energy (DE), is yet unknown. Latest data
analysis of luminosity distance of Supernovae type Ia [1], cosmic microwave background [2, 3]
and large scale structure [4, 5] are all consistent with a flat universe with approximately 1/4
of its critical density in the form of pressureless matter (cold dark matter and baryons) and
3/4 in the Cosmological Constant, Λ.

If the accelerated expansion is caused by Λ, since it is constant in space and time,
it does not cluster and has a negligible contribution to the energy density budget of the
universe at high redshifts, affecting solely the background evolution for z ∼ 1 and lower.
Although Λ is the simplest model for the accelerated expansion, it suffers from two severe
theoretical problems. Since the natural interpretation of Λ is the vacuum energy, Quantum
Field Theory should be able to determine its value. However it predicts a value for Λ that
can be several tens of orders of magnitude larger than what is observed, which is known as
the Cosmological Constant Problem, see, e.g., [6, 7]. Another problem, more closely related
to the cosmological evolution itself, is why the observed value of Λ is such that it becomes
important for the evolution of the universe just at the time we are able to measure its effects,
which is known as Coincidence Problem [8].

Many alternative models for the accelerated expansion have been proposed. Possibly
the most studied ones are based on canonical scalar fields [9–11], which are usually referred as
quintessence models. The evolution of quintessence is background dependent, fact that could
explain the transition from a decelerated to an accelerated phase as a natural evolution
between attractor regimes [8, 12]. This kind of mechanism can potentially alleviate the
Coincidence Problem, diminish the dependence on the initial conditions of the scalar field
and bring new features to the cosmological evolution, for instance, the possibility that the
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energy density of DE is non-negligible at high redshifts. Models presenting this behaviour
are called Early Dark Energy (EDE) and were extensively studied in the literature, see for
instance [13–17].

Another important feature of dynamical DE models is that, in contrast with Λ, they
possess fluctuations. On small scales, in the linear regime, quintessence perturbations are
several orders of magnitude smaller than Dark Matter (DM) perturbations and are usually
neglected in studies of structure formation. This is due to the fact that the effective sound
speed of canonical scalar fields perturbations, or the sound speed in the rest frame [18],
is ceff = δpe/δρe = 1, which suppresses the growth of field perturbations inside the sound
horizon scale, which, in turn, is of order of the particle horizon. However quintessence
fluctuations can not be neglected from both the theoretical and observational point of view
[19–21].

Moreover, there exists some realisations of DE models where its fluctuations can grow on
sub-horizon scales, i.e., with ceff � 1, such as k-essence models [22–25]. The possibility that
DE has an effective sound speed less than unity has been investigated by many authors, e.g.,
[26–30]. In particular, Ref. [30] points out that current CMB and LLS data slightly prefers
dynamical DE, ceff 6= 1 and some amount of EDE. It is also worth to note that clustered DE
seems to give a better prediction for the concentration parameter of massive galaxy clusters
[31].

Structure formation in EDE models has been studied by many authors, e.g., [14, 15, 32–
37]. In particular, for the case of ceff = 1, Ref. [35] shows that neglecting EDE perturbations
leads to incorrect constrains on the equation of state and Ref. [36] claims that EDE models
can be constrained by future observations of galaxy clusters. However all these studies either
neglected EDE perturbations or consider models with ceff = 1, which effectively renders
negligible perturbations on small scales.

The objective of this paper is to analyse structure formation in EDE models that can
present large fluctuations on small scales. In this scenario DE has two major characteristics
not present at the same time in the usual quintessence models: 1) DE energy density is
non-negligible at high−z and 2) DE fluctuations can be of the same order of magnitude of
DM fluctuations. We compare the results with the usual assumption of nearly homogeneous
EDE and ΛCDM model. Assuming that EDE is described by a perfect fluid, characterised
by its equations of state, pe = w(t)ρe, and the effective sound speed of its perturbations
c2

eff = δpe/δρe, we analyse both the linear and nonlinear evolution of EDE fluctuations and
their impact on DM growth, compute the number density of halos and how it is modified by
the contribution of DE fluctuations.

The outline of the paper is the following. In Sect. 2 we present and discuss the back-
ground evolution of two models of EDE. In Sect. 3 we study the evolution of linear pertur-
bations of a system with EDE and pressureless matter and calculate the matter growth and
the Integrated Sachs-Wolf effect. Sect. 4 is devoted to the study of the nonlinear evolution
and the Spherical Collapse Model. In Sect. 5 we present the results for mass functions and
in Sect. 6 we present our conclusions.
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2 Background evolution

We assume a universe with flat spatial section, DM (baryons are treated as dark matter) and
DE. Friedmann’s equations in conformal time are then:

H2 =
8πG

3
a2 (ρm + ρe) and Ḣ = −4πG

3
a2 [ρm + ρe (1 + 3w)] , (2.1)

where H = ȧ/a and the dots represent derivative with respect to conformal time. We choose
two different parametrizations for EDE. In the first one the energy density parameter of DE,
Ωe = 8πGa2ρe/3H2, is given as a function of its value at early times, Ωe

e, its equation-of-state
parameter now, w0, and matter energy density now, Ω0

m, [13]:

Ωe (a) =
Ω0

e − Ωe
e

(
1− a−3w0

)
Ω0

e + Ω0
ma

3w0
+ Ωe

e

(
1− a−3w0

)
. (2.2)

We will refer to this parametrization as Model A. The advantage of this parametrization is
that one can fix Ωe

e, however it does not allow to directly choose details of evolution of the
equation-of-state parameter. In order to control some properties of w, such as the value in
the matter dominated era, wm, the moment of transition from wm to w0, ac, and the duration
of this transition, ∆m, we also study the following parametrization [38]:

w (a) = w0 + (wm − w0)
1 + exp

(
ac

∆m

)
1 + exp

(
−a−ac

∆m

) 1− exp
(
a−1
∆m

)
1− exp

(
1

∆m

) , (2.3)

We refer to this parametrization as Model B. Using the parametrization (2.3), on the other
hand, we need to fix values of the parameters ∆m, ac and wm in order to give the desired
value of Ωe

e. In this case the DE energy density is given by:

ρe (a) = ρ0
e exp

(
−3

∫ a

a0

(1 + w (a′)) da′

a′

)
. (2.4)

For both models we choose the amount of DE at early times to be Ωe
e ' 0.018, consistent

with the limits presented in [17], the amounts of matter and DE now are Ω0
m = 0.25 and

Ω0
e = 0.75 and the DE equation of state now is w0 = −0.9. In Model B we also set wm =
−0.1655, ac = 0.5 and ∆m = 0.09. For these two models we show the evolution of Ωm (a),
Ωe (a), w (a) in Fig. 1.

As we can see in Fig. 1, in Model A, Ωe (a) is basically constant at high-z and its
equation of state varies slowly, whereas in Model B the amount of DE has a non-negligible
variation during most of the cosmic time and has a rapid transition of its equation of state
for a ' 1. We will show that these differences in the background evolution will imprint
distinct features both in matter and in DE fluctuations. Assuming a Hubble constant of
H0 = 72 km s−1Mpc−1 the age of the universe in a ΛCDM model with Ω0

m = 0.25 is 13.77 Gy,
whereas in Model A we have 13.44 Gy and in Model B 13.01 Gy.

In Fig. 2 we also show the evolution of the comoving volume, given by

d2V

dzdΩ
=
r2 (z)

H (z)
, (2.5)

where r (z) =
∫ z

0 H
−1 (z′) dz′. This quantity, which depends only on the background evo-

lution is important for the study of cluster number counts, which in turn also depends on
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Figure 1. Evolution of matter and DE density parameters, Ωm (a) (solid black line) and Ωde (a) (blue
dashed line), DE equation of state w (a) (red dot-dashed line). Left (right) panel: Model A (B).
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Figure 2. Comoving volume for ΛCDM model (solid black line) and models A (blue dotted line) and
B (red dashed line) of EDE.

perturbative properties via the mass function. Note that both models of EDE that we are
considering present a smaller volume then ΛCDM model and that important differences ap-
pear only at high−z. For redshifts z < 0.5 all three volumes are very similar, which already
suggests that cluster observations at low redshifts would poorly differentiate between these
DE models. We will return to this issue in Sect. 5.

3 Linear evolution

In this section we study the linear relativistic evolution of a system with DE and matter. In
models of EDE the energy density of DE at high redshifts, e.g., at the redshift of decoupling
zdec, is not negligible, hence we carefully analyse approximate analytical solutions in order to
establish consistent initial conditions for the equations of motion. Moreover this study will
clarify some effects due to EDE and its perturbations.

In the Newtonian gauge, in Fourier space, in the absence of anisotropic stress, Ref. [39],
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the perturbed equations as a function of conformal time can be written as:

δ̇m + θm = 3φ̇ , (3.1)

θ̇m +Hθm = k2φ , (3.2)

δ̇e + 3H
(
δpe

δρe
− w

)
δe + (1 + w) θe = 3 (1 + w) φ̇ , (3.3)

θ̇e +H
(
1− 3c2

a

)
θe =

(δpe/δρe) k
2δe

(1 + w)
+ k2φ , (3.4)

k2φ+ 3H
(
φ̇+Hφ

)
= −3H2

2
(Ωmδm + Ωeδe) , (3.5)

where

c2
a =

ṗe

ρ̇e
= w − ẇ

3H (1 + w)
(3.6)

is the squared adiabatic sound speed and the pressure perturbation is given by [27]:

δpe = c2
effδρe + 3H (1 + w)

(
c2

eff − c2
a

)
ρe
θe

k2
. (3.7)

Note that the equation of state can not cross the phantom barrier, otherwise c2
a will diverge,

and so will DE perturbations. In the two models we study there is no phantom crossing.
For a treatment of this issue see Ref. [40]. We solve the system of equations (3.1)-(3.5)
numerically, however the (ii)-Einstein equation, given by

φ̈+ 3Hφ̇+

(
2ä

a
−H2

)
φ =

3H2

2
Ωe

(
δpe

δρe

)
δe , (3.8)

will be useful to find analytical solutions.
It will also be useful to write a second order equation for the density contrast. For the

sake of simplicity we assume that ceff and w are constants, then we have:

δ̈ + [H (1− 3w)−A] δ̇ +
[
3∆
(
Ḣ+H2

)
− 3H∆A+ c2

effk
2
]
δ = (1 + w)

(
S − k2φ

)
, (3.9)

where ∆ = c2
eff − w,

A =
18HḢ∆

9H2∆ + k2
(3.10)

and
S = 3φ̈+ 3H

(
1− 3c2

eff

)
φ̇− 3Aφ̇− 9H2∆φ . (3.11)

Eq. (3.9) is valid for any perfect fluid characterised by constant w and c2
eff , so the correspond-

ing equation for matter is given by assuming w = c2
eff = 0.

The function A is related to the presence of the pressure perturbations that are pro-
portional to θ. It is useful to note that on small scales, k � H, A ' 0 and δpe ' c2

effδρe,
as already observed in [41]. On large scales, k � H, we have A ' 2Ḣ/H and the pressure
perturbation strongly deviates from the value prescribed by ceff .

There are two important scales that determine the qualitatively behaviour of DE per-
turbations: the particle horizon

λH (a) =

∫ a

ai

da′

a′H
, (3.12)
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(horizon for short), which is also important for matter perturbations, and the sound horizon

λs (a) =

∫ a

ai

ceff (a) da′

a′H
. (3.13)

Perturbations with wavelength smaller than λs oscillate with decreasing amplitude and even-
tually reach a minimum value proportional to the gravitational potential. Perturbations with
wavelength larger than λs effectively behave as pressureless, growing at the same pace as mat-
ter perturbations. Finally perturbations in both matter and DE with wavelength larger than
λH will follow the time dependence of the gravitational potential, being constant whenever
DE effect in the background is negligible.

We are interested in small scales were nonlinear structures, such as galaxy clusters,
form. Typically we can assume that the order of magnitude of such scales is 10 h−1 Mpc, or
knl ' 0.63 h Mpc−1. Shortly after decoupling, e.g., at z = 1000, the horizon wave number
is kH ' 0.017 h Mpc−1 (ΛCDM with Ω0

m = 0.25 background is assumed), hence both DE
and DM perturbations that go nonlinear are well inside the horizon on the onset of matter
dominated period. For this reason we will focus our analysis on scales much smaller than
λH , consequently the only scale important for DE perturbations is λs. For a study of scales
larger than the horizon see Ref. [41].

It is interesting to determine the value of ceff , assumed constant, such that ks = knl

today:
cnl = 9.4× 10−4 . (3.14)

In models with ceff � cnl the sound horizon is always smaller than the nonlinear scale, then
DE perturbations will behave as pressureless and we can effectively assume ceff = 0. On
the other hand, in models with ceff � cnl, DE perturbations are suppressed by its pressure
support on nonlinear scales. In this work we treat the two limiting cases: one with negligible
sound speed, ceff = 0, and one with a non-negligible sound speed, ceff = 1. For studies of time
dependent ceff in linear theory see Ref. [42] and for arbitrary values of ceff during nonlinear
evolution of DM see Ref. [43, 44].

3.1 Non-negligible ceff

On scales well inside the horizon, for constant ceff and w, from Eq. (3.9), DE perturbations
obey the following equation:

δ′′e + α
δ′e
a

+

(
β +

c2
effk

2

H2

)
δe
a2

= −(1 + w)

H2

k2φ

a2
, (3.15)

where ′ = d/da, wt = Ωew,

α =
3

2
(1− wt)− 3w , and β =

3∆

2
(1− 3wt) . (3.16)

Eq. (3.15) has the particular approximate solution:

δe ' −
(1 + w)φ

c2
eff

, (3.17)

which becomes more accurate the bigger ceffk/H is. Note that since ceffk/H grows in time,
as long as the background parameters do not change too fast in time, δe will approach
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solution (3.17) on all scales. Moreover, the homogeneous solutions of Eq. (3.15) oscillate
with decreasing amplitude [41, 45], hence eventually solution (3.17) will be reached and can
be used to set the initial value of δe as a function of φ.

Before we determine the initial value of θe, we proceed to find solutions for φ. Since we
are interested on small scales we can assume that δpe ' c2

effδρe. We verified that, for the IC
we will determine and ceff = 1, the error in this expression compared to Eq. (3.7) for a scale
k = 0.1hMpc−1 is initially of 1− 3% and below 1% for z < 100 and that the error decreases
for smaller scales. Then, substituting the expression (3.17) in Eq. (3.8) and changing the
independent variable to the scale factor a, the evolution of the gravitational potential is given
by the equation:

φ′′ +

(
7

2
− 3

2
wt

)
φ′

a
+

(
3 (1 + w)

2
Ωe − 3wt

)
φ

a2
= 0 . (3.18)

This equation is valid as long as Ωe and w are nearly constant, which is true for Model A
roughly for 10 < z < 1000 and for Model B roughly for 100 < z < 1000. Solving this equation
in this interval enables us to analytically evaluate the time variation of φ. The solutions of
Eq. (3.18) are power laws φ ∝ an, where n is solution of the algebraic equation

n2 +

(
5

2
− 3

2
wt

)
n+

3 (1 + w) Ωe

2
− 3wt = 0 . (3.19)

For non-EDE models, when DE is very subdominant, we can set Ωe = 0 and the solutions are
n = 0 and n = −2.5, which indicates that, neglecting the decaying mode, the gravitational
potential is constant during matter dominated era, a well known result for the Einstein-de-
Sitter universe. However, in EDE models φ is not constant any more, its early time variation
depends on both Ωe and w, but note it is independent of ceff .

The largest values of n, which give the solutions that decay more slowly, are

nmod A = −0.0100 and nmod B = −0.0127. (3.20)

Since in Model A both Ωe and w are approximately constant before DE domination, the error
in this expression against the full numerical solution is below 1% in the range 5 < z < 1000.
Given that in Model B the time variation of Ωe and w is larger, its analytical solution has
an error below 1% only in the range 150 < z < 1000.

Once we know how φ initially varies in time we can find δ̇e from Eq. (3.17) and use
Eq. (3.3) to determine the initial value of θe:

θe = 3φ̇− φ̇

c2
eff

−
3H
(
c2

eff − w
)
φ

c2
eff

. (3.21)

Hence Eq. (3.21) can be used to determine the initial value of θe as a function of the initial
value of φ and its initial time derivative.

Finally we look for analytical solutions for matter perturbations in order to determine
IC for δm and θm. Setting w = ceff = 0 in Eq. (3.15) we have:

δ′′m +

(
3

2
− 3wt

2

)
δ′m
a

= − k2φ

H2a2
(3.22)
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It is useful to note that, although in EDE models Ωe is non-negligible at high-z, on small
scales, since δe ∼ φ, we can assume that Ωmδm � Ωeδe in Eq. (3.5), then we have:

δm '
−2k2φ

3H2Ωm
. (3.23)

Using Eq. (3.23) we can find the initial value of δm as a function of the initial value of a given
φ. Inserting Eq. (3.23) in Eq. (3.22) we have the equation for δm alone:

δ′′m +

(
3

2
− 3wt

2

)
δ′m
a
− 3Ωm

2

δm

a2
= 0 , (3.24)

which is the usual equation for the evolution of matter perturbations well inside the horizon.
The solutions are power laws δm ∝ ap, where p is determined by:

p2 +

(
1

2
− 3wt

2

)
p− 3Ωm

2
= 0 . (3.25)

Note that, under the approximations taken, when we compare Eqs. (3.25) and (3.19), we find
that n = p− 1. Then the corresponding values for p are:

pmod A = 0.9900 and pmod B = 0.9873 . (3.26)

In order to find the initial value of θm we can use Eq. (3.1). The initial value of δm and
its initial dependence with a, is given by finding p in Eq. (3.25). Then on small scales we
have:

θm = −δ̇m . (3.27)

In Fig. 3 we show the evolution of δe according to the numerical solution of equa-
tions (3.1)−(3.5), and the analytical solution of Eq. (3.17), with φ given by the numerical so-
lution. The only value we need to choose is φi = φ (ai), taking ai = 0.001 and φi = −6.2×10−6

we get δm (1) ' 0.1. In order to check the consistency of the analytical solutions that we
have used to determine the IC of DE perturbations, given by Eq. (3.17) and Eq. (3.21), (red
dotted-dashed line) we also show the evolution of δe using θe ten times greater than as given
by Eq. (3.21) (blue line). As we see, the solution of Eq. (3.17) is in good agreement with the
numerical solution. In the case of bigger θe, δe oscillates with an initial greater amplitude,
which decreases with time and eventually approaches the value given by Eq. (3.17). For
sake of clarity in these plots, we assumed c2

eff = 0.1 in order to have a smaller frequency of
oscillation. It is important to note that for this scale and for this value of ceff , at low z, DE
perturbations are 4 orders of magnitude smaller then δm. For smaller scales and larger ceff ,
δe will be even smaller than δm.

3.2 Negligible ceff

As we will see, in the case of negligible ceff , DE perturbations can have the same order of
magnitude of matter perturbations. Although this fact impedes us to assume that Ωmδm �
Ωeδe for EDE models, fact that simplified the equations for the case of non-negligible ceff ,
when ceff is negligible we will have another sort of simplification. Note that substituting the
expression for the pressure perturbation, Eq. (3.7), in the equation for θe, Eq. (3.4), and
assuming ceff = 0 we obtain
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Figure 3. Linear evolution of δe with c2eff = 0.1 for a mode k = 0.1hMpc−1: analytical solution,
Eq. (3.17) (black dashed line), numerical solution with IC from Eqs. (3.17) and (3.21) (red dot-dashed
line) and the numerical solution with θe ten times bigger (blue line). The change in the analytical
solution due to the different IC is almost imperceptible in this scale so we only show the first case.

θ̇e +Hθe = k2φ , (3.28)

which is just the same equation for θm, Eq. (3.2). Hence both matter and DE perturbations
will feel the same force and flow in the same way. Then, using Eqs. (3.1) and (3.3), we can
determine an equation that directly relates δm and δe:

δ̇e − 3Hwδe = (1 + w) δ̇m , (3.29)

where, since, on small scales, both δm and δe will be of order H−2k2φ, we neglected the
φ̇ term. Assuming that δm ∝ ap we find the following relation between DE and matter
perturbations:

δe =
(1 + w) p

p− 3w
δm . (3.30)

In models with negligible amount of DE during matter era we have p = 1, then

δe =
(1 + w)

(1− 3w)
δm , (3.31)

which is in accordance with literature [29, 45, 46]. However, as we will show in Eq. (3.35),
p ' 1 in EDE models with negligible ceff , then we can actually use Eq. (3.31) to set the initial
value of δe as a function of δm. It is also interesting to observe that Eq. (3.31) indicates
that DE perturbations diverge as w → 1/3, which can be achieved by a tracking scalar field
during radiation dominated era. However this solution is valid only for ceff = 0, hence, as
consistency condition for DE perturbations, we should expect that whenever w → 1/3 we
must have ceff > 0. In the models we are studying, during the matter dominated era and DE
domination, we never have w = 1/3.

At this point we derived a relation between DE and matter perturbations but not their
evolution with time. Setting w = ceff = 0 in Eq. (3.15) we have the equation for the evolution
of δm:

δ′′m +

(
3

2
− 3wt

2

)
δ′m
a

=
3

2a2
(Ωmδm + Ωeδe) . (3.32)
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Now we can use Eq. (3.30) to express δe as a function of δm and rewrite Eq. (3.32) as

δ′′m +

(
3

2
− 3wt

2

)
δ′m
a
− 3

2

(
Ωm +

(1 + w) p

p− 3w
Ωe

)
δm

a2
= 0 . (3.33)

While Ωm, Ωe and w are nearly constants we can find the solution δm ∝ ap, where p is
solution of

p2 + p

(
1

2
− 3wt

2

)
− 3

2

(
Ωm +

(1 + w) p

p− 3w
Ωe

)
= 0 . (3.34)

For the two models we are studying we have the following values at ai:

pmod A = 1.0052 and pmod B = 0.9934 . (3.35)

As we can see, the deviation from p = 1 is very small and we could actually use expression
(3.31) in order to determine the initial value of δe as a function of δm. Moreover expression
(3.31) gives a better order of magnitude estimation of δe for low−z than Eq. (3.30), that
depends on the determination of p from Eq. (3.34), which is not accurate for low−z, when
both Ωe and w can not be assumed constant. Hence in what follows we will use the expression
(3.31) to compute the initial value of the DE perturbation.

To determine the initial value of δm as a function of φ we use Eq. (3.30) in Eq. (3.5),
then, for small scales we have:

δm = − 2k2φ

3H2
(

Ωm + Ωe
1+w
1−3w

) . (3.36)

The initial value of θm can be determined in the same way as we did for the case of non-
negligible ceff , using Eq. (3.27).

Now we proceed to find the initial time variation for φ. For the case ceff = 0 DE
perturbations do not contribute to the variation of φ, i.e., the RHS of Eq. (3.8) is zero and
then the equation that determines the power of n of φ is the following:

n2 + n

(
5

2
− 3

2
wt

)
− 3wt = 0 . (3.37)

Here, in contrast to the case of non-negligible ceff , the relation n = p − 1 is not valid. Note
also that n only depends on the product Ωew, differently from case of non-negligible ceff ,
where it also depends directly on Ωe. This indicates that EDE models with negligible sound
speed give a very low contribution to the time variation of φ, due to the fact that, although
Ωe is not negligible during the matter era, we have Ωew ' 0. The highest values of n for
models A and B are:

nmod A = 0.0017 and nmod B = −0.0036 . (3.38)

Note that the absolute value of n is one order of magnitude smaller than the solutions for the
case of non-negligible ceff , Eq. (3.20). Since the background evolution is the same for both
cases, this clearly shows that the most important effect for the evolution of the gravitational
potential in EDE models is pressure perturbation.

In Fig. 4 we show the evolution of matter and DE perturbations as well as the evolution
of δe according to Eq. (3.31). We show this relation, instead of the more general one, in
Eq. (3.30), because initially the deviation from p = 1 is very small (bellow 1%) and for late

– 10 –



0.001 0.01 0.1 1
 a

-4.0

-3.0

-2.0

-1.0

 l
o
g

1
0
 δ

 

Model A

0.001 0.01 0.1 1
 a

-4.0

-3.0

-2.0

-1.0

 l
o
g

1
0
 δ

 

Model B

Figure 4. Linear evolution of perturbations with ceff = 0 and k = 0.1hMpc−1: numerical solution
of δm (black solid line), numerical solution of δe (blue dashed line) and δe according to the relation
given by the analytical solution, Eq. (3.31), (red dot-dashed line).

times, when Ωm, Ωe and w are not constant, the computation of p via Eq. (3.34) is less
accurate than just assuming p = 1. As we can see, Eq. (3.31) is a very good approximation
for δe during the matter dominated era, however, once the transition to the DE dominated
era starts, it becomes much less accurate. Anyhow Eq. (3.31) can be used as an estimate
of the order of magnitude of δe for late times. It is also interesting to note that in Model
A the perturbations in DE are larger than matter perturbations until w starts to decrease,
a ' 0.1. For Model B, since 1 + w is smaller than in Model A, δe is smaller during most of
the evolution. However, due to the latter transition of w in Model B, δe starts to decrease
at a later time and its final value is larger then in Model A.

3.3 Matter growth and ISW effect

Once we know approximate analytical solutions to set the IC of the system of equations, we
proceed to study the effects of EDE models on the linear evolution of matter perturbations
and gravitational potential.

In Fig. 5 we show the evolution of the normalised growth function D/a, where D =
δm (a) /δm (1), and the logarithmic derivative of the growth function f = dlnD/dlna and its
percentual difference against ΛCDM,

∆f = 100× fmod − fΛCDM

fΛCDM
. (3.39)

In the ΛCDM model, both the normalised growth and f tend to a constant value for low
a (high z) because D → a whenever DE is very subdominant. In this limit f → 1 and
D/a→ 1.34.

In EDE models D/a and f vary at high z, but in the case of ceff = 0, DE perturbations
tend to compensate the change in background evolution due to EDE and their values get
closer to the ΛCDM values. In the case of ceff = 1, DE perturbations are much smaller and
practically do not compensate the change in the background evolution, thus the deviation
from ΛCDM is more prominent.

This behavior can be clearly understood in terms of Eqs. (3.24) and (3.32). For a
given model, when ceff = 0, DE perturbations enhance DM clustering via the last term
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Figure 5. Evolution of f (left top panel), its percentage difference against ΛCDM model (left bottom
panel) and the normalised growth factor D/a (right panel), for a mode k = 0.1hMpc−1. Line styles
and colours for the different models are indicated in the legends.

in the LHS of Eq. (3.32), which is absent in Eq. (3.24). Since EDE models have a less
decelerated background expansion than ΛCDM model during the matter dominated era,
which in turn makes DM clustering less efficient, the contribution of DE perturbations in the
case of ceff = 0 tend to compensate this change, making DM growth in these models more
similar to the ΛCDM one at high z.

At low z the situation is reversed, EDE models show a less accelerated expansion, which
induces a faster DM growth than in ΛCDM. Again DE perturbations enhance this growth,
but now making it more different from the ΛCDM one. Therefore, as we can see in Fig. 5,
∆f becomes larger at low z, particularly for EDE models with ceff = 0. Note that this effect
is more important in Model B, which presents larger DE perturbations at low z. However,
the integrated impact of DE perturbations, which can be observed via D/a at a = 0.001,
always makes DM growth more similar to ΛCDM. As we will see in Sect. 5 the integrated
impact of EDE models in DM growth will cause large differences in the abundance of galaxy
clusters via the normalisation of the matter power spectrum, σ8, but the specific influence
of DE pertubations is to make cluster abundace more similar to the predictions of ΛCDM
model.

Besides this general behaviour of EDE models, we can see that Model B produces the
most distinct evolution and variation between the two values of ceff . This is mainly caused
by the rapid transition of its equation of state, which produces a very different background
evolution and also allows DE perturbations to grow for a longer period when ceff = 0.
Although the background evolution of Model B may be unrealistic, for instance, providing a
rather low age of 13.01 Gy, it is very valuable to clearly identify the changes that large DE
perturbations may cause. Since current data on f have a precision around 10% [5], even in
Model B, large DE perturbations would be weakly distinguished from the case of negligible
DE fluctuations. However future surveys like Euclid, which may achieve about 1% precision
[47], could make a much more significant distinction.

The Sachs-Wolfe effect [48] causes the gravitational blueshift (redshift) of CMB photons
when they fall in (escape from) potential wells near the time of last scattering. When the
gravitational potential varies in time, the temperature variation of CMB photons is associ-
ated with the Integrated Sachs-Wolfe effect (ISW). Assuming zero opacity the temperature
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fluctuation is proportional to:

∆T

T
∝
∫ ηdec

η0

φ̇dη = φ (ηdec)− φ (η0) , (3.40)

where ηdec and η0 are the conformal time at decoupling (zdec ' 1100) and now, respectively.
The ISW effect can be separated into two components: the early ISW, which is usually at-
tributed to the influence of residual radiation energy after the redshift of last scattering and
the late ISW, associated with the accelerated expansion at low redshift. Since we neglect
radiation, we will only deal with ISW originated by DE. While Ωm ' 1, the gravitational po-
tential is nearly constant on all scales and the corresponding ISW during matter dominated
era is negligible. However, for EDE models we have Ωm ' 0.99 at high−z, so the background
evolution alone should generate a distinct time evolution for φ. Moreover, pressure pertur-
bations in EDE directly source the time variation of the gravitational potential, Eq. (3.8),
and it turns out that this contribution is more important. In order to visualise how EDE
and its perturbations generate the ISW effect, in Fig. 6 we show the function

F =
φ (a)

φ (adec)
, (3.41)

so we have ∆T
T ∝ φ (adec) (1− F (1)). One can clearly see that the time variation of φ is

greater in models with ceff = 1 than ceff = 0. Since the background evolution of Model A is
similar to ΛCDM, in the case of ceff = 0 the ISW effect is also very similar to the ΛCDM
model. Again, the general effect of models with null ceff is to compensate the changes of
EDE in the background evolution. Although in principle ISW has limited power to constrain
DE models due to its large cosmic variance, the observation of this effect is improving and a
detection of 4.4σ level has been reported [49].

4 Nonlinear evolution

Now we proceed to study the nonlinear evolution of DE and matter fluctuations, which can
provide important information about the formation of DM halos. One difficulty that arises
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in this analysis is how to evolve DE fluctuations in the nonlinear regime. Many authors have
addressed this issue using the Spherical Collapse Model, e.g., [43, 46, 50–52]. Independently
of the approach used, the most important point we have to observe is when DE fluctuations
actually become nonlinear, i.e., δe & 1. The key property that controls this behaviour is
the effective sound speed, ceff , which was shown can be constrained using future data on the
abundance of galaxy clusters [44, 53].

As we showed in the linear regime, DE perturbations in models with non-negligible
ceff are at least few orders of magnitude smaller than δm on small scales. We also verified
that, in this case, neglecting DE perturbations changes the value of the linearly evolved δm

only about 0.02%. Moreover its value is proportional to the value of φ, which, before DE
domination, is known to remain approximately constant even during the nonlinear regime
[54, 55]. Hence we expect that the contribution of δe for the gravitational potential will be
very small during the nonlinear regime. For this reason, in the case of ceff = 1, we assume
that DE perturbations can be neglected for the nonlinear evolution.

For the case of ceff = 0, DE perturbations can have the same order of magnitude of
matter perturbations, hence they can not be neglected, otherwise the linearly evolved δm

can change up to 20%. Evidently an intermediate behaviour should appear when ceff & cnl,
in this case one could incorporate the linear evolution DE perturbations with the nonlinear
evolution of DM [43]. Here we want to focus on the two limiting cases: the one where δe is
most unimportant for the nonlinear evolution of DM, ceff = 1, and the other where δe is the
most important for it.

We use the fluid approach to solve the SC model derived from the Pseudo-Newtonian
Cosmology (PNC) [45, 52], which is suitable to treat the nonlinear evolution of perfect fluids
with relativistic pressure on small scales. The equations for a system with matter and DE
fluctuations, with ceff = 0, can be written as:

δ̇m + θ (1 + δm) = 0 , (4.1)

δ̇e − 3Hwδe + θ (1 + w + δe) = 0 , (4.2)

θ̇ +Hθ +
θ2

3
= −3H2

2
(Ωmδm + Ωeδe) . (4.3)

For the case of negligible DE perturbations we only need to evolve Eqs. (4.1) and (4.3),
setting Ωeδe = 0 in the latter, in this case we have the usual SC model for dark matter
[56–58].

The most relevant quantity we compute using the SC model is the critical density
contrast, δc, defined by

δc (zc) = δmL (zc) , (4.4)

where δmL is the linearly evolved matter density contrast with initial conditions such that
non-linearly evolved δm has vertical asymptote at zc, i.e.,

lim
z→z+c

δm (z) =∞ . (4.5)

Numerically we need to determine some value above which we consider δm has diverged; we
observed that choosing 105 gives the classical value in Einstein-de-Sitter universe, δc ' 1.686,
with an error of at most 0.5% for 0 ≤ z ≤ 4.

The function δc depends both on the linear and nonlinear evolution. Although we do
not have a framework to solve the relativistic SC model, we can compare the PNC and GR
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box.

predictions for the linear evolution. It is clear that PNC will not give accurate results for
scales of order of magnitude comparable with the horizon, however, for k = 0.1 h Mpc−1,
the values of δm given by PNC differ from GR at most 0.1% and decreases for smaller
scales. Hence computing δc using Eqs. (4.1)−(4.3) and its linearised version should be a
good approximation.

Now we need to provide the initial conditions to evolve the nonlinear equations. We
choose values of δm (ai) in order to get 0 ≤ zc ≤ 4. As we discussed in section 3.2, for the case
of null ceff we can determine δe (ai) using Eq. (3.31), use θ (ai) = −δ̇m (ai), assuming δm ∝ a.
For the case of non-negligible ceff we assume δm ∝ ap with p determined by Eq. (3.26). It
is important to observe that all these relations can be derived from the PNC equations,
Eqs. (4.1)−(4.3).

We show the critical density contrast in function of z in Fig. 7. For the cases of ceff = 0
DE perturbations clearly make δc closer to the ΛCDM values. This happens because, while
at background level EDE changes the expansion rate and lowers Ωm, DE perturbations
contribute to the gravitational potential, compensating the change in background. Note that
the values of δc that we found are consistent with small departures (less than 1%) from
ΛCDM values [34, 59], even in the presence of large EDE fluctuations.

The total mass of halos

In models with clustering DE we must care about its contribution to the total mass of the
halo. The presence of DE can either add or subtract mass from the forming DM halo. For the
case of negligible ceff , Ref. [46] argues that DE contribution is constant in time and evaluates
it at the virialization radius, Rvir.

The computation of Rvir depends on the details of the virialization process. In the
usual SC model, in an EdS universe, the virialization radius is half of the turnaround radius,
Rvir = Rta/2. Once the virialization is reached one can define the DM overdensity of the
formed halo. There are two common definitions: ∆V(zc) = (ρm(zv)+δρm(zv))/ρm(zc) ' 178,
where zv is the redshift of virialization, and ∆V(zv) = (ρm(zv) + δρm(zv))/ρm(zv) ' 147, see
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Refs. [60, 61] for details and discussion. However when DE is present these values change in
time and the virialization process also depends on the properties of DE [44, 46, 62, 63].

Here we will use the usual relation between turn-around and virialization radius Rvir =
Rta/2. Although this is not valid in non-EdS models and the values of ∆V can be considerably
different, this simplified relation gives a good approximation for the fraction of DE mass to
the DM mass:

ε =
Me

Mm
. (4.6)

For instance, we checked that changing Rvir by 5%, which is common for inhomogeneous DE
models Ref. [43], changes ε by 1%.

After solving the system of Eqs. (4.1)−(4.3) we find the value R using the conservation
of DM mass:

δm + 1 = (δmi + 1)

(
a

ai

Ri

R

)3

. (4.7)

The virialized mass associated with DM is then given by:

Mm = 4π

∫ Rvir

0
dRR2(ρm + δρm) . (4.8)

Now we also have to define the DE mass contained in the same region where the DM halo has
been formed, Me. In Ref. [46] it is defined as the matter associated only with the fluctuations
of DE, which we will call

MeP = 4π

∫ Rvir

0
dRR2δρe . (4.9)

However, this choice makes a discrimination between the DE and DM contributions. The
latter is computed using its total density, ρm + δρm, whereas the former only considers the
fluctuation contribution. Treating the two fluids on equal foot, the total contribution of DE
mass can be evaluated based on the so-called active density in the Poisson equation in the
presence of relativistic pressure, ∇2φ = 4πG(ρ+ 3p). Hence we have:

MeT = 4π

∫ Rvir

0
dRR2

[
(1 + 3w)ρe + (1 + 3c2

eff)δρe

]
(4.10)

The motivation to consider the total mass (background plus perturbative contributions)
is that the astrophysical processes associated with galaxy clusters are sensitive to the total
gravitational potential. This interpretation is also carried out by Ref. [64] in order to estimate
the mass of the Local Group. Although this background contribution may be debatable we
decided to evaluate it in order to verify whether it can produce a non-negligible effect. For
models with ceff = 1, DE perturbations are much smaller than unity at the virialization time,
hence they can be neglected in Eq. (4.10).

In Fig. 8 we show the evolution of the quantity ε for models with homogeneous DE (left
panel), in which case we compute ε using Eq. (4.10), and for models with inhomogeneous
DE, computing ε both with Eq. (4.9) and Eq. (4.10) (right panel). Note that due to the
background contribution in Eq. (4.10), even in the case of ceff = 1 and ΛCDM models, DE
can subtract only about 1% of DM mass. However this effect appears only at low redshifts,
when Ωe ∼ Ωm. For the case of ceff = 0, the fraction of DE in a DM halo can be much larger,
but now adding mass to the halo. In these models the DE contribution does not go to zero at
higher z because of the combination of two factors: while Ωe decreases, but not to negligible
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values, w decreases as well, which in turn, according to Eq. (3.31), makes the ratio δe/δm

grow.
This is a characteristic behaviour of EDE models. As already shown in Ref. [46], for

the perturbative contribution and constant w, around −1, ε is at most 0.05 and tends to zero
as z grows. In Ref. [44], for models with w = −0.8 and c2

eff = 10−6, the authors claim that
maximal value of DE mass fraction in halos is 0.1%. However they assume DE fluctuations
are small and can be treated within linear theory, which is not valid for the models with
ceff = 0 we are studying.

5 Abundance of halos

In this section we study the effect DE fluctuations on the abundance of halos. We decided
to parametrize the mass function using the Sheth & Tormen (ST) prescription [65–67]:

dn

dM
= −

√
2a

π
A

[
1 +

(
aδ2
c

D2σ2
M

)−p]
ρ̄m
M2

δc
σM

d lnσM
d lnM

exp

(
−aδ2

c

2D2σ2
M

)
(5.1)

where a = 0.707, p = 0.3, A = 0.2162,

σ2
M =

1

2π2

∫ ∞
0

dkk2W 2 (kR)P (k) (5.2)

is the squared variance of the matter power spectrum, P(k), which we computed using
the BBKS transfer function [68], smoothed with a top-hat window function, W (kR) =
3(kR)−3(sin(kR) − kR cos(kR)), where R is the scale enclosing the mass M = (4π/3)R3ρ̄m
and ρ̄m is the comoving matter density. The ST mass function depends critically on the linear
overdensity parameter δc of dark matter, therefore also a small variation of this quantity will
give a huge effect on the high-mass tail of the mass function.

In order to clearly observe the effects of DE fluctuations we compute the number density
of objects above a given mass at fixed redshift:

n(> M) =

∫ ∞
M

dn

dM ′
dM ′ . (5.3)
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Table 1. Table of the normalisation of the matter power spectrum for the different models analysed.

Model σ8

A, ceff = 0 0.761
A, ceff = 1 0.698
B, ceff = 0 0.674
B, ceff = 1 0.532

We choose four different redshifts, namely z = 0, 0.5, 1, 2. The actual number of halos also
depend on a integral over the comoving volume, hence it depends both on background and
perturbative properties of DE. For the models we consider the comoving volume is always
smaller than in ΛCDM, see Fig. 2.

We adopt as reference model the ΛCDM model with normalisation of the matter power
spectrum σ8 = 0.776, in agreement with CMB measurements by the WMAP team [69, 70].
Since the background history and therefore the growth factor for the EDE models differ from
the ΛCDM models, perturbations will evolve differently in the different classes of models.
Therefore we decide to adopt the CMB normalisation: we fix the same amplitude of the
perturbations at the CMB epoch and we rescale it by the ratio of the different growth
factors. More quantitatively we have

σ8,DE = σ8,ΛCDM
DΛCDM(zdec)

DDE(zdec)
. (5.4)

In Tab. 1 we show the normalisation of the power spectrum for the dark energy models
considered in this work.

As one can notice, the Model B is the one differing most from the ΛCDM model.
The matter power spectrum normalisation when ceff = 1 is 30% lower than the reference,
therefore we expect that the mass function will be significantly different from the reference
ΛCDM model. In Fig. 9 we show the ratio between the number density of dark matter
halos for the EDE models and the ΛCDM model. We refer to the caption for the different
line-styles and colours.

It is immediately clear that for Model B structures are strongly suppressed at all red-
shifts with respect to the ΛCDM model. Model B shows a lack of objects already at galactic
scales (M ' 1011 − 1012 M�/h) while at cluster scales (M ≈ 1015 M�/h) the case with
ceff = 1 has basically no objects (see the upper left panel). At higher redshifts, the number
of objects decreases considerably also at very low scales (see lower right panel for the results
at z = 2).

Model A suppresses structures less than Model B and for low mass objects at z = 0 the
Model A with ceff = 1 is quite similar to the Model B with ceff = 0, but for masses of the
order of 1015 M�/h they differ by about 30%. With the increase of the redshift, differences
between the two models of EDE tend to increase. The most similar model to the ΛCDM one
is Model A with ceff = 0. Also at very high masses differences are at most about 20%. It
is also important to bear in mind that the actual number of halos will also depend on the
comoving volume, Fig. 2, which for EDE models is always smaller than in ΛCDM models.
For low redshifts, z = 0 and z = 0.5, the differences in the comoving volume is very small,
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Figure 9. Number density ratio between the EDE models and the reference ΛCDM model. The red
dashed (blue short-dashed) curve shows results for Model A with ceff = 0 (ceff = 1), while the cyan
dotted (orange dot-dashed) curve represents Model B for ceff = 0 (ceff = 1). The upper left (right)
panel shows results for z = 0 (z = 0.5), while the lower left (right) panel shows results for z = 1
(z = 2).

but for z = 1 and z = 2 the actual number of halos in EDE models will be even smaller than
the ratios in the lower panels of Fig. 9 suggest.

It is also worth to note that models with ceff = 0 have more objects than the case
with ceff = 1. This is easily explained in terms of the growth factor and of the evolution
parameter δc. Again the general effect of large DE fluctuations is to compensate the change
in the background evolution by enhancing the gravitational attraction.

The contribution of DE mass to the mass functions

As already observed in Ref. [46], if DE can cluster it also contributes to the halo mass, thus
we must compute the correction to the mass function due to this extra component. The
actual contribution of DE crucially depends on whether it virializes and the time scale of
this process. Moreover the merging history of halos formed at different times [71], which
could contain different amounts of DE, should also be taken into account. A complete and
accurate description of this corrections is a complex task, which depends on nature of DE,
and is beyond the scope of this paper. Here we will compute a straightforward correction for
a scenario where, in the case of ceff = 0, we assume that DE virializes together with DM on
the same time scale. Hence, once the halo is formed, DE contribution is assumed to remain
constant. This is probably the case in which DE fluctuations will mostly influence structure
formation and consequently the mass function.
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Given a halo with DM mass M , its total mass will be M(1 + ε(z)), with ε(z) defined in
Eq. (4.6). Therefore, given the original DM mass function, dn

d lnM , we assume the corrected
mass function is given by:

dnc
d lnM

(z,M) =
dn

d lnM
(z,M(1− ε)) . (5.5)

We call the attention of the reader to the minus sign in M(1 − ε). Although the mass of
a halo is changed by M → M(1 + ε) the use of this mass redefinition in the mass function
would produce wrong results. For a positive ε the halos become more massive than predicted
by a model in which only DM clusters, hence more massive halos are expected. However,
if one redefines the mass function using M(1 + ε), fewer massive halos would be predicted,
which is just the opposite of what is expected. Therefore the natural correction of the mass
function is the change of variable M →M(1− ε).

In Fig. 10 we show how much is the correction in the comoving density of objects above
mass M relative to the same model without the correction, nc(> M)/n(> M). We present
the results for models A and B, with ceff = 0, only for the perturbative contribution (top
panels). Although it is not clear whether the background energy density of DE is a stable
contribution to the total mass of the halo, i.e., that is constant through the history of the
halo, in order to have an idea of its influence on the abundance of halos, we also show the
corrections due to the background contribution in the ΛCDM model (bottom panel).

As can be seen in the these three cases, it is clear that even a small DE contribution for
the halo mass can produce drastic changes at high mass. For Model B, the one with largest
ε, nc can be many times larger then its version without the mass correction. In Model A
the corrections are below 10% for small masses but can reach almost 60% for high masses
at high z. For ΛCDM, the corrections can be about 3% at z = 0 and low masses, reaching
more than 10% for very massive halos at high z.

It is also clear that, although ε gets smaller at higher z, the corrections do not necessarily
diminish, as can be seen for the three cases with z = 2. Since the growth function, D, gets
smaller for high z, the exponential decay of the mass functions is shifted to lower mass regions,
hence even a small value of ε at high z produces large modifications. The comprehension of
this effect is very important because, despite the fact that very few massive galaxy clusters
are expected at high z, the detection of a single massive distant galaxy cluster can be used
to rule out DE models [72].

Now that we observed that the corrections in mass functions can be important, we have
to ask ourselves whether they can change the behaviour that we previously found without
taking into account such corrections, i.e., that all EDE models we consider have smaller
density of objects then ΛCDM, Fig. 9. In Fig. 11 we plot the ratio of the corrected values
of number density, nc, to the n in ΛCDM model. For small masses, the corrections indicate
that our inhomogeneous EDE models actually present more objects than ΛCDM. However,
nc(> M)/n(> M)ΛCDM decreases with mass, except for Model A at z = 2. For Model B
the suppression of structures due to its low σ8 value is so strong that, even with the large
corrections caused by its large values of ε, at high masses it always has fewer objects density
than ΛCDM.

In Model A a quite interesting behaviour can be observed. Since its σ8 and growth
function are not very different than in ΛCDM, the correction due to DE mass turns out to
be more important at high z and rapidly increases with mass. At z = 2 the number density
in Model A is about 36% larger than in ΛCDM. Note that this effect occurs at high z and
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is strongly mass dependent. Ref. [72] points out that if unexpected massive clusters, within
the ΛCDM or smooth quintessence paradigm, are present only at high z, DE clustering may
not provide a consistent description because in these models cluster abundances are modified
roughly by the same amount for both low and high redshifts. However, as we just have
observed, the corrections on mass function due to DE mass may provide more abundant
massive clusters at high z, without drastic changes for low z. Hence, if in the future the
observation of a massive cluster falsifies ΛCDM and smooth quintessence models, it still can
interpreted as an evidence of clustering DE.

However, let us note once again that the actual number of objects also depends on the
comoving volume. Therefore the behaviour observed in Fig. 11 can be modified, especially at
high z. In order to verify what is the observable effect, we finally compute the total number
of clusters above mass M and redshift z:

N (> z,> M) =

∫ ∞
z

dz′
dV 2

dz′dΩ

∫ ∞
M

dM ′
dn

dM ′
. (5.6)

In Fig. 12 we show the total number of halos above mass M and z = 1 (left panel) and
z = 2 (right panel) for ΛCDM, Model A and Model B. The values for Model A and Model
B are computed using the corrected mass function for the perturbative contribution only.
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For z > 1 the EDE models present fewer objects than ΛCDM. The same is true for z > 2,
however Model A and ΛCDM are much more similar. Therefore, in these specific examples,
we can see that the correction in the mass function due to DE mass is not enough to produce
more massive and distant clusters than ΛCDM. Anyhow the main lesson we should take
from these results is that if DE possesses fluctuations, its contribution for the halo mass can
substantially change the abundance of massive galaxy clusters. The proper description of
this effect is of major importance when testing inhomogeneous DE models with observations
of such objects.

6 Conclusions

In this paper we have studied the influence of inhomogeneous EDE both in linear and nonlin-
ear stages of structure formation. We have evaluated the matter growth, the ISW effect, the
contribution of DE fluctuations for the total mass of the halos, the halo abundance relative
to ΛCDM model and its corrections due the extra DE mass contribution.
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We have showed that the presence of large EDE fluctuations, i.e., models with ceff = 0,
have the general property of making DM growth, ISW effect and halo abundance more similar
to the predictions of the ΛCDM model than homogeneous EDE models, those with ceff = 1.
In Model A, the one more similar to ΛCDM in the background evolution, the differences
in f = d lnD/d ln a against ΛCDM predictions are below 5% level, and the impact of DE
fluctuations is even smaller. Eventually surveys like Euclid, which can provide data on f
with 1% precision [47], will be able to distinguish between homogeneous and inhomogeneous
EDE models.

The analysis of the number density of halos initially showed that all EDE models provide
fewer density of massive clusters, independently of the redshift considered. For models with
nearly smooth EDE this conclusion remains valid. However, for inhomogeneous EDE models,
once we account for the extra halo mass associated with DE fluctuations, which we showed
that can be of the order of 10%, and make the corresponding correction in the mass function,
this situation may change. We saw that, at high redshifts, the corrected number density can
be larger than in ΛCDM. This was observed for our Model A with ceff = 0 at z = 2. However,
after computing the total number of halos, the impact of this correction is supplanted by the
effect of the smaller comoving volume of EDE models and ΛCDM still presents more massive
objects.

It is important to stress that, in principle, the magnitude of DE fluctuations that we
found and the corresponding impact on observables that we have studied is specific of EDE
models. If DE has non-negligible energy density at intermediate and high redshifts the
equation-of-state parameter w is close to 0, which, according with Eq. (3.31), enhances the
magnitude of DE fluctuations. However we also showed that inhomogeneous EDE models
actually make predictions more similar to ΛCDM than their homogeneous counterparts.
Therefore we conclude that if the accelerated expansion is caused by an inhomogeneous EDE
model it will be challenging to distinguish it from the Cosmological Constant.
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