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The influence of the shear stress and angular momentum on the nonlinear spherical collapse model
is discussed in the framework of the Einstein-de Sitter (EdS) and ΛCDM models. By assuming that
the vacuum component is not clustering within the homogeneous nonspherical overdensities, we
show how the local rotation and shear affects the linear density threshold for collapse of the non-
relativistic component (δc) and its virial overdensity (∆V). It is also found that the net effect of shear
and rotation in galactic scale is responsible for higher values of the linear overdensity parameter as
compared with the standard spherical collapse model (no shear and rotation).

PACS numbers:

I. INTRODUCTION

Current analyses of high quality cosmological data are
suggesting a cosmic expansion history involving some
sort of dark energy and a flat spatial geometry in or-
der to explain the recent accelerating expansion of the
universe [1–3].

Among a number of possibilities to describe the dark
energy (DE) component, the simplest one is by means
of a cosmological constant Λ (see [4] for reviews), usu-
ally interpreted as the vacuum energy density (ρv) which
acts on the Friedmann’s equations as a perfect fluid with
negative pressure (pv = −ρv). In the present cosmic con-
cordance ΛCDM model, the overall cosmic fluid contains
non-relativistic matter (baryons + cold dark matter,
Ωnr = 0.274) plus a vacuum energy density (ΩΛ = 0.726)
that fits accurately the current observational data and
thus it provides an excellent scenario to describe the
present observed universe [5].

Nowadays, one of the most challenging problems in
the so-called ΛCDM cosmology is to understand the role
played by the different cosmic components during the
non-linear regime of gravitational clustering and how the
many possible physical effects contribute to determine
the total mass of virialized halos (galaxy and galaxy clus-
ters). A popular analytical approach to study the non-
linear evolution of perturbations of dark matter (in the
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presence of a non-clustered dark energy (DE) is the stan-
dard spherical collapse model (SSCM) proposed in the
seminal paper of Gunn and Gott [6] and extended in sub-
sequent papers [7]. The model describes how a spherical
symmetric overdensity decouples from the Hubble flow,
slows down, turns around and collapse.

In the last decade, the SSCM has been applied to study
density perturbation evolution and structure formation
in presence of DE. However, when solving the density
contrast (δ) in the SSCM, the local shear (σ) and rotation
(ω) parameters are usually not taken into account. While
the first assumption is correct, since for a sphere the shear
tensor vanishes, the rotation term, or angular momentum
is not negligible. A simple approach preserving spherical
symmetry is to assume that the particles are described by
a random distribution of angular momenta such that the
mean angular momentum at any point in space is zero
[8]. Nevertheless, in any proper extension of the SSCM
both effects need to be considered [9] since shear induces
contraction while vorticity induces expansion as expected
from a centrifugal effect.

In this letter, we study the net physical effect of shear
and rotation in the framework of an extended spherical
collapse model (ESCM). We restrict our analysis to the
Einstein-de Sitter (EdS) and the flat ΛCDM background
cosmologies. For the ΛCDM model we assume the follow-
ing cosmological parameters: Ωm = 0.274, ΩΛ = 0.726
and h = 0.7. In particular, we discuss how the linear
density threshold for collapsing non-relativistic compo-
nent (δc) and its virial overdensity (∆V) change. We re-
call that the change of these two parameters has a strong
effect on the mass function and other fundamental cos-
mological quantities. As a general result, it is also found
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that the extra terms appearing in the ESCM is responsi-
ble for higher values of the linear overdensity parameter
at galactic scales as compared to the case without shear
and rotation.

II. DERIVATION OF δc AND ∆V

To begin with, let us now consider that the only clus-
tering component in the cosmic medium is the cold dark
matter. Following standard lines, the evolution of the
overdensity δ is driven by a second order non-linear dif-
ferential equation [10, 11]:

δ′′ +

(

3

a
+

E′

E

)

δ′ −
4

3

δ′2

1 + δ
−

3
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Ωm

a5E2(a)
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(σ2

− ω2)(1 + δ) = 0 ,

(1)

where a(t) is the scale factor and the scalars, σ2 = σijσ
ij

and ω2 = ωijω
ij , denote the shear and rotation terms,

respectively (σij and ωij , are the shear and vorticity ten-
sors). The quantity Ωm is the present day value of the
density parameter of the DM component while the quan-
tity E(a) is defined by:

E(a) =

√

Ωm

a3
+ΩΛ , (2)

where ΩΛ is the present day value of the vacuum density
parameter (at a = 1).
Following Pace et al. [11] we now calculate the thresh-

old for the collapse, δc, and the virial overdensity, ∆V.
We look for an initial density contrast such that the
non-linear equation diverges at the chosen collapse time.
Once the initial overdensity is found, we use this value
as an initial condition in the linearised version of Eq. 1.
The virial overdensity is readily obtained by using the

definition ∆V = log(δnl + 1) = ζ(x/y)3, where x = a/ata
is the normalized scale factor and y is the radius of the
sphere normalized to its value at the turn-around.
In order to calculate the shear and vorticity terms in

Eq. 1, we first recall that δ = ρ/ρ− 1 = (a/R)
3
− 1. As

one may check, by inserting this expression into Eq. 1, the
evolution equation for the density fluctuations δ becomes
[9, 12, 13]

d2R

dt2
=

4

3
πGρR−(σ2

−ω2)
R

3
= −

GM

R2
−(σ2

−ω2)
R

3
, (3)

which should be compared with the usual expression for
the SCM with angular momentum (e.g., [14–16]):

d2R

dt2
= −

GM

R2
+

L2

M2R3
= −

GM

R2
+

4

25
Ω2R, (4)

where in the last expression we have replaced the momen-
tum of inertia of a sphere, I = 2/5MR2. The previous

argument shows that vorticity, ω, is strictly connected to
angular velocity, Ω.
In the simple case of a uniform rotation with angular

velocity Ω = Ωzez, we have that Ω = ω/2 (see also
Chernin [17], for a more complex and complete treatment
of the interrelation of vorticity and angular momentum
in galaxies).
It is also convenient to define the dimensionless α-

number as the ratio between the rotational and the grav-
itational term:

α =
L2

M3RG
. (5)

The above quoted ratio, α, is of the order of 0.4, for a
spiral galaxy like the Milky Way (L ≃ 2.5×1074g cm2/s;
R ≃ 15 kpc [18, 19]), larger for smaller size perturbations
(dwarf galaxies size perturbations) and smaller for larger
size perturbations (for galaxy clusters the ratio is of the
order of 10−6).
Now, in order to integrate Eq. 1 one should determine

how the extra term involving the difference σ2
− ω2 de-

pends on the density contrast. Based on the above out-
lined argument for rotation one may calculate the same
ratio between the gravitational and the extra term ap-
pearing in Eq. 1 thereby obtaining

(σ2
− ω2)H−2

0
= −

3

2

αΩm,0

a3
δ. (6)

In the absence of a first principle workable expression,
in what follows we will assume a more general power-law
expression:

(σ2
− ω2)H−2

0
≡ −bδn/a3, (7)

with the proviso that the constant parameters b and n can
depend on the scale of the perturbations. In this concern,
we remark that at the non-linear level, the gravitational
term is (1−α) times smaller than for the case where ro-
tation and shear is absent. This will have considerable
effects on the linear and virial parameters of the spheri-
cal collapse model, as we will see in the next section. In
particular, the values of b and n can be calculated com-
paring the threshold of collapse, δc, in Sheth & Tormen
[21] (later used to obtain the Sheth & Tormen [20] mass
function) with the δc parameter which is obtained from
Eq. 1. In this way, we have obtained n = 1 and b = 0.157,
for galaxy size perturbations.

III. BASIC RESULTS

In this section we discuss some physical consequences
of the extended spherical collapse model discussed here.
In particular, we obtain the linear overdensity parameter
δc and the virial overdensity ∆V.
In Figure 1 (four plots) we show the evolution of

the overdensity δ as a function of the scale factor as-
suming EdS and flat ΛCDM background cosmologies.
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FIG. 1: The overdensity δ as a function of the scale factor a. On the left panels we compare the evolution of the perturbation
for the SSCM (red dashed curve) and ESCM (blue short-dashed) of 1011 M⊙/h in the framework of an EdS and flat ΛCDM
cosmologies. On the right panels we show similar plots but now for objects with different mass scales. The blue dashed curve
shows results for a 1011 M⊙/h object (galaxy), the green short-dashed curve a 1013 M⊙/h (galaxy group) while the orange
dot-dashed curve represents a 1015 M⊙/h object (galaxy cluster). The images appearing the above plots display a zoom on
the initial overdensity necessary for the collapsing halo at redshift z = 0. Note that the initial overdensity of the ESCM halos
need to be higher regardless of the background cosmology.

In the left panels we compare the time evolution of δ
for the ESCM (short dashed blue curve) and the SSCM
cases (red dashed line). The ESCM halo has a mass
of 1011 M⊙/h. Since we want that both halos (spher-
ical and non-spherical) should collapse at present time
(a = 1), the curves perfectly overlap in the non-linear
regime. Therefore differences between the two consid-
ered models must take place at very early times, reflect-
ing therefore in the different initial conditions. For in-
stance, whether the collapse process is delayed in the
case of ESCM halos (in comparison to the SCM descrip-
tion), one should expect that the initial overdensity must
be higher in order to have the same efficiency. This is in-
deed the case, as we can see in the zoom panel on the left
plot. In order to collapse at the same time of the non-
rotating sphere, the initial overdensity has to be higher.
For the non-rotating sphere we have δi ≈ 8.6×10−5 while
for the rotating sphere we have δi ≈ 1.2× 10−4, with an
increase therefore of approximately 28%.

It should be noticed that in the right panels we show
how the overdensities evolve for different masses of the
corresponding halos (SSCM and ESCM) for the same
background cosmologies. As expected, the influence of
any departure from spherical symmetry decreases with
the increase of the mass. For all practical purposes, we

see that for scales of the order of 1015 M⊙/h the solutions
of the SCM are recovered.

In Fig. 2 (4 plots), we show the evolution of the lin-
ear overdensity parameter δc (upper panels) and of the
virial overdensity ∆V (lower panels) for the same EdS
and ΛCDM cosmologies. In the left panels, the analyses
based on the ESCM are restricted to a halo of 1011 M⊙/h
since for galactic masses the effect will be enhanced, while
on the right panels we consider also the effect of distinct
masses. As before, we concentrate our analyses to three
different mass scales: galactic (≈ 1011 M⊙/h), groups
(≈ 1013 M⊙/h) and clusters (≈ 1015 M⊙/h). As ex-
pected from the analysis of Fig. 1, with the growth of
the mass the effect of the extra term in the ESCM be-
comes negligible, and we recover the same values of the
SSCM case. It is also worth to notice that the results for
the ΛCDMmodel reduce to the ones of the EdS model for
sufficiently high redshifts, since the influence of the cos-
mological constant becomes rapidly negligible. We will
therefore concentrate only on the analysis of the left pan-
els. For the different line colours and styles, we remind
to the caption of the figure.

As expected, the δc for the ESCM is≈ 40% higher than
for the SSCM case and it decreases towards high red-
shifts, since the effect of the extra term becomes smaller.
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FIG. 2: Upper (lower) panels: evolution of δc (∆V) with respect to the redshift z for the EdS and the ΛCDM models. The left
panels show the time evolution for both parameters at galactic scale (1011 M⊙/h). The red curve represents the solution for the
EdS model in the non-rotating case while the blue and the green curves represent the EdS and the ΛCDM model when rotation
is included. On the right panels we compare the time evolution for three different masses, 1011, 1013 and 1015 M⊙/h. Different
colours and line-styles correspond to different masses and different cosmological models: red dashed (orange dot-dashed) curve
represents a halo of 1011 M⊙/h in a EdS (ΛCDM) cosmological background, blue short-dashed (dot-short-dashed cyan) curve
represents a halo of 1013 M⊙/h for an EdS (ΛCDM) model, while the green dotted (magenta) curve stands for an object of
1015 M⊙/h in an EdS (ΛCDM) model.

For the EdS model, δc decreases from a value of ≈ 2.3
at z = 0 to ≈ 2.1 at z = 10. As expected, the linear
overdensity parameter for the ΛCDM model is smaller
than the EdS one. This is understood by taking into ac-
count that if we want to have the same number of struc-
tures now, we need to have a faster growth of structures
to overcome the influence of the cosmological constant.
This translates into a lower δc.

In the lower panels we compare the behaviour of ∆V in
the SSCM approach with the one predicted by the ESCM
description. The red dashed (blue short dashed) curve
show the standard and the extended results for an EdS
model while the green dotted curve represents a ΛCDM
model. It is clear that the ESCM description affects also
the virial overdensity parameter. In particular, we see
that ∆V is always constant in time for the EdS model.
However, with the extra term its value increases reaching
∆V ≈ 185, about 4% higher than the standard result.
The curve for the ΛCDM model approximates the EdS at
high redshifts, as expected. Once again higher masses are
less affected by the ESCM correction term (lower right
panel).

IV. CONCLUSIONS

In this letter we have discussed how shear and rota-
tion affect the standard spherical collapse model. The
net effect of such quantities which is ∝ (σ2

−ω2) has been
phenomenologically described by a power law on the den-
sity contrast depending on two parameters (b and n). It
was also shown that the values of b and n can be calcu-
lated by comparing the threshold of collapse, δc, as dis-
cussed in Sheth & Tormen [21], with the δc value which
is directly obtained from Eq. 1. We have focused our
discussion on the influence of such an extra term on the
spherical collapse parameters δc and ∆V. As it should be
expected, the extra term slows down the collapse, and,
as such, higher values for the initial perturbations are re-
quired in order to have a collapse at the same time of a
spherical collapsing sphere. It is also found that the extra
term contribution is more important for galactic scales so
that its contribution becomes negligible at high masses
(galaxy clusters). This is shown explicitly in Figure 1.

Finally, in Figure 2 we have numerically evaluated and
compared the evolutionary behaviour of both the ESCM
and SSCM approaches. We have seen that both the lin-
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ear and the non-linear virial overdensity in the extended
spherical collapse model are enhanced with respect to the
standard spherical case. Enhancements are more pro-
nounced for δc (≈ 40%), while for ∆V are only of the
order of few percent.
These results reinforce the importance of a more com-

plete and rigorous treatment involving the effects of shear
and rotation at the late stages of the collapsing halo his-
tory mainly for the galactic scales. A more detailed ar-
ticle including the calculations of the cumulative mass

function will be published elsewhere.
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