
REVIEW
published: 05 September 2017
doi: 10.3389/fnins.2017.00494

Frontiers in Neuroscience | www.frontiersin.org 1 September 2017 | Volume 11 | Article 494

Edited by:

Massimiliano Caiazzo,

Utrecht University, Netherlands

Reviewed by:

Weien Yuan,

Shanghai Jiao Tong University, China

Alba Di Pardo,

Centre for Neurogenetics and Rare

Diseases, Italy

*Correspondence:

Raffaele Nuzzi

prof.nuzzi_raffaele@hotmail.it

Specialty section:

This article was submitted to

Neurodegeneration,

a section of the journal

Frontiers in Neuroscience

Received: 09 June 2017

Accepted: 22 August 2017

Published: 05 September 2017

Citation:

Nuzzi R and Tridico F (2017)

Glaucoma: Biological Trabecular and

Neuroretinal Pathology with

Perspectives of Therapy Innovation

and Preventive Diagnosis.

Front. Neurosci. 11:494.

doi: 10.3389/fnins.2017.00494

Glaucoma: Biological Trabecular and
Neuroretinal Pathology with
Perspectives of Therapy Innovation
and Preventive Diagnosis
Raffaele Nuzzi * and Federico Tridico

Eye Clinic Section, Department of Surgical Sciences, University of Turin, Ophthalmic Hospital, Turin, Italy

Glaucoma is a common degenerative disease affecting retinal ganglion cells (RGC)

and optic nerve axons, with progressive and chronic course. It is one of the most

important reasons of social blindness in industrialized countries. Glaucoma can lead to

the development of irreversible visual field loss, if not treated. Diagnosis may be difficult

due to lack of symptoms in early stages of disease. In many cases, when patients

arrive at clinical evaluation, a severe neuronal damage may have already occurred. In

recent years, newer perspective in glaucoma treatment have emerged. The current

research is focusing on finding newer drugs and associations or better delivery systems

in order to improve the pharmacological treatment and patient compliance. Moreover,

the application of various stem cell types with restorative and neuroprotective intent may

be found appealing (intravitreal autologous cellular therapy). Advances are made also in

terms of parasurgical treatment, characterized by various laser types and techniques.

Moreover, recent research has led to the development of central and peripheral retinal

rehabilitation (featuring residing cells reactivation and replacement of defective elements),

as well as innovations in diagnosis through more specific and refined methods and

inexpensive tests.

Keywords: glaucoma, neuroregeneration, neuroprotection, cell-therapy, gene-therapy, laser-therapy, diagnosis,

rehabilitation

INTRODUCTION

Glaucoma is a common degenerative disease affecting the retinal ganglion cells (RGC) and the
optic nerve axons, with progressive and chronic course. It is one of the most important reasons of
blindness in industrialized countries. Glaucoma can lead to the development of irreversible visual
field loss, if not treated (Quigley and Broman, 2006). Diagnosis may be difficult due the lack of
symptoms in early stages of disease. In many cases, when a patient arrives at clinical evaluation, a
severe neuronal damage may have already occurred. Several studies have calculated that more than
half of patients with glaucoma isn’t aware of being affected. (Whitson, 2007). Pathogenesis and
risk factors of glaucoma are multifactorial: the most relevant risk factor is represented by elevated
intraocular pressure (IOP) (Figure 1), but familiarity, genetic patterns, race, age, and cardiovascular
diseases play an important role, too (Coleman and Miglior, 2008).

Traditional treatment is based on IOP reduction through several methods. The first line
approach is pharmacological. Drugs currently in use belong to five different classes and are
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FIGURE 1 | Glaucoma pathophysiology. The glaucoma is a progressive disease related, in most cases, to intraocular pressure (IOP) elevation, affecting the optic

nerve and its retinal fibers and causing a progressive loss of vision if untreated. Hyperproduction or low aqueous humor deflow may lead to severe damage to the

optic nerve head and optic nerve fibers.

available in oral and local forms. There are several problems
related to this choice of treatment, especially those
regarding the low tolerability to some active ingredients
and patience compliance. In case of resistance to the
medical therapy parasurgical laser treatment is also
available: YAG-laser iridotomy/iridectomy or Argon-laser
trabeculopasty/gonioplasty. These procedures have the aim
to mechanically increase the aqueous humor outflow with
preventive or therapeutic intent. Although non-invasive and
well tolerated, the efficacy of laser trabeculoplasty may decrease
over the years with the need of treatment repetition/extension.
Moreover, this procedure is sometimes associated with early
IOP spikes, ocular inflammation, iridocorneal synechiae and
trabecular scarring. The next step is represented by surgery,
based on procedures like ab-externo trabeculectomy and valve
implants. To date, these techniques provide a good level of safety
and tolerability, but are invasive and not without complications
that can be invalidating in some cases (King et al., 2013). As
last resort, destructive maneuvers are possible, such as laser
photocoagulation, cryotreatment or thermocoagulation of ciliary
corps for eyes with uncompensated glaucoma, unresponsive to
any treatment (Gupta, 2008).

In recent years, newer perspectives in glaucoma treatment
have emerged. Regarding pharmacological treatment, the
current research is focusing on the development of innovative
mechanisms and/or the improvement of drug efficacy and
tolerability, in order to achieve better patients’ compliance.
For this purpose, current objectives are the improvement of
existing therapy, the design of newer drug associations and
the development of innovative drug delivery systems, as well
as the study of alternative substances (for example drugs with
neuroprotective effects).

Great interest in the last years has been dedicated to the
treatment of glaucomatous optic neuropathy, with great regards
to the clinical and biological research for cell therapy. Their
possible application is studied at different levels in order
to take advantage of the possibility of autologous transplant
with both substitutive and protective intent on neuroretinal
elements.

Moreover, recent research has led to the development
of central and peripheral retinal rehabilitation, as well as
innovations in diagnosis throughmore specific andmore detailed
methods. For example, abnormal pupillary light responses can
reveal early retinal dysfunction, and it has been observed that
blue-yellow dyschromatopsia is prevalent particularly in patients
with primary open-angle glaucoma. Therefore, additional
diagnostic information may derive from deep investigation of
the relationship between glaucoma, lighting and color vision
(Nuzzi et al., 1997). Trends for glaucoma treatment and
preventive diagnosis covered in this review are summarized in
Table 1.

MEDICAL TREATMENT

Current Glaucoma Treatment
Pharmacological treatment of glaucoma lowers IOP by reducing
aqueous humor production and/or improving its deflow. Five
pharmacological classes are currently utilized in the treatment
of this disease: beta-blockers, prostanoid analogs, alpha-agonists,
carbonic-anhydrase inhibitors and cholinergic agents. Initial
treatment usually requires a beta-blocker or a prostanoid analog,
second-step therapy is based on alpha-agonists and carbonic-
anhydrase inhibitors; the last resort is based on cholinergic miotic
drugs (Lee and Higginbotham, 2005; Conlon et al., 2017).

In case of not complete IOP control after several tries with
different molecules, guidelines suggest the use of associations
between different agents with complementary actions. The
concurrent administration of systemic carbonic anhydrase
inhibitors is also possible.

Problems related to the medical treatment for glaucoma
are numerous and cannot be overlooked. Moreover, patients
usually show little compliance to treatment, because they
often underestimate the situation and do not tolerate multiple
instillations of eye drops per day, for an asymptomatic pathology.
Moreover, many patients are elderly and unable to practice an
efficient administration.

Furthermore, chronic usage of these drugs is related with
ocular surface discomfort and modifications, due to the
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TABLE 1 | Summary of glaucoma biological treatment, rehabilitation and

diagnosis trends covered in this review.

MEDICAL TREATMENT

-Existing drugs improvement

-Newer associations

-Novel drug delivery systems

-Ocular inserts

-Surgical implants

-Soft medicated contact lens

-Nanospheres

-Innovative hypotensive drugs

-Latrunculinic derivates

-ROCK inhibitors

-BkCa ionic channel modulators

-A1 receptors agonists

-Cannabinoids

-Local calcium channel blockers

-SiRNAs

-Antioxidative agents

-Ginko biloba extracts

-Resveratrol

-Alpha-lipoic acid

-alpha-luminol

-Stanniocalcine-1

-Neuroprotective agents

-Memantine

-Brimonidine

-Neurotrophic growth factors

-Intravitreal GFs (CNTF, BDNF, NGF, GDNF)

-Topical NGF

-Slow releasing implants

-Gene therapy (viral/non-viral vectors)

-Peptidomimetic ligands of TrKA

CELL THERAPY

-Retinal cell replacement

-Embryonic stem cells

-IPSCs

-Adult stem cells (neural stem cells, retinal precursor cells, ciliary epithelium

stem cells, trabecular inserts, MSCs)

-Neuroprotection

-Intravitreal MSCs

-Encapsulated stem cells

OPTIC NERVE AXONAL REGENERATION

-Peripheral nerve graft

-Cell enriched scaffolds

-Neural growth factors

-BDNF

-CNTF

-Intracellular signaling

-cAMP induced macrophage activation

-Toll-like receptor 2 agonists

-ROCK inhibitors

-Alpha-crystallins

-Gene therapy

(Continued)

TABLE 1 | Continued

PARASURGICAL LASER TREATMENT

-Femtosecond pulsed laser

-Selective laser trabeculoplasty

-Diode/micropulsed diode laser trabeculoplasty

-ab interno laser trabeculectomy

VISUAL REHABILITATION

-Electric artificial stimulation

-Epi-retinal implants

-Sub-retinal implants

-Trans-choroidal implants

-Optic nerve implants

-Cortical implants

DIAGNOSIS REFINEMENT

-Optical coherence tomography/angiography OCT

-DARC

-Telemetric contact lenses

-Genetic risk assessment

preservatives in pharmacological preparations. Some substances,
such as prostanoids have pro-inflammatory effects and may lead
to ocular irritation or other annoying or invalidating adverse
effects such alterations of iris, eyelids or eyebrows (Stewart et al.,
2011).

Conjunctival specimens from patients with collapse of
the filtering bleb following filtration surgery show epithelial
metaplasia, connectival fibrosis and chronic subclinical
inflammation of the conjunctiva, often associated with aberrant
expression of some antigens on fibroblasts, macrophages and
Langerhans cells. These histological changes may be found even
in short-term medicated patients, suggesting that other factors in
addition to medical treatment are involved in failure of filtration
surgery. On the basis of these immunohistochemical results,
we hypothesize that an individual predisposition to abnormal
scarring may be involved. The first factor that determine the
development of this condition is antiglaucoma long –term
topical medication. These alterations could be detected by
analysis of preoperative conjunctival biopsy (Nuzzi et al., 1993,
1994, 1995; Nuzzi and Finazzo, 1996a,b; Vercelli et al., 1996).
Current research is focusing on the development of innovative
mechanisms as well as tolerance and therapeutic efficacy
improvement, in order to achieve a better compliance.

Existing Drugs Improvement, Newer
Associations and Delivery Systems
Current research objectives include an efficacy improvement
in lowering IOP through innovative systems and/or a greater
tolerance, with consequent compliance improvement. In
particular, the research is focusing on perfecting existing drugs,
through creation of newer associations and development of
innovative delivery systems. For example, a partial agonist
of prostaglandin A, with different activity in different ocular
tissues, may minimize prostanoids effects on ocular surface
vessels, lowering conjunctival redness (Hoyer and Boddeke,
1993; Woodward and Chen, 2007).
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Newer associations between prostaglandin analogs and
carbonic-anhydrase inhibitors are currently in developing stages.
Also, other “second generation” therapies capable of lowering
local and systemic adverse effects are being developed (e.g.,
ocular-selective beta-blockers and prostaglandin analogs with
alternative and better tolerated preservatives or preservative-free
formulations) (Fogagnolo and Rossetti, 2011; Lee and Goldberg,
2011).

Patient adhesion to treatment with eye drops may be often
limited, reducing its efficacy. Several delivery systems have been
developed in order to improve treatment compliance and efficacy
as well. Ocular inserts are designed to administer drugs for
several days. One among the best known and studied inserts is
the Ocusert system, formed by two polyethylenecovinylacetate
membranes and a pilocarpine-filled ring, meant for being applied
in the inferior conjunctival fornix, and capable to release the drug
within 7 days (Macoul and Pavan-Langston, 1975). Although the
efficacy of this system, several patients referred loss of the device
or ocular discomfort. This inconvenience led to an improvement
of the original design (Pollack et al., 1976; Saettone and Salminen,
1995). Bimatoprost-loaded chitosan inserts have been produced,
showing a sustained IOP lowering in vivo in rats (Franca et al.,
2014). Ocular inserts may be designed for delivering other
molecules, such as timolole, but they require patient training to
their correct use, limiting their application to younger patients
(Stewart and Novak, 1978; Urtti et al., 1994).

Surgical implants (similar to currently used intravitreal
implants) may be able to release drugs for longer periods (3–
6 months), however their introduction (or removal in case
of adverse effects) require invasive surgical procedures, and
for this reason their use is more desirable for neuroprotective
purposes than as an alternative to existing topical treatment
(Lavik et al., 2011). Recently, an intracameral implant for
sustained release of bimatoprost has been developed, showing
favorable efficacy and safety in a phase II clinical trial (Lewis
et al., 2017). Other future perspectives are represented by the
development of more sophisticated surgical implants that can be
administered with mini-invasive techniques even in ambulatory
regimen and that can last for 3–4 months, with the possibility of
replacement at the time of follow-up examinations (for example
microelectromechanic sub-conjunctival implants, easy to reload
and adjust), but long-term studies are needed in order to evaluate
function and risks (Staples et al., 2006; Saati et al., 2010).

Regarding soft contact lens usage as a delivery system, the
most relevant limitation is represented by the necessity of non-
stop application for long periods of time, in order to obtain
effective results. Moreover, hydrophilic molecules, such as anti-
glaucoma drugs, tend to reflow from highly hydrated polymers of
the lens (Peppas et al., 2000). However, contact lenses with N,N-
diethylacrilamide, metacrilic acid or acrylate hydrogel polymers
have shown a prolonged delivery of timolole and a greater IOP
reduction (Hiratani and Alvarez-Lorenzo, 2002; Maulvi et al.,
2016).

Other innovative delivery systems are represented by
liposome carriers or nanospheres (which provide a greater drug
distribution time in corneal tissues, but do not eliminate the
fundamental problem of patient compliance when administered

through eye drops) and slow-release formulations administered
via sub-conjunctival or intracameral injections (Monem et al.,
2000; De Campos et al., 2003; Mansoor et al., 2009; Lee et al.,
2017). The application of microspheres has been investigated for
ameliorating L-dopa induced dyskinesia in Parkinson’s disease,
with promising results in rat models (Yang et al., 2012; Xie
et al., 2014). These drugs provide a longer release, especially if
associated with polyester polymers and microspheres (Mansoor
et al., 2009; Cardillo et al., 2010). Since erythropoietin (EPO)
possesses neuroprotective effects against central nervous systems
lesions (Signore et al., 2006; Qi et al., 2014), EPO-loaded
microspheres have been tested (both in vitro and in vivo) on
RGCs of rats. In fact, EPO is capable of stimulating neural
growth in rat retina explants through EPO-receptors on RGC
(Böcker-Meffert et al., 2002). It was observed an improvement
on murine RGCs survival after intravitreal and intraperitone
administration of EPO-loaded microspheres, which provided
sustained neuroprotection, in relation to prolonged release of
EPO at the retinal level (Rong et al., 2011, 2012). The principal
drawbacks of this technique are represented by local immune
reactions of non-degradable polymers (such polyethylene-
covinyl-acetate) and lesser efficacy and inconstant drug delivery
of degradable polymers of polylactacte (Okabe et al., 2003; Bao
et al., 2006).

To date, the clinical efficacy of newer delivery systems is
limited by their low effects in terms of bioavailability, compliance
and frequent adverse effects. Furthermore, the application of
more refined system requires further studies.

Innovative Hypotensive Drugs
With the grater comprehension of processes involved in aqueous
humor production, innovative ocular hypotensive drugs, with
specific molecular targets, have been developed and are currently
under evaluation in several clinical trials.

Latrunculinic derivates—macrolides that can inhibit actine
polymerization—have provided a greater trabecular meshwork
activity through actine cytoskeleton disruption, in studies
on animal models and post-mortem analysis, after topic or
intracameral administration (Peterson et al., 2000; Okka et al.,
2004). Latrunculin B has been evaluated in a phase I study,
showing a significant IOP reduction in treated eyes (Rasmussen
et al., 2014). However, these molecules are affected by little
efficacy and solubility. It has been suggested that their effects can
be potentiated by adopting different delivery systems (Chen J.
et al., 2011).

Several molecules belonging to the class of RHO-kinase
associated protein inhibitors (ROCK inhibitors) have been
evaluated in clinical trials (Zhang et al., 2012). ROCK is
an effector of the RHO-dependent transduction pathway.
Transmembrane receptors and their ligands (growth factors
and lysophosphatidic acid) activate RHO-GTPase which
activates ROCK. Then ROCK stimulates myosin light chain
(MLC) phosphorylation which induces cytoskeletal changes,
cell motility, and smooth muscle contraction. Trabecular
meshwork cells possess smooth muscle-like properties, as
evidenced by the expression of a-smooth muscle actin (a-SMA)
(de Kater et al., 1990), and their contraction/relaxation status
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has been reported to influence aqueous humor outflow facility
(Wiederholt et al., 2000). Interestingly, smooth muscle cell
contraction is regulated predominately by the phosphorylation
status of MLC, a main downstream target of ROCK. Inhibitors
of ROCK and Rho GTPases interferes with these processes,
reducing IOP in animal models (Collaborative Normal-Tension
Glaucoma Study Group, 1998; Tokushige et al., 2007; Van de
Velde et al., 2014). Moreover, several studies on animal models
have shown that ROCK inhibitors may provide beneficial
effects in terms of prevention of scarring tissue formation
after filtration surgery, neuroprotection, axonal regeneration
and regulation of ocular blood-flow (Van de Velde et al.,
2015). Due to their important effects on blood pressure, recent
developments of ROCK inhibitor drugs have been limited to
topical applications. However, even when applied topically to
the eye, side effects, such as conjunctival hyperemia are observed
(Tokushige et al., 2007; Tanihara et al., 2008; Mandell et al.,
2011) probably due to low specificity or interference with off
target ROCK-dependent cellular processes (Tanihara et al.,
2008; Williams et al., 2011). “Soft” ROCK inhibitors (locally
acting drugs designed to be stable in the desirable site of action
and to undergo metabolic inactivation by conversion into a
nonfunctional metabolite) have been developed to overcome
these issues (Bodor and Buchwald, 2008). As a result, off target
activity is avoided resulting in a better safety profile (Boland
et al., 2013). It is still uncertain whether the effectiveness of
these agents can overcome their adverse effects and therefore
their use seems to be limited by the onset of conjunctival
hyperemia and subconjunctival hemorrhage. Other potential
effects of such drugs are represented by neuroprotection from
N-methyl-D-aspartate (NMDA)-induced toxicity, improved
survival of ganglion cells and axonal regeneration, as well as
an increase in ocular blood flow and inhibition of tenonian
fibroblast proliferation (Kitaoka et al., 2004; Honjo et al., 2007).

Another possibility of pharmacological approach is
represented by enhancing the levels of nitrogen monoxide
(NO), whose release in trabecular environment activates ion
channels (particularly a calcium-dependent channel for the
potassium, BKCa, that is supposed to alter the conformation
of cytoskeleton proteins, myosin and tubulin, in addition to
provoke relaxation of smooth muscle cells). However, since
excessive NO release may lead to the formation of peroxynitrite,
thus increasing oxidative stress, direct stimulation of these
ion channels through alternative ligands may provide a more
desirable solution (Wiederholt et al., 1994; Siu et al., 2006).
Examples of drugs active on this system are combined agonists
of PGF2a/NO (prostaglandin analogs capable of releasing NO,
obtaining a reduction of IOP greater than simple analogs of
prostaglandin) and the ionic channels modulator DNB-001
(currently under evaluation in phase III studies) (Bosworth et al.,
2009; Gabelt et al., 2009; Weinreb et al., 2015, 2016; Medeiros
et al., 2016).

Other drugs that increase the elimination of aqueous humor
in animal and human models are adenosine A1 receptors
agonists (Zhong et al., 2013). Adenosine is involved in cellular
signaling in stress periods (such as retinal ischemia and elevated
levels of IOP) and, by binding to the A1 receptor, promotes

the secretion of matrix metallopeptidase-2 (MMP-2), resulting
in phospholipase C and G-proteins activation which increase
the trabecular meshwork activity (Shearer and Crosson, 2002;
Husain et al., 2007).

There is a large amount of experimental data showing the
IOP reduction properties of cannabinoids (endo-cannabinoids,
synthetic cannabinoid or those derived from plants). The
cannabinoid receptor 1 (CB1) was detected in the trabecular
meshwork and ciliated epithelium, supporting the role of their
agonists in reducing IOP (Pate et al., 1998; Song and Slowey,
2000; Cairns et al., 2016). Cannabinoids may have a direct effect
on ciliary processes, dilating blood vessels. This phenomenon
could alter aqueous humor dynamics. These molecules are also
able to induce cyclooxygenase-2 (COX-2) and prostaglandin E2
expression and consequently the expression of MMP-1, -3, and
-9, involved in the aqueous humor deflow (Rosch et al., 2006).

Local administration of calcium channel blockers, such as
verapamil, was associated with ocular outflow enhancement in
animal models and humans (probably mediated by the block of
L-type and T-type calcium-dependent channels) but their use
is limited by systemic effects including severe bradycardia and
blood hypotension (Erickson et al., 1995).

Other molecules are currently under development or
preclinical evaluation for their potential effects in lowering IOP
by increasing trabecular outflow or delaying its production.
Examples of these drugs are represented by angiotensin II
receptor antagonists, 5- hydroxytryptamine receptor 2 (5-
HT2) agonists, beta-adrenergic receptor small interfering RNAs
(siRNAs), anecortave acetate (a steroid agonist that seems to
counter ocular hypertension by inhibiting plasminogen activator
inhibitor-1, although his precise mechanism of action is still
unclear) (Lee and Goldberg, 2011; Ruz et al., 2011; Zhang
et al., 2012). RNA interference regulates the gene expression
by modulating protein synthesis with posttranscriptional gene-
silencing mechanism. The siRNA enters the cell cytoplasm,
then it is incorporated into a protein complex which binds the
target RNA messenger inducing its repression and/or cleavage
(Fire et al., 1998). Progress with siRNA has been achieved in
the field of neurodegenerative conditions, such as Parkinson’s
and Alzheimer’s diseases (Chen et al., 2013; Ma et al., 2013)
and the eye is considered a suitable target because it is a
confined compartment and, enables local siRNA delivery by
topical administration or intraocular injections. Novel molecular
strategies protecting siRNAs from degradation and suitable for
long-term delivery would open up new perspectives in the
treatment of eye diseases, for example retinitis pigmentosa, age-
related and diabetic neovascular retinopathies and glaucoma
(Guzman-Aranguez et al., 2013). A phase II clinical trial
evaluating the effects of SYL040012 (bamosiran, a topically
instilled siRNA targeting β-adrenergic receptors) has been
concluded on January 2016 (NCT02250612). Preliminary results
showed that the treatment is safe and efficient in lowering the
IOP, especially in subjects with greater baseline values (Moreno-
Montañés et al., 2014).

New perspectives for future drug development to counter
ocular hypertension by modulating aqueous humor dynamics
derive from the identification of other specific targets, including
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the melatonin receptor 3 (MT3) (whose action would reduce
IOP in primates and rabbit models), endothelin-1 (powerful
endothelial vasoconstrictor that antagonizes the effects of NO)
and the P2X2 receptor (subtype 2 of the 2X purinoceptors family,
a ionotropic channel for nucleotides, promoter of a cholinergic
response that stimulates trabecular smooth muscle release) (Lee
and Goldberg, 2011).

Excitotoxicity, Oxidative Stress,
Mitochondrial Dysfunction, and
Neuroprotection
In recent years, an important focus on oxidative stress
and mitochondrial dysfunction as a cause of glaucomatous
neurodegeneration has been carried out. It is assumed that
the concentration of free oxygen radicals and other cell
death mediators (Tumor Necrosis Factor-alpha, inflammatory
cytokines, etc.) increases during inflammatory responses as a
result of ischemic insults (prolonged and transient as well) or
blood-ocular barrier microalterations, occurring especially under
stressful events, such as ocular hypertension (Vohra et al., 2013).

Reactive oxygen species (ROS) can act directly, causing retinal
cells death, as well as indirectly as mediators, second messengers
or bymodulating the activity of other proteins (Izzotti et al., 2006;
Tezel, 2006; Chrysostomou et al., 2013). Moreover, oxidative
stress contributes to the damage of astrocytes and Müller
cells, resulting in excessive glutamate response in the neural
synapsis with consequent NMDA hyperactivity disorder related
to calcium-dependent apoptotic signaling and dysregulation of
metabolic processes that may lead to RGC cytotoxicity (Adachi
et al., 1998; Vohra et al., 2013). Dysfunction of glial cells during
glaucoma stimulates the production of additional cell death
mediators, such as TNF-alpha, and promotes NO increase (Tezel
and Wax, 2000).

Another probable cause of increased oxidative status during
ischemia is related to mitochondrial dysfunction. In fact, damage
to mitochondrial DNA increases with age and reduced ATP
production in RGC, compromising their viability. Reduced
mitochondrial energy metabolism, promoted by alterations of
electron transport cascade, stimulates superoxide and other
free radicals’ synthesis. High concentrations of these molecules
may lead to oxidative damage of macromolecules (such as
DNA, proteins and lipids) thus resulting, in conjunction with
energy deficiency and dysregulation of intracellular calcium, in
neuronal degeneration (Tezel et al., 2009). It is also thought
that mitochondrial dysfunction may lead to neuronal death due
to production of apoptotic cell mediators through triggering of
caspase-dependent processes (Tezel and Yang, 2004).

Thus, the limitation of oxidative stress could be an
effective mean in order to obtain a form of neuroprotection
and reduce ischemia-related damage. Antioxidant/antiapoptotic
agents as alpha-luminol, Ginkgo biloba extracts, resveratrol,
stanniocalcine-1 and alpha-lipoic acid have been evaluated in
mouse models, proving to be effective in RGC protection
(Hirooka et al., 2004; Gionfriddo et al., 2009; Luna et al., 2009;
Inman et al., 2013; Kim et al., 2013; Pirhan et al., 2016).

Molecules that have been evaluated in human subjects
with neuroprotective intent in glaucoma are memantine
(receptor antagonist for NMDA glutamatergic) and brimonidine
(an alpha2-adrenergic agonist). Memantine, by blocking the
exocytotoxic process mediated by glutamate, has proven useful in
preventing the loss of RGC in animal models (Hare andWheeler,
2009; Ju et al., 2009). To date, two randomized Phase III clinical
trials designed to evaluate the efficacy of memantine in reducing
the progression of glaucoma have been conducted by Allergan,
Inc. (NCT00141882 and NCT00168350, 2009). The results of
the first study have not been published, but two subsequent
reviews have reported satisfactory outcomes (Cheung et al., 2008;
McKinnon et al., 2008). Reports of the second trial showed a
significantly lower progression of disease in patients treated with
high doses of memantine, compared to those treated with low
doses, but there were no significant differences compared to the
group receiving placebo (Sena and Lindsley, 2017).

The potential neuroprotective mechanisms of brimonidine
include increased activity of brain-derived neurotrophic factor
(BDNF) and ciliary neurotrophic factor (CNTF), activation
of cell survival pathways (such as reduced expression of
mitochondrial transcription factor A, involved in cellular
oxidative phosphorylation) and antiapoptotic genes, inhibition
of glutamate release induced by ischemia and prevention of
oxidative damage caused by exocytotoxic response mediated
by NMDA receptor (Wen et al., 1996; Gao et al., 2002; Dong
et al., 2008; Lee et al., 2012). In the Low Tension Glaucoma
Treatment Study, patients treated with brimonidine showed a
lower progression of visual field loss than patients receiving
timolol (Krupin et al., 2011). However, a recent Cochrane review
has found that the study results were not decisive, given the vast
amount of missing data in the group treated with brimonidine
(Sena and Lindsley, 2017).

New pharmacological approaches in neuroprotection for
glaucoma and other optic neuropathies are currently in
development (such as siRNA inhibiting caspases cascade, NO-
synthase inhibitors, drugs and synthetic polypeptides with
immunomodulatory function) (Neufeld et al., 1997, 2002;
Neufeld, 2004; Lee and Goldberg, 2011). Further studies are
needed in order to determine with greater certainty whether
neuroprotective agents can bring benefits in terms of cell
survival/progression of disease in patients with glaucoma.

Neurotrophic Growth Factors
Neurotrophic factors, including CNTF, BDNF, neuronal growth
factor (NGF), and the glial cell line-derived neurotrophic factor
(GDNF) are produced by cells within the retina, however their
concentration and the expression of their respective receptors
are influenced in complex ways by axonal damage of the
optic nerve, increased IOP and introduction of exogenous
neurotrophic factors (Perez and Caminos, 1995; Gao et al., 1997;
Ju et al., 1999, 2000; Pease et al., 2000; Vecino et al., 2002;
Wordinger et al., 2003; Rudzinski et al., 2004). In fact, intrinsic
growth factors do not seem to be sufficient in maintaining the
viability of RGC in conditions of chronic disease, but exogenous
neurotrophic factors may be administered in several different
modes.
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For example, intravitreal injections of 5 micrograms of BDNF
and 2 micrograms of CNTF have reduced the death of RGC
in animal models by 8 and 22% respectively after 1 month
(Ko et al., 2000, 2001; Ji et al., 2004). As an alternative to
repeated intravitreal injections, topical administration of purified
neurotrophic factors is possible, but their bioavailability in
posterior segment still remains uncertain. However, it was
reported that topical administration of NGF four times a day for
7 weeks increases the density of ganglion cells by 37% (Lambiase
et al., 2009). It should be noted that this treatment, while showing
functional improvements detected with electroretinography,
visual evoked potentials and computerized visual field, it was still
carried out on a limited number of patients and in the absence of
a control group, thus raising doubts about its real efficacy.

Long-term studies on the ganglion cells have unfortunately
shown that beneficial effects of neurotrophic factors are
temporary, slowing but not preventing cell death. It is supposed
that such occurrence is due to receptors down-regulation at the
cellular level, thus raising the need for repeated administrations
(Harvey et al., 2006; Johnson et al., 2011). The administration
of neurotrophic factors can be maintained in time by making
advantage of slow release devices implantation. However, while
prolonging the time between one treatment and the other,
this solution does not seem to eliminate the prospect of
repeated applications, as only limited quantities of a particular
neurotrophic factor can be released (Jiang et al., 2007; Ward
et al., 2007; Johnson et al., 2011). However, administration of
biodegradablemicrospheresmay be inconvenient due to the need
for several intraocular injections. Therefore, less invasive and
painful neuroprotective approaches to support RGCs survival are
required.

The gene therapy approach to elevate endogenous retinal
production of neurotrophic factors avoids the obstacles
associated with the in vivo delivery of proteins and peptides
and shows promising preclinical results in many retinal
neurodegenerative disorders, including glaucoma (Nafissi and
Foldvari, 2016). An innovative method by which neurotrophic
factors can be given is the use of viral vectors (such as lentivirus,
adenovirus, cytomegalovirus and adeno-associated virus) that
integrate within the target cells, increasing the endogenous
production of neurotrophic factors in the retina (Di Polo et al.,
1998; Schmeer et al., 2002; Pease et al., 2009). Adeno-associated
vectors (AAV) for gene therapy have already been applied
with encouraging results (and relatively rare adverse effects)
in children with retinal degenerations due to Retinal pigment
epithelium-specific 65 kDa protein (retinoid isomerohydrolase,
RPE65) mutations (Ku and Pennesi, 2015; Bennett et al., 2016;
Weleber et al., 2016) jumpstarting a similar approach for other
neurodegenerative ocular diseases. While proving to be effective
and well tolerated in animal and experimental glaucoma models,
the effects of this method have been transient, probably due to
short duration of viral vectors gene expression and triggering of
important inflammatory reactions or insertional mutagenesis.
New viral vectors with different serotypes, currently under
evaluation for other conditions as Leber optical congenital
amaurosis, may represent a new twist given their greater
efficiency in gene transduction (requiring lower doses and

producing longer lasting effects) (Maguire et al., 2008, 2009;
Petrs-Silva et al., 2009; Simonelli et al., 2010). Since the capsid
protein of AAV is responsible for its tropism toward specific
target cells, pseudotyping strategies were developed enabling
the packaging of an AAV2 genome into the capsid of another
serotype (Rabinowitz et al., 2002). These vectors have the
combined advantage of safety and long-term expression of
AAV2 and the improved in vivo efficacy and tropism of the
novel serotypes. The differences in cellular specificity may reflect
differences in the expression of viral receptors on the surface of
various cell types. After intravitreal injection, only AAV featuring
serotypes 2 and 8 emerged as vectors able to efficiently transduce
inner retinal layers, while 1, 4, 5, 7, and 8-based vectors delivered
transgenes to the neural retina and pigment epithelium after
subretinal injection (Auricchio et al., 2001; Lebherz et al., 2008).
The vectors able to transduce RGC in rodent models (after
both intravitreal and subretinal injection) are those featuring
serotype 2 and 8 (Lebherz et al., 2008). The application of
vectors specific for RGCs will lead to expanded possibilities for
development of ocular gene therapy for glaucoma, due to their
cellular tropism.

Newer, more reliable tools (non-viral gene delivery
techniques, polysaccharide and liposome nanoparticles,
innovative transgenes insertion techniques) avoid the high
risks associated with using viral vectors, provide life-long
therapy by more policed insertion of the therapeutic gene into
the desired site, target a broader range of disorders due to
their capability to accommodate genes of different sizes, and
finally, provide higher activity owing to their ability to target
hard-to-transfect human cells (Nafissi and Foldvari, 2016). For
example, Lipopolyplex (a ternary complex of cationic liposome,
polycation and DNA) is a novel, non-viral gene delivery vector
with high colloidal stability, high gene transfection efficiency
and low immunogenicity, capable to cross the blood brain
barrier, that has been proposed for neurodegenerative central
nervous system conditions (Chen et al., 2016). A similar
alternative for gene delivery is represented by the “Trojan Horse
Liposome” (THL), an immunoliposome containing DNA and
conjugated with monoclonal antibodies, providing high target
specificity (Shi et al., 2001). Immunoliposomes loaded with
tyrosine hydroxylase expressing plasmids and conjugated with
antibodies targeting transferrin receptor ameliorated the striatal
tyrosine hydroxylase activity in rat models of Parkinson’s disease
(Pardridge, 2005). Alternative non-viral vectors may become
useful also for gene therapy in glaucoma, since they avoid the
adverse effects usually associated with viral vectors, also featuring
site and target specificity due to immunological targets or topical
administration. Noninvasive topical ocular gene delivery was
effectively carried out in a mouse model using eye drops of poly
(ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide)
(PEOPPO-PEO) polymeric micelles (Liaw et al., 2001).

The use of neurotrophic growth factors for clinical
applications was limited also because of their pleiotropic effects
(which lead to non-specific cellular responses), toxicity and
short half-life. Moreover, neurotrophic factors are distributed
inefficiently in target tissues and are not able to pass through the
blood-brain barrier. These restrictions can be overcome through
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the development of peptidomimetic ligands, small molecules,
resistant to proteolysis and capable of mimicking binding and
activation properties of neurotrophic factors, carrying out
their biological activity without the occurrence of side effects.
These ligands interact specifically with the appropriate receptor,
behaving as agonists or antagonists. Their advantages over native
ligands include reduced immunogenicity, low molecular mass,
satisfactory pharmacokinetics and high affinity for the target
receptor (Johnson et al., 2011).

A peptidomimetic ligand developed to improve the survival
of RGC in glaucoma is represented by a TrkA receptor agonist
(whose native ligand is NGF which also triggers p57-dependent
pro-apoptotic signals) (Shi et al., 2007; Hu et al., 2010). The
combination of a selective agonist for the TrkA with an
inhibitor of p57 showed major neuronal protection after optic
nerve damage (Lebrun-Julien et al., 2009). In addition, the
peptidomimetic ligand for TrkA has provided a significant and
sustained survival in experimental models of glaucoma (Shi et al.,
2007). Therefore, these molecules have a promising therapeutic
potential for glaucoma and other neurodegenerative disorders.

STEM CELL THERAPY

Stem Cells Types and Glaucoma
In recent years, stem cells have been the subject of great attention
as a potential source of cell replacement in diseases that lead to
blindness, such as glaucoma. Two unique stem cells properties
are their repairing ability, by dividing themselves for an infinite
number of times, and their ability to differentiate into many cell
types. Advances in stem cell technology provide opportunities
to improve our understanding of glaucoma-related biology and
offers the possibility of cell-based therapies to restore sight to
patients with important vision loss (Chamling et al., 2016). Stem
cells can be classified into three main categories, according to
their origin: embryonic stem cells, induced pluripotent stem
cells and adult stem cells. Embryonic stem cells have many
advantages, such as unlimited capacity for self-renewal and
pluripotency, however, their clinical use is controversial for
ethical, bureaucratic and biological reasons (related to the known
risks of tumorigenesis and immunological rejection).

Induced pluripotent stem cells can provide an autologous
transplantation approach, but the main safety issues (due to
genomic degradation and oncogenesis related to the integration
of retroviral or lentiviral vectors in the production process) and
the fact that they retain the epigenetic memory of the cell of
origin make their application difficult (Stadtfeld et al., 2008; Lin
et al., 2009; Zhou et al., 2009; Kim et al., 2010; Polo et al., 2010).
Integration capabilities of the in vitro differentiated cells have
also been tested by subretinal injections in mice (Tucker et al.,
2011; Hambright et al., 2012; West et al., 2012). All these studies
assessed terminal differentiation and integration of pluripotent
cells-derived photoreceptors and, when possible, functionality,
although showing variable results.

Adult stem cells (or progenitor cells) lie in different
tissues (bone marrow, limbus, etc.) and they maintain high
plasticity, although not being pluripotent. The possibility of
autologous transplant (thus avoiding the need for subsequent

immunosuppression) and minor ethical implications have
recently made this cell type very popular (Mimeault et al., 2007;
Lodi et al., 2011). Despite the growing understanding of ocular
stem cells biology and properties, their clinical application seems
still uncertain. To date, the most effective cell therapy is based
on the use of ocular limbal stem cells to regenerate the corneal
epithelium (Pellegrini et al., 1997).

Taking into account the above disclosure, stem cells can be
isolated, induced into differentiation and then transplanted into
the retina, where they can overcome the loss of ganglion cells or
photoreceptors. Moreover, progenitor stem cells niches suitable
for retinal graft were identified.

Neural stem cells, for example, can differentiate into neurons,
astrocytes and oligodendrocytes both in vitro and in vivomodels
(Gage, 2000), but not in retinal phenotypes, even if their
integration into the receiving retina is still possible (Takahashi
et al., 1998; Young et al., 2000). On the other hand, stem cells
derived from the retina can differentiate into multiple retinal
phenotypes, but seem unable to integrate into the receiver’s
retina, probably for different environmental conditions between
under development and mature retina (Chacko et al., 2000).
For donor cells to integrate in retinal tissue, specific molecular
characteristics are needed and stem cells should be derived
from retinae that have not reached complete maturation. Several
studies have shown that retinal precursor cells extracted from
embryonic retina of animal models have been successfully
transplanted into the subretinal space of mice (MacLaren et al.,
2006; Klassen et al., 2007; Bartsch et al., 2008; Cho et al., 2012). All
these studies have made use of an “in vivo” ocular environment
to complete the differentiation into mature photoreceptor cells.
Despite the promise, the low numbers of integrating cells hinder
a real functional recovery in the transplanted eyes, even if some
restoration of vision was observed (Pearson et al., 2012).

Human embryonic stem cells can differentiate into retinal
phenotypes (especially photoreceptor) and integrate successfully
in mice retinas (Lamba et al., 2006). An important discovery
was the identification of human ciliary epithelium stem cells,
which are able to integrate successfully into the retina and to
differentiate into photoreceptors, bipolar, ganglion and Muller
cells (opening the possibility for autologous transplant) (Ahmad
et al., 2000; Tropepe et al., 2000; Lawrence et al., 2007;
Giannelli et al., 2011). Parameswaran et al. (2010) have recently
obtained photoreceptors and RGC from fibroblasts induced into
pluripotent stem cells.

However, before taking in consideration the application of
stem cells to replace RGC, thus repairing the optic nerve damage
in glaucoma, additional challenges must be addressed: it is
necessary a better understanding of RGC natural differentiation
pathways as well as transplanted stem cells stimulation methods
that may trigger axonal growth through the damaged optic
nerve, carrying out functional synapses with specific cortical
targets, thus restoring vision. Furthermore, the heterogenous
nature of RGC (Sanes and Masland, 2015; Baden et al., 2016)
in terms of physiological, morphological and molecular criteria
must be taken into consideration when processing stem cells
differentiation protocols in order to replace different types
of RGCs.
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Another niche of stem cells that could be of great clinical
relevance in case of glaucoma is represented by progenitor cells
located in the transitional zone between the corneal endothelium
and trabecular meshwork, known as the Schwalbe ring (Raviola,
1982; Kelley et al., 2009; Yu et al., 2011). Currently different
approaches for the extraction and isolation of these “trabecular
inserts” are being evaluated, including surgical dissections with
high resolution microscopes and detection of specific cellular
markers (Gonzalez et al., 2004; Du et al., 2005; Liton et al.,
2005; McGowan et al., 2007). These progenitor cells can replace
missing or insufficient trabecular cells in glaucoma patients
revealing a potential alternative to prevent the loss of vision and
facilitate compliance in place of long term eye drops applicarion
or expensive laser treatments. Further researches are required
in order to establish a protocol to regulate the division and
differentiation of these inserts in the appropriate cell lines.

Autologous mesenchymal stem cells (MSCs) derived from
human bone marrow could represent a further source of stem
cells for regenerative purposes (Figure 2), given their greater
ease of extraction and their ability to migrate to retina and
optic nerve head (ONH) after intravitreal injection in murine
models. Moreover, it has been observed that MSCs produce
neural growth factors after intravitreal injection in animal models
(Johnson et al., 2010). As for their use in humans, the experience
regarding their application in glaucoma is extremely limited.
It’s reasonable to suppose beneficial effects also in human

glaucoma models, as suggested by Connick et al. (2012), since
neuroprotective effects in patients with secondary progressive
multiple sclerosis have been observed as a result of intravenous
administration of MSC (with improvements in terms of visual
acuity, visual evoked potentials latency and the optic nerve
area). The Retina Associates of South Florida and MD Stem
Cells have developed a clinical trial in order to evaluate the
use of autologous stem cells taken from bone marrow in
the treatment of various eye diseases, including glaucomatous
optic neuropathy (Stem Cell Ophthalmology Treatment Study,
NCT01920867). The trial considers comparison of different
study groups that will receive administration of MSC through
subtenionan, retrobulbar, intravenous and intravitreal ways (with
or without associated vitrectomy procedure). Preliminary results
have been recently published with encouraging visual acuity
improvements in patients affected by optical neuropathies, such
as Leber’s hereditary optic neuropathy (Weiss et al., 2015, 2016).
The conclusion of this clinical trial is estimated for 2017.

Cell Therapy and Neuroretinal Protection
An alternative use of stem cells is emerging. In fact, recent
studies have shown that a large variety of progenitor cells,
when transplanted, possess neuroprotective properties in
experimental models of glaucoma. It is believed that cell-
mediated neuroprotection is conferred by production of various
neurotrophic factors. It’s evident that oligodendrocyte precursors

FIGURE 2 | Schematic diagram showing perspectives of mesenchymal stem cells for glaucoma. Autologous mesenchymal stem cells can be extracted from different

sources (such as bone marrow and adipose tissue) and can be used to replace retinal cell elements, lost due to glaucomatous injury, since they are able to migrate

toward the optic nerve head and the retinal ganglion cell layer (even after intravitreal injection). MSCs can also produce neurotrophic factors providing neuroprotection

and reactivation of quiescent cells in the retina.
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can reduce by 32% the death of ganglion cells (Bull et al., 2008,
2009) and mesenchymal stem cells can simultaneously produce
a wide range of neurotrophic factors (such as BDNF, CNTF, and
GDNF), providing a reduction of cell death of 28% after 1 month
from glaucoma onset (Li et al., 2002; Ye et al., 2005; Crigler
et al., 2006; Yu et al., 2006; Arnhold et al., 2007; Inoue et al.,
2007; Li N. et al., 2009; Wilkins et al., 2009; Zwart et al., 2009;
Johnson et al., 2010). Other appealing perspectives are possible:
to enhance stem cells with genetic engineering techniques in
order to produce a significantly greater amount of neurotrophic
factors (Kurozumi et al., 2004; Ikeda et al., 2005; Liu et al., 2006;
Sasaki et al., 2009).

A recent study by Mead et al. (2014) compared the
neuroprotective efficacy of adipose-derived mesenchymal stem
cells, bone-marrow derived mesenchymal stem cells and dental
pulp mesenchymal cells (DPSC), showing that BMSC and, to
a greater extent, DPSC provided significant protection from
RGC loss and preserved RGC function in mice after intravitreal
injection. The relatively longevity of transplanted intravitreal
MSC is likely due to immunosuppressive features of MSC and
properties of vitreous body preventing cell migration (Mead
and Scheven, 2015; Mead et al., 2015). Even though the results
obtained as yet are promising, some important obstacles still
need to be overcome, including the rejection of the transplanted
cells and potential oncogenesis associated with implantation of
undifferentiated cells.

However, both problems can be overcome by the development
of semi-permeable capsules that enclose the stem cells,
isolating them from the surrounding retinal environment,
while maintaining the ability to secrete neurotrophic factors.
Ultimately, the interest in encapsulated stem cells has grown even
further, leading to the development of clinical trials for diseases,
such as retinitis pigmentosa (Sieving et al., 2006) and the dry form
of age-related macular degeneration (NCT00447954), and in case
of successful result, these studies may suggest a similar approach
in glaucoma patients.

Optic Nerve Axonal Regeneration
In the final stages of glaucoma, the optic nerve is affected
by a major atrophy that causes irreversible damage, resulting
in irreparable loss of visual function. Optic nerve axonal
regeneration after any kind of injury seems to be inhibited
by at least three major obstacles: apoptosis of RGC, inability
to trigger axonal growth, cellular microenvironment of the
central nervous system containing inhibitory factors. Various
therapeutic strategies have been evaluated to overcome these
obstacles and restore lost functionality, one of which is
represented by the transplantation of the optic nerve.

A study of Aguayo et al. (1987) showed that regenerative
capacity of mammals’ RGC could be facilitated in a more
permissive microenvironment obtained with the application of
a peripheral nerve graft. The use of a peripheral nerve as a
new conduction pathway between the retina and mesencephalic
sovratectal nuclei, in association with the application of cellular
growth factors, has led to the restoration of the pupillary reflex
in mice with extensive lesions of the optic nerve. Negishi et al.
(2001) have studied the use of a graft made from a silicone
tube enriched with purified Schwann cells, extracellular matrix

(Matrigel), NGF and BDNF in murine models subjected to
axotomy, observing tissue development and regeneration of
blood vessels, RGC and their axons. Other artificial substrates
have also been developed with the same purpose. For example,
a peptide nanofiber scaffold has been shown to stimulate axonal
regeneration with return of functional vision in hamsters (Qin
et al., 2013).

Various biomaterials have been proposed to obtain scaffolds
for promoting axonal repair. Among them, chitosan, a
derivate of chitin extracted from shellfishes, has shown
biomimetic properties which make it a promising candidate
for developing innovative devices for neural repair (Figure 3).
In vivo experimental studies have shown that chitosan can
be successfully used to produce scaffolds that promote neural
regeneration in the central and peripheral nervous system
(Gnavi et al., 2013; Meyer et al., 2016). Chitosan conduits
can also be enriched with adhesion molecules (such as
laminin, collagen and L1), mesenchymal stem cells and
neurotrophic factors for facilitating nerve regeneration and
guiding neurite growth (Cheng et al., 2007; Li X. et al.,
2009; Chen X. et al., 2011; Guo et al., 2012). Retinal
progenitor cells cultured on cationic chitosan-graft-poly(ε-
caprolactone)/polycaprolactone (CS-PCL/PCL) scaffolds shown
to differentiate into retinal neurons, suggesting the potential of
these biomaterials in retinal tissue engineering (Chen H. et al.,
2011). Xu et al. (2004), by using an animal model of optic
nerve transection, showed that polyglycolic acid(PGA)-chitosan
scaffolds, coated with recombinant L1-Fc, have a potential role
in promoting nerve regeneration by guiding axonal regrowth
and remyelination. The application of chitosan scaffolds, though
promising, must be subjected to further studies to evaluate their
use for glaucoma.

FIGURE 3 | Schematic diagram of chitosan-based scaffolds for glaucoma.

Chitosan scaffolds have shown to facilitate axonal repairing and growth in both

central and peripheral nervous system. Moreover, their beneficial effects can

be promoted by their combination with neural and vascular regenerative

hydrogels, adhesion molecules, glial cells, Schwann cells, mesenchymal stem

cells and neurotrophic factors.
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Neurotrophic factors, such as BDNF and CNTF enhance
survival of axotomized RGC (Mansour-Robaey et al., 1994;
Muller et al., 2009) and promote mild axonal sprouting (Shum
et al., 2016). Recently, the administration of osteopontin has
shown to potentiate significantly the regenerative response of
alpha RGC to BDNF stimulation (Duan et al., 2015).

Another way to repair the optic nerve damage as a result
of glaucoma consists in triggering neuronal growth by acting
on different intercellular signals. Among the interventions
tested in experimental models so far, we find macrophage
activation induced by c-AMP analogs (a mechanism capable of
promoting ganglion cells and axonal fibers proliferation through
oncomodulin action and growth factors, such as CNTF), Toll-
like receptor-2 agonists (e.g., zymosan that would promote the
activation of macrophages, Müller cells and retinal astrocytes
involved in the mechanisms of neuronal regrowth), activation
of RGC proliferation, as well as optic nerve fibers growth,
following lens puncture (a process mediated by the subsequent
inflammatory response triggered by the release of lens proteins
in the posterior chamber), and ROCK inhibitors (Kurimoto
et al., 2010; Fischer and Leibinger, 2012). Neuroregenerative
effects of ROCK inhibitors is mediated by the block of ROCK
signaling cascade, which is known as a negative regulator of
neurite extension and can be activated by several neural growth
inhibitors expressed in the central nervous systemmyelin, such as
Nogo-A,MAG andOmgp (Van de Velde et al., 2015). In addition,
small interfering RNA targeting the Nogo-66 receptor (NgR, a
receptor shared by Nogo-A, MAG and Omgp, triggering the
ROCK cascade), in association with an oncomodulin/truncated
protamine vector (featuring specific affinity for RGC), has
demonstrated axonal regenerating effects on RGCs, in in vitro rat
models (Cui et al., 2014).

Alpha crystallins are proteins that were first identified as
major structural components of the ocular lens, but they also
share homology with heat shock proteins and have chaperone-
like features, including preventing stress-induced apoptosis
(Liu et al., 2004). Several studies reported downregulation
of crystallins in various models of glaucoma, suggesting that
decreased levels of these proteins may reduce RGC survival (Piri
et al., 2007). This hypothesis was corroborated by increased
survival of axotomized RGCs in retinas overexpressing alpha A
or alpha B crystallins (Ying et al., 2008; Munemasa et al., 2009).
In addition to RGC protective functions of alpha crystallins,
beta and gamma crystallins were implicated in RGC axonal
regeneration (Fischer et al., 2001; Teng and Tang, 2006).

Also, several targets for gene therapy have been studied
in order to promote axonal regeneration. In fact, activation
of Mst3b, c-myc and RAF-MEK signaling enables and favors
neurite growth (Lorber et al., 2009; O’Donovan et al., 2014),
while deletion of genes encoding suppressors of neurotrophic
pathways, such as CaM kinase, MAP kinase, JAK/STAT, and PI
3-kinase/mTOR have resulted in sustained axonal regeneration
(Shum et al., 2016). Moreover, deletion of PTEN and/or SOCS3
genes was found to increase nerve regeneration, allowing
regenerating axons to reach optic chiasm from injured optic
nerve (Park et al., 2008; Smith et al., 2009; Sun et al., 2011; de
Lima et al., 2012).

Future inspiration may lie in fish and salamanders, since
they retain the capability for regeneration and neurogenesis after
central nervous system injury. Analysis of visual recovery in
zebrafish showed two phases of recovery (Kato et al., 2004). In
the first phase, retinal projections are limited to the outer layer of
the optic tectum, and the fish show a gross optomotor response
(Bilotta, 2000). The slow phase allows for recovery of high
resolution vision, and involves complete restoration of visual
circuits and refinement of synaptic terminals (McDowell et al.,
2004). Since many molecular pathways of the central nervous
system, are shared, the adult zebrafish is a powerful model to
study neural regeneration (Becker and Becker, 2008; Shum et al.,
2016). Finally, autologous stem cells, either for regenerative, or
neuroprotective intent, could find an interesting application for
the same purposes described above, but their effects and their
safety profile need to be outlined in greater detail through further
studies.

PARASURGICAL THERAPY: THE LASER
TREATMENT

The laser treatment of glaucoma, in its various types, is typically
used as second-line therapy, after medical therapy failure or
in association with anti-glaucoma drugs. Traditional techniques
are YAG laser iridotomy, argon laser trabeculoplasty (ALT) and
diode laser cyclophotocoagulation. The first two increase the
outflow of aqueous humor by creating filtering spaces obtained
by directing destructive laser pulses at the level of peripheral iris
or the trabecular meshwork. The last one, however, decreases
aqueous humor production by destroying ciliary processes.

The advantages of laser therapy are mainly the low
invasiveness, reduced probability of infection, ease
of implementation and minimal post-operative pain.
Complications are mainly of inflammatory nature, but
they also include IOP elevation peaks, aqueous drainage block
due to trabecular scarring and corneal damage (Thompson
et al., 2002). Research efforts in recent years have been focused
on finding new methods for concentrating and directing the
laser energy only on interested areas, limiting thermal damage
to adjacent tissues.

Femtosecond Pulsed Laser
The femtosecond pulsed laser has high intensity and very short
duration pulse, making it precisely directable on the target tissue
with limited effects on adjacent areas. Ngoi et al. (2005) have
studied its application on pig eyes practicing in vitro iridotomy:
results showed that the power consumption is 90 mW compared
to 200 mW of a traditional Argon laser system. The femtosecond
laser was studied in vivo on rabbit eyes by Chai et al. (2010),
with the intent of creating artificial drainage channels at the
trabecular and sclero-conjunctival level. In treated eyes, it was
demonstrated both the effectiveness on anatomical investigations
with optical coherence tomography (OCT) imaging, and
functional effectiveness showing a significant reduction in IOP
(Chai et al., 2010).
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Selective Laser Trabeculoplasty (SLT)
In recent years, selective laser trabeculoplasty (SLT) has been
proposed as a viable alternative to ALT. It uses a pulsed YAG
laser, with very low intensity and selective target on trabecular
meshwork pigment cells. Compared to ALT, employed energy
and exposure time are lower. Moreover, the selectivity of cellular
targets prevents side effects from indiscriminate damage of
the trabecular meshwork, preventing scarring with possible
formation of synechiae (Realini, 2008). However, the response
rates within the first postoperative year have varied from 59 to
96%, according to different definitions and studies. The reported
average reduction in IOP from pretreatment IOP ranges from 18
to 40%, over a follow-up period of 6 to 12 months (Jha et al.,
2012).

Diode Laser Trabeculoplasty (DLT) and
Micro-Pulsed Diode Laser Trabeculoplasty
(MDLT)
Another possibility that has emerged in recent years is the diode
laser trabeculoplasty (DLT). The advantages of this technology
compared to the traditional ALT are a lower energy pulse and
greater equipment simplicity and portability. As a matter of fact,
ALT uses argon ionized gas, high voltage (350 V), a 20–30A
current and a system consisting of several mirrors, which are
prone to rupture or become misaligned. Devices employed in
ALT are also very large and only some models are transportable.
The DLT instead uses a solid crystal, low-voltage (3 V), a current
of 1 to 4A and a system of mirrors that does not have alignment
issues. Dimensions are also very contained and the equipment is
fully transportable. Long-term studies have demonstrated similar
efficacy in terms of reduction of IOP (Chung et al., 1998).
Further research led to the development of a micro-pulsed
variant (MDLT) that allows to gain the same results with less side
effects (Sivaprasad et al., 2010; Coombs and Radcliffe, 2014). The
laser energy, instead of being contained in a single pulse of the
duration of 0.1–05 s is split into a series of pulses of 100–300 ms
each, for a total exposure time of about 0.1–0.5 s. In this way, the
time lapse between a micro pulse and the other allows a partial
cooling of the target tissue, to limit overheating and therefore
the diffusion of heat and thermal damage to the adjacent areas
(Dorin, 2003).

Ab-Interno Excimer Laser Trabeculotomy
(ELT)
In recent years, enthusiasm has been aroused by ab-interno
excimer laser trabeculotomy (ELT). This technique is based on
the creation of micro-perforations that connect the anterior
chamber to Schlemm’s canal, thus mechanically increasing
outflow routes (Vogel and Lauritzen, 1997). It is a minimally
invasive technique with rapid execution (4–5 min), which
may also be associated to cataract surgery. Compared to
trabeculoplasty, it does not induce thermal damage to trabecular
structures adjacent to the micro holes and therefore has no
complications related to scarring. Studies by Wilmsmeyer et al.
(2006) showed a significant reduction in IOP attributable to ELT,
especially if employed in association with phacoemulsification
procedure.

Laser technologies are constantly evolving, thanks to more
advanced level of research, leading to new modalities, such as
titanium-sapphire laser and pattern scanning trabeculoplasty
(Tsang et al., 2016). Thanks to the practicality of execution and
to progressive less incidence of complications, they are spreading
not only as a second level treatment, but also as assistance to
first-line medical therapy or alternatively as a first choice. Further
studies are required to certify their actual efficacy and safety
(Meyer and Lawrence, 2012).

REHABILITATION THERAPY

Despite the efforts of clinical and biological research, at present
time glaucoma, if untreated, leads to blindness or other serious
and debilitating impairment of peripheral vision. For these
advanced cases, an additional resource is rehabilitation therapy
through patient education to the use of residual vision and
repeated training through visual stimulation. The rationale of
these methods comes from studies regarding the plasticity of
the visual system. According to many theories, neuronal damage
triggers morphological and functional reorganization processes
that would lead to the creation of new neural links or to the
use of previously underutilized existing ways. Plasticity is in
fact a typical property of nerve tissue, which is expressed not
only during the age of development, but also during the whole
lifetime, albeit in a more limited fashion. This mechanism is a
fundamental process for functional recovery after a damaging
event.

An example of what has just been explained is constituted
by the phenomenon of blindsight, which is the ability shown by
some patients with cortical blindness to respond to visual stimuli
presented in the corresponding area of the visual field without
perceiving it consciously (Weiskrantz et al., 1974). It is supposed
that as a result of visual cortex lesions a spontaneous plastic
anatomical reorganization process is put in place. Through the
recruitment of subcortical pathways, it is thus possible to balance,
albeit weakly, the loss of functionality. In cases, such as the
ones shown above, with proper rehabilitation, interventions
can consolidate or even improve remaining visual performance,
beyond the small, spontaneous recovery that usually occurs in the
first few months after acute event.

In addition to the rehabilitation therapy the use of molecules
that reduce neuronal death might encourage the process of
reorganization and thus increase treatment efficiency. The
same plastic/protective processes might be relevant even when
the damage affects not only the central point of arrival
of the visual stimulus (the cerebral cortex), but also its
starting point (the ganglion cells and the optic nerve), as in
glaucoma.

To understand more the role of neuronal plasticity in the
processes of functional recovery, studies have been conducted
using the innovative technique of functional magnetic resonance
imaging to assess and confirm the changes that occur in the
central nervous system in visually impaired patients after cycles
of visual rehabilitation (Nuzzi and Buschini, 2010).

Another line of investigation lies in studying visual
rehabilitation by electrical stimulation of different targets:
the retinal neuronal cells, the optic nerve or visual areas of the
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brain (Lorach et al., 2013; Sehic et al., 2016). Not only glaucoma
patients are examined in these studies, but also those suffering
from retinitis pigmentosa, age-related macular degeneration
and diabetic retinopathy, which are among the most frequent
causes of blindness, according to the World Health Organization
(Pascolini and Mariotti, 2012). However, until now, artificial
implants were not able to restore a complete physiological visual
function, but they provide a limited and artificial perception.
Even so, with its plastic capacities, the nervous system could
be adapted to the conduction and interpretation of these new
paraphysiological stimuli, with good functional results, even if
the technical difficulties and applications are numerous and have
not yet completely overcome nowadays.

Epi-Retinal Implants
The stimulation targets are the RGC. The electrodes are placed
directly on the retinal surface and connected to a device that
stimulates the target and at the same time receives the data.
The first in vivo experiments were conducted between 2003 and
2009 by Humayun and Caspi (Humayun et al., 2003; Caspi et al.,
2009), with good results: the subjects were able to recognize the
shapes and orientation, with a minimum recovery of visual acuity
(20/3,240). Further studies have achieved a better resolution and
approval for marketing and distribution in Europe (Humayun
et al., 2012). The patients were able to identify orientation,
location and movement of objects, with a greater recovery of
visual acuity (20/1,260). Despite the efforts, however, all patients
remained far below the limit of legal blindness (20/200) and the
stimuli were not able to reach areas in order to maintain specific
retinotopia. Furthermore, interventions of this type are highly
destructive from the anatomical point of view, without possibility
of recovery in case of failure.

Sub-retinal Implants
The stimulation targets are the inner nuclear layers. Developed
systems have multiple advantages compared to epiretinal ones:
they are implantable beneath the retina and therefore more
stable; they are completely autonomous because they do not
require connection to any type of external device; stimulation
thresholds are also lower. Also, multiple independent systems
have been studied, in order to increase the coverage of the visual
field. Despite all the achievements in vivo, there are only slightly
improvements in terms of visual acuity (20/1,000, Wilke et al.,
2011) with unsolved problems regarding failure to maintain the
retinotopia and high invasiveness as well.

Trans-choroidal Implants
In order to bypass the problems of retinal damage, implantation
methods below the choroid (Fujikado et al., 2011) or
even external to the sclera (Chowdhury et al., 2005) are
currently under evaluation. Despite the lesser invasiveness, the
disadvantage is represented by greater stimulation intensity
required.

Optic Nerve
The stimulation of the optic nerve is an intriguing prospect, since
it allows to restrict the target area and reduce the intensity of

the stimuli reaching the entire field of vision: in fact, the optic
nerve receives information from all areas of the visual field,
and therefore it allows to stimulate central and peripheral visual
field at the same time. Several implant types have been studied:
implants made of 4 or 8 electrodes and placed on the surface
around the optic nerve, penetrating electrodes and intraocular
implants (Fang et al., 2006; Chai et al., 2008; Brelén et al., 2010;
Wu et al., 2010). Various studies have achieved the perception
of light stimuli with different spatial orientations, with a high
success rate. These devices are less invasive because they are
localized in a smaller area, but present greater problems of
spatial resolution in comparison with others because of high
concentration of fibers in a minimum area. In addition, some
devices have shown over time an increase in the stimulation
threshold required to evoke stimuli, probably due to development
of reactive gliosis phenomena.

Cortical Implants
It is the rehabilitation possibility that is best suited to glaucoma,
since in this condition the optic nerve is damaged and therefore
no longer perfectly usable as a path of conduction of stimuli.

Dobelle and colleagues studied surface implants placed in
the visual cortex managing to achieve a visual acuity of 20/400.
The subject under examination was able to recognize large
letters, avoid obstacles in the environment, find objects and move
in space (Dobelle, 2000). To decrease stimulation thresholds
required, penetrative cortical implants were also studied. Studies
in primates have given positive results, but with little behavior
related response. They are also complicated by high invasiveness
of the implant, risk of infection, inflammation, reactive gliosis,
and neuronal death (Torab et al., 2011).

An attractive target group is represented by the lateral
geniculate body, as it is equipped with high spatial segregation
and well known retinotopic organization, divided into the
magnocellular and parvocellular pathways. Furthermore, the
fovea projects on a larger area, thus precise electrical stimulation
would seem easier to be performed. Current studies have shown
good results in terms of perception, but are still at an early stage
(Pezaris and Reid, 2007).

DIAGNOSTIC REFINEMENT

Since functional and anatomic changes due to glaucoma are
often irreversible, early detection still remains an important
strategy to prevent loss of vision. This goal has been achieved
so far evaluating optic nerve structure and function through
retinographies and perimetries. New techniques are emerging to
complement the use of these consolidated procedures, including
analysis of nerve fibers and detection of apoptosis of in vivo
ganglion cells.

Optical Coherence Tomography
The OCT in glaucoma offers the opportunity to objectively
measure the optic nerve head, the retinal nerve fiber layer
(RNFL) and their changes over time, allowing a fast, non-
invasive, highly reproducible and high-resolution evaluation. The
OCT ideally allows the detection of morphological changes of

Frontiers in Neuroscience | www.frontiersin.org 13 September 2017 | Volume 11 | Article 494

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Nuzzi and Tridico Glaucoma Biological Therapy and Diagnosis Perspectives

the optic nerve head earlier than standard methods. The high
reproducibility in RNFL thickness measurement can improve
the ability to detect glaucoma in its early stages, by referring
small changes (Gonzalez-Garcia et al., 2009; Vizzeri et al., 2009;
Shin et al., 2010). Recent advances, with the advent of swept-
source OCT, led to improvements in image depth and scan
speed, with novel and useful features that can be applied in
the field of glaucoma (Lavinsky and Lavinsky, 2016). OCT
angiography (OCT-A) is a recent modality that can elaborate
a three-dimensional vascularization study exploiting the time-
dependent backscattering OCT signal of moving erythrocytes,
providing the flow map of blood vessels and capillary plexus in
different layers of the retina, without the need of intravenous
dye injection (Spaide et al., 2015). OCT-A makes also possible
to study capillary plexus of the optic nerve head and adjacent
regions, leading to rapid quantification of blood perfusion and
opening up new perspectives in understanding pathophysiology
of glaucoma (Liu et al., 2015; Bazvand et al., 2017; Na et al., 2017).
OCT-A is also able to evaluate early microvascular changes of
the ONH in pre-perimetric open angle glaucoma expanding the
tools for early diagnosis and follow-up (Cennamo et al., 2017).
However, long-term studies are needed to confirm its use in
clinical practice.

Detection of Apoptotic Retinal Cells
Detection of apoptotic retinal cells (DARC) before visual function
loss (when approximately 40% of RGC are lost) has been a
diagnostic target for several years. A particular technique of
DARC makes use of Annexin V (a particular protein that binds
phospholipids in the presence of Ca2+) to identify “in vivo”
apoptotic cells using radiologic methods and fluorescence (and
therefore without radioactive effects) (Guo and Cordeiro, 2008).
This method has shown a good correlation with histological
findings in animal models (Tatton et al., 2001; Cordeiro et al.,
2004, 2011). For the data collected by the DARC to have actual
significance at diagnostic level, studies are needed on samples
consisting of patients, in order to match the progression of
glaucoma and to assess potential toxicity profiles (although no
side effects have been reported in previous clinical trials) (Coxon
et al., 2011). In conclusion, DARC can be a promising biomarker
for glaucoma diagnosis and follow-up, as well as for analysis of
drug therapy effects.

Telemetric Contact Lenses
The application of telemetric contact lenses (which are able
to detect the IOP fluctuations 24 h a day) may be useful
for enhancing the ability to identify patients who require a
personalized treatment or which have defects of compliance to
therapy. The devices currently in development include a silicone
disposable contact lens with a micro-electromechanical system
and a built-in titanium micro-caliber which measures changes in
corneal curvature (Pajic et al., 2011). This technology is based on
the correlation between the changes in IOP and corneal curvature
(variations of 1mmHg in IOPwould cause changes in the corneal
curvature radius of about 3 microns). The measurements are
performed for 30 s every 5 min, with a total of 288 daily surveys
(Kersey et al., 2013). Unfortunately, the current device provides

results in an arbitrary measurement unit yet to be converted to
mmHg (Mansouri and Weinreb, 2012). Other techniques for a
continuous measurement of the IOP are under development and
although promising clinical trials are needed on a large scale to
evaluate tolerability, clinical application and costs/benefits ratio.

Genetics and Prevention
Genetic risk evidence for primary glaucoma came from family
linkage-studies implicating a small number of disease genes.
Recently, Janssen et al. (2013) reviewed over 120 family and
Genome Wide Association studies and selected 65 primary
open-angle glaucoma (POAG) candidate genes, to assess their
role in glaucoma development. It was found that the proteins
corresponding to these 65 genes take part in common functional
molecular networks related to visual system development, lipid
metabolism, connective tissue development and inflammatory
processes. Thus, it was shown that taking into account the
selected 65 genes substantially increased the specificity and
sensitivity of a discriminative primary open angle glaucoma risk
test, based on “receiver operator characteristics curves” from the
Rotterdam Study I (Ramdas et al., 2010). Since glaucoma follows
a polygenic model, the susceptibility to the disease increases with
the number of risk alleles that individuals carry in their genome.
If we combine this information with environmental risk-factors
for glaucoma, an accurate personal risk assessment should be
possible and preventive measures or personalized treatment
can be applied, based on one’s genetic profile. Indeed, further
studies are needed to better assess the role of specific genetic
backgrounds and their interaction with different pathobiological
events that may lead to glaucoma onset.

THE CLINICAL AND BIOLOGICAL
RESEARCH: FINAL CONSIDERATIONS

In recent years, great strides have been made in the research of
glaucoma treatment. Newer strategies will get better results with
fewer side effects and invasiveness.

The study of alternative pharmacological approaches gives
great hopes regarding neuroprotection and cell therapy. To
date, however, the practical use is still limited to clinical
trials, because coherent results, showing clear efficacy in
visual field defects prevention and retinal neuronal cell death
decrease, are not available yet. Great efforts have been made
regarding animal and cellular research, and the results appear
encouraging. Despite this, enormous difficulties remain in terms
of practical application, follow-up duration, choice of objectives
to be achieved, variability of the disease, patient adherence to
treatment and choice of standard methods for measuring the
actual treatment effectiveness.

Parasurgical therapies have reached very high levels of
accuracy, limiting the destructive effect to desired areas, with
minimal involvement of adjacent tissue. Thanks to the ease
of implementation and the progressively less incidence of
complications, laser treatments that were considered as second
choice compared to medical therapy, are now used in addition
to it or even in the front line. Moreover, technology is constantly
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changing, thanks to research at a more advanced level. Further
studies are necessary in order to verify objectively the actual
efficacy and safety (Meyer and Lawrence, 2012).

Today the rehabilitative therapy is still offered in the final line,
for those cases in which no other intervention is found to be
effective. Neuronal plasticity is a phenomenon now recognized
by all. It is maximum in perinatal age, reduced but still present
even in the later stages of life. Recent research is underway
to exploit plasticity of residual elements or to unleash and
stimulate them in order to achieve some degree of rehabilitation
in cases of high pathological impairment. Brand new electronic
devices utilize technology capabilities more advanced in terms
of efficiency and miniaturization. Despite everything we are
still far from widespread use, for the complexity of anatomical
structures and the high invasiveness of these devices which create
an irreversible disruption of the ocular structures. Nowadays
the only assessment tools actually used and tested are the
evaluation of the IOP and progression of the visual field
defects. The emerging methodologies already in use as the
OCT are not very invasive and easily achievable, but long-
term studies are needed to confirm its use in clinical practice.
Other strategies, such as DARC and telemetric contact lenses are
still being finalized and therefore not ready for use on a large
scale.

The challenge is open with obvious exchange benefits in all
areas of research. To date, results of basic biological research
are often separated from clinical practice and would then need
to create and implement a project of multidisciplinary clinical-
biological integration.

Interesting therapeutic prospects may also result from the
ability to integrate multi-level interventions in the biological
rehabilitation (in particular in the case of glaucomatous optic
neuropathy) and parasurgical/surgical therapy. Day after day
more and more knowledge is expanding about the operation
of the retinal neuronal network and its process of pathological
deterioration, with sure progress not only in technological, but
also pharmacological, surgical and biological field.

In the light of these findings, it is desirable that future
glaucoma treatment will be focused on a more repairing and
regenerating approach of loss visual and cell function, instead of
one limited only to the mere IOP control.
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