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Effect of Monotonic Filtering on Graph
Collection Dynamics

Hunza Zainab, Giorgio Audrito, Soura Dasgupta and Jacob Beal

Abstract—Distributed data collection is a fundamental
task in open systems. In such networks, data is aggregated
across a network to produce a single aggregated result
at a source device. Though self-stabilizing, algorithms
performing data collection can produce large overestimates
of aggregates in the transient phase. For example, in [1]
we demonstrated that in a line graph, a switch of sources
after initial stabilization may produce overestimates that
are quadratic in the network diameter. We also proposed
monotonic filtering as a strategy for removing such large
overestimates. Monotonic filtering prevents the transfer of
data from device A to device B unless the distance estimate
at A is more than that at B at the previous iteration. For
a line graph, [1] shows that monotonic filtering prevents
quadratic overestimates. This paper analyzes monotonic
filtering for an arbitrary graph topology, showing that
for an N device network, the largest overestimate after
switching sources is at most 2N .

Index Terms—edge computing, data aggregation, self-
stabilization

I. INTRODUCTION

This paper proposes and analyzes a strategy called
monotonic filtering, for removing large overestimates in
distributed data collection. Recent years have witnessed
a proliferation of complex networked open systems com-
prising a plethora of heterogeneous devices like drones,
smartphones, IoT devices, and robots. These systems
mandate the formulation of new strategies of collective
adaptation, with the ultimate goal of transforming these
environments into a pervasive computing fabric where
sensing, actuation, and computation are resilient and
distributed across space [2]. The focus of this paper
is on resilient distributed sensing, which could be of
physical environmental properties or of digital or virtual
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characteristics of computing resources. By cooperation
between physically proximate, interacting sets of mobile
entities, distributed sensing can support complex situa-
tion recognition [3], monitoring [2], and observation and
control of swarms of agents [4].

A defining coordination task in distributed sensing
is data summarization from devices in a region. From
this, one can perform many other operations like count,
integrate, average, and maximize. Data summarization is
like the reduce phase of MapReduce [5]. It is extended
to agents communicating through their neighbors and
spread across a region, e.g., in wireless sensor networks
[6]. A common implementation of data summarization
is by distributed collection, where information moves
towards collector devices and aggregates en route to
produce a unique result. Such self-organizing behavior
(referred to as a “C” block in [7]), is a fundamental and
widely used component of collective adaptive systems
(CASs). It can be instantiated for values of any data type
with a commutative and associative aggregation operator,
and can be applied in many diverse contexts.

Several papers have characterized the dynamics of
data summarization algorithms [7], [8] and on improving
such dynamics [9]–[11]. These papers all show that,
though self-stabilizing, these algorithms can give rise
to large transient overestimates with potentially negative
consequences. For example, if the goal is collect the net
resources in a network of devices, then overestimates,
however fleeting, may cause a leader to commit to more
tasks than the network can perform.

For the example of a line graph, we showed in [1] that
collection can give overestimates that are quadratic in the
network diameter. This is observed in face of a particular
source switch after stabilization has occurred. We pre-
sented the notion of monotonic filtering as a potential
amelioration. This technique prevents collection across
devices whose distance towards a source or collector
device is decreasing. With line graphs, [1] showed that
monotonic filtering prevents quadratic overestimates. In
this paper, we analyze monotonic filtering for general
graphs and the demonstrate that there are no quadratic
overestimates in collection during the transient phase
following a source switch. Rather, for an N -device
network the largest overestimate is at most 2N .

Section II gives preliminaries and Section III provides



results on distance estimates that are used to execute
monononic filtering. Section II-C defines monotonic
filtering. Section IV, proves the main result. Section V
gives simulations. Section VI concludes. Due to space
constraints most proofs are in a version on arXiv, [12].

II. PRELIMINARIES

We model a network of devices as an undirected graph
G = (V,E), with V = {0, · · · , N − 1} being the set of
devices that are the nodes in the graph and E being the
edge set of connections between devices. We assume
that device i ∈ V carries the value vi, and that there is
a designated source set of nodes S(t) ⊂ V . The goal
is to aggregate the accumulation of the values vi at the
source set, i.e., generate accumulates ai such that∑

i∈S

ai =
∑
i∈V

vi.

In particular, if there is only one source, then its accumu-
late should be the sum of all of the vi. This is a special
case of the data collection block (C-block) of [7].

A. The Basic Approach
There are many ways to achieve this objective de-

pending on the circumstances [10], [11], [13], [14].
In this paper, we adaptively determine a spanning tree
and accumulate values from children to parents. The
spanning tree is determined by the Adaptive Bellman-
Ford (ABF) algorithm [7], [15] a special case of what is
called a G-block in [7]; ABF estimates distances. Two
nodes are neighbors if they share an edge. Define edge
length between any two neighbors to be 1 and N (i) to
be the set of neighbors of i. Then with d̂i(t) the distance
and S the source set, ABF proceeds as

d̂i(t) =

{
0 if i ∈ S(t)

minj∈N (i){d̂j(t− 1) + 1} otherwise
.

(1)

The minimizing j in the second bullet is called a current
constraining or simply, constraining node, of i. More
precisely the constraining node ci(t) obeys:

ci(t) =

i if i ∈ S(t)

argmin
j∈N (i)

{d̂j(t− 1) + eji} otherwise .

(2)

These constraining nodes set up the spanning tree: The
set of children of i are the nodes they constrain:

Ci(t) = {j| cj(t− 1) = i}. (3)

Then in keeping with the strategy outlined at the begin-
ning of this section, we can update the accumulate at
node i through the recursion:

ai(t) =
∑

j∈Ci(t)

aj(t− 1) + vi. (4)

B. Quadratic Overestimates

Figure 1. Representation of an N -node line graph (N -line) with a
source switch from time t = 0 to t = 1.

From [15], one knows that ABF is self-stabilizing.
This means in particular that both ci(t) and Ci(t) must
acquire steady state values and thus the recursion (4)
must also converge. For example, consider the line graph
in Figure 1. Suppose the source is the rightmost node
with index N − 1, and the nodes to the left of 0 are
indexed in sequence as 1, · · · , N − 1. Assume that

vi = 1 ∀ i ∈ V, (5)

i.e., all values are 1 and distances are hop lengths. Then
at steady state one has

d̂i(t) = N − 1− i and ai = i+ 1. (6)

Now suppose these values have been acquired at t = 0,
but the source switches from N − 1 to zero at t = 1.
Then the following theorem from [1] shows that en
route to self-stabilization ai(t) suffer from quadratic
overestimates in the transient phase.

Theorem 1. Consider the line graph in Figure 1, with
(5) in force. Suppose at t = 0 ai(0) and d̂i(0) are as in
(6). Suppose for all t ≥ 1, S(t) = {0}. Then under (1)
and (4), the maximum partial accumulate ai(t) reached
by the source is obtained at time t = 2N − 2 and is:

a0(2N − 2) =

⌈
N − 1

2

⌉
N +N − 1 ≥ N(N + 1)

2
− 1

before reaching the correct value at time t = 2N − 1
i.e.,

a0(2N − 1) = N (7)

C. Monotonic Filtering

Monotonic filtering was proposed in [1] as a remedy
for such quadratic overestimation. Specifically, this de-
vice permits only a subset of the nodes that i constrains
to be a valid children: only those ci(t) whose distance
estimate in the previous iteration was one more than
d̂i(t) are allowed to be children. Thus the set of children
in (3) is replaced by

Ci(t) = {j|i = cj(t− 1) ∧ d̂j(t− 1) = d̂i(t) + 1}.
(8)



Neither the definition of constraining nodes, nor the
underlying accumulation equation changes. The latter
in particular remains as (4). It should be noted that
the self-stabilizing nature of ABF, per [15], ensures
that all distance estimates converge to their correct
values. In such a steady state, under (5), every node that
constrains another automatically satisfies the restriction
on distance estimates given in (8). As proved in [1],
this additional restriction is all that is needed to remove
any overestimate from happening in a line graph. In
this paper we show that this amelioration persists for
general undirected graphs. The next subsection describes
the analytical framework.

D. Definitions and Assumptions

We now make some definitions to set up the assump-
tions that underlie our analysis of monotonic filtering.
Suppose di is the hop count of i from the source set S.
Then from Bellman’s Principle of Optimality it obeys{

di = 0 i ∈ S

minj∈N (i) dj + 1 otherwise
. (9)

This leads to the definition of a true constraining node.

Definition 1 (True constraining node). A k that mini-
mizes the right hand side of (9) is a true constraining
node of i. As there may be two neighbors j and k of
i such that dj = dk, a node may have multiple true
constraining nodes while the true constraining node of a
source is itself.

We now define the notion of effective diameter intro-
duced in [15].

Definition 2 (Effective Diameter). Consider a sequence
of nodes in a graph such that each node is a true
constraining node of its successor. The effective diameter
D is defined as the longest length such a sequence can
have in the graph.

Thus, if (5) holds then the effective diameter is

1 + max
i∈V

di.

We also define some important sets that are critical for
our analysis.

Definition 3. Define dij to be the minimum distance
between nodes i and j. Further define Fk(m) to be the
set of nodes whose minimum distance from node k is
m, i.e.,

Fk(m) = {i | dik = m}.

If a graph G = (V,E) has an effective diameter
D with a single source node 0, then as depicted in
Figure 2 there is a sequence of nodes, without loss of
generality i = 0, 1, . . . D − 1, such that node i is the

true constraining node of node i + 1. Henceforth we
assume the graph is as depicted in this figure. In fact,
the following assumption holds.

G

D-10 1 2 3

Figure 2. Arbitrary graph G with a sequence highlighted.

Assumption 1. The graph G = (V,E), is as in Figure
2. Further (5) holds and the shortest path from 0 to D−1
has D hops. The algorithm used is defined by (1, 2, 8).
For t ≤ 0, D − 1 is the source, and for t > 0, 0 is the
source. Further d̂i(0) and ai(0) are steady state values of
the algorithm assuming D−1 is the source. In particular,

d̂i(0) = m, ∀ i ∈ FD−1(m). (10)

Also, for every integer m∑
i∈FD−1(m)

ai(0) ≤ N. (11)

Further, the effective diameter when 0 is the only source
is D; when D − 1 is the source, the effective diameter
is D0.

Observe that D0 ≥ D. Also note that (11) is a trivial
consequence of the steady state values generated by (4)
and the fact that for all i, vi = 1.

III. EVOLUTION OF DISTANCE ESTIMATES

To understand the behavior of the accumulates after
the source switch, one must first understand how distance
estimates evolve subsequent to the switch. To this end
we have the following preparatory lemma describing the
true distances of neighbors from the old and new source,
using Assumption 1, which ensures that all distances are
hop lengths.

Lemma 1. Suppose Assumption 1 holds, D > 2, and
Fk(m) are as in Definition 3. (i) Then for all k ∈ V ,
0 < m ≤ D − 1 and i ∈ Fk(m) all neighbors of i are
in Fk(m− 1)

⋃
Fk(m)

⋃
F0(m+ 1). If Fk(m) ̸= ∅, i

has at least one neighbor in F0(m − 1). (ii) Moreover,
0 and D − 1 are not neighbors.

We now provide a lemma that describes the evolution
of distance estimates for t > 0. To this end, we partition
V into three sets Ii(t) for i = 0, 1, 2. I0(t) comprises
nodes that are less than t hops away from 0. In particular,
the distance estimates at these nodes have converged
to their true distances from 0. The set I1(t) comprises
nodes that are not in I0(t) but have felt the effect of a



change in source. The set I2(t) consists of the remaining
nodes, whose distance estimates and accumulates are
identical to what they were at t = 0.

Lemma 2. Suppose Assumption 1 holds and D > 1. For
all t ≥ 1 consider the following partitioning of V :

I0(t) =
t−1⋃
m=0

F0(m), (12)

I1(t) =

(
t−1⋃
m=0

FD−1(m)

)
\ I0(t) (13)

and
I2(t) = V \ {I0(t) ∪ I1(t)}, (14)

of V . Then under (1,2), the following hold.

d̂i(t) = m ∀ i ∈ F0(m) and 0 ≤ m < t, (15)

d̂i(t) = m ∀ i ∈ FD−1(m)
⋂

I2(t). (16)

and
d̂i(t) ∈ {t, t+ 1} ∀ i ∈ I1(t). (17)

IV. ACCUMULATES UNDER MONOTONIC FILTERING

We now compute the partial accumulates under the
new definition of children given in (8), using the distance
estimates characterized in Lemma 2, and the evolution
of accumulates defined in (4). The added constraint in
(8), which intuitively ensures that data is collected by
always descending distances, is satisfied by every node
in a stable state; however, it may not be satisfied during
transients. We will show that monotonic filtering suffices
to eliminate quadratic overestimates in a general graph.

We consider the partial accumulates in each of our
partitioned sets individually. The following lemma char-
acterizes the accumulates in I1(t).

Lemma 3. Under Assumption 1, the partial accumulates
in I1(t) defined in (13), obey

ai(t) = 1 ∀ i ∈ I1(t) (18)

To characterize the accumulates of nodes in I0(t),
we need information on how accumulates evolve in the
neighboring nodes that are part of the set I2(t). The
following lemma gives an upper bound on that.

Lemma 4. Under Assumption 1, nodes j ∈
Ci(t)

⋂
I2(t) for all i ∈ I0(t) obey:∑

i∈I0(t)

∑
j∈Ci(t)

⋂
I2(t)

aj(t− 1) ≤ N (19)

Given the information regarding neighbors of I0(t) in
other sets, we can now characterize the accumulates in
I0(t) according to the following lemma.

Lemma 5. Under Assumption 1, the partial accumulates
at nodes in the set I0(t) obey

ai(t) ≤ 2N ∀ i ∈ I0(t) (20)

Together, the previous lemmas imply that the graph
does not have overestimates above 2N during conver-
gence of the collection algorithm. We now have the main
result.

Theorem 2. In a general graph, with monotonic filtering
the partial accumulations ai(t) in sets I0(t), I1(t) and
I2(t) for any time t, have an upper bound that is given
as:

ai(t) ≤ 2N ∀ i ∈ I0(t) (21)

ai(t) = 1 ∀ i ∈ I1(t) (22)

and

ai(t) ≤ N ∀ i ∈ I2(t) (23)

Proof. The first two expressions follow directly from
lemma 5 and 3 respectively.

The proof of (23) is trivial as nodes in the set I2(t)
have not been affected yet by the source switch. They
maintain the converged accumulates they had at the
previous steady state, and these values never exceed N ,
the total number of nodes in the graph.

V. SIMULATION

In order to evaluate the performance of monotonic fil-
tering in a more general setting, we simulated a network
of 100 to 1000 nodes, randomly displaced in a square,
with a connection range such that the average number
of neighbours per node is about 10. We performed 1000
simulations and averaged the results. The simulation is
publicly available online.1

A sample screenshot of the simulation is depicted in
Figure 3, while synthetic plots of the average collection
results in source nodes are given in Figure 4 (after
bibliography). When the position of the nodes is fixed
(speed is zero), monotonic filtering can prevent any
overestimate from occurring. The estimate still converges
to the correct result as fast as with the basic approach,
which instead suffers from high peaks during recon-
figuration. When nodes are steadily moving (speed is
positive), both algorithms start underestimating the true
count as the speed increases and number of devices
increase. However, the underestimates are much more
pronounced with monotonic filtering, while the basic
approach is able to tolerate small speeds.

1https://github.com/Harniver/monotonic-filtering-dynamics



Figure 3. Simulation of collection algorithms on a random bidimen-
sional arrangement. Colors of nodes are tuned from red (estimate 1)
to magenta (correct estimate) to black (infinitely large estimate); and
the central color corresponds to the basic approach while the color of
the sides corresponds to monotonic filtering. The screenshot is taken
during a transient recovery, in which the source (big square) has a very
large overestimate with the basic approach (black central color) while
it is almost correct with monotonic filtering (magenta sides).

VI. CONCLUSION

In this paper, we investigated the effect of a monotonic
filtering condition on the transient values of a single-
path collection algorithm during recovery from a source
switch. In a static graph, the monotonic filtering con-
dition is proved to bound overestimates to at most 2N ,
while single-path collection without it is showed to reach
quadratic overestimates in some cases. By evaluating
the algorithms in simulation, we show that in practice
transient large overestimates do occur without filtering,
while no overestimate at all is present with monotonic
filtering. Finally, we also simulate the behavior of the
algorithms under persistent perturbations, i.e., steady
movement of the nodes. In this scenario, both algorithms
degrade their quality towards underestimates; however,
with monotonic filtering the degradation occurs much
sooner, with lower movement speeds and lower number
of devices.

In future work, monotonic filtering should be com-
pared with existing strategies [16], in its ability to avoid
overestimates under persistent perturbations.
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Figure 4. Average collection results (counting device number) in source nodes over simulated time, where the source is periodically switching
to different devices (at times matching the periodic spikes). The lines correspond to the number of devices (ideal, in red), to the basic approach
(simple, in blue), and to monotonic filtering (filtered, in green). The basic approach suffers from significant overestimates at every source change,
while monotonic filtering provides underestimates instead. In mobile networks (speed greater than zero) with a sufficient number of devices,
the underestimates given by monotonic filtering become systematic, while the basic approach is still able to reach a reasonably correct value.


