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The classical theory of modulation instability (MI) attributed to
Bespalov–Talanov in optics and Benjamin–Feir for water waves is
just a linear approximation of nonlinear effects and has limita-
tions that have been corrected using the exact weakly nonlinear
theory of wave propagation. We report results of experiments in
both optics and hydrodynamics, which are in excellent agreement
with nonlinear theory. These observations clearly demonstrate
that MI has a wider band of unstable frequencies than predicted
by the linear stability analysis. The range of areas where the non-
linear theory of MI can be applied is actually much larger than
considered here.

nonlinear waves | modulation instability | breathers

Well-known Bespalov–Talanov (BT) (1) and Benjamin–Feir
(BF) (2, 3) instabilities discovered more than 50 years

ago (1966 and 1967, respectively) played a significant role in
understanding nonlinear phenomena in optics and hydrodynam-
ics (4–11). The detailed description of these fundamental results
can be found in any common book on nonlinear optics (12,
13), ocean waves (14, 15), and more generally, in nonlinear
dynamics book literature (16). The theory tells us that a plane
wave or a constant-amplitude wave (CW) is unstable relative
to small-amplitude perturbations with frequencies within certain
deterministic and finite range. These perturbations are unstable
and can grow exponentially, thus leading to modulated waves
with infinitely high amplitude. Clearly, such growth is unphysi-
cal and has to be reconsidered using an approach beyond linear
theory. Indeed, the accurate nonlinear theory (17) predicts sat-
uration and the maximal amplitude of periodic waves excited
due to modulation instability (MI). This prediction is in accor-
dance with conventional wisdom: “What goes up must come
down.” In fact, this nonlinear stage of MI predicted not only
the exponential growth but the following exponential decay back
to the CW (17). The latter was not obvious and required many
years before this seemingly simple principle “must come down”
was confirmed, first with the observation of growth saturation
in water waves (4) and then with the demonstration of the
full recursive behavior in optical experiments (18, 19). If trans-
lated to the frequency domain, this principle is, essentially, the
Fermi–Pasta–Ulam recurrence (20) (also refs. 4, 5, 9–11, and 21).

Despite these achievements, it has been recently demonstrated
that not all secrets of MI concealed by the linear approach
have been revealed so far (22). The results obtained in ref.
22 demonstrate that the linear theory does not accurately pre-
dict the range of unstable frequencies. This fact is, once again,
not obvious. Linear stability analysis is an important step in
studies of various physical phenomena. One example is the tran-
sition from laminar state to turbulent regime in Couette and
Poiseuille flows (23). In these cases, experimental data have
been in drastic disagreement with the predictions of the linear
stability analysis. A few conjectures for this failure have been
suggested that included the presence of transverse dimension

in the experiment that has not been taken into account in the
linear stability analysis. Besides, the Navier–Stokes equations,
which describe such flows, are not integrable. Thus, the accu-
rate nonlinear description of the regimes beyond linear state is
problematic. An exact nonlinear theory is essential for revealing
the full range of frequencies that are unstable due to the mod-
ulation. In this sense, our work demonstrates the advantage of
dealing with integrable equations that provide solutions beyond
the linear dynamics. Exact solutions of the nonlinear Schrödinger
equation (NLSE) that describes the nonlinear stage of MI are
presently known as Akhmediev breathers (ABs) (24–30). The
latter form a family of solutions with a free parameter that is
directly related to the whole interval of unstable frequencies in
the BT and BF theories. However, even the AB solutions do
not cover the whole range of unstable frequencies. The family
of ABs is actually a particular case of a more general family of
solutions that have been found in ref. 31 and refined recently
in ref. 22 (refs. 32–35 also have the application to the normal
dispersion regime). This extension expands the range of unsta-
ble frequencies predicted in the BT and BF theories. It has
important ramifications for theory, experiment, and applications
(36–38). It means that periodic perturbations of a plane wave
(or CW) can grow in the situations when we would not expect
them to do so.

Significance

Modulation instability (MI) is a ubiquitous phenomenon in
physics, corresponding to the growth of a weakly modulated
continuous wave in a nonlinear medium and leading to the
generation of a large-amplitude periodic wave train. In space,
it transforms weakly modulated plane waves into spatially
periodic patterns. In frequency domain, the MI is the result of
energy transfer from a strong single spectral component into
sidebands. While linear stability analysis predicts a limited
band of unstable frequencies of modulation, recent develop-
ments based on a nonlinear theory revealed the existence
of MI beyond this limited frequency range. These exper-
imental studies are the first experimental demonstrations
of the “extraordinary” MI phenomenon. Achieved both in
optics and hydrodynamics, they clearly further highlight the
interdisciplinary of this process.
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Presenting simultaneously optical and hydrodynamic experi-
ments confirming this exceptional feature of MI in a single work
has far-reaching consequences. Observing the same effect at
nearly opposite ends of spatial and timescales of MI in physics
is a convincing argument confirming the validity of the finding.
It means that similar phenomena at other scales such as MI in
plasma (39) or in Bose–Einstein condensate (40) must also be
reexamined. In optics, the extension of the range of frequencies
leading to MI might have multiple applications for generating
frequency combs (41), periodic pulse trains (42), and super-
continuum radiation (43). In hydrodynamics, the findings might
result in reconsidering conditions leading to formation of rogue
waves in the ocean (44).

Theoretical Background
The family of exact solutions of the NLSE with three free real
parameters that explain known and new physical phenomena was
presented earlier in ref. 22. Among the new effects covered by
this theory is amplification outside the conventional MI band.
Here, we provide that part of equations that are necessary for
understanding the wider range of unstable MI frequencies and
for comparisons with experimental data obtained in the present
work that confirm the existence of this interesting effect. We start
with the NLSE written in the normalized form:

iψz +
1

2
ψtt + |ψ|2ψ= 0, [1]

where ψ is the wave envelope function, z is the longitudinal
coordinate, and t is the time in a frame moving with group veloc-
ity. This form of the NLSE is a sufficiently accurate model of
nonlinear waves in a reasonably wide range of conditions. In
optical fibers, these conditions are satisfied at frequency range
where anomalous dispersion takes place, while in water waves,
this requirement is the condition of deep water. Our experiments
are done in these conditions, and good agreement is achieved in
each case. Clearly, beyond the ranges of applicability, the accu-
racy of nonlinear wave description by the NLSE decreases. Then,
our theoretical model would require further rectifications. We
are interested in doubly periodic waves [e.g., in solutions of Eq.
1 that are periodic both in space and in time (22)]. They com-
prise the three-parameter family of solutions with a single period
along each axis, z and t . This family contains as particular cases
other “elementary” solutions and families (22). To be specific,
doubly periodic solutions of Eq. 1 can be presented in general
form:

ψ(t , z ) = [Q(t , z ) + iδ(z )]e iφ(z), [2]

with the functions Q(t , z ), δ(z ), and φ(z ) that can be found by
a direct substitution of [2] into [1] (31). There are two forms
of such solutions, classified as A- and B-types depending on the
parameters of the family. Each type contains MI as the limiting
case. However, the limiting case of B-type solutions is the stan-
dard MI, while the limiting case of A-type solutions is more
general.

This apparently puzzling asymmetry between the two families
finds its physical justification in the fact that A-type solutions
can be considered as the full nonlinear dressing of solutions
of the NLSE obtained in the linear limit (when dispersion
dominates over nonlinearity). As discussed in more details in
ref. 22, for very high modulation frequencies, the deforma-
tion introduced by the nonlinearity is small, and essentially, the
modulation experiences, upon evolution, only a periodic phase
shift (45). However, when the frequency is reduced to suffi-
ciently small values, the deformation due to the nonlinearity
becomes strong, thereby inducing a net amplification of the
input sidebands even outside the conventional MI bandwidth.
Conversely, B-type solutions start to appear only at frequen-
cies below the conventional band edge of MI, as a result of the

symmetry-breaking nature of the onset of conventional MI (10,
22). Therefore, B-type solutions cannot be responsible for any
unconventional MI.

Thus, our point of interest in this work is the A-type solu-
tions, which depend on three arbitrary real parameters α3, ρ,
and η; Calculation of Theoretical Solutions has more details.
Q , δ, and φ are determined as functions of these free param-
eters (Analytical Expressions of the Solutions), which so pro-
vide us with the possibility of accurately controlling the wave
evolution with periodic initial conditions and particularly, the
development of MI.

Instability Outside the Conventional MI Band
The equations presented in Methods provide exact wave dynam-
ics with two frequencies. Thus, the MI that is periodic along the
t axis is a particular case of these solutions. Indeed, there is a
range of parameters ρ and η when the solution represents the
growth of a periodic perturbation on top of a continuous wave.
This happens when 0<ρ< 1 and η→ 0. This range corresponds
to exact conditions of MI with the exponential growth of peri-
odic perturbation with a frequency defined by ρ. On the other
hand, for parameters ρ and η beyond this range, the evolution
has all features of MI, but the growth of the perturbation takes a
different form.

This more general evolution is periodic in z . The solution
is closest to the continuous wave when the evolution vari-
able z =±Z/4. Starting from one of these values of z leads
to the growth of modulations on the background CW. One
example is given in Fig. 1A that shows wave intensity pro-
files at z =−Z/4 when the modulation is small (red curve)
and at z = 0 when the modulation is maximal (blue curve).
Pulses within this periodic pulse train are maximally compressed.
The wave intensity profile returns back to the initial condition
at z = +Z/4.

The amplification of the periodic component of the solu-
tion calculated numerically from the exact solution is shown in
Fig. 1B. Here, the frequency range [0, 2] is the standard band
of MI. Amplification within this range is not surprising. How-
ever, the amplification is not zero when the frequency ω> 2.
The amplification here might seem smaller than within the band
[0,2]. However, the amplitudes of the pulse trains reached due
to the growth are of the same order of magnitude as within
the band. Thus, the effect is easily measurable in experiments.
Moreover, the frequency range shown in Fig. 1B is nearly 1.5
times the conventional MI bandwidth ω ∈ [0, 2]. In reality, it is
much wider than in this figure. Even from this point of view,
the effect is easily observable. As can be seen from Fig. 1B, the
value of amplification depends on the parameter η. For larger
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Fig. 1. (A) Transformation of a periodic perturbation on top of the CW (red
curve) into a train of pulses (blue curve). Parameters of the solution here are
ρ= 0, η= 1, and α3 = 1. Modulation frequency ω= 2.287> 2 is outside of
the instability band. (B) Amplification of periodic component of the solution
vs. frequency. Frequency ω depends on the parameter ρ that changes in the
interval [−3, 1]. Gray area beyond dashed black line marks the frequency
range ω> 2, located outside the conventional MI gain band (ω≤ 2).

2 of 7 | PNAS
https://doi.org/10.1073/pnas.2019348118

Vanderhaegen et al.
“Extraordinary” modulation instability in optics

and hydrodynamics

D
ow

nl
oa

de
d 

at
 U

N
IV

E
R

S
IT

A
 S

T
U

D
I T

O
R

IN
O

 B
IB

L 
B

IO
M

E
D

 IN
T

E
G

R
A

T
A

 o
n 

F
eb

ru
ar

y 
11

, 2
02

2 

https://doi.org/10.1073/pnas.2019348118


PH
YS

IC
S

OSA
SMF-28

Oscillo.

Pulse, 
sidebands,

phase
 processor

sidebands
 processor

CW

ff1

f
f f f

f
f1

f2
f2

f1-fm
f1+fm

f2+fmf2-fm

f = f2-f1
Phase locked

Pump

Signal        

f
Back reflected

light

PS(z)PP(z)
S(z) P(z)

Raman pump 
in

Spectral 
Filter 

f
f2 f +f

B

Coupler

Raman pump
out

 Laser 

CW

 Laser 

Seed

localoscillator

Fig. 2. Experimental setup: f1,2 are the frequencies of the main laser and
the local oscillator laser, respectively. Here, fm is the input modulation fre-
quency (pump frequency at f1, input sideband frequencies at f1± fm). The
backscattered signal from the single-mode fiber (Corning SMF-28) goes
through a circulator to be analyzed via heterodyning (beating with the local
oscillator) and then filtered (wave shaper) to isolate the power and phase
evolutions of the pump and the first-order sideband pair in the MI spectral
comb. OSA, optical spectrum analyzer; Oscillo., oscilloscope.

values of η, the amplification within the standard MI band is
smaller. However, the amplification outside of this band does
not depend on η. Thus, at larger values of η, the MI effect is
nearly the same order of magnitude within and outside of the
standard band.

Another remarkable feature of the MI visible in Fig. 1A is
the period of the pulse train, which is twice the period of the
initial modulation. Every second maxima of the periodic pertur-
bation grows while the juxtaposing maxima decay. This feature
adds flexibility to potential applications of the effect. The red
curve in Fig. 1A and analogous curves calculated for other values
of parameters have been used as initial conditions in the optical
and water wave experiments as well as in numerical simulations
presented below.

Optical Experiments
For optical experiment, we used a setup similar to the one used
in refs. 10 and 46 and devoted to investigating nonlinear stage of
MI within its conventional bandwidth. Its schematic is shown in
Fig. 2.

The input in the form of continuous wave with periodic per-
turbation is created by CW laser 1. The intensity and the phase
of the pump and the sidebands are precisely controlled. The
resulting three-wave input is injected into an L= 18.28-km-
long single-mode fiber (Corning SMF-28 with group velocity
dispersion β2 =−21× 10−27 s2m−1, nonlinear coefficient γ=
1.3× 10−3 W−1m−1). The loss is actively compensated by using

Fig. 3. Experimental three-wave input spectrum (purple solid line) com-
pared with the spontaneous MI spectrum (yellow dotted line). The two
gray areas beyond dashed black lines mark the range of frequencies f > fC ,
located outside of the conventional MI gain band (f ≤ fC ). On the power
axis, each division (div) corresponds to a 10 dB variation.

a counterpropagating Raman pump emulating an almost fully
transparent optical fiber (10). Power and phase distributions of
the pump and the first-order sideband (signal) are obtained using
a multiheterodyning technique between the backscattered signal
and the local oscillator (10).

The MI cutoff frequency is fC = 1/(π
√
|β2|LNL), with LNL =

(γPP )−1 (Optical Normalization). The pump power PP in exper-
iments is set to 180 mW, leading to a cutoff frequency of the
conventional MI gain band at fC = 33.6 GHz. In all our exper-
iments, the modulation frequency fm is located outside the MI
gain band (i.e., fm > fC ). The intensity of the sidebands is set at
5.3 dB below the pump power. The experimental spectra of the
three-wave input and the spectrum of spontaneous MI (i.e., con-
ventional MI gain band profile) are plotted in Fig. 3. The initial
relative phase between the pump and the signal is −π

2
in order

to excite the A-type waves.
Experimental data for fm = 40 GHz and analytical solution for

the same set of parameters are shown in Fig. 4.
Fig. 4A displays the experimental power evolution of the pump

(blue) and the signal (red). The corresponding theoretical pre-
diction is shown by dashed curves. As expected, first we observe
amplification of the signal and depletion of the pump. The pro-
cess reverses at around 2.5 km when the maximum depletion
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Fig. 4. Three waves evolution along the fiber when the sideband detun-
ing fm = 40 GHz (ωm = 2.3809) is outside the conventional MI band. (A)
Evolution of the pump power (blue curves) and signal power (red curves).
The solid curves in A–C correspond to the experimental data, while dashed
curves are theoretical. (B) Relative phase vs. distance. (C) The phase-
plane representation of the evolution. (D and E) Spatiotemporal false-
color plots of the power profile. (F and G) The phase profiles. D and F
show the experimental data, while E and G are theoretical. The follow-
ing parameters have been used to prepare the initial conditions in the
experiment and to plot the analytical solution: η= 1.2420, ρ= 0.0317,
and α3 = 1.0.

Vanderhaegen et al.
“Extraordinary” modulation instability in optics
and hydrodynamics

PNAS | 3 of 7
https://doi.org/10.1073/pnas.2019348118

D
ow

nl
oa

de
d 

at
 U

N
IV

E
R

S
IT

A
 S

T
U

D
I T

O
R

IN
O

 B
IB

L 
B

IO
M

E
D

 IN
T

E
G

R
A

T
A

 o
n 

F
eb

ru
ar

y 
11

, 2
02

2 

https://doi.org/10.1073/pnas.2019348118


of the pump is reached. The signal in experiment is amplified
by 1.7 dB between its initial value in Z = 0 and its first maxi-
mum (2.8-dB gain for the corresponding analytical solution). The
gain outside the conventional MI bandwidth is lower than the
theoretical one shown in Fig. 1B as the values of η in experi-
ments are higher (for ω=ωm and η= 0.05, the theoretical gain
is 5.2 dB).

The first recurrence to the initial power profile occurs at 5 km,
and then, successive cycles of growth and decay are repeated.
Overall, more than three periods of such oscillatory evolution
can be seen in Fig. 4A. Deviation from perfect periodic dynam-
ics is due to an imperfect compensation of loss by the active
compensation system. The consequence of this inaccuracy is
overamplification of the signal around the 10-km mark. Fig. 4B
shows the nearly linear evolution of the pump-signal relative
phase (∆Φ) over the fiber length. The experimental curve fits the
theory almost perfectly. Importantly, the initial phase is recov-
ered after two cycles of power evolution (around Z = 10 km),
whereas successive maximum amplification stages turn out to be
mutually out of phase (sidebands shifted by π), which is a unique
feature of A-type solutions (22).

It is also very convenient to illustrate the dynamics of the pro-
cess in the phase space [µ cos(∆Φ), µ sin(∆Φ)] where µ is the
signal power normalized to its maximum value. Such trajectories
are shown in Fig. 4C. The theoretical curve shown by the dashed
line is strictly periodic and corresponds to the A-type solution.
The quantitative agreement is also pretty good if we focus on the
locations of the curve maxima. Fig. 4C also gives a pictorial view
of the fact that the sidebands amplification is connected to the
nonlinear deformation of the orbit with respect to circular orbits.
The net gain indeed arises, in the figure-of-eight–shaped orbit,
from the ratio of the signal at the maximum elongation (horizon-
tal axis, ∆Φ = 0,π) and at the maximum orbital squeezing (input,
∆Φ =−π/2).

Fig. 4 D and F shows the spatiotemporal evolutions of the
power (Fig. 4D) and phase (Fig. 4F) of the electric field cal-
culated from the inverse Fourier transform of the three main
spectral components (Fig. 4 A–C). We used a procedure simi-
lar to that in ref. 47. Characteristic chessboard-like patterns are
obtained, which is a clear signature of A-type solutions. The

BA

C D

Fig. 5. Spatiotemporal power evolution for two other values of the pump-
signal frequency shift. (A and B) fm = 34 GHz (ωm = 2.0238); (C and D)
fm = 37 GHz (ωm = 2.2023). (A and C) Experimental data. (B and D) Ana-
lytical solution. The following parameters have been used to prepare the
initial conditions in the experiment and to plot the analytical solution:
(A and B) η= 1.0385, ρ= 0.4275, α3 = 1.0; and (C and D) η= 1.1407, ρ=

0.2374, α3 = 1.0.

BA

Fig. 6. Two-dimensional plot of the signal power as a function of dis-
tance Z (vertical axis) and pump-signal frequency shift (horizontal axis). (A)
Experiment and (B) numerics.

agreement with the analytical solution (Fig. 4 E and G) is very
good. We notice, once again, that the input phase is recovered
after two grow–decay cycles of power evolution, whereas suc-
cessive maximal amplification profiles are shifted by half of the
transverse period.

Fig. 5 shows two additional spatiotemporal evolutions of the
signal power from experimental measurements (Fig. 5 A and C)
and from analytics (Fig. 5 B and D). The two signal frequency
shifts (fm= 34 and 37 GHz) are still outside of the MI band but
located closer to the cutoff frequency. Again, the chessboard-
like pattern of these plots confirms the A-type nature of these
solutions. We can also notice that when approaching the cutoff
frequency, the spatial periods (along z ) increase, as can be seen
from Figs. 4D and 5 A and C. Importantly, maximal wave ampli-
tudes reached at the points of maximal compression are of the
same order of magnitude for all cases shown in these figures.

As mentioned, the spatial (longitudinal) period depends on
the shift between the modulation and the pump frequencies.
When the modulation frequency is outside of the MI band, this
period decreases with the modulation frequency moving away
from the pump. Experimental verification of this behavior is
shown in Fig. 6A. Fig. 6B shows the corresponding theoretical
plot. While the frequency shift increases from 34 to 41 GHz,
the number of longitudinal periods along the same distance
≈ 18 km changes from 3 to 3.8. This means that each longi-
tudinal period decreases from ≈ 6 to ≈ 4.73 km. Agreement
between the experimental data and the theory is also good as the
two plots in Fig. 6 demonstrate. Thus, our optical experiments
confirm, clearly, the fact of existence of MI outside of the conven-
tional instability band. The measurements are in good agreement
with the theoretical predictions based on the exact solutions
of the NLSE.

Water Wave Experiments
The hydrodynamic experiments have been performed in a uni-
directional wave tank installed at the University of Sydney and
shown in Fig. 7.

Its dimensions are 1 × 1 × 30 m. The tank was filled with
fresh water to the height of 0.7 m in order to satisfy the deep
water conditions for waves generated at the peak frequencies
between 1.5 and 2.0 Hz. The piston wave maker with oscil-
lation frequency range of 0.4< f < 2 Hz was installed at the
right end of the tank. A wave-absorbing beach is located at the
opposite end to eliminate any influence from reflected waves.
The piston is activated by an electric actuator, controlled by a
preprocessed signal, which allows the seeding of a modulated
surface elevation profile, according to mathematical expressions
given above.

Eight wave gauges with a sampling rate of 32 Hz each are
placed along the tank to collect the water wave elevation data.
Due to repeatability of experiments, all eight wave gauges have
been repositioned five times along the facility to ensure high res-
olution of the data acquisition both in time and in space. The

4 of 7 | PNAS
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Fig. 7. Sketch of the L = 30-m-long water tank at the University of Sydney.
In red, the locations of the gauges are shown.

gauges’ locations measured from the mean position of piston in
these experiments are represented in red in Fig. 7. This gave
us sufficient resolution in z for plotting the experimental pat-
terns, as shown below. The wave envelopes have been computed
using the Hilbert transform, while the spectral data have been
calculated using the fast Fourier transform of the water surface
elevation data.

Although the water wave envelope obeys the same dimen-
sionless focusing NLSE as the normalized optical field in
optical fiber, the spatial and timescales turn out to be
extremely different. We start from dimensional deep water
time NLSE (15) characterized by the second-order disper-
sion coefficient β2 =−2/g (g = 9.81 m/s2 is the gravitational
acceleration) and the nonlinear coefficient γ=−κ3 (γβ2> 0,
focusing regime), where κ is the wave number of the carrier,
with the carrier frequency fixed through the dispersion relation
ω=
√
gκ.

Operating with the scaling in Eq. 8 (Water Wave Normalization
has more details), we obtained the theoretical spatiotemporal
patterns shown in Figs. 8B, 9B, and 10B, which we compare
with experimental data (Figs. 8A, 9A, and 10A). The choice
of the parameters of the NLSE solution used for generat-
ing these patterns is given in the figures. In our water waves
experiment, typically, LNL≈ 10 m and Ts ≈ 1.4 s compared
with LNL≈ 4 km and Ts ≈ 10 ps of the optical experiment.
Accordingly, also the MI cutoff frequency, which reads, in this

case, fC = 1
π

√
gκ3a2

2
, turns out to be several orders of mag-

nitude lower than the one in optics. For instance, with κ=
10 m−1 and a = 0.01 m (case of Fig. 8), we obtain fC = 0.22
Hz. The envelope evolution as predicted by theory takes into
account the second-order Stokes correction to the water surface
elevation (36).

These spatiotemporal patterns are very similar to those
obtained in optical experiments. Remarkably, our maxima
(two periods) have been achieved within the length of the
tank as can be seen from Fig. 8. The resulting chessboard

BA

Fig. 8. (A) Experimental and (B) theoretical plots of spatiotemporal wave
evolution that start with extraordinary MI. The values of parameters in
the NLSE solution used to prepare the initial conditions in the experi-
ment are η= 1.9, ρ=−0.9, and α3 = 1.0. Wave amplitude a = 0.01 m,
the carrier wave number κ= 10 m−1, the corresponding wave steepness
ε= 0.1, and the modulation frequency fm = 0.37 Hz is well above the cutoff
fC = 0.22 Hz.

BA

C D

Fig. 9. (A and C) Experimental and (B and D) theoretical plots of spa-
tiotemporal wave evolution that start with MI. The values of parameters
in the NLSE solution used to prepare the initial conditions in the experiment
are (A and B) η= 1.03, ρ= 0.355, α3 = 1.0; and (C and D) η= 1.0, ρ= 2.0,
α3 = 1.0. Wave amplitude a = 0.01 m in each case. The wave numbers of
the carrier are (A) κ= 10 m−1 and (C) κ= 8 m−1. The corresponding wave
steepness ε= 0.1 with cutoff frequency fC = 0.22 Hz in A and aκ= 0.08 with
cutoff frequency fC = 0.15 Hz in C. The modulation frequency is fm = 0.25
Hz in A and fm = 0.16 Hz in C.

structure of this pattern corresponding to the A-type dou-
bly periodic wave is also clearly seen. Three recurrences to a
nearly CW are clearly visible despite unavoidable dissipation
elements, always present when performing laboratory exper-
iments. Note that for the given carrier wave parameters, it
would not be possible to observe more than one cycle of MI
growth-decay or AB within the given effective propagation
distance of 25 m.

In order to reaffirm the observation, two more examples of the
spatiotemporal pattern are shown in Fig. 9. These plots contain
less than one period of evolution that includes one full recur-
rence to initial conditions at around the 15-m mark in Fig. 9A
and around the 19-m mark in Fig. 9C. In each case, the car-
rier steepness ε has been adjusted to be just below the threshold
of wave breaking. The latter happens due to the excessive wave
amplitude amplification.

One essential difference of experimental patterns in Figs. 8A
and 9A from the optical ones is slightly tilted vertical stripes. The
reason is the asymmetry of the water wave profiles, which is the

BA

Fig. 10. (A) Experimental and (B) theoretical plots of spatiotemporal wave
evolution that start with MI. The values of parameters in the NLSE solution
used to prepare the initial conditions in the experiment are η= 1.9, ρ= 2.9,
and α3 = 1.0. Wave amplitude a = 0.01 m. The wave number of the carrier
in A is κ= 8 m−1; consequently, the wave steepness ε= 0.08. The modu-
lation frequency here fm = 0.2 Hz is once again above the cutoff frequency
fC = 0.15 Hz. MI develops, but wave breaking prevents the recurrence back
to initial conditions.
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result of significant breather amplification of a factor of three
and above. The consequence is the nonlinear Stokes contribu-
tions that are always present in water waves at these scales (48,
49). Despite these deviations, the patterns in Figs. 8A and 9A
clearly confirm the presence of the MI and its nonlinear evolu-
tion beyond the standard unstable frequencies of MI in the BF
theory.

Generally, when increasing the amplification factor of the
breather, the steepness has to be decreased in order to avoid
wave breaking. The latter violates the condition of the flow to be
irrotational and thus, prohibits applicability of the Euler equa-
tions and subsequently, the validity of the NLSE (14). Indeed,
when this threshold of wave breaking is exceeded, spilling as
well as recurrent breaking occurs, and the pattern changes sig-
nificantly and does not follow the theoretical NLSE predictions.
One example is shown in Fig. 10.

Here, the value of the breather parameter ρ is increased in
comparison with the previous cases. MI still develops, but there
is no obvious recurrence back to initial conditions as can be seen
from Fig. 10A.

Conclusions and Discussion
In conclusion, we have experimentally confirmed that MI is a
more complex phenomenon than the one predicted by the sim-
plified linear stability analysis. The most striking difference that
the more accurate nonlinear analysis using exact breather frame-
work reveals is the fact that periodically perturbed continuous
waves develop the growth of perturbation not only within the
standard MI band described by the BF and BT theories but
also outside of it. To be more accurate, the frequency range of
unstable growth of the perturbation extends beyond the standard
MI threshold.

Another dramatic difference from the standard theory can
be seen when observing the nonlinear stage of MI. The sub-
sequent evolution beyond the initial growth creates a specific
chessboard-like periodic spatiotemporal pattern of wave prop-
agation. Temporal maxima of the generated pulse trains change
position every half period of spatial evolution. The effect tightly
related to this phenomenon is the fact that the frequency of
the pulse train at the point of maximum compression is half
of the frequency of initial modulation. Such phenomenon may
find applications in frequency comb devices facilitating the
atomic clock synchronization when the frequencies differ by an
octave (50).

Having these unusual features revealed in nonlinear analy-
sis, we can call the effect “extended” or “extraordinary” MI.
Importantly, we were able to track and confirm this extraordi-
nary MI in two different physical media, namely in optics and
in hydrodynamics, proving the interdisciplinary significance of
the extended MI. In fact, these are the two areas of physics
where the wavelength differs by four orders of magnitude and
the modulation frequencies by ten orders of magnitude. This
twofold confirmation of the effect shows that it is ubiqui-
tous and does not depend on the scale of the physical system
that we operate with. The effects should be also observable
in other areas of physics such as astrophysics (51), plasma
(52, 53), metamaterials (54), and in Bose–Einstein conden-
sate (55, 56). We envisage that the phenomenon can be use-
ful in applications such as generation of optical frequency
combs and pulse trains with prescribed parameters: peri-
ods, amplitudes, and duty cycles. Moreover, we anticipate
modeling approaches for extreme events in nonlinear dis-
persive media. Here, we have chosen the NLSE solution
that can be considered as the simplest among the variety
of more complex wave fields. As such, our work could be
the start of a direction in the research of instabilities at the
transition stage between the linear and nonlinear regimes of
wave dynamics.

Methods
Analytical Expressions of the Solutions. The three functions in [2] are defined
as follows. Namely, for the function δ(z), we have the following expression:

δ(z) =

√
α3

2
(1− ν)

√
1 + dn(µz, k)

1 + νcn(µz, k)
sn(µz/2, k), [3]

where m = k2 =
1

2

(
1−

η2 + ρ(ρ−α3)

AB

)
, A2 = (α3− ρ)2 + η2, B2 = ρ2 +

η2, ν=
A− B

A + B
, and µ= 4

√
AB. The function δ varies within the interval

0<δ2 <α3.
The phase φ(z) is given by

φ(z) =

(
2ρ+

α3

ν

)
z−

α3

νµ
[Π(am(µz, k), n, k)−

−νσ tan−1
(

sd(µz, k)

σ

)]
, [4]

where n = ν2

ν2−1
, σ=

√
1−ν2

k2+(1−k2)ν2 , and sd(µz, k) = sn(µz,k)
dn(µz,k)

,

Π(am(µz, k), n, k) is the incomplete elliptic integral of the third kind
with the argument am(u, k) being the amplitude function.

In contrast to δ and φ, the function Q depends on two variables t and z.
It is given by

Q(t, z) = sb− c+
r + cn(pt, kq)

1 + rcn(pt, kq)
, [5]

where s(z) = sign [cn(µz/2, k)], r = M−N
M+N , p =

√
MN =

2 4
√

(α3− ρ)2 + η2, k2
q =

1

2
+ 2

ρ−α3

p2
, b =

√
α3− y, y(z) = δ2(z),

c± =

√
2
[√

(y− ρ)2 + η2± (ρ− y)
]
, M2 = (2sb + c+)2 + c2

−, and N2 =

(2sb− c+)2 + c2
−.

These functions and consequently, the whole family of solutions depend
on three arbitrary real parameters α3, ρ, η (22, 31). The periods in z and t
also depend on these parameters. They are given by Z = 8K(k)/µ and T =

4K(kq)/p, respectively, where K(k) is the complete elliptic integral of the first
kind.

Calculation of Theoretical Solutions. Theoretical solutions plotted in compar-
ison with experimental results are particular solutions of Eq. 1 characterized
by three arbitrary parameters α1, α2, and α3. These parameters, which
are nonzero roots of a fourth-order polynomial (31), are calculated by
matching power and phase initial conditions between analytical zero- and
first-order Fourier components and experimental three waves (pump, signal,
and idler). In case of A-type solutions, α1 and α2 are complex, and so, two
other parameters ρ and η are defined as α1 =α2* = ρ+ iη. The space–time
evolution of theoretical solutions is then obtained by direct calculations
from Eqs. 3–5.

Optical Normalization. In order to apply the theory in the first section to
optical fibers, the variables must be renormalized. To this end, the dimen-
sional distance Z, time T (in the frame traveling at light group velocity), and
field Ψ (with |Ψ|2 giving directly the power in watts) are obtained by the
following rescaling:

Z = (z− z0)LNL, T = t Ts, Ψ =ψ
√

PP , [6]

LNL = (γPP)−1, Ts =
√
|β2|LNL, [7]

where LNL is the characteristic nonlinear length scale associated with CW
power Pp and Ts is the relative temporal scale associated with disper-
sion. Here, z0 is a suitable shift that accounts for the fact the input
Z = 0 corresponds to a point of weak modulation in the solution (whereas
z = 0 is the point of maximum amplification in the solution). For practi-
cal purposes, we can approximate z0≈Z/4, valid for weak-enough input
modulation.

6 of 7 | PNAS
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Water Wave Normalization. In order to introduce a normalization akin to
Eqs. 6 and 7, the dimensional distance along the tank Z, the dimensional
time T , and the envelope of water wave elevation Ψ can be expressed in
terms of nonlinear length LNL and temporal scale Ts, fixed by the input
envelope elevation a, as follows (also ref. 57):

Z = (z− z0) LNL, T = t Ts, Ψ =ψ a, [8]

where LNL = 1
κ3a2 , Ts =

√
2

gκ3a2 , and z0 is a suitable shift for which con-

siderations analogous to those made in optics are still valid. It is worth
mentioning that in this case, the time T is also measured in the frame mov-
ing with the group velocity cg = ω

2κ . Obviously, this scaling is not unique. An
equivalent choice often employed in the case of water waves can be written

in terms of the wave number κ and the wave steepness ε= aκ: Z = z/(κε2),
T =
√

2t/(ωε), and Ψ =ψε/κ.

Data Availability. Figures in .fig data have been deposited in Figshare
(https://figshare.com/articles/figure/ Extraordinary modulation instability
in optics and hydrodynamics Figures PNAS publication/13603070/1).
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