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Rossella Lucá1,2y, Michele Averna1,2y, Francesca Zalfa3,4y, Manuela Vecchi5,6y, Fabrizio Bianchi6,
Giorgio La Fata1,2, Franca Del Nonno7, Roberta Nardacci7, Marco Bianchi5, Paolo Nuciforo8,
Sebastian Munck1,2, Paola Parrella9, Rute Moura1,2, Emanuela Signori10, Robert Alston11,
Anna Kuchnio12,13, Maria Giulia Farace4, Vito Michele Fazio9,14, Mauro Piacentini7,15,
Bart De Strooper1,2, Tilmann Achsel1,2, Giovanni Neri16, Patrick Neven17, D. Gareth Evans11,18,
Peter Carmeliet12,13, Massimiliano Mazzone19,20, Claudia Bagni1,2,5*
Keywords: cell invasion; EMT; FMRP;

mRNA metabolism; TNBC
DOI 10.1002/emmm.201302847

Received April 03, 2013

Revised August 01, 2013

Accepted August 06, 2013
(1) VIB Center for the Biology of Disease, Leuven, Belgi

(2) Center for Human Genetics, KU Leuven, Belgium

(3) CIR Department, Faculty of Medicine, University “C

Rome, Italy

(4) Department of Biomedicine and Prevention, Univ

Rome, Italy

(5) IFOM, Fondazione Istituto FIRC di Oncologia Molec

(6) Molecular Medicine Program, Department of Exp

European Institute of Oncology, Milan, Italy

(7) National Institute for Infectious Diseases, IRCCS ‘L

Rome, Italy

(8) Vall d’Hebron Institute of Oncology, Vall d’Hebron

Barcelona, Spain

(9) Laboratory of Oncology, IRCCS H. “Casa Sollievo de

Giovanni Rotondo, Italy

(10) Institute of Translational Pharmacology, CNR, Rom

(11) Cancer Research UK Paediatric and Familial Can

Manchester Academic Health Science Centre, Univ

Manchester, UK

(12) Laboratory of Angiogenesis and Neurovascular Lin

Center, VIB, Leuven, Belgium

� 2013 The Authors. Published by John Wiley and Sons,
the terms of the Creative Commons Attribution License, w
provided the original work is properly cited.
The role of the fragile X mental retardation protein (FMRP) is well established in

brain, where its absence leads to the fragile X syndrome (FXS). FMRP is almost

ubiquitously expressed, suggesting that, in addition to its effects in brain, it may

have fundamental roles in other organs. There is evidence that FMRP expression

can be linked to cancer. FMR1 mRNA, encoding FMRP, is overexpressed in

hepatocellular carcinoma cells. A decreased risk of cancer has been reported

in patients with FXS while a patient-case with FXS showed an unusual decrease of

tumour brain invasiveness. However, a role for FMRP in regulating cancer biology,

if any, remains unknown.We showhere that FMRPand FMR1mRNA levels correlate

with prognostic indicators of aggressive breast cancer, lung metastases probability

and triple negative breast cancer (TNBC). We establish that FMRP overexpression in

murine breast primary tumours enhances lung metastasis while its reduction has

the opposite effect regulating cell spreading and invasion. FMRP binds mRNAs

involved in epithelial mesenchymal transition (EMT) and invasion including

E-cadherin and Vimentin mRNAs, hallmarks of EMT and cancer progression.
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cells (Li et al, 2003; Liu et al, 2007). Furthermore, a decreased

INTRODUCTION

One of the hallmarks of an aggressive tumour is its propensity to
form metastases, and the understanding of this process is highly
relevant to cancer treatment. The dissemination of cancer cells
from primary tumours to form distant metastases is a highly
regulated process consisting of invasion, intravasation, transit in
the blood or lymph, extravasation and growth at a new site
(Chaffer &Weinberg, 2011; Hanahan &Weinberg, 2011; Olson &
Sahai, 2009; Sahai, 2007; Yilmaz & Christofori, 2009). The
epithelial to mesenchymal transition (EMT) converts epithelial
cells intomigratory and invasive cells and is a fundamental event
in both morphogenesis and cancer progression (Nieto, 2011;
Nieto & Cano, 2012).

This transition is accompanied by increased cell motility,
cytoskeleton remodelling and changes in cell adhesion proper-
ties, crucial events for tumour cell dissemination and metastasis
formation as well as for neuronal development (Kim et al, 2009;
Schmid & Maness, 2008). Those cellular events seem to be
affected in patients with the fragile X syndrome (FXS), the most
common form of inherited intellectual disabilities with an
incidence of 1:2500 to 1:5000 in males and 1:4000 to 1:6000 in
females (Bagni et al, 2012; Coffee et al, 2009; Turk, 2011). FXS
is caused by the absence of the fragile X mental retardation
protein (FMRP) and in neurons results in dendritic spine
dysmorphogenesis possibly due to a dysregulated mRNA
metabolism affecting cytoskeleton remodelling, synapses con-
nections and shaping (Bagni et al, 2012; Bhakar et al, 2012; Gross
et al, 2012).

Despite the role of FMRP has been very well established in
brain, the protein is almost ubiquitously expressed, although at
lower levels than in brain, suggesting that, in addition to its
effects in the central nervous system, it may have fundamental
roles in other organs and in other diseases. Previous works have
underlined a link between FMRP and cancer. FMR1 mRNA,
Figure 1. FMRP is highly expressed in human breast cancer and distal metas

A. FMRP expression on human TMAs containing normal and multi-tumour tissue
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D. Representative images of FMRP expression in normal and tumour breast tissues
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� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
encoding FMRP, is overexpressed in hepatocellular carcinoma

risk of cancer has been reported in patients with FXS (Schultz‐
Pedersen et al, 2001), a decreased expression of the Wnt7A
oncogene was detected in patients with FXS (Rosales‐Reynoso
et al, 2010) and a case study showed that a patient with FXS had
an unusual decrease of tumour brain invasiveness (Kalkunte
et al, 2007). However, a specific role for FMRP in regulating
cancer biology, if any, remains unknown.

In this study we show, using a human tissue micro‐array
(TMA), that FMRP overexpression significantly correlates with
prognostic indicators of aggressive breast cancer. Furthermore,
high levels of FMR1 mRNA in human breast tissues are
associated with breast cancer metastatic to lungs and with
triple negative breast cancer (TNBC).

Using a mouse model we establish that FMRP overexpression
in breast primary tumours enhances lung metastasis while
its reduction has the opposite effect regulating cell spreading
from the primary tumour and invasion. Finally we show that in
cancer cells FMRP binds mRNAs involved in EMT, cell adhesion
and cytoskeleton remodelling and regulates their stability and
translation.
RESULTS

FMRP is highly expressed in human breast cancer
An analysis of available expression datasets shows that FMR1
mRNA is expressed in different tissues and in cancer cell types
(https://www.genevestigator.com/gv/). To explore a possible
role for FMRP in cancer biology, we examined FMRP expression
level using a multi‐tumour human TMA (Capra et al, 2006;
Confalonieri et al, 2009) (Fig 1; Supporting Information
Table S1A) with an FMRP specific antibody (Ferrari
et al, 2007) (Supporting Information Fig S1). FMRP was
tasis.
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significantly increased in breast tumours as compared to normal
tissues that show a weak expression (Fig 1A). FMRP expression
was also independently analysed on a panel of ductal carcinoma
using the OncoPair INSTA‐BlotTM. FMRP resulted similarly
increased in breast cancer tissues compared to normal breast,
such a correlation was not observed for the protein a‐tubulin
(Fig 1B). Other tumour types showed similar findings (Support-
ing Information Table S1B). We further focused on breast cancer
because it is the top cancer in women and, in some subtypes, has
a poor prognosis (Coleman et al, 2008). FMRP expression
analysis was carried out on a large collection (Supporting
Information Table S2) of ductal and lobular breast cancer tissues
(Confalonieri et al, 2009). Notably, FMRP was very highly
expressed (scores> 1) in more than 20% of the breast primary
tumour samples (Fig 1C; Supporting Information Fig S1)
compared to normal tissue where it was expressed at lower
levels. The histopathological evaluation showed the heteroge-
neity of FMRP expression in different tumour foci and at the
margin (Fig 1D). The percentage of samples expressing high
levels of FMRP correlates with high tumour grade (G3) and high
proliferation index (Ki67) (Fig 1C), both of them indicators of
poor prognosis (Elston & Ellis, 1991; Fitzgibbons et al, 2000;
Goldhirsch et al, 2001). Finally, FMRP correlated with negative
lymph node status.

On the basis of these findings we performed a gene expression
analysis on four available breast cancer datasets that provide
clinical information on the occurrence of distal metastasis.
Analysis of the TRANSBIG cohort (Desmedt et al, 2007) revealed
trend of increasing expression of FMR1 mRNA in primary
tumours that metastasize to distal organs (Fig 1E). In two other
independent cohorts, i.e., EMC‐344 (Wang et al, 2005) andMSK‐
99 (Minn et al, 2007), we found significantly increased FMR1
mRNA expression in primary tumours that metastasize to lung
(Fig 1E). FMR1 expression correlates with lung metastases in the
lymph node‐negative subpopulation of the NKI‐295 dataset (van
de Vijver et al, 2002) while it does not in the lymph node‐positive
population (Fig 1E). Kaplan–Meyer curves generated bymerging
the three datasets for which the clinical information on
pulmonary metastasis is available (EMC‐344, MSK‐99 and
NKI‐295) showed that high levels of FMR1 mRNA correlated
with an increased probability of metastasis to lungs (Fig 1F), but
not to other distant organs (Supporting Information Fig S2). Cox
proportional hazard analysis of the three cohorts revealed that
patients with breast tumours overexpressing FMR1 mRNA have
an increased risk to develop lung metastasis (hazard ratio
(HR)¼ 1.21; 95% CI 1.02–1.45, p¼ 0.0293) and this is
independent from estrogen receptor status (HR¼ 1.51 95% CI
1.27–1.85, p< 0.0001), the only pathological parameter avail-
able for all datasets considered. This suggests that FMRP
increased expressionmight have a role inmetastatic spreading of
breast tumour cells to the lungs. We next analysed FMR1mRNA
expression on a large cohort of breast cancer patients (Cancer
Genome Atlas Network, 2012) recently made available by the
Tumor Cancer Genome Atlas consortium (TCGA). Strikingly,
FMR1 mRNA expression was increased with a high statistical
significance in the more aggressive TNBC subtype (i.e. ER/PgR
and HER2 negative) compared to the ER/PgR and/or the HER2
� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
positive tumours (Fig 1G). Due to lack of information regarding
distant metastasis in this cohort we could not perform further
studies. TNBCs, although clinically more aggressive, are more
likely to metastasize at distant site such as lung (Brouckaert
et al, 2009; Van Belle et al, 2009) independently of having
involved lymph nodes at diagnosis (Hudis & Gianni, 2011;
Reddy, 2011).

Finally, an increased expression of FMRP in lung metastases
was independently verified on paired cases of human breast
primary tumours and matched lung metastases (Fig 1H and
Supporting Information Table S3).

Overall, these findings suggest an association of FMRP
overexpression to breast cancer progression, and in particular to
the metastatic spread to the lungs.

Finally we assessed the occurrence of breast cancer in a
cohort of women from the FXS population in England for
which cancer clinical history is also available, an informative
cohort for this study since it is quite rare to have access
to both data at the same time (Supporting Information
Table S4). Five patients with different cancer types were
identified, significantly less than the expected 15.93 given the
national cancer incidence rate in England. Only one case
of breast cancer was present compared to an expected of 5.79.
However, due to the lack of information on distal events, we
could not monitor cancer progression in those patients with FXS.
Notably, these findings further extend previous studies of a
reduced incidence of cancer in a Danish cohort of FXS patients
(n¼ 223) (Schultz‐Pedersen et al, 2001).

FMRP levels affect the formation of lung metastasis
To verify that Fmrp levels affect tumour progression, we used
two murine breast cancer cell lines with different metastatic
properties, 4T1 (Tao et al, 2008) and TS/A (Nanni et al, 1983),
and with different levels of Fmrp expression (Fig 2A and
Supporting Information Fig S3). CTR shRNA and Fmr1 shRNA
cells were orthotopically injected into the mammary fat pad of
syngenic mice. The generated tumours showed comparable
growth, with a small difference at the end of the time course
(Supporting Information Fig S3E and F). Tumours also showed
higher levels of Fmrp and Fmr1 mRNA compared to healthy
breast tissues (Supporting Information Fig S4A–C). Importantly,
tumours derived from 4T1 CTR shRNA cells formed a
significantly higher number of lung metastases compared to
TS/A CTR shRNA cells (Fig 2A and Supporting Information
Fig S4D). Reduction of Fmrp expression decreased the
metastatic index formed by both cell lines by 50%, relative to
their respective control cells (Fig 2B and C) while FMRP
overexpression resulted in an increase by 56% in the 4T1 (high
metastatic potential) and by 72% in the less metastatic cell line
TS/A (low metastatic potential) (Fig 2D and E).

To establish the effect of Fmrp on tumour kinetics we used the
4T1 cell line expressing GFP and silenced for Fmrp (GFP‐Fmr1
shRNA, Supporting Information Fig S5A). Mice orthotopically
injectedwith Fmr1 silenced cells have less circulating cancer cells
compared to control (Fig 2F) as detected by GFP mRNA levels
(Schuster et al, 2004). We next monitored cell survival in the
bloodstream and cell lodging in the lungs after tail vein injection.
EMBO Mol Med (2013) 5, 1523–1536



Figure 2. Fmrp levels influence metastasis formation.

A. Metastatic index (number of lung metastases per tumour weight) after orthotopic injection (O.I.) of control (CTR shRNA) 4T1 and TS/A cells (n¼13 and 12,

respectively, p<0.001). Fmrp expression in control cells (CTR shRNA) is shown relative to the ribosomal protein S6 (rpS6), representativeWestern Blotting (WB).

B. Metastatic index after O.I. of CTR shRNA and Fmr1 shRNA (3/4) 4T1 cells (n¼13, p<0.01). Representative Western blotting (WB) for Fmrp and rpS6 is shown.

C. Left as in panel (B) using TS/A cells (n¼12, p<0.01). Representative WB and lungs with metastases (white spots).

D. As in (B) using 4T1 cells expressing the control vector or overexpressing FMRP (GFP-FMR1). Analysis was performed after O.I. (n¼6, p<0.01). Representative

WB is shown.

E. As in (D) using TS/A cells (n¼12, p<0.05), shown WB for Fmrp and representative lungs.

F. Number of circulating cancer cells expressed as ratio of GFP-Fmr1 shRNA versus GFP-CTR shRNA cells (n¼10, p<0.01).
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As shown in Supporting Information Fig S5B and C, no difference
between the two cell lines was observed.

FMRP levels affect cell–cell adhesion, cell shape and invasion of
4T1 cell lines
We next investigated the cell–cell adhesion property of tumour
cells with different Fmrp levels upon Ca2þ deprivation (Kim
et al, 2011; Silva et al, 2009; Wilby et al, 1999). Fmrp‐depleted
cells keep their cell–cell adhesion while FMRP overexpressing
cells (GFP‐FMR1) detach from neighbouring cells and change
shape (Supporting Information Fig S6A). Furthermore, cells
expressing Fmrp have different cell area compared to Fmr1
shRNA cells (Supporting Information Fig S6B) and an increased
propensity to migrate through a monolayer of endothelial cells
(Supporting Information Fig S6C). Finally when the 4T1 cells
were cultured as 3D cell spheroids (Del Duca et al, 2004;
Hattermann et al, 2011) those overexpressing Fmrp exhibited
EMBO Mol Med (2013) 5, 1523–1536 �
more protrusions and increased cell area when compared to
Fmrp‐silenced cells (Fig 3A–B and Supporting Information Fig
S6D for different Fmr1 shRNA combinations). Of note, changes
in cell shape and migration properties are hallmarks of EMT
(Thiery et al, 2009).

EMT related molecules are present in the Fmrp complex
While in brain FMRP regulates a subset of neuronal mRNAs,
FMRP‐associated mRNAs in cancer, if any, have not been
identified yet. We immunoprecipitated the Fmrp complex using
specific FMRP antibodies (Ferrari et al, 2007) and Supporting
Information Fig S1 from 4T1 cells (Supporting Information Fig
S7) and tumour tissues (unpublished observations) and
analysed the EMT RT2 Profiler™ PCR Array (see materials and
methods section). 42 mRNAs, out of 84 analysed specifically co‐
precipitate with Fmrp. The Fmrp interacting mRNAs were then
grouped using IPA (Ingenuity® Systems) that, through an
2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 1527



Figure 3. Fmrp levels affect cell invasion.

A. 3D multicellular tumour spheroids invasion assay.

Phase-contrast images show the 3D spheroids from

CTR shRNA and Fmr1 shRNA (3/4) 4T1 cells, white

dotted line indicates the spheroid body. Histograms

represent the quantification of the invading area and

the number of protrusion (n¼20 per condition,

p<0.01). Scale bar¼200mm. All insets show time

¼0. Scale bar: 50mm.

B. Same as in (A) with CTR vector and GFP-FMR1 4T1

cells (n¼20 per condition, p<0.001).

C. Ingenuity pathway analysis of the Fmrp target

mRNAs (p<0.05).
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interactive analysis of complex “omics” data, allowed us to
investigate, with a statistical significance, all available cellular
pathways and functions (Fig 3C and Supporting Information
Table S5). Most of the FMRP targets encode for proteins involved
in cellular movement, migration andmotility, adhesion and EMT
such as Vimentin (Vim), E‐cadherin (Cdh1), Microtubule
associated protein 1B (Mtap1b), Occludin (Ocln), or involved
in cancer signal transduction such as estrogen receptor 1 alpha
(Esr1), epidermal growth factor receptor (Egfr), notch gene
homologue 1 (Notch 1) or transcription factors such as twist
homologue 1 (Twist1), fibronectin 1 (Fn 1) and zinc finger E‐box
binding homoeobox2 (Zeb2). Very similar results were obtained
by immunoprecipitating FMRP from tumours generated by
orthotopic injection (unpublished observations). E‐cadherin, a
cell–cell adhesion molecule, and Vimentin, a major constituent
of the intermediate filament family of proteins, were particularly
interesting because the two proteins play a key role in EMT.
During this process epithelial markers like E‐cadherin are
downregulated, while mesenchymal markers like Vimentin are
increased with consequent acquisition of an invasive capacity
(Kalluri & Weinberg, 2009; Lahat et al, 2010).

E‐cadherin and Vimentin expression is regulated by FMRP
Immunohistochemistry revealed that expression of E‐cadherin
and FMRP were inversely correlated, while FMRP and Vimentin
levels were directly correlated in both human andmouse tumour
tissues (Fig 4A and B and Supporting Information Fig S8).
Western blotting analysis on the generated tumours confirmed
these findings (Fig 4C). Furthermore, 4T1 cells with reduced
Fmrp levels have an increase of functional E‐cadherin on the cell
surface (Fig 5A and B) and a decreased Vimentin (Fig 5C).

In brain FMRP has been widely studied for its function as
regulator of mRNA metabolism. In particular FMRP can act as
negative regulator of translation (Bassell & Warren, 2008;
Darnell et al, 2011; Napoli et al, 2008) or can stabilize messenger
RNA (D’Hulst et al, 2006; De Rubeis & Bagni, 2010; Miyashiro
et al, 2003; Zalfa et al, 2007), depending on the identity of the
target mRNA and the cellular context.

FMRP target mRNAs in cancer cells have not been identified
yet and consequently the molecular mechanism/s through
which FMRP regulates its specific mRNA targets. Since
E‐cadherin and Vimentin are bona fide cell invasion and
metastasis mRNAs (Cano et al, 2000; Cowin et al, 2005; Huber
et al, 2011; Kallergi et al, 2011; Korsching et al, 2005; Lahat
et al, 2010; Rakha et al, 2005; Thiery et al, 2009; Willipinski‐
Stapelfeldt et al, 2005; Yoo et al, 2012) involved in the initial
steps of cancer progression we further investigated their Fmrp‐
mediated regulation.

The level of E‐cadherinmRNAwas analysed by RT‐qPCR using
CTR and Fmr1 silenced 4T1 cells and did not reveal any change in
the mRNA steady state (Fig 5D) while a decrease in Vimentin
mRNA was observed (Fig 5D), consistent with the decreased
Vimentin protein level (Fig 5C). To address if the mechanism
leading to changes in Vimentin mRNA levels could be due to a
regulation of transcription or mRNA stability, we treated CTR and
Fmr1 shRNA 4T1 cells with the transcriptional suppressor
Actinomycin D. Upon 2h treatment, cells depleted of FMRP
EMBO Mol Med (2013) 5, 1523–1536 �
showed a reduced Vimentin mRNA levels, that remained down
regulated (see time points), proving that FMRP is indeed
regulating its stability. A similar regulation was observed for
other mRNAs associated to FMRP (Supporting Information
Table S5) and key EMT markers such as Fibronectin 1 (Fn1),
Jagged 1 (Jag1), Matrix Metallopeptidase 9 (MMP9), Serine (or
Cysteine) Peptidase Inhibitor, Clade E, Member 1 (Serpine 1),
Epidermal Growth Factor Receptor (Egfr) (Supporting Information
Fig S9). E‐cadherin mRNA, whose level does not change in
absence of Fmrp, did not show any response to the treatment
(Fig 5E) suggesting a possible control at the level of its translation.

In brain FMRP is largely involved in mRNA translational
regulation (Bagni & Greenough, 2005; Bagni et al, 2012; Bassell &
Warren, 2008), we then analysed the polysome‐mRNP distribu-
tion (Napoli et al, 2008; Zalfa et al, 2003) (translational
efficiency) of E‐cadherin mRNA in CTR and Fmr1 shRNA cells.
As shown in Fig 5F, E‐cadherinmRNAwas translated at a higher
efficiency in the absence of Fmrp in agreement with its role as
translational repressor. Additional mRNAs, involved in EMT and
target of FMRP in cancer cells (Supporting Information
Table S5), such as Microtubule Associated Protein 1B (Mtap1b),
Caveolin 2 (Cav2), Desmoplakin (Dsp), Keratin 14 (Krt14),
Microphthalmia‐Associated Transcription Factor (Mitf) were
similarly regulated at the level of translation (Supporting
Information Fig S10). The effects that we observe at the level
of mRNAmetabolism changing the level of Fmrpwere not due to
an off target effect since they were reproduced silencing Fmr1
with different siRNAs (Supporting Information Fig S11A and B).
DISCUSSION

Acquisition of the correct metastatic signature, the precise
nature of which is mostly unknown, confers an advantage for
cancer cells to survive and metastasize. The ability of tumour
cells to formmetastases requires adaptive changes in their shape
and adhesive repertoire and acquisition of motility that is critical
for both escape from the primary tumour and colonization
(Hanahan & Weinberg, 2011; Yilmaz & Christofori, 2009).
Metastatic progression can be enhanced not only by above‐
mentioned qualitative changes but also quantitative alterations
of metastasis‐associated mRNAs (Graff & Zimmer, 2003; Kang &
Massague, 2004). It is well established that mRNA metabolism
and translational control largely contribute to cancer progression
(Hsieh et al, 2012; Silvera et al, 2010; Stumpf & Ruggero, 2011).

In brain FMRP modulates the expression of selected mRNAs
(Bagni & Greenough, 2005; Bassell & Warren, 2008; Darnell
et al, 2011; De Rubeis & Bagni, 2010) in two ways: FMRP can
enhance mRNA stability of certain mRNAs and can also block
their translation (D’Hulst et al, 2006; Zalfa et al, 2007).

The dataset we generated upon specific immunoprecipitation
of Fmrp (Fig 3 and Supporting Information Table S5) suggests
that FMRP acts as a master regulator of a large subset of mRNAs
involved in multiple steps of cancer progression including
invasion and intravasation: two of the several steps in tumour
progression. Recently multiphoton imaging of tumours in vivo
revealed that entry into circulation is a critical step of metastasis
2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 1529



Figure 4. In breast tumours E‐cadherin and Vimentin are regulated by Fmrp.

A. Representative IHC for Fmrp, E-cadherin and Vimentin on tumours generated by control (upper panels) and Fmr1 shRNA 4T1 cells (lower panels). Scale bars

200mm.

B. Same as in (A) with cells expressing CTR vector and overexpressing FMR1 mRNA.

C. Quantification of the Western blot analysis for Vimentin and E-cadherin from tumours generated by O.I. of CTRs, Fmr1 shRNA and FMRP overexpressing 4T1

cells (n¼5, p<0.05, Student’s t-test). A representative Western blot is shown.
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(Wyckoff et al, 2011). Here we studied in detail the gene
regulation mediated by Fmrp on several of the identified mRNA
targets such as Vimentin, Fibronectin 1, Jagged 1, Matrix
Metallopeptidase 9, Serpine 1, Epidermal Growth Factor Receptor,
E‐cadherin, Microtubule Associated Protein 1B, Caveolin 2,
� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
Desmoplakin, Keratin 14, Microphthalmia‐Associated Transcrip-
tion Factor. We show that some of these mRNAs are regulated at
the level of stability, while others are translationally repressed in
agreement with the previous described dual function of FMRP in
neurons (Bagni et al, 2012). Recent studies have demonstrated
EMBO Mol Med (2013) 5, 1523–1536



Figure 5. Fmrp regulates E‐cadherin and Vimentin in breast cancer cells.

A. Fmrp (red) and E-cadherin (green) detection by I.F. in 4T1 cells expressing different Fmrp levels. Nuclei are visualized by DAPI staining. Arrows point to cell-cell

junctions in 4T1 cells expressing Fmrp (low E-cadherin), while arrowheads point to junctions of cells with reduced Fmrp level (high E-cadherin). Scale

bar¼10mm.

B. Western blotting of surface proteins from CTR shRNA and Fmr1 shRNA cells. Lanes 1 and 5 show the total protein extract (1/50) of biotin treated cells, lanes 2

and 6 same from non-treated cells. The respective streptavidin precipitates are shown in lanes 3, 4, 7 and 8. E-cadherin level in 4T1 shRNA and CTR shRNA cells

(n¼3, p<0.01, Student’s t-test).

C. Vimentin protein level in CTR shRNA and 4T1 shRNA 4T1 cells revealed by Western blotting (n¼4, p<0.001, Student’s t-test).

D. E-cadherin and Vimentin mRNA levels in 4T1 CTR shRNA and Fmr1 shRNA cells detected by RT-qPCR (n¼3, p<0.05).

E. mRNA stability assay in 4T1 CTR shRNA and Fmr1 shRNA cells. RNA was isolated at the indicated time points after Actinomycin D treatment and the stability of

Vimentin (upper panel) or E-cadherin (lower panel) mRNAs was analysed by RT-qPCR (n¼7, p<0.001).

F. Translational efficiency analysis. Upper panel, polysome-mRNPs distribution on a sucrose gradient. Low left panel, fractions 1–5 corresponding to translating

polysomes (P) and fractions 6–10 corresponding to silent mRNPs were pooled. Low right panel, quantification of the translational efficiency of Histone H3.3

and E-cadherin mRNAs reported as ratio of P over mRNPs (2�[DCt(P)–DCt(mRNPs)]) (n¼4, p<0.01).

G. Working model. FMRP levels regulate the expression of mRNAs involved in cell invasion. Upper row, high levels of FMRP lead to increased metastases

formation. Lower row, opposite effect is observed in absence of FMRP.
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that translation deregulation contributes to the metastatic
phenotype through selective effects on the translation of mRNAs
whose products are involved in various steps of the metastatic
process (Nasr & Pelletier, 2012). With the present study we
suggest that FMRP might be indeed a key player in mRNA
metabolism and tumour progression.

Amongst its target, FMRP controls E‐cadherin and Vimentin
levels, important molecules for cell adhesive properties, cytoskel-
eton remodelling and consequently tumour cell behaviour.

Both reduced E‐cadherin and overexpression of Vimentin are
observed during EMT and cancer progression (Berx & van
Roy, 2009; Kang & Massague, 2004), leading to the shedding of
the cancerous cells from the primary tumour (Hanahan &
Weinberg, 2011; Satelli & Li, 2011; Schmalhofer et al, 2009;
Thiery et al, 2009; Yilmaz & Christofori, 2009). Although
Vimentin has still an elusive function in invasive migration is
routinely used as mesenchymal marker during the transition.

We propose that Fmrp repression of E‐cadherin (high Fmrp
level) and othermRNA targets encoding for proteins that prevent
tumour shedding together with an increase in proteins
promoting invasion would support the enhanced ability of
FMRP positive cells to detach from the primary tumour and
invade allowing tumour spreading and subsequent metastases
formation (Fig 5G). Therefore, in the absence of FMRP (FXS) the
increase of the E‐cadherin and decrease in Vimentin, exemplary
of the FMRP mediated regulation, would result in the protective
metastatic phenotype.

In human, thismodel is further supported by the correlation of
FMRP with prognostic indicators of cancer dissemination (Fig 1)
and with the reduced risk of cancer incidence in patients with
FXS (Supporting Information Table S4). Moreover, FMRP
expression is higher in TNBC compared to ER/PgR and/or
Her2 positive tumours. TNBC, that are more likely to form
metastases at distant sites like lungs (Brouckaert et al, 2009)
independently of having lymph nodes involved at diagnosis
(Hudis & Gianni, 2011; Reddy, 2011), have a poor prognosis and
characteristics of EMT (Jeong et al, 2012).

Changes in cell‐to‐cell signalling and interaction mediate the
switch between epithelial and mesenchymal phenotypes and
consequently dictate the receptivity towards signals from the
extracellular milieu. These signals include soluble growth
factors, receptors, cytokines and extracellular matrix. Notably,
FMRP target mRNAs identified in this study encode for several of
these molecules.

From this work we provide evidence that FMRP regulates the
same classes of genes in brain and breast cancer, which indicates
that the protein has not acquired a novel function in tumours.
FMRP targets account for 4% or 27% of the transcriptome,
according to the cell type (Ascano et al, 2012; Brown et al, 2001;
Darnell et al, 2011). Among those mRNAs, there are several
encoding for factors involved in cell shape, cell‐adhesion and
invasion properties including Vimentin (Miyashiro et al, 2003),
Microtubule associated protein 1B (Brown et al, 2001; Miyashiro
et al, 2003; Zalfa et al, 2003), Transforming Growth Factor 2
(Miyashiro et al, 2003), LI‐cadherin (Miyashiro et al, 2003),
Neuronal Cell Adhesion Molecule (Darnell et al, 2011) and
Catenin beta1 (Darnell et al, 2011), Matrix Metallopeptidase 9
� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
(Bilousova et al, 2009). Of note, more than 50% of the FMRP
target identified in this study were independently found to be
directly associated to FMRP in HEK293 cells (Ascano et al, 2012)
while 10% are in common with another study in hippocampus
(Darnell et al, 2011). Importantly, EMT is known to play a role in
neuronal crest migration and it is therefore tempting to suggest
that some of the pathology observed in patients with FXS may be
related to the role we uncovered that FMRP plays in EMT.

MATERIALS AND METHODS

Human tissues collection
Studies described in this paper and involving humans and animalmodels

have been performed upon approval of European Committees and with

informed consent from the patients. All experiments involving human

specimens conformed to the principles described in the NMA declaration

of Helsinki and the NIH Belmont report. Patients’ recruitment and tissue

collections are described in Supporting Information.

Immunohistochemical analysis of FMRP on human tissue
microarrays (TMA)
Samples were provided by the Pathology Departments of Ospedale

Maggiore (Novara), Presidio Ospedaliero (Vimercate), Ospedale San

Paolo (Milan) and Ospedale Sacco (Milano) and analysed on multi‐

tumour TMAs (see Supporting Information).

Microarray and statistical analyses
Affymetrix Microarray data and relative clinical and pathological

information were downloaded from GEO (Gene expression Omnibus,

http://www.ncbi.nlm.nih.gov/geo/) using the accession number

GSE7390 for the TRANSBIG dataset, GSE2034 for the ERASMUS

dataset, GSE5327 for theMSK‐99 dataset, and NKI‐295 at http://www.

rii.com/publications/2002/nejm.html. Data were generated using the

MAS5.0 and processed in GeneSpring 7.3 (Agilent).

Statistical analyses were performed on log2 median centred data

using JMP IN 5.1 (SAS) and Welch’s t‐test. See Supporting Information

for Kaplan Mayer curves.

Gene expression data matrix (Level 3 data) of breast invasive

carcinoma screening performed by the TCGA consortium was down-

loaded from (https://tcga‐data.nci.nih.gov). Dataset consists in 597

breast cancer patients with annotated clinical and pathological

information. Student’s t‐test analysis was performed.

FMRP expression in the TMAs was performed using Contingency

Table analysis with Pearson chi‐square test (JMPTM IN 5.1). In the breast

cancer TMA (n¼477 patients) the association between the clinical‐

pathological variables of the tumours and FMRP expression was

evaluated by Fisher’s exact test or Likelihood Ratio test when more

than two parameters were considered.

Student’s t‐test was used to study the expression of FMRP in IHC

samples (tumours and matched distal metastasis).

Cancer incidence in the FXS populationwas calculated using Poisson

distribution and one‐sided test.

For the experiments performed in Figs 2–4 Student’s t‐test was

applied except for the Ingenuity Pathway Analysis (Fig 3C, p<0.05,

Fisher’s Exact test) and stability assay (Fig 5E, Two‐Way ANOVA with

Bonferroni correction). A p‐value of less than 0.05 was considered as

significant.
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PROBLEM:
Breast cancer is the most common cancer in women worldwide

with a lifetime risk of 1 in 8. The cause of patients’ death

with TNBC is often recurrence that occurs in 30–40% of the

cases within 5 years from the surgery. Chemotherapy remains

the only possible option and for this reason the identification

of molecular events underlying TNBCs and breast cancer

metastasis is needed to develop an efficient therapy.

Individuals with intellectual disabilities show a difference in cancer

incidence according to the cancer type, the majority tend to have a

significantly increased risk of cancer, patients with the Fragile X

Syndrome, on the contrary, show a decreased cancer incidence.

RESULTS:
We show that the Fragile X Mental Retardation Protein is

upregulated in highlymetastatic human breast tumours. FMRP as

well as FMR1 mRNA levels correlate with prognostic indicators of

aggressive breast cancer and lung metastasis. Furthermore,

reduction of FMRP in murine tumour cells decreases their ability

to form lung metastases as a result of decreased cell invasion,

while its overexpression increases metastatic potential. Finally,

we identified specific FMRP target mRNAs involved in epithelial

to mesenchymal transition, often a prerequisite for metastases

formation, and show that FMRP controls their mRNAmetabolism.

IMPACT:
Despite marked advances in breast cancer screening and

treatment over the past 30 years, there is a need to develop new

therapies in particular for cancer casesmarked by distant events.

Understanding themolecular mechanisms regulatingmetastasis

disseminationmight contribute to advance the treatment of very

aggressive breast cancer such as TNBCs. Our findings highlight a

novel function for the Fragile X Mental Retardation Protein in

regulating mRNA metabolism of cancer genes and laid the first

stone for further research on the molecular events of metastatic

dissemination FMRP-mediated.
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IHC analysis on mouse tissue
Murine tissues were stained on a Bond‐maxTM fully automated

staining system (Leica Microsystems GmbH, Germany, see Supporting

Information).

Tumour cell lines
4T1 and TS/A cells (CTRs, Fmr1 shRNA and overexpressing Fmrp)

were grown in DMEM media containing fetal bovine serum 10%

and 1% penicillin–streptomycin (Invitrogen) and kept at 37°C in

5% CO2.

Orthotopic injection (O.I.) in mice
Lentivirus infected 4T1 and TS/A cells (combination of two

independent Fmr1 shRNAs 3 and 4; control (CTR) scrambled

shRNA; GFP-FMR1; control (CTR) vector were used (see Supporting

Information).

Intravasation assay
1�106 GFP labelled 4T1 cells were injected in the right second

thoracic mammary fat pad of 9 weeks old Balb/c female mice. 29 days

after injection 400ml of blood were collected by retro‐orbital bleeding

and subjected to haemolysis. RNA was extracted using QIAamp RNA

Blood Mini Kit (QIAGEN) following the manufacturer’s instruction (see

Supporting Information).

3D multicellular tumour spheroid invasion assay
CTR shRNA, Fmr1 shRNA (3/4, 4/5 and 3/5) and FMR1 overexpressing

4T1 cells were grown as pending drops, embedded in a collagen type I

matrix and imaged after 24 h (see Supporting Information).

RNA extraction, immunoprecipitation, RT‐qPCR array, and
Western blotting
These methodologies are described in Supporting Information.
EMBO Mol Med (2013) 5, 1523–1536 �
RNA stability assay
4T1 CTR and Fmr1 shRNA cells were treated at t¼0 with Actinomycin

D (1mg/ml) for 0, 2, 4, 8 h. RNA was extracted and RT‐qPCR performed

as described in Supporting Information.

Polysome‐mRNPs distribution
Polysome‐mRNPs distribution on a sucrose gradient was performed

according to (Napoli et al, 2008). Cytoplasmic extracts from CTR and

Fmr1 shRNA 4T1 cells were fractioned by centrifugation on a 15–50%

sucrose gradient. 10 fractions were collectedwhile 254nm absorbance

was recorded (see Supporting Information).
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