

UNIVERSITÀ

DEGLI STUDI DI TORINO

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Braid groups in complex spaces

(Article begins on next page)

Braid groups in complex spaces

Sandro MANFREDINI[∗] Saima PARVEEN[†] Simona SETTEPANELLA ‡

September 14, 2012

Abstract

We describe the fundamental groups of ordered and unordered k -point sets in \mathbb{C}^n generating an affine subspace of fixed dimension.

Keywords:

complex space, configuration spaces, braid groups.

MSC (2010): 20F36, 52C35, 57M05, 51A20.

1 Introduction

Let M be a manifold and Σ_k be the symmetric group on k elements. The *ordered* and *unordered configuration spaces* of k distinct points in M , $\mathcal{F}_k(M)$ = $\{(x_1,\ldots,x_k)\in M^k|x_i\neq x_j, i\neq j\}$ and $\mathcal{C}_k(M)=\mathcal{F}_k(M)/\Sigma_k$, have been widely studied. It is well known that for a simply connected manifold M of dimension ≥ 3 , the *pure braid group* $\pi_1(\mathcal{F}_k(M))$ is trivial and the *braid group* $\pi_1(\mathcal{C}_k(M))$ is isomorphic to Σ_k , while in low dimensions there are non trivial pure braids. For example, (see [\[F\]](#page-18-0)) the pure braid group of the plane \mathcal{PB}_n has the following presentation

$$
\mathcal{PB}_n = \pi_1(\mathcal{F}_n(\mathbb{C})) \cong \langle \alpha_{ij}, \ 1 \leq i < j \leq n \ | (YB3)_n, (YB4)_n \rangle,
$$

[∗]Department of Mathematics, University of Pisa, manfredi@dm.unipi.it

[†]2Abdus Salam School of Mathematical Sciences, GC University, Lahore-Pakistan, saimashaa@gmail.com

[‡]LEM, Scuola Superiore Sant'Anna, Pisa, s.settepanella@sssup.it

where $(YB3)_n$ and $(YB4)_n$ are the Yang-Baxter relations:

$$
(YB\ 3)_n: \quad \alpha_{ij}\alpha_{ik}\alpha_{jk} = \alpha_{ik}\alpha_{jk}\alpha_{ij} = \alpha_{jk}\alpha_{ij}\alpha_{ik}, \ 1 \le i < j < k \le n,
$$
\n
$$
(YB\ 4)_n: \quad [\alpha_{kl}, \alpha_{ij}] = [\alpha_{il}, \alpha_{jk}] = [\alpha_{jl}, \alpha_{jk}^{-1}\alpha_{ik}\alpha_{jk}] = [\alpha_{jl}, \alpha_{kl}\alpha_{ik}\alpha_{kl}^{-1}] = 1,
$$
\n
$$
1 \le i < j < k < l \le n,
$$

while the braid group of the plane \mathcal{B}_n has the well known presentation (see $[A])$ $[A])$

$$
\mathcal{B}_n = \pi_1(\mathcal{C}_n(\mathbb{C})) \cong \langle \sigma_i, 1 \leq i \leq n-1 \mid (A)_n \rangle,
$$

where $(A)_n$ are the classical Artin relations:

$$
(A)_n: \sigma_i \sigma_j = \sigma_j \sigma_i, 1 \le i < j \le n-1, j-i \ge 2,
$$

$$
\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, 1 \le i < n-1.
$$

Other interesting examples are the pure braid group and the braid group of the sphere $S^2 \approx \mathbb{C}P^1$ with presentations (see [\[B2\]](#page-18-2) and [\[F\]](#page-18-0))

$$
\pi_1(\mathcal{F}_n(\mathbb{C}P^1)) \cong \langle \alpha_{ij}, 1 \le i < j \le n-1 \, | (YB\,3)_{n-1}, (YB\,4)_{n-1}, D_{n-1}^2 = 1 \rangle
$$

$$
\pi_1(\mathcal{C}_n(\mathbb{C}P^1)) \cong \langle \sigma_i, 1 \le i \le n-1 \, | (A)_n, \sigma_1 \sigma_2 \dots \sigma_{n-1}^2 \dots \sigma_2 \sigma_1 = 1 \rangle,
$$

where $D_k = \alpha_{12}(\alpha_{13}\alpha_{23})(\alpha_{14}\alpha_{24}\alpha_{34})\cdots(\alpha_{1k}\alpha_{2k}\cdots\alpha_{k-1 k}).$ The inclusion morphisms $\mathcal{PB}_n \to \mathcal{B}_n$ are given by (see [\[B2\]](#page-18-2))

$$
\alpha_{ij} \mapsto \sigma_{j-1} \sigma_{j-2} \dots \sigma_{i+1} \sigma_i^2 \sigma_{i+1}^{-1} \dots \sigma_{j-1}^{-1}
$$

and due to these inclusions, we can identify the pure braid D_n with Δ_n^2 , the square of the fundamental Garside braid $(|G|)$. In a recent paper $(|BS|)$ Berceanu and the second author introduced new configuration spaces. They stratify the classical configuration spaces $\mathcal{F}_k(\mathbb{C}P^n)$ (resp. $\mathcal{C}_k(\mathbb{C}P^n)$) with complex submanifolds $\mathcal{F}^i_k(\mathbb{C}P^n)$ (resp. $\mathcal{C}^i_k(\mathbb{C}P^n)$) defined as the ordered (resp. unordered) configuration spaces of all k points in $\mathbb{C}P^n$ generating a projective subspace of dimension i . Then they compute the fundamental groups $\pi_1(\mathcal{F}_k^i(\mathbb{C}P^n))$ and $\pi_1(\mathcal{C}_k^i(\mathbb{C}P^n))$, proving that the former are trivial and the latter are isomorphic to Σ_k except when $i = 1$ providing, in this last case, a presentation for both $\pi_1(\mathcal{F}_k^1(\mathbb{C}P^n))$ and $\pi_1(\mathcal{C}_k^1(\mathbb{C}P^n))$ similar to those of the braid groups of the sphere. In this paper we apply the same technique to the affine case, i.e. to $\mathcal{F}_k(\mathbb{C}^n)$ and $\mathcal{C}_k(\mathbb{C}^n)$, showing that the situation is similar except in one case. More precisely we prove that, if $\mathcal{F}_k^{i,n} = \mathcal{F}_k^i(\mathbb{C}^n)$ and $\mathcal{C}_k^{i,n} = \mathcal{C}_k^i(\mathbb{C}^n)$ denote, respectively, the ordered and unordered configuration spaces of all k points in \mathbb{C}^n generating an affine subspace of dimension i, then the following theorem holds:

Theorem 1.1. The spaces $\mathcal{F}_k^{i,n}$ $a_k^{i,n}$ are simply connected except for $i = 1$ or $i = n = k - 1$ *. In these cases*

1. $\pi_1(\mathcal{F}_k^{1,1})$ $(\mathcal{L}_k^{1,1})=\mathcal{PB}_k,$ 2. $\pi_1(\mathcal{F}_k^{1,n})$ $\mathcal{P}_{k}^{1,n}$) = $\mathcal{P}_{k}/\langle D_{k} \rangle$ when $n > 1$, *3.* $\pi_1(\mathcal{F}_{n+1}^{n,n}) = \mathbb{Z}$ *for all* $n \geq 1$ *.*

The fundamental group of $C_k^{i,n}$ $\mathcal{L}_{k}^{i,n}$ *is isomorphic to the symmetric group* Σ_{k} *except for* $i = 1$ *or* $i = n = k - 1$ *. In these cases:*

1.
$$
\pi_1(\mathcal{C}_k^{1,1}) = \mathcal{B}_k
$$
,
\n2. $\pi_1(\mathcal{C}_k^{1,n}) = \mathcal{B}_k$ < Δ_k^2 > when $n > 1$,
\n3. $\pi_1(\mathcal{C}_{n+1}^{n,n}) = \mathcal{B}_{n+1}$ < $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_n^2$ > for all $n \ge 1$.

Our paper begins by defining a geometric fibration that connects the spaces $\mathcal{F}_k^{i,n}$ $t_k^{i,n}$ to the affine grasmannian manifolds $Graff^i(\mathbb{C}^n)$. In Section [3](#page-6-0) we compute the fundamental groups for two special cases: points on a line $\mathcal{F}_k^{1,n}$ $k^{1,n}$ and points in general position $\mathcal{F}_k^{k-1,n}$ $\kappa^{k-1,n}_{k}$. Then, in Section [4,](#page-9-0) we describe an open cover of $\mathcal{F}_k^{n,n}$ $k_{k}^{n,n}$ and, using a Van-Kampen argument, we prove the main result for the ordered configuration spaces. In Section [5](#page-15-0) we prove the main result for the unordered configuration spaces.

2 Geometric fibrations on the affine grassmannian manifold

We consider \mathbb{C}^n with its affine structure. If $p_1, \ldots, p_k \in \mathbb{C}^n$ we write p_1, \ldots, p_k is for the affine subspace generated by p_1, \ldots, p_k . We stratify the configuration spaces $\mathcal{F}_k(\mathbb{C}^n)$ with complex submanifolds as follows:

$$
\mathcal{F}_k(\mathbb{C}^n) = \coprod_{i=0}^n \mathcal{F}_k^{i,n},
$$

where $\mathcal{F}_k^{i,n}$ $k_k^{n, n}$ is the ordered configuration space of all k distinct points p_1, \ldots, p_k in \mathbb{C}^n such that the dimension dim $\langle p_1, \ldots, p_k \rangle = i$.

Remark 2.1. *The following easy facts hold:*

- 1. $\mathcal{F}_k^{i,n}$ $\mathcal{C}_k^{i,n} \neq \emptyset$ if and only if $i \leq \min(k+1,n)$; so, in order to get a non *empty set,* $i = 0$ *forces* $k = 1$ *, and* $\mathcal{F}_1^{0,n} = \mathbb{C}^n$ *.*
- 2. $\mathcal{F}_k^{1,1} = \mathcal{F}_k(\mathbb{C}), \ \mathcal{F}_2^{1,n} = \mathcal{F}_2(\mathbb{C}^n);$
- *3. the adjacency of the strata is given by*

$$
\overline{\mathcal{F}_k^{i,n}} = \mathcal{F}_k^{1,n} \coprod \ldots \coprod \mathcal{F}_k^{i,n}.
$$

By the above remark, it follows that the case $k = 1$ is trivial, so from now on we will consider $k > 1$ (and hence $i > 0$).

For $i \leq n$, let $Graff^i(\mathbb{C}^n)$ be the affine grassmannian manifold parametrizing *i*-dimensional affine subspaces of \mathbb{C}^n .

We recall that the map $Graff^i(\mathbb{C}^n) \to Gr^i(\mathbb{C}^n)$ which sends an affine subspace to its direction, exibits $Graff^i(\mathbb{C}^n)$ as a vector bundle over the ordinary grassmannian manifold $Grⁱ(\mathbb{C}^n)$ with fiber of dimension $n - i$. Hence, $\dim Graf^i(\mathbb{C}^n) = (i+1)(n-i)$ and it has the same homotopy groups as $Grⁱ(\mathbb{C}ⁿ)$. In particular, affine grassmannian manifolds are simply connnected and $\pi_2(Graff^i(\mathbb{C}^n)) \cong \mathbb{Z}$ if $i < n$ (and trivial if $i = n$). We can also identify a generator for $\pi_2(Graff^i(\mathbb{C}^n))$ given by the map

$$
g: (D^2, S^1) \to (Graff^i(\mathbb{C}^n), L_1), \quad g(z) = L_z
$$

where L_z is the linear subspace of \mathbb{C}^n given by the equations

 $(1-|z|)X_1 - zX_2 = X_{i+2} = \cdots = X_n = 0$.

Affine grasmannian manifolds are related to the spaces $\mathcal{F}_k^{i,n}$ $\lambda_k^{i,n}$ through the following fibrations.

Proposition 2.2. *The projection*

$$
\gamma: \mathcal{F}_k^{i,n} \to \mathit{Graff}^i(\mathbb{C}^n)
$$

given by

$$
(x_1,\ldots,x_k)\mapsto
$$

is a locally trivial fibration with fiber $\mathcal{F}_k^{i,i}$ k *.* *Proof.* Take $V_0 \in \text{Graff}^i(\mathbb{C}^n)$ and choose $L_0 \in \text{Gra}^{-i}(\mathbb{C}^n)$ such that L_0 intersects V_0 in one point and define \mathcal{U}_{L_0} , an open neighborhood of V_0 , by

 $\mathcal{U}_{L_0} = \{ V \in \text{Graf} f^i(\mathbb{C}^n) \mid L_0 \text{ intersects } V \text{ in one point} \}.$

For $V \in \mathcal{U}_{L_0}$, define the affine isomorphism

$$
\varphi_V: V \to V_0, \ \varphi_V(x) = (L_0 + x) \cap V_0.
$$

The local trivialization is given by the homeomorphism

$$
f: \gamma^{-1}(\mathcal{U}_{L_0}) \to \mathcal{U}_{L_0} \times \mathcal{F}_k^{i,i}(V_0)
$$

$$
y = (y_1, \dots, y_k) \mapsto (\gamma(y), (\varphi_{\gamma(y)}(y_1), \dots, \varphi_{\gamma(y)}(y_k)))
$$

making the following diagram commute (where $\mathcal{F}_k^{i,i}$ $\mathcal{F}_k^{i,i}(V_0) = \mathcal{F}_k^{i,i}$ upon choosing a coordinate system in V_0)

Corollary 2.3. *The complex dimensions of the strata are given by*

$$
\dim(\mathcal{F}_k^{i,n}) = \dim(\mathcal{F}_k^{i,i}) + \dim(Graff^i(\mathbb{C}^n)) = ki + (i+1)(n-i).
$$

Proof. $\mathcal{F}_k^{i,i}$ $\mathbf{k}^{i,i}$ is a Zariski open subset in $(\mathbb{C}^i)^k$ for $k \geq i+1$.

$$
\qquad \qquad \Box
$$

The canonical embedding

$$
\mathbb{C}^m \longrightarrow \mathbb{C}^n, \quad \{z_0, \ldots, z_m\} \mapsto \{z_0, \ldots, z_m, 0, \ldots, 0\}
$$

induces, for $i \leq m$, the following commutative diagram of fibrations

$$
\mathcal{F}_k^{i,i} \longrightarrow \mathcal{F}_k^{i,m} \longrightarrow \operatorname{Graff}^i(\mathbb{C}^m)
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$
\n
$$
\mathcal{F}_k^{i,i} \longrightarrow \mathcal{F}_k^{i,n} \longrightarrow \operatorname{Graff}^i(\mathbb{C}^n)
$$

which gives rise, for $i < m$, to the commutative diagram of homotopy groups

where the leftmost and central vertical homomorphisms are isomorphisms. Then, also the rightmost vertical homomorphisms are isomorphisms, and we have

$$
\pi_1(\mathcal{F}_k^{i,n}) \cong \pi_1(\mathcal{F}_k^{i,m}) \cong \pi_1(\mathcal{F}_k^{i,i+1}) \text{ for } i < m \le n. \tag{1}
$$

Thus, in order to compute $\pi_1(\mathcal{F}_k^{i,n})$ $\binom{n}{k}$ we can restrict to the case $k \geq n$ (note that $k > i$, computing the fundamental groups $\pi_1(\mathcal{F}_k^{i,i+1})$ $\binom{n}{k}$, and for this we can use the homotopy exact sequence of the fibration from Proposition [2.2,](#page-4-0) which leads us to compute the fundamental groups $\pi_1(\mathcal{F}_k^{i,i})$ $\binom{n,i}{k}$. This is equivalent, simplifying notations, to compute $\pi_1(\mathcal{F}_k^{\bar{n},n})$ $\binom{n,n}{k}$ when $k \geq n+1$.

We begin by studying two special cases, points on a line and points in general position.

3 Special cases

The case $i = 1$, points on a line.

By remark [2.1](#page-4-1) the space $\mathcal{F}_k^{1,1} = \mathcal{F}_k(\mathbb{C})$ for all $k \geq 2$ and the fibration in Proposition [2.2](#page-4-0) gives rise to the exact sequence

$$
\mathbb{Z} = \pi_2(Graff^1(\mathbb{C}^2)) \xrightarrow{\delta_*} \mathcal{PB}_n = \pi_1(\mathcal{F}_k(\mathbb{C})) \to \pi_1(\mathcal{F}_k^{1,2}) \to 1. \tag{2}
$$

It follows that $\pi_1(\mathcal{F}_k^{1,2})$ $(k_k^{1,2}) \cong \mathcal{PB}_n/\text{Im}\delta_*$. Since $\pi_2(Graff^1(\mathbb{C}^2)) = \mathbb{Z}$, we need to know the image of a generator of this group in \mathcal{PB}_n . Taking as generator the map

$$
g:(D^2, S^1) \to (Graff^1(\mathbb{C}^2), L_1), g(z) = L_z,
$$

where L_z is the line of equation $(1 - |z|)X_1 = zX_2$, we chose the lifting

$$
\tilde{g}: (D^2, S^1) \to (\mathcal{F}_k^{1,2}, \mathcal{F}_k(L_1))
$$

$$
\tilde{g}(z) = ((z, 1 - |z|), 2(z, 1 - |z|), \ldots, k(z, 1 - |z|))
$$

whose restriction to S^1 gives the map

$$
\gamma : S^1 \longrightarrow \mathcal{F}_k(L_1) = \mathcal{F}_k(\mathbb{C})
$$

$$
\gamma(z) = ((z, 0), (2z, 0), \dots, (kz, 0))
$$

Lemma 3.1. *(see [\[BS\]](#page-18-4))* The homotopy class of the map γ corresponds to the *following pure braid in* $\pi_1(\mathcal{F}_k(\mathbb{C}))$ *:*

$$
[\gamma] = \alpha_{12}(\alpha_{13}\alpha_{23})\ldots(\alpha_{1k}\alpha_{2k}\ldots\alpha_{k-1,k}) = D_k.
$$

From the above Lemma and the exact sequence in [\(2\)](#page-6-1) we get that the image in $\pi_1(\mathcal{F}_k(\mathbb{C}))$ of the generator of $\pi_2(Graff^1(\mathbb{C}^2))$ is D_k and the following theorem is proved.

Theorem 3.2. *For* $n > 1$ *, the fundamental group of the configuration space of* k *distinct points in* C n *lying on a line has the following presentation (not depending on* n*)*

$$
\pi_1(\mathcal{F}_k^{1,n}) = \langle \alpha_{ij}, 1 \le i < j \le k \mid (YB3)_k, (YB4)_k, D_k = 1 \rangle.
$$

The case $k = i + 1$, points in general position.

Lemma 3.3. *For* $1 < k \leq n+1$ *, the projection*

$$
p: \mathcal{F}_k^{k-1,n} \longrightarrow \mathcal{F}_{k-1}^{k-2,n}, \quad (x_1,\ldots,x_k) \mapsto (x_1,\ldots,x_{k-1})
$$

is a locally trivial fibration with fiber $\mathbb{C}^n \setminus \mathbb{C}^{k-2}$

Proof. Take $(x_1^0, ..., x_{k-1}^0) \in \mathcal{F}_{k-1}^{k-2,n}$ and fix $x_k^0, ..., x_{n+1}^0 \in \mathbb{C}^n$ such that $\langle x_1^0, \ldots, x_{n+1}^0 \rangle = \mathbb{C}^n$ (that is $\langle x_k^0, \ldots, x_{n+1}^0 \rangle$ and $\langle x_1^0, \ldots, x_{k-1}^0 \rangle$ are skew subspaces). Define the open neighbourhood \mathcal{U} of $(x_1^0, \ldots, x_{k-1}^0)$ by

$$
\mathcal{U} = \{ (x_1, \ldots, x_{k-1}) \in \mathcal{F}_{k-1}^{k-2,n} \mid \langle x_1, \ldots, x_{k-1}, x_k^0, \ldots, x_{n+1}^0 \rangle = \mathbb{C}^n \}.
$$

For $(x_1, \ldots, x_{k-1}) \in \mathcal{U}$, there exists a unique affine isomorphism $T_{(x_1, \ldots, x_{k-1})}$: $\mathbb{C}^n \longrightarrow \mathbb{C}^n$, which depends continuously on (x_1, \ldots, x_{k-1}) , such that

$$
T_{(x_1,...,x_{k-1})}(x_i^0) = (x_i)
$$
 for $i = 1,...,k-1$

and

$$
T_{(x_1,...,x_{k-1})}(x_i^0)=(x_i^0) \text{ for } i=k,\ldots,n+1 .
$$

We can define the homeomorphisms φ, ψ by :

$$
p^{-1}(\mathcal{U}) \xleftrightarrow{\varphi} \mathcal{U} \times (\mathbb{C}^n \setminus \langle x_1^0, \dots, x_{k-1}^0 \rangle)
$$

$$
\varphi(x_1, \dots, x_{k-1}, x) = ((x_1, \dots, x_{k-1}), T_{(x_1, \dots, x_{k-1})}^{-1}(x))
$$

$$
\psi((x_1, \dots, x_{k-1}), y) = (x_1, \dots, x_{k-1}, T_{(x_1, \dots, x_{k-1})}(y))
$$

satisfying $pr_1 \circ \varphi = p$.

$$
p^{-1}(\mathcal{U}) \xrightarrow{p} \mathcal{U} \times (\mathbb{C}^n \setminus \langle x_1^0, \ldots, x_{k-1}^0 \rangle)
$$

As $\mathbb{C}^n \setminus \mathbb{C}^{k-2}$ is simply connected when $n > k - 1$ and $k > 1$, we have

$$
\pi_1(\mathcal{F}_k^{k-1,n}) \cong \pi_1(\mathcal{F}_{k-1}^{k-2,n}) \cong \pi_1(\mathcal{F}_2^{1,n}) = \pi_1(\mathcal{F}_2(\mathbb{C}^n)) \cong \pi_1(\mathcal{F}_1^{0,n}) = \pi_1(\mathbb{C}^n) = 0,
$$

in particular $\pi_1(\mathcal{F}_n^{n-1,n}) = 0$. Moreover, since $\mathbb{C}^n \setminus \mathbb{C}^{k-2}$ is homotopically equivalent to an odd dimensional (real) sphere $S^{2(n-k)-1}$, its second homotopy group vanish and we have

$$
\pi_2(\mathcal{F}_{k+1}^{k,n}) \cong \pi_2(\mathcal{F}_k^{k-1,n}) \cong \pi_2(\mathcal{F}_1^{0,n}) = \pi_2(\mathbb{C}^n) = 0.
$$

in particular $\pi_2(\mathcal{F}_n^{n-1,n})=0.$

In the case $k = n + 1$, $\mathbb{C}^n \setminus \mathbb{C}^{n-1}$ is homotopically equivalent to \mathbb{C}^* , and we obtain the exact sequence:

$$
\pi_2(\mathcal{F}_n^{n-1,n}) \to \mathbb{Z} \to \pi_1(\mathcal{F}_{n+1}^{n,n}) \to \pi_1(\mathcal{F}_n^{n-1,n}) \to 0.
$$

By the above remarks, the leftmost and rightmost groups are trivial, so we have that $\pi_1(\mathcal{F}_{n+1}^{n,n})$ is infinite cyclic. We have proven the following

Theorem 3.4. For $n \geq 1$, the configuration space of k distinct points in \mathbb{C}^n *in general position* $\mathcal{F}_k^{k-1,n}$ $\sum_{k=1}^{k=1,n}$ is simply connected except for $k = n + 1$ in which *case* $\pi_1(\mathcal{F}_{n+1}^{n,n}) = \mathbb{Z}$ *.*

We can also identify a generator for $\pi_1(\mathcal{F}_{n+1}^{n,n})$ via the map

$$
h: S^1 \to \mathcal{F}_{n+1}^{n,n} \quad h(z) = (0, e_1, \dots e_{n-1}, z e_n), \tag{3}
$$

where $e_1, \ldots e_n$ is the canonical basis for \mathbb{C}^n (i.e. a loop that goes around the hyperplane $< 0, e_1, \ldots e_{n-1} >$).

4 The general case

From now on we will consider $n, i > 1$.

Let us recall that, by Proposition [2.2](#page-4-0) and equation [\(1\)](#page-6-2), in order to compute the fundamental group of the general case $\mathcal{F}_k^{i,n}$ $\mathcal{F}_k^{i,n}$, we need to compute $\pi_1(\mathcal{F}_k^{n,n})$ $\binom{n,n}{k}$ when $k \geq n+1$. To do this, we will cover $\mathcal{F}_k^{n,n}$ $\binom{n}{k}$ by open sets with an infinite cyclic fundamental group and then we will apply the Van-Kampen theorem to them.

4.1 A good cover

Let $\mathcal{A} = (A_1, \ldots, A_p)$ be a sequence of subsets of $\{1, \ldots, k\}$ and the integers d_1, \ldots, d_p given by $d_j = |A_j| - 1$, $j = 1, \ldots, p$. Let us define

$$
\mathcal{F}_k^{\mathcal{A},n} = \{ (x_1,\ldots,x_k) \in \mathcal{F}_k(\mathbb{C}^n) \, \middle| \, \dim \langle x_i \rangle_{i \in A_j} = d_j \text{ for } j = 1,\ldots,p \}.
$$

Example 4.1. *The following easy facts hold:*

- *1.* If $\mathcal{A} = \{A_1\}$, $A_1 = \{1, ..., k\}$, then $\mathcal{F}_k^{\mathcal{A},n} = \mathcal{F}_k^{k-1,n}$ $\stackrel{\cdot \kappa - 1, n}{}$ 2. if all A_i have cardinality $|A_i| \leq 2$, then $\mathcal{F}_k^{A,n} = \mathcal{F}_k(\mathbb{C}^n)$;
- *3.* if $p \ge 2$ and $|A_p| \le 2$, then $\mathcal{F}_k^{(A_1,...,A_p),n} = \mathcal{F}_k^{(A_1,...,A_{p-1}),n}$ $\mathbf{R}^{(A_1,...,A_{p-1}),n},$
- 4. if $p \ge 2$ and $A_p \subseteq A_1$, then $\mathcal{F}_k^{(A_1,...,A_p),n} = \mathcal{F}_k^{(A_1,...,A_{p-1}),n}$ $\kappa^{(A_1,...,A_{p-1}),n}$;

5.
$$
\bigcup_{j\geq i} \mathcal{F}_k^{j,n} = \bigcup_{\mathcal{A}=\{A\},A\in \binom{\{1,\dots,k\}}{i+1}} \mathcal{F}_k^{\mathcal{A},n}.
$$

Lemma 4.2. *For* $A = \{1, ..., j + 1\}$, $j \leq n$, and $k > j$ *the map*

$$
P_A: \mathcal{F}_k^{(A),n} \to \mathcal{F}_{j+1}^{j,n}, (x_1, \ldots, x_k) \mapsto (x_1, \ldots, x_{j+1})
$$

is a locally trivial fibration with fiber $\mathcal{F}_{k-j-1}(\mathbb{C}^n \setminus \{0, e_1, \ldots, e_j\}).$

Proof. Fix $(x_1, \ldots, x_{j+1}) \in \mathcal{F}_{j+1}^{j,n}$ and choose $z_{j+2}, \ldots, z_{n+1} \in \mathbb{C}^n$ such that $\langle x_1,\ldots,x_{j+1},z_{j+2},\ldots,z_{n+1}\rangle = \mathbb{C}^n.$ Define the neighborhood $\mathcal U$ of (x_1, \ldots, x_{j+1}) by

$$
\mathcal{U} = \{ (y_1, \ldots, y_{j+1}) \in \mathcal{F}_{j+1}^{j,n} \mid \langle y_1, \ldots, y_{j+1}, z_{j+2}, \ldots, z_{n+1} \rangle = \mathbb{C}^n \} .
$$

There exists a unique affine isomorphism $F_y : \mathbb{C}^n \to \mathbb{C}^n$, which depends continuously on $y = (y_1, \ldots, y_{j+1})$, such that

$$
F_y(x_i) = y_i, \ \ i = 1, \ldots, j+1
$$

\n $F_y(z_i) = z_i, \ \ i = j+2, \ldots, n+1$

and this gives a local trivialization

$$
f: P_A^{-1}(\mathcal{U}) \to \mathcal{U} \times \mathcal{F}_{k-j-1}(\mathbb{C}^n \setminus \{x_1, \dots, x_{j+1}\})
$$

$$
(y_1, \dots, y_k) \mapsto ((y_1, \dots, y_{j+1}), F_y^{-1}(y_{j+2}), \dots, F_y^{-1}(y_k))
$$

which satisfies $pr_1 \circ f = P_A$.

 \Box

Let us remark that P_A is the identity map if $k = j + 1$ and the fibration is (globally) trivial if $j = n$ since $\mathcal{U} = \mathcal{F}_{n+1}^{n,n}$; in this last case $\pi_1(\mathcal{F}_k^{(A),n})$ $\binom{(A),n}{k} = \mathbb{Z}$ (recall that we are considering $n > 1$).

Let $\mathcal{A} = (A_1, \ldots, A_p)$ be a p-uple of subsets of cardinalities $|A_j| = d_j + 1$, $j = 1, \ldots, p$. For any given integer $h \in \{1, \ldots, k\}$, we define a new p-uple $\mathcal{A}' = (A'_1, \ldots, A'_p)$ and integers d'_1, \ldots, d'_p as follows:

$$
A'_{j} = \begin{cases} A_{j}, & \text{if } h \notin A_{j} \\ A_{j} \setminus \{h\}, & \text{if } h \in A_{j} \end{cases}, d'_{j} = \begin{cases} d_{j}, & \text{if } h \notin A_{j} \\ d_{j} - 1, & \text{if } h \in A_{j} \end{cases}
$$

The following Lemma holds.

Lemma 4.3. *The map*

$$
p_h: \mathcal{F}_k^{\mathcal{A},n} \to \mathcal{F}_{k-1}^{\mathcal{A}',n}, (x_1,\ldots,x_k) \mapsto (x_1,\ldots,\widehat{x_h},\ldots,x_k)
$$

has local sections with path-connected fibers.

Proof. Let us suppose that $h = k$ and $k \in (A_1 \cap \ldots \cap A_l) \setminus (A_{l+1} \cup \ldots \cup A_p)$. Then the fiber of the map $p_k: \mathcal{F}_k^{\mathcal{A},n} \to \mathcal{F}_{k-1}^{\mathcal{A}',n}$ $k-1$ ⁿ is

$$
p_k^{-1}(x_1,\ldots,x_{k-1}) \approx \mathbb{C}^n \setminus (L'_1 \cup \ldots \cup L'_l \cup \{x_1,\ldots,x_{k-1}\})
$$

where $L'_j = \langle x_i \rangle_{i \in A'_j}$. Even in the case when $\dim L_j = n$, we have $\dim L'_j$ n, hence the fiber is path-connected and nonempty. Fix a base point $x =$ $(x_1, \ldots, x_{k-1}) \in \mathcal{F}_{k-1}^{\mathcal{A}', n}$ \mathcal{A}' ,ⁿ and choose $x_k \in \mathbb{C}^n \setminus (L'_1 \cup \ldots \cup L'_l \cup \{x_1, \ldots, x_{k-1}\}).$ There are neighborhoods $W_j \subset \text{Graff}^{d'_j}(\mathbb{C}^n)$ of L'_j $(j = 1, \ldots, l)$ such that $x_k \notin L''_j$ if $L''_j \in W_j$; we take a constant local section

$$
s: W = g^{-1}((\mathbb{C}^n \setminus \{x_k\})^{k-1} \times \prod_{i=1}^l W_i) \to \mathcal{F}_k^{\mathcal{A},n}
$$

$$
(y_1, \ldots, y_{k-1}) \mapsto (y_1, \ldots, y_{k-1}, x_k),
$$

where the continuous map q is given by:

$$
g: \mathcal{F}_{k-1}^{\mathcal{A}',n} \to (\mathbb{C}^n)^{k-1} \times Graf f^{d'_1}(\mathbb{C}^n) \times \ldots \times Graf f^{d'_l}(\mathbb{C}^n)
$$

$$
(y_1, \ldots, y_{k-1}) \mapsto (y_1, \ldots, y_{k-1}, L''_1, \ldots, L''_l),
$$

and $L''_j = _{i \in A'_j}$ for $j = 1, ..., l$.

.

Proposition 4.4. *The space* $\mathcal{F}_k^{A,n}$ $\mathcal{L}_{k}^{\mathcal{A},n}$ is path-connected.

Proof. Use induction on p and $d_1 + d_2 + \ldots + d_p$. If $p = 1$, use Lemma [4.2](#page-10-0) and the space $\mathcal{F}_{j+1}^{j,n}$ which is path-connected. If A_p is not included in A_1 and $d_p \geq 3$, delete a point in $A_p \setminus A_1$ and use Lemma [4.3](#page-11-0) and the fact that if C is not empty and path-connected and $p : B \to C$ is a surjective continuous map with local sections such that $p^{-1}(y)$ is path-connected for all $y \in C$, then B is path-connected (see [\[BS\]](#page-18-4)). If $A_p \subset A_1$ or $d_p \leq 2$, use Example [4.1,](#page-10-1) (3) and (4). □

Let e_1, \ldots, e_n be the canonical basis of \mathbb{C}^n and

$$
M_h = \{ (x_1, \ldots, x_h) \in \mathcal{F}_h(\mathbb{C}^n \setminus \{0, e_1, \ldots, e_n\}) | x_1 \notin \},
$$

the following Lemma holds.

Lemma 4.5. *The map*

$$
p_h: M_h \to (\mathbb{C}^n)^* \backslash < e_1, \ldots, e_n >
$$

sending $(x_1, \ldots, x_h) \mapsto x_1$ *, is a locally trivial fibration with fiber* $\mathcal{F}_{h-1}(\mathbb{C}^n \setminus \{0, e_1, \ldots, e_n, e_1 + \cdots + e_n\}).$

Proof. Let $G: B^m \to \mathbb{R}^m$ be the homeomorphism from the open unit m-ball to \mathbb{R}^m given by $G(x) = \frac{x}{1-|x|}$, (whose inverse is the map $G^{-1}(y) = \frac{y}{1+|y|}$). For $x \in B^m$ let $\tilde{G}_x = G^{-1} \circ \tau_{-G(x)} \circ G$ be an homeomorphism of B^m , where $\tau_v : \mathbb{R}^n \to \mathbb{R}^n$ is the translation by v. \tilde{G}_x sends x to 0 and can be extended to a homeomorphism of the closure $\overline{B^m}$, by requiring it to be the identity on the m−1-sphere (the exact formula for $\tilde{G}_x(y)$ is $\frac{(1-|x|)y-(1-|y|)x}{(1-|x|)(1-|y|)+(1-|x|)y-(1-|y|)x}$). We can further extend it to an homomorphism G_x of \mathbb{R}^m by setting $G_x(y) = y$ if $|y| > 1$. Notice that G_x depends continuously on x.

Let $\bar{x} \in (\mathbb{C}^n)^* \setminus \langle e_1, \ldots, e_n \rangle$, fix an open complex ball B in

 $(\mathbb{C}^n)^* \setminus \langle e_1, \ldots, e_n \rangle$ centered at \bar{x} and an affine isomorphism H of \mathbb{C}^n sending B to the open real $2n$ -ball B^{2n} . For $x \in B$, define the homeomorphism F_x of \mathbb{C}^n $F_x = H^{-1} \circ G_{H(x)} \circ H$ which sends x to \bar{x} , is the identity outside of B and depends continuously on x . The result follows from the continuous map

$$
F: p_h^{-1}(B) \to B \times p_h^{-1}(\bar{x})
$$

$$
F(x, x_2, ..., x_h) = (x, (\bar{x}, F_x(x_2), ..., F_x(x_h)))
$$

(whose inverse is the map $F^{-1}: B \times p_h^{-1}$ $_{h}^{-1}(\bar{x}) \to p_{h}^{-1}$ $_{h}^{-1}(B), F^{-1}(x, (\bar{x}, x_2, \ldots, x_h)) =$ $(x, F_x^{-1}(x_2), \ldots, F_x^{-1}(x_h))).$

 $_{h}^{-1}(\bar{x})$ is homeomorphic to $\mathcal{F}_{h-1}(\mathbb{C}^n \setminus \{0, e_1, \ldots, e_n, e_1 + \cdots + e_n\})$ The fiber p_h^{-1} via an homeomorphism of \mathbb{C}^n which fixes $0, e_1, \ldots, e_n$ and sends \bar{x} to the sum $e_1 + \ldots + e_n$. □

Thus we have, since $n \geq 2$, $\pi_1(M_h) = \mathbb{Z}$, and we can choose as generator the map $S^1 \to M_h$ sending $z \mapsto (z(e_1 + \cdots + e_n), x_2, \ldots, x_h)$ with x_2, \ldots, x_h of sufficient high norm (i.e. a loop that goes round the hyperplane $< e_1, \ldots, e_n >$).

Lemma 4.6. *For* $A = \{1, \ldots, n+1\}$ *,* $B = \{2, \ldots, n+2\}$ *, and* $k > n+1$ *the map*

$$
P_{A,B}: \mathcal{F}_k^{(A,B),n} \to \mathcal{F}_{n+1}^{n,n}, \ (x_1,\ldots,x_k) \mapsto (x_1,\ldots,x_{n+1})
$$

is a trivial fibration with fiber M_{k-n-1}

Proof. For $x = (x_1, \ldots, x_{n+1}) \in \mathcal{F}_{n+1}^{n,n}$ let F_x be the affine isomorphism of \mathbb{C}^n such that $F_x(0) = x_1, F_x(e_i) = x_{i+1}$, for $i = 1, ..., n$. The map

$$
\mathcal{F}_{n+1}^{n,n} \times M_{k-n-1} \to \mathcal{F}_k^{(A,B),n}
$$

sending

$$
((x_1,\ldots,x_{n+1}), (x_{n+2},\ldots,x_k)) \mapsto (x_1,\ldots,x_{n+1}, F_x(x_{n+2}),\ldots,F_x(x_k))
$$

 \Box

gives the result.

4.2 Computation of the fundamental group

From Lemma [4.6](#page-13-0) it follows that $\pi_1(\mathcal{F}_k^{(A,B),n})$ $\mathcal{L}_{k}^{(A,B),n}$ = $\mathbb{Z} \times \mathbb{Z}$ and that it has two generators: $((z+1)(e_1+\ldots+e_n), e_1, \ldots, e_n, e_1+\ldots+e_n, x_{n+3}, \ldots, x_k)$ and $(0, e_1, \ldots, e_n, z(e_1 + \ldots + e_n), x_{n+3}, \ldots, x_k)$, where x_{n+3}, \ldots, x_k are chosen *far enough* to be different from the first $n + 2$ points. The first generator is the one coming from the base, the second is the one from the fiber of the fibration $P_{A,B}.$

Note that using the map

$$
P'_{A,B}: \mathcal{F}_k^{(A,B),n} \to \mathcal{F}_{n+1}^{n,n}, (x_1, \ldots, x_k) \mapsto (x_2, \ldots, x_{n+2})
$$

we obtain the same result and the generator coming from the base here is the one coming from the fiber above and vice versa.

The map $P_{A,B}$ factors through the inclusion $i_A: \mathcal{F}_k^{(A,B),n}$ $\mathcal{F}_k^{(A,B),n} \hookrightarrow \mathcal{F}_k^{(A),n}$ followed by the map

$$
P_A: \mathcal{F}_k^{(A),n} \to \mathcal{F}_{n+1}^{n,n}, \ (x_1,\ldots,x_k) \mapsto (x_1,\ldots,x_{n+1})
$$

and we get the following commutative diagram of fundamental groups:

Since P_A induces an isomorphism on the fundamental groups, this means that i_{A*} sends the generator of $\pi_1(\mathcal{F}_k^{(A,B),n})$ $(k^{(A,B),n}_{k})$ coming from the fiber to 0 in $\pi_1(\mathcal{F}^{n,n}_{n+1})$. That is, the generator of $\pi_1(\mathcal{F}^{(B),n}_{k})$ $\binom{(\mathbf{b}),n}{k}$ (which is homotopically equivalent to the generator of $\pi_1(\mathcal{F}_k^{(A,B),n})$ $(k^{(A,B),n}_{k})$ coming from the fiber) is trivial in $\pi_1(\mathcal{F}^{(A),n}_k$ $(k_n^{(A),n})$ and (given the symmetry of the matter) vice versa.

Applying Van Kampen theorem, we have that $\mathcal{F}_k^{(A),n} \cup \mathcal{F}_k^{(B),n}$ is simply connected. Moreover the intersection of any number of $\mathcal{F}_k^{(A),n}$ $k^{(A),n}$'s is path connected and the same is true for the intersection of two unions of $\mathcal{F}_k^{(A),n}$ $k^{(A),n}$'s since the intersection $\bigcap_{A\in\binom{\{1,\dots,k\}}{n+1}} \mathcal{F}_k^{(A),n}$ $\kappa^{(A),n}$ is not empty.

From the last example in [4.1](#page-10-1) with $i = n$ we have $\mathcal{F}_k^{n,n} = \bigcup_{A \in \binom{\{1,\dots,k\}}{n+1}} \mathcal{F}_k^{(A),n}$ $k^{(A),n},$ and when $k > n+1$, we can cover it with a finite number of simply connected open sets with path connected intersections, so it is simply connected by the following

Lemma 4.7. *Let* X *be a topological space which has a finite open cover* U_1, \ldots, U_n such that each U_i is simply connected, $U_i \cap U_j$ is connected for all $i, j = 1, \ldots, n$ and $\bigcap_{i=1}^{n} U_i \neq \emptyset$. Then X is simply connected.

Proof. By induction, let's suppose $\bigcup_{i=1}^{k-1} U_i$ is simply connected. Then, applying Van Kampen theorem to U_k and $\bigcup_{i=1}^{k-1} U_i$, we get that $\bigcup_{i=1}^{k} U_i$ is simply connected if $U_k \cap (\bigcup_{i=1}^{k-1} U_i)$ is connected. But $U_k \cap (\bigcup_{i=1}^{k-1} U_i) = \bigcup_{i=1}^{k-1} (U_k \cap U_i)$ is the union of connected sets with non empty intersection, and therefore is connected. \Box

Now, using the fibration in Proposition [2.2](#page-4-0) with $n = i + 1$, we obtain that $\mathcal{F}_k^{n-1,n}$ $\sum_{k=1}^{n-1,n}$ is simply connected when $k > n$.

Summing up the results for the oredered case, the following main theorem is proved

Theorem 4.8. The spaces $\mathcal{F}_k^{i,n}$ $\hat{h}_k^{i,n}$ are simply connected except

1. $\pi_1(\mathcal{F}_k^{1,1})$ $\mathcal{L}_k^{(1,1)} = \mathcal{PB}_k,$ 2. $\pi_1(\mathcal{F}_k^{1,n})$ $\chi_k^{(1,n)} = \langle \alpha_{ij}, 1 \le i \le j \le k | (YB3)_k, (YB4)_k, D_k = 1 \rangle$ when $n > 1$, 3. $\pi_1(\mathcal{F}_{n+1}^{n,n}) = \mathbb{Z}$ *for all* $n \geq 1$ *, with generator described in [\(3\)](#page-9-1).*

5 The unordered case: $\mathcal{C}_k^{i,n}$ k

Let $\mathcal{C}_k^{i,n}$ k^{n} be the unordered configuration space of all k distinct points p_1, \ldots, p_k in \mathbb{C}^n which generate an *i*-dimensional space. Then $\mathcal{C}_k^{i,n}$ $\binom{n}{k}$ is obtained quotienting $\mathcal{F}_k^{i,n}$ $k_k^{i,n}$ by the action of the symmetric group Σ_k . The map $p: \mathcal{F}_k^{i,n} \to \mathcal{C}_k^{i,n}$ is a regular covering with Σ_k as deck transformation group, so we have the exact sequence:

$$
1 \to \pi_1(\mathcal{F}_k^{i,n}) \xrightarrow{p_*} \pi_1(\mathcal{C}_k^{i,n}) \xrightarrow{\tau} \Sigma_k \to 1
$$

which gives immediately $\pi_1(\mathcal{C}_k^{i,n})$ $\binom{i,n}{k} = \sum_k$ in case $\mathcal{F}_k^{i,n}$ $\lambda_k^{n,n}$ is simply connected. Observe that the fibration in Proposition [2.2](#page-4-0) may be quotiented obtaining a locally trivial fibration $\mathcal{C}_k^{i,n} \to \text{Graff}^i(\mathbb{C}^n)$ with fiber $\mathcal{C}_k^{i,i}$ $\frac{\imath\,\imath}{k}$.

This gives an exact sequence of homotopy groups which, together with the one from Proposition [2.2](#page-4-0) and those coming from regular coverings, gives the following commutative diagram for $i < n$.

In case $i = 1, \ \mathcal{F}_k^{1,1} = \mathcal{F}_k(\mathbb{C})$ and $\mathcal{C}_k^{1,1} = \mathcal{C}_k(\mathbb{C}),$ so $\pi_1(\mathcal{F}_k^{1,1})$ $\mathcal{L}_k^{1,1}) = \mathcal{PB}_k$ and $\pi_1(\mathcal{C}_k^{1,1})$ $(k_k^{1,1}) = \mathcal{B}_k$, and since Im $\delta_* = \langle D_k \rangle \subset \mathcal{PB}_k$, the left square gives $\text{Im}\delta'_* = \langle \Delta_k^2 \rangle \subset \mathcal{B}_k$, therefore $\pi_1(\mathcal{C}_k^{1,n})$ $\mathcal{B}_k^{1,n}$) = \mathcal{B}_k / < Δ_k^2 >.

For $i = n = k - 1$, we have $\pi_1(\mathcal{F}_{n+1}^{n,n}) = \mathbb{Z}$, and we can use the exact sequence of the regular covering $p: \mathcal{F}_{n+1}^{n,n} \to \mathcal{C}_{n+1}^{n,n}$ to get a presentation of $\pi_1(\mathcal{C}_{n+1}^{n,n}).$

Let's fix $Q = (0, e_1, \ldots, e_n) \in \mathcal{F}_{n+1}^{n,n}$ and $p(Q) \in \mathcal{C}_{n+1}^{n,n}$ as base points and for $i = 1, \ldots n$ define $\gamma_i : [0, \pi] \to \mathcal{F}_{n+1}^{n,n}$ to be the (open) path

$$
\gamma_i(t) = (\frac{1}{2}(e^{i(t+\pi)} + 1)e_i, e_1, \dots, e_{i-1}, \frac{1}{2}(e^{it} + 1))e_i, e_{i+1}, \dots, e_n)
$$

(which fixes all entries except the first and the $(i + 1)$ -th and exchanges 0 and e_i by a half rotation in the line $\langle 0, e_i \rangle$.

Then $p \circ \gamma_i$ is a closed path in $\mathcal{C}_{n+1}^{n,n}$ and we denote it's homotopy class in $\pi_1(\mathcal{C}_{n+1}^{n,n})$ by σ_i . Hence $\tau_i = \tau(\sigma_i)$ is the deck transformation corresponding to the transposition $(0, i)$ (we take Σ_{n+1} as acting on $\{0, 1, \ldots, n\}$) and we get a set of generators for Σ_{n+1} satisfying the following relations

$$
\tau_i^2 = \tau_i \tau_j \tau_i \tau_j^{-1} \tau_i^{-1} \tau_j^{-1} = 1 \text{ for } i, j = 1, ..., n,
$$

$$
[\tau_1 \tau_2 \cdots \tau_{i-1} \tau_i \tau_{i-1}^{-1} \cdots \tau_1^{-1}, \tau_1 \tau_2 \cdots \tau_{j-1} \tau_j \tau_{j-1}^{-1} \cdots \tau_1^{-1}] = 1 \text{ for } |i - j| > 2.
$$

If we take T, the (closed) path in $\mathcal{F}_{n+1}^{n,n}$ in which all entries are fixed except for one which goes round the hyperplane generated by the others counterclockwise, as generator of $\pi_1(\mathcal{F}_{n+1}^{n,n})$, then $\pi_1(\mathcal{C}_{n+1}^{n,n})$ is generated by T and the $\sigma_1, \ldots, \sigma_n$.

In order to get the relations, we must write the words σ_i^2 , $\sigma_i \sigma_j \sigma_i \sigma_j^{-1} \sigma_i^{-1} \sigma_j^{-1}$ and $[\sigma_1\sigma_2\cdots\sigma_{i-1}\sigma_i\sigma_{i-1}^{-1}\cdots\sigma_1^{-1},\sigma_1\sigma_2\cdots\sigma_{j-1}\sigma_j\sigma_{j-1}^{-1}\cdots\sigma_1^{-1}]$ as well as $\sigma_iT\sigma_i^{-1}$ as elements of Ker $\tau = \text{Im } p_*$ for all appropriate i, j.

Observe that the path $\gamma'_i : [\pi, 2\pi] \to \mathcal{F}_{n+1}^{n,n}$, defined by the same formula as γ_i , is a lifting of σ_i with starting point $(e_i, e_1, e_2, \ldots, e_{i-1}, 0, e_{i-1}, \ldots, e_n)$ and that $\gamma_i\gamma_i'$ is a closed path in $\mathcal{F}_{n+1}^{n,n}$ which is the generator T of $\pi_1(\mathcal{F}_{n+1}^{n,n})$ (as you can see by the homotopy $(\frac{\epsilon}{2}(e^{i(t+\pi)}+1)e_i, e_1, \ldots, e_{i-1}, \frac{2-\epsilon}{2})$ $\frac{-\epsilon}{2} (e^{it} + \frac{\epsilon}{2}$ $(\frac{\epsilon}{2-\epsilon})\big)e_i, e_{i+1}, \ldots, e_n),$ $\epsilon \in [0, 1]$, where for $\epsilon = 0$ we have the point e_i going round the hyperplane $< 0, e_1, e_2, \ldots, e_{i-1}, e_{i+1}, \ldots, e_n >$ counterclockwise).

Thus we have $p_*(T) = \sigma_i^2$ for all $i = 1, \ldots, n$ (and that Im p_* is the center of $\pi_1(\mathcal{C}_{n+1}^{n,n})$).

Moreover, it's easy to see, by lifting to $\mathcal{F}_{n+1}^{n,n}$, that the σ_i satisfy the relations

$$
\sigma_i \sigma_j \sigma_i \sigma_j^{-1} \sigma_i^{-1} \sigma_j^{-1} = 1 \text{ for } i, j = 1, \dots, n
$$

and

$$
[\sigma_1 \sigma_2 \cdots \sigma_{i-1} \sigma_i \sigma_{i-1}^{-1} \cdots \sigma_1^{-1}, \sigma_1 \sigma_2 \cdots \sigma_{j-1} \sigma_j \sigma_{j-1}^{-1} \cdots \sigma_1^{-1}] = 1 \text{ for } |i - j| > 2.
$$

We can represent a lifting of $\sigma'_i = \sigma_1 \sigma_2 \cdots \sigma_{i-1} \sigma_i \sigma_{i-1}^{-1} \cdots \sigma_1^{-1}$ (which gives the deck transformation corresponding to the transposition $(i, i + 1)$ by a path which fixes all entries except the *i*-th and the $(i+1)$ -th and exchanges e_i and e_{i+1} by a half rotation in the line $\langle e_i, e_{i+1} \rangle$.

We can now change the set of generators by first deleting T and introducing the relations

$$
\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_n^2
$$

and then by choosing the σ_i 's instead of the σ_i 's. Then we get that the generators σ_i 's satisfy the relations

$$
\sigma'_i \sigma'_{i+1} \sigma'_i = \sigma'_{i+1} \sigma'_i \sigma'_{i+1}
$$
 for $i = 1, ..., n-1$,
\n $[\sigma'_i, \sigma'_j] = 1$ for $|i - j| > 2$

and

$$
{\sigma'_1}^2 = {\sigma'_2}^2 = \dots = {\sigma'_n}^2. \tag{4}
$$

Namely, $\pi_1(\mathcal{C}_{n+1}^{n,n})$ is the quotient of the braid group \mathcal{B}_{n+1} on $n+1$ strings by relations [\(4\)](#page-17-0) and the following main theorem is proved.

Theorem 5.1. *The fundamental groups* $\pi_1(\mathcal{C}_k^{i,n})$ $\binom{n,n}{k}$ are isomorphic to the sym*metric group* Σ_k *except*

- *1.* $\pi_1(\mathcal{C}_k^{1,1})$ $\mathcal{B}_{k}^{(1,1)}$ = \mathcal{B}_{k} ,
- 2. $\pi_1(\mathcal{C}_k^{1,n})$ $(k_k^{1,n}) = \mathcal{B}_k / \langle \Delta_k^2 \rangle$ when $n > 1$,
- 3. $\pi_1(\mathcal{C}_{n+1}^{n,n}) = \mathcal{B}_{n+1} / < {\sigma_1}^2 = {\sigma_2}^2 = \cdots = {\sigma_n}^2 > \text{ for all } n \geq 1.$

References

- [A] Artin, E. (1947), *Theory of braids*, Ann. of Math. (2)48, pp. 101-126.
- [BS] Berceanu, B. and Parveen, S. (2012), *Braid groups in complex projective spaces*, Adv. Geom. 12, p.p. 269 - 286.
- [B2] Birman, Joan S. (1974), *Braids, Links, and Mapping Class Groups*, Annals of Mathematics vol. 82, Princeton University Press.
- [F] Fadell, E.R, Husseini, S.Y. (2001), *Geometry and Topology of Configuration Spaces*, Springer Monographs in Mathematics, Springer-Verlarg Berlin.
- [G] Garside, F.A. (1969), *The braid groups and other groups*, Quat. J. of Math. Oxford, 2^e ser. **20**, 235-254.
- [H] Hatcher, A. (2002), *Algebraic Topology*, Cambridge University Press.
- [M1] Moran, S. (1983), *The Mathematical Theory of Knots and Braids*, North Holland Mathematics Studies, Vol 82 (Elsevier, Amsterdam).
- [M2] Moulton, V. L. (1998), *Vector Braids*, J. Pure Appl. Algebra, 131, no. 3, 245-296.