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2Dipartimento di Fisica e Astronomia, Universitá di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna, Italy
3INFN, Sezione di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna, Italy
4INAF, Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna, Italy
5Institut für Theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle-Str. 2, D-69120 Heidelberg, Germany
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ABSTRACT
We study structure formation in non-minimally coupled dark energy models, where there is a
coupling in the Lagrangian between a quintessence scalar field and gravity via the Ricci scalar.
We consider models with a range of different non-minimal coupling strengths and compare
these to minimally coupled quintessence models with time-dependent dark energy densities.
The equations of state of the latter are tuned to either reproduce the equation of state of the
non-minimally coupled models or their background history. Thereby they provide a reference
to study the unique imprints of coupling on structure formation. We show that the coupling
between gravity and the scalar field, which effectively results in a time-varying gravitational
constant G, is not negligible and its effect can be distinguished from a minimally coupled
model. We extend previous work on this subject by showing that major differences appear in
the determination of the mass function at high masses, where we observe differences of the
order of 40 per cent at z = 0. Our new results concern effects on the non-linear matter power
spectrum and on the lensing signal (differences of ≈10 per cent for both quantities), where we
find that non-minimally coupled models could be distinguished from minimally coupled ones.
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1 IN T RO D U C T I O N

In recent years, data ranging from observations of Type Ia super-
novae (Riess et al. 1998, 2004, 2007; Perlmutter et al. 1999), cos-
mic microwave background (CMB) and the integrated Sachs–Wolfe
effect (Jaffe et al. 2001; Giannantonio et al. 2008; Ho et al. 2008;
Jarosik et al. 2011; Komatsu et al. 2011; Planck Collaboration et al.
2013a,b,c), large-scale structure (LSS) and baryon acoustic oscil-
lations (BAO; Tegmark et al. 2004; Eisenstein et al. 2005; Percival
et al. 2010), globular clusters (Krauss & Chaboyer 2003), galaxy
clusters (Haiman, Mohr & Holder 2001; Allen et al. 2004, 2008;
Wang et al. 2004) to weak lensing (Hoekstra et al. 2006; Jarvis et al.
2006) and X-ray (Vikhlinin et al. 2009) have shown that the expan-
sion rate of the Universe is presently accelerating. In the framework
of General Relativity (GR), this can be explained by supposing that
approximately three quarters of the total energetic budget of the
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Universe is in the form of an unknown component with negative
pressure, generically known as ‘dark energy.’

The simplest form of dark energy is the cosmological constant �,
a purely geometric term in Einstein’s field equations, characterized
by a constant equation of state (w = −1) and so far in agreement
with all available observations. Yet for a cosmological constant
[� cold dark matter (�CDM) model], fine-tuning and coincidence
problems are quite severe and remain unsolved.

An alternative is provided by quintessence scalar fields (Ratra &
Peebles 1988; Wetterich 1988). The scalar field is dynamical and
its background evolution is slow enough to closely reproduce the
behaviour of the cosmological constant and drive the accelerated
expansion today. However observations constrain quite tightly the
equation of state of the dark energy component to be very close
to −1 at present (Komatsu et al. 2011) and in this case, as pointed
out by Bludman (2004), the basin of attraction in the early universe
is shrinking and thus enhancing the fine tuning present in minimally
quintessence models, as severe as the �CDM one.

Given these considerations, it is worth investigating extensions
of GR in which dark energy is associated with a scalar field
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non-minimally coupled to gravity. In these extended models, the
field dynamics may differ from that of minimally coupled models
due to gravitational effects. In such scenarios, the scalar field me-
diates a fifth force; this happens when there is a universal coupling
to all species, as in scalar–tensor theories (Hwang 1991; Demarque
et al. 1994; Barrow 1996; Mashhoon, Wesson & Liu 1998; Bois-
seau et al. 2000; Faraoni 2000; Perrotta, Baccigalupi & Matarrese
2000; Torres 2002; Fujii & Maeda 2003; Banerjee & Ganguly 2009;
Charmousis et al. 2012; Jamil, Raza & Debnath 2012; Wang, Hui
& Khoury 2012), or if the coupling is non-universal, as it happens
in coupled quintessence (Schmidt 1990; Wetterich 1995; Amen-
dola 2000, 2004; Holden & Wands 2000; Sidharth 2000; Amendola
et al. 2003, 2012; Matarrese, Pietroni & Schimd 2003; Amendola,
Baldi & Wetterich 2008; Guendelman & Kaganovich 2008; Mota,
Shaw & Silk 2008; Pettorino & Baccigalupi 2008; Baldi et al.
2010; Zhao et al. 2010; Pettorino et al. 2010, 2012); it also oc-
curs with physics associated with generalized kinetic energy terms
(Armendariz-Picon, Mukhanov & Steinhardt 2001; Caldwell 2002;
Malquarti, Copeland & Liddle 2003). One effect of this class of
models is that the gravitational constant G, appearing in Einstein’s
field equations is no longer a constant, but becomes a function of
the scalar field and thus becomes time dependent.

In scalar–tensor theories the scalar field is non-minimally cou-
pled to gravity via the Ricci scalar and at present times can behave
as dark energy. Models with this coupling are also called extended
quintessence models (Perrotta et al. 2000; Acquaviva, Baccigalupi
& Perrotta 2004; Acquaviva et al. 2005; Pettorino, Baccigalupi &
Perrotta 2005b; Pettorino & Baccigalupi 2008). One of the conse-
quences of these models is that the coupling of the scalar field to the
Ricci scalar in the Lagrangian enhances the dynamics of the field at
early times, an effect known as R-boost (Baccigalupi, Matarrese &
Perrotta 2000; Pettorino, Baccigalupi & Mangano 2005a). As a con-
sequence the range of attraction for tracking solutions is conserved
also for models where the equation of state is close to −1 today
(Matarrese, Baccigalupi & Perrotta 2004). Fine tuning is however
still present in the choice of a flat potential.

In this paper we investigate the effects of extended quintessence
models on structure formation from an analytical point of view,
thus complementing, validating and extending the work based on
N-body numerical simulations by De Boni et al. (2011). The novelty
of this work is the study of the spherical collapse in scalar–tensor
theories (Bernardeau 1994; Esposito-Farèse & Polarski 2001; Ohta,
Kayo & Taruya 2003, 2004; Acquaviva et al. 2004; Mota & van de
Bruck 2004; Perrotta et al. 2004; Nunes & Mota 2006; Abramo
et al. 2007; Pettorino & Baccigalupi 2008; Basilakos, Sanchez
& Perivolaropoulos 2009; Basilakos, Plionis & Solà 2010; Pace,
Waizmann & Bartelmann 2010; Wintergerst & Pettorino 2010). To
this purpose we generalize the semi-analytical spherical collapse
model to take into account effects from the scalar field (which,
for simplicity, is considered to be homogeneous) in order to study
the time behaviour of the linearly extrapolated density contrast δc

and the linear growth factor. We will study five minimally coupled
dark energy models, two of which with the same equation of state
parameter of the simulated extended quintessence models and two
with an equation of state tuned to reproduce the same background
history of the simulated non-minimally coupled models.

The paper is organized as follows. In Section 2 we present the
models studied in this work and we describe how to take into account
the scalar field for perturbation theory in the quasi-static Newtonian
regime in scalar–tensor theories. In Section 3 we present our results
for the linear growth factor (Section 3.1), the spherical collapse
parameters δc and �V (Section 3.2), the mass function (Section 3.3),

the non-linear matter power spectrum (Section 3.4) and the cosmic
shear power spectrum (Section 3.5). Finally, Section 4 is devoted to
our conclusions. Throughout we work in units where the speed of
light is c = 1.

2 C O S M O L O G I C A L M O D E L S

2.1 �CDM and quintessence dark energy models

In this work we will consider as fiducial model the �CDM model,
characterized by the presence of a cosmological constant described
by an equation of state w = −1, constant at all times. This implies
that the amount of dark energy will not change and eventually comes
to dominate the total energy density. In other dark energy models
we consider, the equation of state parameter is in general a function
of time. In a homogeneous and isotropic universe, the cosmological
expansion can be written in terms of the first Friedmann equation

H 2 = H 2
0

[
�r,0a

−4 + �m,0a
−3 + �K,0a

−2 + �q,0gq(a)
]
, (1)

where �r,0 represents the radiation, �m,0 the matter, �K,0 the cur-
vature and �q,0 the dark energy densities today, respectively. The
function g(a) describes the time evolution of the dark energy den-
sity component. For a perfect fluid, where the pressure (P) and
energy density (ρ) are related by some dark energy equation of
state, P = w(a)ρ, gq(a) is

gq(a) = exp

(
−3

∫ a

1

1 + w(a′)
a′ da′

)
. (2)

As one can easily see from equation (2), for the cosmological con-
stant gq(a) = 1.

The idea of replacing the cosmological constant by the energy
density of a scalar field was explored in several works (Wetterich
1985, 1988, 1995; Ratra & Peebles 1988) and if the scalar field does
not experience any direct coupling to any of the other constituents
of the models it is said to be minimally coupled and the action reads

S =
∫

d4x
√−g

(
R

16πG
+ Lφ + Lfl

)
, (3)

where g is the determinant of the metric, R the Ricci scalar, Lfl is
the Lagrangian of all fluids except the dark energy scalar field and
Lφ represents the Lagrangian of the scalar field:

Lφ = −1

2
∇μφ∇μφ − V (φ), (4)

where V(φ) denotes the self-interaction potential of φ. Below we
will generally assume the potential takes the Ratra–Peebles form,

V (φ) = M4+α

φα
, (5)

where M is a typical energy scale and α is a free positive exponent.
Varying the action in equation (3) with respect to the metric gμν

gives the usual Einstein field equations

Gμν = 8πG
[
T (fl)

μν + T (φ)
μν

]
, (6)

where Gμν is the Einstein tensor, T (fl)
μν is the stress-energy tensor for

a homogeneous and isotropic cosmic fluid (here dominated by dark
matter) and T (φ)

μν is the stress-energy tensor for the quintessence
scalar field:

T (φ)
μν = ∇μφ∇νφ − gμν

(
1

2
∇αφ∇αφ + V (φ)

)
. (7)
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Assuming a spatially flat Friedmann–Robertson–Walker (FRW)
metric ds2 = −dt2 + a2(t) dx2 where a(t) is the scale factor we can
identify the energy density and pressure of the scalar field as

ρφ = 1

2
φ̇2 + V (φ), (8)

pφ = 1

2
φ̇2 − V (φ). (9)

Varying the action S with respect to the scalar field itself we derive
the equations of motion which resemble the Klein–Gordon equation
for a spatially homogeneous field on an isotropically expanding
space–time:

φ̈ + 3Hφ̇ + dV (φ)

dφ
= 0. (10)

With the assumption of a flat FRW metric, the scalar field satisfies
the continuity equation

ρ̇φ + 3H (ρφ + pφ) = 0, (11)

so that we can write ρφ = ρφ, 0gq(a), with gq(a) defined in equa-
tion (2).

2.2 Scalar–tensor models

Scalar–tensor (sometimes called extended quintessence) models are
instead described by the action

S =
∫

d4x
√−g

(
1

2
f (φ, R) + Lφ + Lfl

)
, (12)

where this formulation was first introduced in a cosmological con-
text by Hwang (1991). With respect to GR, the term R/16πG is
replaced by an arbitrary function of the Ricci scalar and scalar field
f(φ, R)/2. In addition, the scalar field is described by the Lagrangian

Lφ = −1

2
ω(φ)∇μφ∇μφ − V (φ), (13)

where ω(φ) is a function of the scalar field only which generalizes
the kinetic term.

These models are interesting because they are related to the orig-
inal Brans–Dicke idea (Brans & Dicke 1961) and to the attempt to
explain cosmic acceleration exclusively in terms of modifications
of GR. Such models have been studied in several works (see also
Wetterich 1995; Barrow & Parsons 1997; Sahni & Habib 1998; Uzan
1999; Bartolo & Pietroni 2000; Boisseau et al. 2000; Faraoni 2000;
Perrotta et al. 2000; Esposito-Farèse & Polarski 2001; Perrotta &
Baccigalupi 2002; Torres 2002; Linder 2004; Matarrese et al. 2004;
Pettorino et al. 2005a; Pettorino & Baccigalupi 2008; Tsujikawa
et al. 2008; Boisseau 2011; Bueno Sánchez & Perivolaropoulos
2011; Charmousis et al. 2012; Jamil et al. 2012; Wang et al. 2012).
Here we just summarize the most important aspects that will be
relevant for the present work.

The variation of the action described in equation (12) with respect
to the metric gμν yields the field equations

Gμν = 8πGTμν = 1

f ′

[
T (f l)

μν + T (φ)
μν + 1

2
gμν(f − f ′R)

+ Aμν(f ′)

]
, (14)

where the tensor Aμν is defined for an arbitrary scalar h as

Aμν(h) = ∇μ∇νh − gμν�h, (15)

and f ′ ≡ ∂f /∂R. The Klein–Gordon equation for the scalar field
is also modified with respect to the minimally coupled case,

φ̈ + 3Hφ̇ = − 1

2ω

(
dω

dφ
φ̇2 − ∂f

∂φ
R + 2

dV

dφ

)
. (16)

The energy-momentum tensor for the scalar field now reads

Tφ
μν = ω(φ)

(
∇μφ∇νφ − 1

2
gμν∇αφ∇αφ

)
− gμνV (φ), (17)

and it is interesting to note that, unlike in the minimally coupled
models, these modifications imply that the energy density of the
scalar field no longer satisfies the continuity equation for the back-
ground quantities (ρ̇ + 3H (ρ + p) = 0) (Hwang 1991).

We assume that f(φ, R) is linear in the Ricci scalar,

f (φ,R) = F (φ)

8πG∗
R, (18)

then by identifying the energy-momentum tensor of the scalar field
with that of a perfect fluid, we can derive expressions for the non-
conserved background energy density and pressure of the scalar
field:

ρφ = 1

2
ω(φ)φ̇2 + V (φ) − 3HḞ (φ), (19)

pφ = 1

2
ω(φ)φ̇2 − V (φ) + F̈ (φ) + 2HḞ (φ). (20)

These models can be related to the original Brans–Dicke gravity
(Brans & Dicke 1961) when F = φ and ω(φ) = ωBDφ, while non-
minimally coupled theories are obtained with the identifications
ω(φ) = F(φ) = 1.

With this linear ansatz for f(φ, R), Friedmann’s equations
become

H 2 = 8πG

3F

(
ρfl + 1

2
φ̇ + V (φ) − 3HḞ

)
, (21)

ä

a
= −4πG

3F

[
ρfl + 3pfl + 2φ̇2 − 2V (φ) − 3(F̈ + HḞ )

]
. (22)

If we define an effective Jordan–Brans–Dicke parameter as

ωJBD = F (φ)

(F,φ(φ))2
, (23)

then GR is recovered when ωJBD 	 1.
Any changes to the gravitational physics require matching the

GR behaviour on Solar system scales where gravity is well tested,
while still reproducing the observed effects of dark energy on large
scales. Here we require that

f (φ0, R) = R

8πG
, (24)

where φ0 is the value of the scalar field today and G is the gravi-
tational constant measured today. In the following we will assume
the modifications take the following form:

–ω(φ) = 1,

–F (φ) = 1 + 8πG∗ξ (φ2 − φ2
0 ),

where ξ is the coupling constant, and φ0 is the present value of the
scalar field. G∗ is the bare gravitational constant (Esposito-Farèse
& Polarski 2001) which in general differs from the gravitational
constant G appearing in Einstein’s or Newton’s field equations.

Very tight constraints (ξ ≈ 10−2) on the coupling parameter
come from Solar system tests (Reasenberg et al. 1979; Chiba 1999;
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Table 1. Values of the parameters adopted for
the reference �CDM model and the dynamical
dark energy models. The exponent of the inverse
power-law potential is indicated with α, ξ is the
strength of the coupling, ωJBD,0 is the present
value of the effective Jordan–Brans–Dicke pa-
rameter and σ 8 represents the normalization of
the matter power spectrum such that fluctuations
are the same at zCMB.

Model α ξ ωJBD, 0 σ 8

�CDM – – – 0.776
NMC1 0.229 +0.085 120 0.748
NMC2 0.435 −0.072 120 0.729
MCw1 – – – 0.752
MCw2 – – – 0.745
MCH1 – – – 0.744
MCH2 – – – 0.760
wCDM – – – 0.753

Uzan 1999; Will 2001; Riazuelo & Uzan 2002; Bertotti, Iess &
Tortora 2003), from cosmological scale measurements (Acquaviva
et al. 2005; Clifton, Barrow & Scherrer 2005; Appleby & Weller
2010; Farajollahi, Salehi & Nasiri 2011) and nucleosynthesis (Ac-
cetta, Krauss & Romanelli 1990; Torres 1995; Santiago, Kalligas &
Wagoner 1997; Coc et al. 2006; Lee 2011). These works assume no
screening mechanism, while other works assume screening, either
exploiting the chameleon effect (Khoury & Weltman 2004; Mota
& Barrow 2004) or the Vainshtein mechanism (Vainshtein 1972).
Many simulations now take into account such screening mechanism
(Oyaizu 2008; Schmidt 2009; Zhao, Li & Koyama 2011).

2.3 Model parameters

We will compare analytic results presented in Section 3.3 with
N-body simulations discussed in De Boni et al. (2011). To do so, we
adopt the Wilkinson Microwave Anisotropy Probe (WMAP; Spergel
et al. 2007) cosmological parameters which had been used in these
simulations (�m,0 = 0.268, �φ,0 = 0.732, h0 = 0.704) and through-
out the paper we assume a spatially flat cosmological background,
�K,0 = 0. These parameters are slightly different from the ones
found by Planck,1 but here we want to emphasize the comparison
of models having the same cosmological parameters, therefore, this
does not represent an issue for the conclusions of our work.

We consider two non-minimally coupled models and five min-
imally coupled models (see Table 1). These models are labelled
NMCn, MCwn or MCHn, respectively, where the index n runs
from one to two. The non-minimally coupled models differ essen-
tially in their coupling strengths. They correspond to the maximum
deviation from GR allowed by current observations on cosmologi-
cal scales. The minimally coupled models MCw1 and MCw2 have
the same equation of state as the simulated extended quintessence
models (NMC1 and NMC2) and the minimally coupled models
MCH1 and MCH2 have the same background history of the mod-
els NMC1 and NMC2 in order to independently evaluate the effect
of the coupling and of the time-dependent gravitational constant.
A fifth model, wCDM, has a constant equation of state parameter
w = −0.9, the highest value consistent with observational con-
straints (Unnikrishnan & Seshadri 2008).

1 planck.esa.int/

We normalize the amplitude of the primordial power spectrum
for the fiducial �CDM cosmology to have a value of the quadratic
deviation on a comoving scale of 8 Mpc h−1 of σ 8 = 0.776. Dark
energy models are normalized to match the amplitude of fluctuations
at the CMB epoch zCMB = 1089 according to the relation

σ8,DE = σ8,�CDM
D+,�CDM(zCMB)

D+,DE(zCMB)
. (25)

In the previous equation D+(z) is the linear growth factor normal-
ized to unity today (see Section 3.1). An alternative normalization
which is often adopted in the literature is to fix the exponential
tail of the mass function to be approximately the same at z = 0;
therefore, differences will arise at earlier times. However, since the
normalization of the fluctuations is bounded to high accuracy by the
CMB measurements, we exclusively adopt the first normalization.
The values of the parameters for the extended quintessence models
are chosen so that the energy density of the scalar field today is
approximately the same as that of the cosmological constant. The
other differences arising at z = 0 may be used to discriminate among
the different cosmological models.

In Fig. 1 we show the redshift evolution of the equation of state
w (upper panel) and of the function 1/F(φ) (lower panel) for the
quintessence models studied in this work. We refer to the caption
for the different colours and line styles adopted. The value of the
equation of state at z = 0 is close to w = −0.9 for all the dynami-
cal models investigated, except for the models MCH1 and MCH2.
The equations of state become essentially constant for z > 3. The
minimally coupled dark energy models MCw1 and MCw2 are de-
scribed by the same w as models NMC1 (ξ = 0.085) and NMC2
(ξ = −0.072). The equation of state for the minimally coupled
models MCHn is derived using the following expression:

w(a) = −
1 + 2

3 a d ln E(a)
da

+ 1
3

�r
a4E(a)2 − 1

3
�K,0

a2E(a)2

1 − �m,0

a3E(a)2 − �r
a4E(a)2 − �K,0

a2E(a)2

, (26)

where H(a) = H0E(a).
The function F(φ) changes rapidly at low redshifts and becomes

practically constant for z � 2, differing from the minimally cou-
pled case by at most 2.5 per cent. Since in the field equations the
usual gravitational constant G is replaced by the function 1/F(φ),
according to the sign of the coupling constant, gravity will be
stronger (ξ > 0) or weaker compared (ξ < 0) to the minimally
coupled case. This happens because of the functional form of
F (φ) = 1 + 8πG∗ξ (φ2 − φ2

0 ).

2.4 Background properties

As the values of the coupling constants are small, we expect small
differences at the background level between these models and the
reference �CDM model. Our expectations are confirmed by Fig. 2
where we show the ratio of the scalar field density and the Hub-
ble parameter (upper and lower panel, respectively) as a function
of redshift for the eight models considered here with respect to
the cosmological constant model. For the Hubble parameter, the
maximum difference, ≈4 per cent, takes place at z ≈ 1. These dif-
ferences in the Hubble function render the differences in the age
of the Universe or in distances to be very small, of the order of a
few per cent. Similar differences are present in the comoving and in
the luminosity distance. Ratios of the matter density fraction will
be simply related to the corresponding Hubble functions.

Since the Hubble parameter is a key ingredient in determining
the time evolution of the perturbations, we can infer that they will
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Figure 1. Upper panel: equation of state for the dark energy models con-
sidered in this work as a function of redshift. Lower panel: redshift de-
pendence of the function F−1(φ) 
 1 − 8πG∗ξ (φ2 − φ2

0 ). The red dashed
curve represents the model NMC1 with coupling constant ξ = 0.085, the
blue short dashed curve represents the model NMC2 with coupling constant
ξ = −0.072. The two minimally coupled models MCw1 and MCw2 have
the same equation of state parameter of the extended quintessence models
NMC1 and NMC2 and are shown with the same curve. Models MCH1 and
MCH2 are shown with violet short dashed–dotted and brown dot–dotted
line. Finally, the reference �CDM (w = −1) and wCDM (w = −0.9)
models are shown with a black and grey solid line, respectively.

not substantially differ from results expected in the �CDM case, as
explained in detail in the following sections.

It is worth noticing that the minimally coupled models MCw1,
MCw2 and wCDM have very similar expansion histories, while
the other models differ more. This is due to the fact that they are
characterized by the same coupling constant, and arises despite the
fact that the dark energy equations of state are explicitly tuned to
match. This shows the importance, already at the background level,
of the coupling constant. In fact we can also see from the lower
panel of Fig. 2 that models having the same coupling constants
show very similar expansion histories and time evolutions of the
matter content.

2.5 Perturbations

We now review the main features of linear perturbation theory
within non-minimally coupled cosmologies in the Newtonian limit.
For an extended review we refer the reader to Pettorino & Bacci-
galupi (2008) and Wintergerst & Pettorino (2010).

Figure 2. Upper (lower) panel: redshift evolution of the ratio of the scalar
field (Hubble) parameter for the different models studied to the correspond-
ing quantity in the fiducial �CDM model. Line types and colours for the
non-minimally coupled models are as in the upper panel of Fig. 1. Models
MCw1 and MCw2 are shown with dark dot–dashed-dotted and light green
dotted curves, respectively.

In the Newtonian limit, time derivatives are negligible with re-
spect to spatial derivatives and the condition k 	 H holds. In other
words we are considering a quasi-static regime and that scales of
interest are much smaller than the horizon. In this limit, the per-
turbed continuity, Euler and Poisson equations are (in comoving
coordinates)

δ̇ = −∇x · u, (27)

∂u
∂t

= −2H u − 1

a2
∇xψ, (28)

∇2
xφE = 4πG

F
ρ̄m�mδ, (29)

where δ is the matter perturbation, u the comoving peculiar velocity
and ψ is the Newtonian gravitational potential. The potential φE

appearing in the Poisson equation is defined as

φE =
(

1 + 1

2

F 2
,φ

F + F 2
,φ

)
φ. (30)

The Poisson equation can be rewritten also in terms of the gravita-
tional potential ψE:

∇2
xψE = −4πG

F
ρ̄m�mδ, (31)
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where ψE is defined as

ψE =
(

1 − 1

2

F 2
,φ

F + 2F 2
,φ

)
ψ. (32)

The Euler equation can therefore be modified to

∂u
∂t

+ 2H u +
(

1 + F 2
,φ

F + F 2
,φ

)
∇xφ = 0. (33)

Combining now all the three equations, we obtain a second-order
differential equation describing the time evolution of the linear
growth factor:

δ̈ + 2Hδ̇ − 4πGeff ρ̄mδ = 0, (34)

where Geff is defined as (see also Esposito-Farèse & Polarski 2001)

Geff = G

F

2(F + F 2
,φ)

2F + 3F 2
,φ

≈ G

F
(35)

for ξ � 1.
As the coupling constant is ξ � 1, in our models, we can use the

approximation Geff = G/F. The equation for the growth factor is
similar the one obtained in f(R) models. This approximation is valid
since, in our models, F, φ/F � 1.

3 R ESU LTS

In this section we will present results concerning structure forma-
tion for the quintessence models described above in both the linear
and non-linear regimes. In particular we study the growth factor
(Section 3.1), the linear and non-linear overdensity parameter (Sec-
tion 3.2), the mass function (Section 3.3), the analytical non-linear
dark matter power spectrum (Section 3.4) and the cosmic shear
power spectrum (Section 3.5).

3.1 Growth factor

The linear growth factor has been extensively studied in several
works (see e.g. Copeland, Sami & Tsujikawa 2006; Perivolaropou-
los 2007; Pettorino & Baccigalupi 2008; Tsujikawa et al. 2008;
Bueno Sánchez & Perivolaropoulos 2011; Lee 2011). In Fig. 3 we
show the growth factor divided by the scale factor (D+(a)/a) for

Figure 3. The linear growth factor divided by the scale factor D+(a)/a as a
function of the redshift. Upper (lower) curves show the linear growth factor
normalized to unity today (at the CMB epoch). Line styles and colours for
the quintessence models are the same as in Fig. 2, while the fiducial �CDM
model is shown with the solid black line.

the dark energy models considered in this work, as compared to
the fiducial �CDM model. We show two normalizations for the
fluctuations, matching the amplitudes at the present time (z = 0)
or at the last scattering of the CMB (see e.g. Bartelmann, Doran &
Wetterich 2006).

We observe that differences between the dark energy models and
the �CDM model are of few per cent, ranging between 2 per cent
for the NMC1 model and 5 per cent for the NMC2 model. The
minimally coupled model MCH1 (MCH2) behaves very similarly
to the non-minimally coupled model NMC2 (NMC1). This is eas-
ily explained taking into account that the source term in equation
(34) is modified by the coupling function F(φ) and this function
compensates the differences in the background expansion history.
Generally, the quintessence models show less growth compared to
the �CDM model. When the growth factor is normalized to unity
now, primordial perturbations have to be higher to give the same
number of structures today. When instead the growth factor is nor-
malized to unity at early times, the growth factor is lower because
the higher amount of dark energy slows down structure growth.

The study of the growth factor is relevant also for the evaluation
of the integrated Sachs–Wolfe (ISW; Sachs & Wolfe 1967) and of
the Rees–Sciama (RS) effects (Rees & Sciama 1968). The ISW
effect is due to the interaction of CMB photons with a time varying
gravitational potential. The relative change of the CMB temperature
is given by

τ = �T

TCMB
= 2

c3

∫ χH

0
dχa2H (a)

∂

∂a
(� − �), (36)

where χH is the horizon distance. The gravitational potentials are
related to each other (equations 30 and 32) and via the Poisson
equation (equation 31) to the matter overdensity. The ISW effect is
therefore proportional to the quantity d(D+(a)/a)/da, where D+(a)
is the growth factor. Here we are in particular interested in the late
ISW effect because it is affected by the dark energy dynamics.

The RS effect is similar to the ISW, but includes non-linear
evolution of the gravitational potentials, which we include to second
order, following Schäfer (2008). The ISW effect depends on the
time derivative of the gravitational potential � that via Poisson’s
equation is related to the overdensity δ: ∇2� ∝ δ. It is therefore
possible to replace the gravitational potential with the overdensity
itself simply inverting Poisson’s equation: � ∝ �−1δ. Expanding
the overdensity as δ = D+(a)δ(1) + D2

+(a)δ2 we obtain the desired
expression for the RS effect.

The ISW and RS effects are shown in Fig. 4 where, for clarity, we
present differences between the cosmological models we considered
and the �CDM model. The upper panel shows the ISW effect, the
lower panel the RS effect. The largest differences between models
occur at z ≈ 1 and are of the order of 10 per cent. As expected,
the largest differences arise for the different couplings, while the
non-minimally coupled dark energy models are all very similar to
each other.

As we can see from Fig. 4, at early times when the dark en-
ergy contribution is negligible, all the models approximate the EdS
model. We will therefore have that D+(a) ∝ a, hence the ISW
vanishes while the RS effect approaches an asymptotic value. This
might appear surprising since non-minimally coupled models are
characterized by a non-negligible amount of dark energy at early
times. However, for the models we consider, the coupling constant
is very small and the amount of dark energy at early times is negli-
gible, as it is evident from Fig. 5.
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Figure 4. Upper (lower) panel: redshift evolution of the difference for the
quantity characterizing the ISW (Rees–Sciama) signal between the dark en-
ergy models and the �CDM one. Line styles and colours for the quintessence
models are the same as in Fig. 3.

Figure 5. Amount of dark energy for the non-minimally coupled models
as a function of redshift z. Line styles and colours are as in Fig. 1.

3.2 Spherical collapse

We next summarize theoretical arguments required to evaluate the
spherical collapse parameters δc (the linear evolution overdensity
parameter) and �V (the virial overdensity parameter).

In the spherical collapse model, objects forming under gravi-
tational collapse of matter overdensities are assumed to be non-
rotating and spherical. Even though this is clearly a crude assump-
tion, since cosmic structures originate from the primordial seeds

are triaxial and rotating (Shaw et al. 2006; Bett et al. 2007), the
model provides predictions that can reproduce the results of nu-
merical simulations quite well. Spherical collapse has been anal-
ysed in the literature very extensively (see e.g. Bernardeau 1994;
Ohta et al. 2003, 2004; Mota & van de Bruck 2004; Nunes &
Mota 2006; Abramo et al. 2007; Basilakos et al. 2009, 2010; Pace
et al. 2010; Wintergerst & Pettorino 2010); to study perturbations
in non-minimally coupled models we will follow closely (Esposito-
Farèse & Polarski 2001; Acquaviva et al. 2004; Perrotta et al. 2004;
Pettorino & Baccigalupi 2008).

In order to derive the differential equation describing the time
evolution of the linear overdensity factor, we can simply repeat the
derivation described above (Section 2.5), taking into account the
full non-linearity of the continuity and Euler equations. Doing so,
the continuity and Euler equations read

δ̇ + (1 + δ)∇x · u = 0, (37)

∂u
∂t

+ 2H u + (u · ∇x)u + 1

a2
∇xψ = 0. (38)

We take the time derivative of equation (37) and inserting into it the
divergence of equation (38), with the help of the Poisson equation
we obtain an exact second-order non-linear differential equation
describing the evolution of matter perturbations:

δ̈ + 2Hδ̇ − 4

3

δ̇2

1 + δ
− 4πGeff ρ̄mδ(1 + δ) = 0, (39)

where Geff is given by equation (35).
This is the non-linear equation we will use to infer the time evo-

lution of the linear overdensity parameter δc. Its linearized version
is

δ̈ + 2Hδ̇ − 4πGeff ρ̄mδ = 0, (40)

reproducing the classical result, but with G → Geff. It is worth
pointing out that the correct linear growth has to be obtained from
the non-linear equation for matter perturbations, equation (39). (For
a more complete discussion on this point, we refer to Wintergerst
& Pettorino 2010.) In order to evaluate the linear overdensity pa-
rameter δc, we use equation (39) to find the initial conditions δi and
δ̇i such that δ diverges at the chosen time of collapse. Once the two
initial conditions are found, we evolve them with the linear equation
(40), and its density contrast at the collapse time gives δc.

Our main results are presented in Fig. 6. In the upper panel we
show the time evolution of δc while in the lower panel we present
the time evolution of �V. We see that differences in δc are very
small, much below 1 per cent at z = 0, while at high redshifts all
the models converge to the Einstein–de Sitter (EdS) result. This
is due to the stringent Solar system constraints which require a
very weak coupling between the scalar field and the Ricci scalar.
As seen in the lower panel of Fig. 1, gravity changes rapidly at
low redshifts (where we expect the highest differences), while at
high redshifts the gravitational constant G is practically constant
and differs from the usual value by ≈±2 per cent. We also notice
that models with a lower (higher) growth factor also have a smaller
(larger) δc. The NMC1 model is virtually indistinguishable from
the �CDM model, while the largest differences appear for models
with negative coupling (NMC2). Model MCH2 shows lower values
for the linear overdensity parameter δc with respect to the �CDM
model also at high redshifts. We checked that this is not the case at
high redshifts, where it is expected to approach the behaviour of an
EdS model.
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Figure 6. The redshift evolution of the linear overdensity parameter δc

(top panel) and of the virial overdensity �V (bottom panel) for the models
here considered. Each panel consists of two insets: the upper one shows
the absolute values of the quantities analysed, while the lower one the ratio
between the dark energy models and the reference �CDM one. Line types
and colours are as in Fig. 3.

In the lower panel of Fig. 6, we present results for the virial
overdensity �V. The virial overdensity is related to the non-linear
evolution of the spherical overdensity. Given the turn-around scale
factor ata, when the radius of the collapsing sphere reaches its max-
imum value and starts shrinking, the virial overdensity is defined
as �V = δnl + 1 = ζ (x/y)3, where x = a/ata is the normalized
scale factor and y is the radius of the sphere normalized to its
value at the turn-around. For details on how to evaluate �V and
the radius of the sphere y, we refer the reader to Pace et al. (2010).
The differences between the models studied here are also small,
at most 10–15 per cent, once again largest at low redshifts. It is
important to notice that at high redshifts, when naively we would
expect to recover the result for the �CDM model, this does not hap-
pen for the models with strongest absolute coupling value (models
NMC1 and NMC2); the differences are small in these cases, of order
2–3 per cent, but still appreciable. This kind of behaviour is ex-
pected, since �V is related to the solution of the non-linear equation
for overdensities (equation 39) and we expect that the models will
strongly differ from each other at the non-linear level.

Here we have assumed that the traditional recipes available in
literature to evaluate the virial overdensity are still valid [Wang
& Steinhardt (1998)]. This should be valid here, since we assume
the scalar field only modifies the background; however, this might

not necessarily be the case if perturbations in the scalar field are
accounted for.

It is interesting to notice that both at linear and non-linear level
it is possible to see the effect of a time-dependent gravitational
constant. In particular, for the linear overdensity parameter δc, while
all the models show similar values, the minimally coupled models,
except for the wCDM model, have a higher value with respect to the
non-minimally coupled ones. The non-minimally coupled models
have a very distinct signature: the lower is the value of the coupling
constant, the lower is the linear overdensity parameter. A similar
argument, albeit with reversed conclusions, applies to the non-linear
virial overdensity.

The linear overdensity parameter δc is not directly observable,
but it is an important quantity entering into the mass function.
This subject will be discussed in the following section. The virial
overdensity is instead related to the definition of observed clusters
in order to define virial mass and virial radius. As seen before in
the lower panel of Fig. 6, differences are small (<20 per cent),
therefore, using the �CDM value will not result in a big error on
the halo definition.

3.3 Mass function

We next discuss the mass function which describes the number of
collapsed objects of a given mass that are formed at a given time in
a unit volume. The mass function depends crucially on two factors:
the linear growth factor D+(a) and the linear overdensity parame-
ter δc. Since these quantities, or more precisely their ratio, appear
quadratically in an exponential term, small deviations from the fidu-
cial model can give rise to huge differences in the mass function.
While δc is not an observable, the mass function, or its integral
over the mass, can be directly observed using large cosmological
surveys, once the survey selection functions are taken into account.

Another important ingredient for the mass function is the vari-
ance, defined via the relation

σ 2
M = 1

2π2

∫ +∞

0
k2T 2(k)W 2

R(k)P0(k) dk, (41)

where P0(k) represents the primordial matter power spectrum, T(k)
is the matter transfer function and WR(k) is the Fourier transform of
the real space top-hat window function. Since quintessence models
differ slightly from the fiducial �CDM model (see e.g. Ma et al.
1999), for simplicity we assume that all the models have the same
power spectrum shape, therefore, the only difference will be in the
spectrum normalization. For the different values adopted, we refer
to Table 1. To evaluate the mass function, we use the expression
derived by Sheth & Tormen (1999).

To validate our work, we compare our theoretical predictions
for the cumulative mass function with the simulation results by
De Boni et al. (2011) at the same redshifts presented in their work,
namely z = 0, 0.5, 1. In Fig. 7, we show the total number of objects
in the simulated cube compared to the theoretical predictions. (For
presentation purposes, we scaled the cumulative mass function of
the model NMC1 and NMC2 by a factor of 5 and 25, respectively.)
As it is clearly seen, at z = 0 (upper panel) we have a very good
agreement between the theoretical predictions and the numerical
results up to 5–6 × 1014 M�, while for higher masses deviations
are noticeable. This is expected, because in the simulations there
are only very few objects in those mass bins, due to the fact that
the simulated box size is only 300 Mpc h−1. The error bars, as
can be seen in fig. 6 in De Boni et al. (2011), are quite large
and our theoretical expectations are well within the 1σ error bar.
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Figure 7. Comparison between the theoretical cumulative mass function
and the results from N-body simulations. Black solid line and pluses rep-
resent the �CDM model, the cyan dotted line and crosses the EQp model
(named NMC1 in this work) and red dashed line and stars the EQn model
(named NMC2 in this work). Models EQp and EQn are scaled of a factor 5
and 25, respectively, for visualization purposes. Shown from top to bottom
are comparisons at different redshifts: z = 0, 0.5 and 1.

At z = 0.5 (middle panel) the agreement between the theoretical
predictions and the numerical mass function is still good over all the
mass range available from the simulations. At z = 1 (lower panel),
the agreement becomes substantially worse, especially for the two
non-minimally coupled models. This is due to the lack of objects
at that redshifts in the simulated volume; for the more numerous
lower mass objects, up to 2 × 1014 M�, the agreement between
simulations and analytic predictions remains good.

In Fig. 8 we show the ratio of the cumulative mass function for
the dark energy models analysed with respect to the fiducial �CDM
model. We evaluated the cumulative mass function, defined as the
comoving number density of objects with mass exceeding M at
different redshifts, at four different redshifts, namely z = 0, 0.5,
1 and 2.

By z = 0 the models have substantial differences from the �CDM
model, in particular they all show fewer structures. As expected,
largest differences occur in the high-mass tail, since rare events are
affected more by changes in the growth of structure. Similar differ-
ences should appear in the void statistics. At z = 0, the differences
range from 10 to 15 per cent for objects of mass M ≈ 1014 M� h−1

up to 40 per cent for very massive objects M ≈ 1015 M� h−1. At
higher redshifts, the differences are even larger, in particular, at
z = 2 the model NMC2 has about 20 per cent of the number of
very massive objects compared to that seen in the �CDM model.
Unfortunately at such high redshifts, the number of such massive
clusters is so low that even large differences are difficult to observe
unless a very large volume of space is observed.

Differences between the non-minimally coupled models increase
much faster than differences between the corresponding minimally
coupled models. In general, the minimally coupled models MCw1
and MCw2 show more structures than the corresponding non-
minimally coupled models NMC1 and NMC2. The wCDM model,
with constant equation of state, is one of the closest to the �CDM
predictions. This shows how important the evolution of the dark
energy equation of state parameter is for the mass function. As we
are normalizing to the amplitude at early times, naively one might
expect that the agreement with the �CDM model would be best at
high redshifts, and in fact this is true for the MCH1 model. However,
at higher redshifts one is looking further into the tails of the distri-
bution for a fixed mass, making the mass function more sensitive
to small changes in the growth of structure to that time. Because
of the variation of the gravitational constant, the differences for the
growth factor are higher for the non-minimally coupled models,
therefore, the product D+(z)σ 8 will be equal to the �CDM one at
much higher redshifts. This is shown in Fig. 9 where we show the
product D+(z)σ 8 for the different models studied here for the red-
shift interval 0 ≤ z ≤ 2. At higher redshifts massive objects are rare,
therefore, a small variation in the quantities related to structure for-
mation (growth factor and linear overdensity parameter) amplifies
relative differences.

Many previous studies have dealt with alternative formulations
of the halo mass function, based on fitting formulas of the numerical
mass function in the N-body simulations and assuming as funda-
mental variable the variance of the linear matter power spectrum
σ M defined in equation (41) (see e.g. Jenkins et al. 2001; Reed et al.
2003, 2007; Warren et al. 2006; Tinker et al. 2008; Crocce et al.
2010; Courtin et al. 2011). These formulations differ mainly on the
high-mass tail of the mass function and they could provide a higher
fraction of massive objects.

In this work we adopt the prescription for the mass function
following the work by Sheth & Tormen (1999). The reason for doing
so is that the formulation of the mass function is motivated by the
ellipsoidal collapse model and allowed us to verify the validity of our
calculations in the framework of the spherical collapse model. It has
therefore a well defined theoretical motivation, differently from the
fitting formulas obtained for �CDM cosmologies, whose validity
for different cosmological models is not obvious. In particular, the
numerical parameters used to evaluate the mass function depend on
the cosmological model studied and it is not obvious how to modify
them for a new dark energy model without having to determine
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Figure 8. Cumulative comoving number density of objects with mass exceeding M at four different redshifts. Shown are ratios with respect to the reference
�CDM model. Line types and colours are as in Fig. 3.

Figure 9. Time evolution of the variance σ 8 for the different models studied.
The square of this quantity is important for the high-mass tail of the mass
function. Labels are like in Fig. 3.

them again from new simulations. This introduces the problem of
the non-universality of the mass function, deeply discussed in recent
works by Lukić et al. (2007), Courtin et al. (2011) and Reed et al.
(2013).

The interesting conclusion is that while a varying G impacts
on structure formation more strongly than a simple non-minimally
coupled dark energy model, one can infer differences between the
models having the same background history only at high redshifts.

We will see in Section 3.5 how important this is when we study
the cosmic shear power spectrum.

3.4 Dark matter power spectrum

A closely related statistic that can be used to study the dark matter
clustering is the two-point correlation function ξ (r) and its Fourier
transform, the matter power spectrum. On large scales, in the linear
or mildly non-linear regime, the power spectrum can be studied
analytically, while for the fully non-linear regime it is necessary to
use either numerical N-body simulations or semi-analytic prescrip-
tions fitted against simulations (see e.g. Peacock & Dodds 1996;
Smith et al. 2003). Such approaches are limited in their validity
by the scales that can be reached by numerical simulations and on
the models one can simulate. An alternative, physically motivated
approach is given by the halo model developed by Ma & Fry (2000)
and Seljak (2000) and others.

The halo model requires understanding in detail the mass function
and the average dark matter density profile for a given model. Since
these potentially depend on how the halo concentration changes
with the coupling, it can be difficult to calibrate for non-minimally
coupled models. However, it may be hoped that most of the physics
will be captured in the �CDM model to first order, and in the
following we will use power spectra obtained with the prescription
of the halofit, as outlined in Smith et al. (2003). However, such
uncertainties in the calibration must be kept in mind here and in the
following section which relates to the shear power spectrum (see
Section 3.5).

In Fig. 10 we show the ratio of the dark matter power spectrum
for the quintessence models to the same quantity evaluated for the
fiducial �CDM model as a function of the wavenumber. The matter
power spectrum is evaluated at z = 0, using the CMB normalization
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Figure 10. Non-linear dark matter power spectrum for z = 0 for the
quintessence models here studied. Line types and colours are as in Fig. 3.

described in Section 2.3, where we refer for the exact normalization
for each model. Using this normalization, the models have different
power at all scales, which on linear scales results from integrating
the different growth rates. As seen above, the largest differences
arise for the NMC2 model while the model differing least is MCH2,
as its normalization is very close to the �CDM one.

The differences from the fiducial �CDM model are highest at
the scale of k ≈ 1h Mpc−1, where the dynamical dark energy matter
power spectra show a dip (see also Ma 2007). Since the power at all
scales is significantly smaller than for the �CDM model, this results
in a different scale where the power spectrum becomes non-linear
and halofit corrections kick in. From a quantitative point of view, at
large scales differences span a range between approximately 4 and
12 per cent to increase up to 16–17 per cent at k ≈ 1h Mpc−1. The
behaviour we found for the analytic power spectra is qualitatively
in agreement with the analysis done by Fedeli, Dolag & Moscardini
(2012) on the simulations presented by De Boni et al. (2011).

Nonetheless we see that our results differ quantitatively from
their analysis. In particular, comparing our results with their model
labelled DM0, we see that in our case the models differ more from
what is seen in the simulations of approximately 3 per cent (see the
lower panels in their fig. 6). The major source of difference is related
to the recipe we adopted to evaluate the full non-linear matter power
spectrum. From our figure, it is evident that the halofit prescription
can reproduce the non-linear behaviour of the power spectrum up
to few per cent accuracy. We also notice that the offset between
the halofit prescription and the numerical simulations is roughly
constant for the different models analysed. Similarly to Fedeli et al.
(2012), we also find that the dip slightly changes position when
a different cosmological model is analysed. Moreover, as there
speculated, the location of the dip is the same if the background
history of the models does not change. This is indeed the case for
the couple of models NMC1 and MCH1 and NMC2 and MCH2.

3.5 Cosmic shear power spectrum

Gravitational lensing, where the images of background objects are
distorted gravitationally, is an essential tool for understanding the
distribution of dark matter. Measurements of weak lensing, where
the distortions to the shapes of objects are of order a few per cent or
less, are straightforward to predict and interpret for cosmological
models. One common weak lensing observable is the shear power
spectrum, which is related to an integral along the line of sight of the

matter power spectrum. To evaluate the modifications to the form
of the shear power spectrum, we follow the approach of Tsujikawa
& Tatekawa (2008) and Schimd, Uzan & Riazuelo (2005). Here we
will just describe the most important steps in the derivation of the
final formula and we refer to their papers for more details. For a
detailed analysis on the general derivation of the lensing quantities
for scalar–tensor theories, we refer to the work of Acquaviva et al.
(2004). Recently, CMB lensing maps for a coupling in the Einstein
frame that only involves dark matter were shown in Carbone et al.
(2013).

Starting from the perturbed metric

ds2 = −(1 + 2φ) dt2 + a2(t)(1 + 2ψ)δij dxi dxj ,

we can define the deflecting potential

�wl = φ + ψ, (42)

and the effective density field

δeff = a

3H 2
0 �m,0

k2�wl, (43)

where the relation between δ and δeff is given by

δeff = δm

F
. (44)

(Unlike in Tsujikawa & Tatekawa 2008, we do not have the term
F0 since in our case it is equal to one.) The magnification matrix is
defined as

Aμν = Iμν −
∫ χ

0

χ ′(χ − χ ′)
χ

∂μν�wl dχ ′, (45)

where χ is the comoving distance and I is the identity matrix; from
this, the effective convergence is given by

κ = 1 − 1

2
tr(A). (46)

The shear power spectrum is related to the matter power spectrum
by

Pκ (�) = 9H 4
0 �2

m,0

4c4

∫ χH

0

W 2(χ )

a2(χ )F 2(a)
Pδm

[
�

fK (χ )
, χ

]
dχ, (47)

where fK(χ ) is the comoving angular diameter distance which de-
pends on K, the spatial curvature of the universe, and Pδm is the
matter power spectrum analysed in Section 3.4. The integral in the
previous equation formally extends up to the horizon size χH, how-
ever, since the number density of sources (see below) drops to zero
much before that, the integral can be effectively truncated at z ∼ 10.
The kernel W(χ ) is an integral over the source redshift distribution
which must be inferred from observations. In the following we will
adopt the source redshift distribution derived by Fu et al. (2008)
using data from the Canada–France–Hawaii Telescope Legacy Sur-
vey (CFHTLS) and the parametrization for the non-linear matter
power spectrum given by Smith et al. (2003), as discussed above.

In Fig. 11 we show the ratio of the cosmic shear power spectrum
for the models studied with respect to the prediction of the �CDM
model. These follow to a large extent the trends observed in the
matter power spectrum (Fig. 10). On large scales power spectra
differ from 6 to 13 per cent already, reflecting the normalization at
high redshifts. The model with the smallest differences is MCH2,
while the model with the highest differences is the model NMC2.
As expected, deviations from the fiducial model increase towards
smaller angular scales, where the effects due to non-linearity are
more pronounced. The dip at � ≈ 103 is a consequence of the
analogous dip at k ≈ 1 h Mpc−1 seen in the power spectrum (see
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Figure 11. Weak lensing power spectrum for the models analysed in this
work. We present the ratio with respect to the �CDM shear power spectrum.
Line types and colours are as in Fig. 3.

Fig. 10). We stress that these results are valid only for multipoles up
to � ∼ 2000–3000 since for smaller angular scales we would have
to take into account baryonic physics.

To see how likely it is to observe the differences between the
models considered, we look at the signal-to-noise (S/N) ratio at a
fixed multipole. The S/N ratio is defined as

S

N
(�) =

[
P DE

κ (�) − P �CDM
κ (�)

�P �CDM
κ (�)

]2

, (48)

where �P �CDM
κ (�) is the Gaussian statistical error on the power

spectrum in the framework of the concordance cosmology. Accord-
ing to Kaiser (1992, 1998), Seljak (1998) and Huterer (2002), the
latter can be evaluated approximately as

�P �CDM
κ (�) =

√
2

(2� + 1)��fsky

[
P �CDM

κ (�) + γ 2

n̄g

]
, (49)

where n̄g is the average surface number density of observed galaxies,
fsky is the fraction of sky area surveyed and γ represents the rms
intrinsic shape noise for the average galaxy. For practical purposes,
we assume typical values for a future weak lensing survey and we
set n̄ = 40 arcmin−2, fsky = 1/2 and γ = 0.22 (see Zhang, Yuan &
Lan 2009). As suggested by Takada & Bridle (2007) and Takada &
Jain (2009) we use �� = 1.

In Fig. 12 we show the S/N ratio for the cosmic shear power spec-
trum as a function of the multipole �. We notice that at intermediate
scales these models have a significant S/N ratio and that it decreases
very quickly for lower and higher multipoles; this is in agreement
with what was seen by Fedeli & Moscardini (2010) in the context
of non-Gaussianity in weak lensing and Pace et al. (2012) in the
context of oscillating dark energy models. This suggests that it will
be very easy to differentiate the models via weak lensing techniques
by summing just over few multipoles. Consistently with Fig. 11, the
model with the highest S/N ratio is the NMC2, which differs most
from the fiducial model.

A very important tool used to increase the power of cosmic shear
is by using the tomography of lensing (Hu 1999; Takada & Jain
2004) and it consists in the subdivision of the sources in several
bins, and computing the shear power spectrum in each bin and the
cross-correlation between different redshift bins. More precisely,
the cross-power spectrum between two bins is

P ij
κ (�) = 9H 4

0 �2
m,0

4c4

∫ χH

0
P

(
�

fK (χ )
, χ

)
Wi(χ )Wj (χ )

a2(χ )F 2(a)
dχ, (50)

Figure 12. The S/N ratio to distinguish between the concordance cosmol-
ogy and each of the quintessence models here considered as a function of
the multipole. Line types and colours are as in Fig. 3.

and now the redshift distribution has to be normalized to unity in
each redshift bin, rather than the whole redshift range.

We considered four different bins, close to the maximum number
that should give appreciable improvement given the broad lensing
kernel (Sun et al. 2009), using the redshift intervals [0, 0.5], [0.5, 1],
[1, 1.5] and [1.5, ∞]. The results are shown in Fig. 13. In the bottom
row we show the results for the ratio of the autocorrelation power
spectra while in the other panels we present the cross-correlated
power spectra. The label m × n, where m and n run from one to
four (total number of redshift bins), indicates the cross-correlation
between bins m and n.

As it appears clear from Fig. 13 we notice that the information
carried by the autocorrelation power spectrum is very similar for
all the models. We see similar behaviour in the cross-correlated
shear power spectrum. All the minimally coupled models behave
very similarly and differ from the �CDM model of ≈10 per cent. As
shown in Figs 11–13 differences between the dark energy models we
consider are quite pronounced. According to Beynon et al. (2012),
future lensing surveys as Euclid2 (Laureijs et al. 2011; Amendola
et al. 2013) will be able to differentiate models at the level of
2–3 per cent. Since all the models analysed here differ by the ref-
erence �CDM model for more than 5 per cent at all scales, we can
safely conclude that future lensing surveys will easily say whether
these models will be compatible with the data or not.

4 C O N C L U S I O N S

In this work we studied the structure growth and evolution of
quintessence models, with particular emphasis on non-minimally
coupled models (scalar–tensor theories) where the effective grav-
itational constant G changes in time. We compared representative
scalar–tensor models to standard GR models which are described
by the same equation of state, and also to a simple constant equation
of state model (w = −0.9). We also considered two additional mini-
mally coupled models where the background expansion is identical
to the non-minimally coupled models. Our principle aim has been to
isolate the influence of a varying gravitational constant G on struc-
ture formation, extending recent numerical work on this subject
(De Boni et al. 2011) by carrying out analytic predictions for the
same models that were previously simulated.

2 www.euclid-ec.org
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Figure 13. The cosmic shear power spectrum for the quintessence models here analysed derived in a specific source redshift bin. We present the ratio with
respect to the predictions of the fiducial �CDM model. The redshift bins are as follows: 0 < z < 0.5, 0.5 < z < 1, 1 < z < 1.5 and 1.5 < z < ∞. The first
three rows represent the cross-correlation power spectra, while the last row shows the autocorrelation power spectra. We refer to the labels in the panels for the
corresponding redshift bins. Line types and colours are as in Fig. 3.

We studied several quantities, ranging from the linear analysis
of the growth factor to the non-linearity of the mass function and
of the weak lensing power spectrum. To validate our theoretical
considerations, we compared our mass function to the one obtained
directly from the N-body simulation (see Fig. 7). We showed that
an analytical analysis of the linear growth factor (D+(a)) and linear
overdensity parameter δc can largely reproduce the numerical mass
function over two orders of magnitude in mass.

A time-dependent G has a greater impact on all the quantities
we considered, as compared to a conventional dark energy model
whose dark energy component possesses the same equation of state,
but interestingly enough, differences are mitigated, at least at the
linear level, when the minimally coupled models have the same
background expansion history predicted in the framework of scalar–
tensor theory. The strength of gravity changes over time for scalar–
tensor theories, adding one more degree of freedom to the standard
general relativistic framework. In the models we considered G var-
ied up to 2 per cent, leading to changes in background quantities at a
similar level; however, at the perturbation level differences are am-
plified. For example, the growth factor can change up to 10 per cent
and the range of variation is dictated by the models with the most
extreme coupling (NMC1 and NMC2).

Similar comparisons can be made for the critical linear density
contrast for spherical collapse δc(z) and the virial overdensity �V(z).
These remain similar to the predictions for a �CDM model, differ-
ing from it by only few per cent or less. As expected, the models
converge to the prediction for an EdS universe at high redshifts, but
the rate of convergence is model dependent and it is influenced by
the amount of dark energy at early times.

These small differences are amplified when looking at the mass
function for rare objects; differences from the fiducial model are

large, of the order of 40 per cent for very massive objects already at
z = 0 and can be as large as 80 per cent at a redshift z = 2, where one
is probing even rarer objects. Deviations from the �CDM model
are generally amplified if the gravity strength changes in time.

The dark matter power spectrum shows differences of the order of
10–15 per cent at most, particularly on mildly non-linear scales. On
large scales differences are mostly due to integrated differences in
the growth rate, ranging from 5 to 10 per cent. These conclusions are
in qualitative agreement with those found by Fedeli et al. (2012) of
the analysis of N-body simulations and differ by only a few per cent,
showing that the usual recipes for the matter power spectrum can
reproduce these models reasonably well without further calibration.
The small differences are due to the fact that we assume that the
assumptions used to build the halofit model are still valid in non-
minimally coupled models (see discussion of how the non-linear
matter power spectrum was evaluated in their section 4).

Finally, the effective convergence power spectrum is affected at
the level of ∼10–15 per cent at intermediate/small angular scales.
Since the corresponding observations are in principle very sensitive,
it will be possible to discriminate these models with future lensing
surveys, such as Euclid. In particular, as discussed in Beynon et al.
(2012) a precision of few per cent can be reached. This implies that
all the models could in principle be falsified if �CDM is the true
cosmological model.
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