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a b s t r a c t

In this paperwe first introduce anon-symmetric notion of centralization between a relation
S and an equivalence relationR, which coincideswith Smith centralization in the case S is an
equivalence relation too. We then prove that in any action accessible category in the sense
of Bourn and Janelidze (2009) [11], the centralizer of an equivalence relation R, defined
as in [11], actually has a stronger property, namely it is an equivalence relation, which is
the largest among all the relations S centralizing R in the non-symmetric sense mentioned
above. As a main result, we show that the existence of centralizers for any equivalence
relation with this stronger property actually characterizes action accessibility for exact
protomodular categories.

© 2012 Elsevier B.V. All rights reserved.

0. Introduction

The notion of action accessible categorywas recently introduced by Bourn and Janelidze in [11], and developed in a more
general concept by Bourn in [6], in the context of pointed protomodular categories (categories where split short five lemma
holds, see [10]). Via the equivalence between internal actions and split extensions in the category of groups as in any other
semi-abelian category (in the sense of [17]), it is possible to represent any action on a fixed object X by a split extension
with kernel X . The crucial notion of faithful split extension introduced in [11] is an interpretation in terms of split extensions
of the classical notion of faithful action. A pointed protomodular category C is said to be action accessible if any split
extension in C admits a morphism in a faithful one. This assignment is not unique, but we will show that it can be given in a
canonical way (see Corollary 2.8), as it happens in groups, where this procedure is obtained by zeroing the elements acting
trivially.

The relevance of action accessibility was pointed out in the very recent paper [12] by Bourn and Montoli, where action
accessible categorieswhich are Barr-exact turn out to be a good context for an internal version of Schreier–Mac Lane theorem
on obstructions to extensions. The reason relies on a very important property of action accessible categories: the existence
of centers, and more generally of centralizers. In fact, it was proved in [11] that in an action accessible category, for any
normal subobject X of A, there exists a normal subobject Z(X, A) of A, cooperating with X in A in the sense of Definition 2.1,
which is larger than any other subobject of A having the same property.Moreover, Bourn and Janelidze showed that a similar
property holds for any equivalence relation R on A: namely, there exists a largest equivalence relation EA(R), such that EA(R)
and R centralize each other in the sense of Smith (see Definition 3.2). Furthermore, they also showed that in a homological
action accessible category two normal subobjects cooperate if and only if the corresponding equivalence relations centralize
each other.

Note that the centralizer of an equivalence relation R is the largest among equivalence relations that centralize R, while
the centralizer of a normal subobject X is the largest among (not necessarily normal) subobjects that cooperate with X . This
is a stronger property, which has no counterpart in terms of equivalence relations.
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In order to face this lack of analogy, in this paper we introduce a non-symmetric notion of centralization between
a relation S and an equivalence relation R, which coincides with Smith centralization in the case S is an equivalence
relation too (see Proposition 3.6). It turns out (see Proposition 4.1) that in any action accessible category the centralizer
of an equivalence relation R is an equivalence relation which is the largest among all the relations S that centralize R in
the non-symmetric sense, so that it can be viewed as a non-symmetric centralizer, according to Definition 4.3. This result
shows the analogy existing in the action accessible case between centralizers of equivalence relations and centralizers
of normal subobjects. This stronger property actually allows a characterization of action accessible categories via the
existence of centralizers. We show that, in any homological category with (non-symmetric) centralizers for equivalence
relations, faithful split extensions are exactly those with trivial centralizer, in the sense of Proposition 4.4. This is a
property of action accessible categories (as shown in [6] for the more general case of faithful groupoids). Actually, we
prove that, for an exact pointed protomodular category, the existence of (non-symmetric) centralizers is equivalent to action
accessibility.

1. Action accessible categories

Let C be a pointed protomodular category, essentially a category where split short five lemma holds (see [1] for the
definition and several characterizations). Given an object X ∈ C, a split extension with kernel X is a diagram:

X
x // A

p // B
s

oo

such that ps = 1B and x = ker p. We will denote such a split extension by (B, A, p, s, x). Given another split extension
(D, C, q, t, k)with the same kernel X , a morphism (g, f ) : (B, A, p, s, x) → (D, C, q, t, k) is a pair (g, f ) of arrows such that
k = fx, qf = gp and fs = tg in

X
x // A

f

��

p //

y

(∗)

B

g

��

s
oo

X
k // C

q // D
t

oo

(1)

Split extensions with fixed kernel X andmorphisms between them form a category, whichwewill denote by SplExtC(X),
or simply by SplExt(X).

Remark 1.1. Note that, whenever it exists, the morphism f in diagram (1) is uniquely determined by the rest of the data,
and this follows from the fact that the pair (x, s) is jointly strongly epimorphic by protomodularity. The same property also
makes condition qf = gp redundant, since it can be deduced by the others. Moreover, in every diagram of the form (1) the
square (∗) is a pullback by protomodularity, since p and q have the same kernel X .

It is well known that any split extension (B, A, p, s, x) in the category of groups gives rise to an action of the group B on
X , namely the action induced by the conjugation action of s(B) on x(X) in A. This correspondence holds, more generally, in
every pointed category C with finite limits and finite coproducts, as explained in [3], where the notion of internal object
action was introduced. We recall here the definition: for PtB(C) being the category of points over B in C, we have an
adjunction:

C
F //
⊥ PtB(C)
G

oo (2)

where, on objects:

X
F

−→

B + X

[1,0]

����
B

OO

ιB

OO

and

A

p

����
B

OO
s

OO

G
−→ ker p

And the corresponding monad GF(−) on C is denoted by B♭(−) (so, as an object, we denote B♭X = ker[1, 0]).

Definition 1.2. The algebras for the monad B♭(−) induced by the adjunction (2) above are called internal B-actions in C. We
denote by CB the category of these algebras.
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The comparison functor PtB(C) → CB associateswith every point (A, p, s) a B-action ξ as described in the following diagram
(where X is the kernel of p and ξ is induced by the universal property of X):

B♭X
ker[1,0] //

ξ

��

(∗)

B + X
[1,0] //

[s,k]

��

B
ιB

oo

X
k // A

p //
B

s
oo

When C is the category of groups, given a group action ξ of B over K , we can always associate with it a semidirect product

Koξ B and then a point X oξ B
πB //B

⟨0,1⟩
oo . It turns out that the corresponding B-action is exactly the starting ξ . However, unlike

the case of groups, or, more generally, the case of a semi-abelian category, the correspondence between actions and split
extensions is not a category equivalence in general. And when it is not an equivalence, the notion of split extension of an
object Bwith kernel X can be considered as an alternative notion of B-action on X . In particular, the classical notion of faithful
action suggests:

Definition 1.3 ([11], Definition 1.2). An object in SplExt(X) is said to be faithful if any object in SplExt(X) admits at most one
morphism into it.

The term faithful is justified indeed by the fact that, if C is the category of groups, the notion of faithful split
extension corresponds, via the canonical equivalence between split extensions and actions given by the semidirect product
construction, to the classical notion of faithful action.

Definition 1.4 ([11], Definition 2.1). Let C be a pointed protomodular category. An object in SplExtC(X) is said to be
accessible if it admits a morphism into a faithful one. If, for any X ∈ C, every object in SplExtC(X) is accessible, we say
that C is an action accessible category.

In particular, if C is action representative in the sense of [2], then it is action accessible. The converse is not true: indeed,
for example, the category of rings is action accessible ([11], Proposition 2.2) but not action representative, as shown in [4].

Other examples of action accessible categories can be obtained from the following result:

Proposition 1.5 ([11], Proposition 2.3). If C is an action accessible homological category and B is a Birkhoff subcategory of C,
then B is also action accessible.

MoreoverMontoli proved in [18] that every category of interest in the sense of Orzech [19] is action accessible. Categories
of interest are: the categories of groups, rings, Lie and Leibniz algebras, Poisson algebras and others, but not, for example,
Jordan algebras. Finally, Bourn proved in [6] that all topological models of action accessible varieties are action accessible.

2. Properties of action accessible categories: centralizers

The notion of cooperatingmorphisms we refer to was introduced by Huq [16] under the name of commutingmorphisms
and later developed by Bourn [5] in the context of unital categories. For a complete treatment we also refer to [1].

Definition 2.1. Let C be a pointed protomodular category. Two morphisms f and g with the same codomain cooperate if
there exists a morphism ϕ making the following diagram commutative:

X
⟨1,0⟩ //

f

��?
??

??
??

??
??

??
X × Y

ϕ

��

Y
⟨0,1⟩oo

g

����
��

��
��

��
��

�

Z

When it exists, the morphism ϕ is unique and it is called the cooperator of f and g .
In the case X and Y are subobjects of Z , we say that X and Y cooperate in Z (and we write [X, Y ]Z = 0) when the two

inclusions cooperate.

Lemma 2.2. Given a split extension (B, A, p, s, x) of X in a pointed protomodular category and a subobject J
j //B, then the

following are equivalent:

1. [X, J]A = 0, that is, there exists a cooperator X × J
ϕ //A for the maps x and sj;
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2. j gives rise to a morphism (j, ϕ) of split extensions:

X
⟨1,0⟩ // X × J

πJ //

ϕ

��

J
⟨0,1⟩

oo

j

��
X

x // A
p //

B
s

oo

(3)

Proof. Trivial by Remark 1.1. �

Lemma 2.3. For every morphism of split extensions in a pointed protomodular category:

X
x // A

p //

f

��

B
s

oo

g

��
X

k // C
q //

D
t

oo

if I i //D is a subobject of D with [X, I]C = 0, then the pullback J
j //B of i along g is such that [X, J]A = 0.

Proof. In the diagram

X
⟨1,0⟩ //

��
��

��
�

��
��

��
�

X × J
πJ //

1×g

��

ϕ

}}

J
⟨0,1⟩

oo

g

��

j
����

��
��

��

X
x // A

p //

f

��

B
s

oo

g

��

X
⟨1,0⟩ //

��
��

��
�

��
��

��
�

X × I
πI //

ϕ

}}zz
zz

zz
zz

I
⟨0,1⟩

oo

i����
��

��
��

X
h

// C
q // D
t

oo

since [X, I]C = 0, by Lemma 2.2, the bottom right hand square is a pullback, aswell as the rear one. By the universal property
of pullbacks, there exists a morphism ϕ : X × J → Amaking the top right hand square a pullback. Again by Lemma 2.2, we
can conclude that [X, J]A = 0. �

Lemma 2.4. For every morphism of split extensions in a pointed protomodular category:

X
x // A

p //

f

��

B
s

oo

g

��
X

k // C
q //

D
t

oo

the kernel of g is a normal subobject of A that cooperates with X in A.

Proof. Let us call Z z //B the kernel of g: it is the pullback of 0 in D, and since trivially [X, 0]C = 0, by Lemma 2.3,
[X, Z]A = 0. Furthermore the map sz is the kernel of f and then Z is normal in A. �

From now on in this section, assume that the category C is action accessible. The following proposition is inspired by the
results in [11] and gives a definition of centralizer relative to a split extension.
Proposition 2.5. Given any morphism from a split extension in C to a faithful one:

X
x // A

p //

f

��

B
s

oo

g

��
X

k // C
q //

D
t

oo

the kernel of g is the largest subobject of B cooperating with X in A. We will call this object Z(X, B), the centralizer of X in B.



1856 A.S. Cigoli, S. Mantovani / Journal of Pure and Applied Algebra 216 (2012) 1852–1865

Proof. Such a morphism always exists in action accessible categories by definition and, by Lemma 2.4, Z(X, B) is a normal

subobject of A cooperating with X . Conversely, let J
j //B be a subobject of B such that [X, J]A = 0, that is, there exists a

cooperator X × J
ϕ //A for the maps x and sj. Consider the following diagram:

X
⟨1,0⟩ // X × J

πJ //

ϕ

��

J
⟨0,1⟩

oo

j

��
X

x // A
p //

f

��

B
s

oo

g

��
X

k // C
q //

D
t

oo

By Lemma 2.2, the pair (j, ϕ) is a morphism of split extensions, and so is (g, f ) by our assumption; therefore (gj, f ϕ) is
a morphism of split extensions by composition. On the other hand, there is another morphism between the same two
extensions, namely:

X
⟨1,0⟩ // X × J

πJ //

kπX
��

J
⟨0,1⟩

oo

0

��
X

k // C
q //

D
t

oo

and since the lower split extension is faithful, (f ϕ, gj) = (kπX , 0) and in particular gj = 0, so J is contained in the kernel
of g . �

As a corollary, we recover the result of Proposition 5.2 in [11], which gives a construction of the classical centralizer of a
normal subobject:

Corollary 2.6. For any normal subobject X x //A of an object A, let (R, r0, r1, s0) be the equivalence relation on A associated
with X, and consider a morphism

X
⟨0,x⟩ // R

r0 //

f

��

A
s0

oo

g

��
X

k // C
q //

D
t

oo

of split extensions, where the lower split extension is faithful.
Then the kernel of g is the centralizer Z(X, A) of X in A, that is, the largest subobject of A cooperating with X in A.

Proof. We already know, by Proposition 2.5, that the kernel of g is the largest subobject of A cooperatingwith X in R. But, for

any Y
y //A , [X, Y ]R = 0 if and only if [X, Y ]A = 0. Indeed, if η is the cooperator of ⟨0, x⟩ and s0y, then r1η is the cooperator

of x and y. Vice versa, if ϕ is the cooperator of x and y, then ⟨0, x⟩ and s0y cooperate by means of the arrow ⟨yπY , ϕ⟩. �

Remark 2.7. Given any Y
y //A , thanks to the following morphism:

X
x′ // P

(∗)

p′

//

y′

��

Y
s′

oo

y

��
X

⟨0,x⟩ // R
r0 //

A
s0

oo

where (∗) is constructed as a pullback and x′
= ker(p′), we can write Z(X, Y ) = Z(X, A) ∧ Y . As a special case we recover

the centralizer of Proposition 2.5 as Z(X, B) = Z(X, A) ∧ B.

The result in Proposition 2.5 is independent from the chosen faithful extension and, if moreover the category C is
regular, it leads to the following construction (see Proposition 2.1 of [12] for an analogous result for the case of equivalence
relations).
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Corollary 2.8. Every split extension in a homological action accessible category C admits a morphism onto a canonical faithful
extension:

X
x // A

p //

τ1

��

B
s

oo

τ0

��
X

x // T1
p // T0
s

oo

with the property that any other morphism (f , g) from X x //A
p //B
s

oo to a faithful extension factors through (τ1 , τ0), which

is its regular epi part.
In other words, the category of faithful split extensions with fixed kernel X is a (regular-epi-)reflective subcategory of

SplExtC(X).
Proof. Since C is action accessible, the above extension always admits a morphism to a faithful one:

X
x // A

p //

f

��

B
s

oo

g

��
X

k // C
q //

D
t

oo

As in Lemma 2.4, let us call z the kernel of g . Now take the (regular epi, mono) factorizations (τ0 ,m0) and (τ1 ,m1) of
g and f respectively. Since sz is a normal subobject of A by Lemma 2.4, then (τ1 , τ0) = (coker(sz), coker(z)) and, by the
property of cokernels, a split extension (p, s) is induced:

X
x // A

(∗)

p //

τ1

��

B
s

oo

τ0

��
X

x // T1
p // T0
s

oo

Since ker(τ1) = ker(τ0) = Z(X, B), by protomodularity (∗) is a pullback and ker(p) = X .
The split extension (T0, T1, p̄, s̄, x̄) is faithful, since it has amonomorphism (m1,m0) into a faithful one. By Proposition 2.5,

the kernel z : Z(X, B) → B of g is independent from the chosen faithful extension and then any other morphism (f ′, g ′)
from (B, A, p, s, x) to a faithful extension factors through (τ1 , τ0), which is its regular epi part. �

The failure of the property of having normal centralizers provide us a criterion to prove that a given category is not action
accessible. For instance, the category of Jordan algebras is not action accessible, as the following example shows.
Example 2.9. Let A be the Jordan algebra given by the vector space A = Rx ⊕ Ry ⊕ Rt , endowed with a distributive and
commutative product whose multiplication table for generators is the following:

∗ x y t
x x 0 y
y 0 0 x
t y x t

The subobject K = Rx ⊕ Ry generated by x and y is a normal subobject, i.e. an ideal of A in the sense of Higgins [15]. On
the other hand, C(K , A) = Ry, which is the largest subobject cooperating with K , is not normal (since y ∗ t = x), while it
should be so if the category of Jordan algebras were action accessible.
Example 2.10. The second example is given by the category C whose objects are groups with an additional binary
associative and distributive operation ∗, and morphisms are group homomorphisms preserving ∗. As before, normal
subobjects are ideals in the sense of Higgins [15]. Consider in C the object given by the additive group:

B = ⟨x, y, t⟩ with x + y = y + x, y + t = t + y

(as a group,B is isomorphic to the product of the free group generated by {x, t}with the free group generated by {y}) endowed
with an associative and distributive operation ∗, whose multiplication table for generators is the following:

∗ x y t
x x 0 0
y 0 y t
t 0 t t
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IfK is the ideal of B generated by x, then the largest subobject cooperatingwithK is the subobject C(K , B) = ⟨y⟩ generated
by y, which is not normal, since y ∗ t = t /∈ C(K , B). And this proves that C is not action accessible.

It is worth observing that the category of Example 2.9 satisfies all the axioms of a category of interest in the sense of [19]
except for (7), while the category of Example 2.10 satisfies all the axioms but (8). In fact, these examples were presented
in [14] in order to show that axioms (7) and (8) are strictly necessary to have normal centralizers and, at the same time, to
recover Huq commutator as Higgins commutator (see Theorem 5.3.6 in [14]).

3. A non-symmetric version of centralization of relations

Throughout this section let C be a homological category. Since in this section we deal with relations, we state here the
following lemma, which will be useful later:

Lemma 3.1. Every pair of parallel morphisms in SplExt(X):

X
k // C

q //

f1

��

f0

��

y

D
t

oo

g1

��

g0

��
X

x // A
p //

B
s

oo

(4)

factors through a pair of jointly monic pairs (i.e. relations on A and B respectively).

Proof. First of all recall that, by protomodularity, the right hand squareswith parallel arrows of the same index are pullbacks
(q and p having the same kernel X). Now take the (regular epi, mono) factorizations of the pair (⟨g0, g1⟩, ⟨f0, f1⟩):

C

(∗)

q //

f

����
⟨f0,f1⟩

��

D
t

oo

g

����
⟨g0,g1⟩

��

C ′

q′

//

��

m

��

D′

s′
oo

��

n

��
A × A

p×p //
B × B

s×s
oo

We are going to prove that the commutative square (∗), formed by q′f = gq, above is a pullback. As already observed, the
right hand squares in diagram (4) are pullbacks, so that f0 and g0 have the same kernel, and the same holds for f1 and g1.
Moreover, for any two morphisms u and v, ker⟨u, v⟩ ∼= ker u ∧ ker v, thus ker⟨f0, f1⟩ ∼= ker f0 ∧ ker f1 ∼= ker g0 ∧ ker g1 ∼=

ker⟨g0, g1⟩. But by construction f = coker(ker⟨f0, f1⟩) and g = coker(ker⟨g0, g1⟩), so they are two regular epimorphisms
with isomorphic kernels, and this implies, by protomodularity, that the square (∗) is a pullback.

As a consequence, ker q′
= X and diagram (4) factorizes as follows:

X
k // C

q //

f

����

y

D
t

oo

g

����
X

k′ // C ′

q′

//

m0

��

m1

��

y

D′

t ′
oo

n0

��

n1

��
X

x // A
p //

B
s

oo

where m = ⟨m0,m1⟩, n = ⟨n0, n1⟩, and this completes the proof, since by construction ((n0, n1), (m0,m1)) is a pair of
jointly monic pairs. �
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We recall here the definition of equivalence relations centralizing each other in the sense of Smith (see for example [7]
or [13]):

Definition 3.2. Two equivalence relations (R, r0, r1, s0) and (S, v0, v1, u) on A centralize each other, and we will write
[R, S]A = 0, if there exists a centralizing double relation between them, that is an equivalence relation C on both R and
S such that, in the diagram below, the four squares where parallel arrows have the same index are pullbacks:

C
p0 //
p1

//

d0

��

d1

��

S

v0

��

v1

��
R

r0 //
r1

// A

We can extend this definition to the non-symmetric case, where only one of the relations is requested to be an
equivalence.

Definition 3.3. Let S be a relation on A and R an equivalence relation on A. Wewill say that S centralizes R, andwewill write
[R, S[A = 0, if there exists an equivalence relation (C, p0, p1, t0) on S with (C, d0, d1) a relation on R such that

1. In the diagram below, the four squares where parallel arrows have the same index are pullbacks:

C
p0 //
p1

//

d0

��

d1

��

S

v0

��

v1

��
R

r0 //
r1

// A

2. If k : X → C is a kernel of p0 (or p1 equivalently), then d0k = d1k.

The fact that C is a relation on R comes for free because d0 and d1 are jointly monic, since they are pullbacks of v0 and v1
respectively.

As easy consequences of Definition 3.3, we obtain:

Lemma 3.4. If [R, S[A = 0, in the following diagram (where t0 is the common section of p0 and p1 and s0 is the common section
of r0 and r1):

X
k // C

p0 //

d0

��

d1

��

S
t0

oo

v0

��

v1

��
X x

// R
r0 //

A
s0

oo

x = d0k = d1k is a kernel of r0 and both (v0, d0) and (v1, d1) are morphisms of split extensions.

Proof. The left hand squares commute by definition. Moreover, in the diagram below:

S
t0 //

v0

��

C
p0 //
p1

//

d0
��

S

v0

��
A

s0 // R
r0 //
r1

// A

the whole rectangle and the right hand squares commute, so the left hand square also commute since r0 and r1 are jointly
monic. The same argument holds by replacing (v0, d0)with (v1, d1). �

Lemma 3.5. If [R, S[A = 0 and h : Y → C is a kernel of d0, then p0h = p1h.

Proof. We claim that t0p0h = h. Indeed, since p0 and d0 are jointly monic, it follows from p0t0p0h = p0h, and d0t0p0h =

s0v0p0h = s0r0d0h = s0r00 = 0 = d0h. After that we have p0h = p0t0p0h = p1t0p0h = p1h. �
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The following proposition explains the link between the classical case and this non-symmetric version when we have
two equivalence relations.

Proposition 3.6. Let R and S be equivalence relations on A, then:

[R, S]A = 0 ⇐⇒ [R, S[A = 0

Proof. Suppose that R and S centralize each other in the classical sense, then we have an equivalence relation C on both R
and S:

C
p0 //
p1

//

d0

��

d1

��

S

v0

��

v1

��
R

r0 //
r1

// A

where the four commutative squares are pullbacks. Using the reflexivity of C as equivalence relation on R, as in Lemma 3.5,
Condition 2 in Definition 3.3 comes for free. So the implication [R, S]A = 0 ⇒ [R, S[A = 0 is proved.

Vice versa, suppose S centralizes R in the sense of Definition 3.3:

X
k // C

p0 //

p1
//

d0

��

d1

��

S

v0

��

v1

��

t0oo

X
x // R

r0 //

r1
// As0oo

u

OO

To conclude the proof we have to show that C is an equivalence relation on R, and in order to do this, since the category is
Mal’tsev, it suffices to exhibit a common section for d0 and d1.

Consider the pullback given by the four arrows of index 0. Since v0ur0 = r0, then there exists a unique arrow c : R → C
such that:

p0c = ur0
d0c = 1R

Moreover,
p0cs0 = ur0s0 = u = p0t0u
d0cs0 = s0 = s0v0u = d0t0u

gives cs0 = t0u

because p0 and d0 are jointly monic. Furthermore,
p0cx = ur0x = 0 = p0k
d0cx = x = d0k

gives cx = k

Now recall that the category is protomodular, so x and s0 are jointly epic and
d1cs0 = d1t0u = s0v1u = s0
d1cx = d1k = d0k = d0cx = x gives d1c = 1R

Therefore c is a common section for d0 and d1, so that C is an equivalence relation on R and this proves the implication
[R, S[A = 0 ⇒ [R, S]A = 0. �

Proposition 3.7.

[R, S[A = 0 ⇒ [X, Y ]A = 0

That is, in the notation of Definition 3.3, with x = d0k : X → R and y = p0h : Y → S being the kernels of r0 and v0 respectively,
the morphisms r1x : X → A and v1y : Y → A cooperate.
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Proof. Consider the following commutative diagram:

X × Y
ψ

""

πY //

πX

��

Y

h
��

Y

y

��
X

k // C
p0 //

d0
��

S

v0

��
X x

// R r0
// A

By hypothesis the right lower square is a pullback, and since v0yπY = 0 = r0xπX there exists a uniqueψ : X × Y → C such
that: 

p0ψ = yπY = p0hπY
d0ψ = xπX = d0kπX

Now observe that ψ is the cooperator of h and k in C , since ψ⟨1, 0⟩ = k (and similarly ψ⟨0, 1⟩ = h) because:
p0ψ⟨1, 0⟩ = p0hπY ⟨1, 0⟩ = 0 = p0k
d0ψ⟨1, 0⟩ = d0kπX ⟨1, 0⟩ = d0k

and p0, d0 are jointly monic. Now define η = r1d1 = v1p1, then we have:
ηψ⟨1, 0⟩ = r1d1ψ⟨1, 0⟩ = r1d1k = r1x
ηψ⟨0, 1⟩ = v1p1ψ⟨0, 1⟩ = v1p1h = v1y

that is, [X, Y ]A = 0 with ηψ being the needed cooperator. �

4. A characterization of action accessibility

Now we are going to find a characterization of faithful split extensions by means of centralizers fulfilling a stronger
property, based on the previous definition of non-symmetric centralization.

In [11] the authors showed that in homological action accessible categories any equivalence relation R admits a centralizer
EA(R), defined as the largest equivalence relation centralizing R in the sense of Definition 3.2. Actually, a stronger version of
this property holds:

Proposition 4.1. Let C be a homological action accessible category. Then, for any equivalence relation R, its centralizer EA(R)
contains any relation S on A with [R, S[A = 0.

Proof. Let (R, r0, r1, s0) be an equivalence relation on A in C and consider the associated split epimorphism (R, r0, s0). Given
any relation S on Awith [R, S[A = 0, by Lemma 3.4, we know that the diagram

X
k // C

p0 //

d0
��

d1
��

S
t0

oo

v0

��
v1

��
X x

// R
r0 //

A
s0

oo

gives rise to a pair of morphisms of split extensions on X . Now, if (f0, f1) is a morphism into a faithful split extension of X ,
then f0v0 = f0v1:

X
k // C

p0 //

d0
��

d1
��

S
t0

oo

v0

��
v1

��
X

x // R
r0 //

f1
��

A
s0

oo

f0
��

X
x′

// D
p′

//
E

s′
oo

This means that S must be contained in the kernel pair R[f0] of f0. But in [11] it is shown that this kernel pair coincides with
the centralizer EA(R). �
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Observe that the normal subobject of A associated with EA(R) actually coincide with Z(X, A), as proved in [11],
Proposition 5.2.

We will see that this stronger property of centralizers of equivalence relations is characteristic of action accessible exact
categories. In the following example, we exhibit an equivalence relation R in a semi-abelian category with a centralizer (in
the sense of Bourn and Janelidze) which does not contain a relation S with [R, S[A = 0.

Example 4.2. Consider the Jordan algebra A = Rx⊕ Ry⊕ Rt of Example 2.9. We take the equivalence relation R associated
with the normal subobject K = Rx ⊕ Ry. Since we know that the largest subobject of A that cooperates with K is Ry, then
the only normal subobject of A cooperating with K is {0}, so that EA(R) is given by the discrete relation∆A.

Consider now the equivalence relation S associated with Ry in K , that is S = {(k, k′) ∈ K ×K | k− k′
∈ Ry}. This is also a

relation on A, but not an equivalence relation (since it is not reflexive). Since∆K is normal in S, in the following commutative
diagram (where vi, for i = 0, 1, is any of the two projections of S on A):

∆K //

∼

��

S
q //

vi

��

S/∆K

0
��

K // A
p // A/K

the right hand square is a pullback by protomodularity since p and q are regular epimorphisms with isomorphic kernels.
Hence [R, S[ = 0 via the kernel pair of q.

Consequently, we introduce the following definition:

Definition 4.3. A non-symmetric centralizer for an equivalence relation R on A is an equivalence relation EA(R) on A such
that:

1. [R, EA(R)]A = 0
2. EA(R) contains any relation S on A with [R, S[A = 0

From now on, with the term centralizer we will refer to the non-symmetric centralizer defined above.
Given a normal subobject X of A, we denote by ZA(X) the normal subobject of A associated with EA(R), where R is the

equivalence relation on A associated with X . Obviously ZA(X) cooperates with X in A (since [R, EA]A = 0 implies that the
corresponding kernels cooperate).

Now we are ready to give our characterization of faithful split extensions:

Proposition 4.4. LetC be a homological categorywith centralizers for equivalence relations. Given a split extension (B, A, p, s, x),
we can define EB as the pullback of EA(R[p]) along s × s:

EB //

⟨w0,w1⟩

��

EA

⟨z0,z1⟩

��
B × B

s×s // A × A

and its associated normal subobject ZB as the pullback of ZA(X) along s.
The following conditions are equivalent:

1. X
x // A

p //
B

s
oo is faithful;

2. EB = ∆B (or, equivalently, ZB = 0).

Proof. Suppose ZB ≠ 0. Since ZB considered as a subobject of A is less or equal to ZA, we have [X, ZB]A = 0. Consequently,
thanks to Lemma 2.2, ZB gives rise to two (different) morphisms of split extension into (B, A, p, s, x):

X
⟨1,0⟩ // X × ZB

πZB //

xπX

��

ϕ

��

ZB
⟨0,1⟩

oo

0

��

j

��
X

x // A
p //

B
s

oo

This means that (B, A, p, s, x) is not faithful.
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Vice versa, let EB = ∆B and suppose there exist two morphisms of split extension into (B, A, p, s, x):

X
k // C

q //

m0

��

m1

��

y

D
t

oo

n0

��

n1

��
X

x // A
p //

B
s

oo

By Lemma 3.1, we can assume that (m0,m1) and (n0, n1) are jointly monic pairs. This means that C is a relation on A. Since
both the right hand squares involving q and p are pullbacks, the corresponding morphisms between the kernel pairs R[q]
and R[p] give rise to four pullbacks:

R[q]
p0 //
p1

//

l0

��

l1

��

C
q //

m0

��

m1

��

D
t

oo

n0

��

n1

��
R[p]

r0 //
r1

// A
p //

B
s

oo

Since R[q] is an equivalence relation on C , in order to show that [R[p], C[A = 0, we need to verify Condition 2 of
Definition 3.3. Consider ⟨0, k⟩ : X → R[q] as a kernel of p0. l0⟨0, k⟩ = ⟨0, x⟩, because

r0l0⟨0, k⟩ = m0p0⟨0, k⟩ = 0 = r0⟨0, x⟩
r1l0⟨0, k⟩ = m0p1⟨0, k⟩ = m0k = x = r1⟨0, x⟩

Since alsom1k = x, the same argument shows that l1⟨0, k⟩ = ⟨0, x⟩, so that also Condition 2 is fulfilled and we can conclude
that [R[p], C[A = 0 and then C ≤ EA(R[p]). So there exists a monomorphism i : C → EA such that z0i = m0 and z1i = m1
and this induces a monomorphism j : D → EB = ∆B:

D
j

!!DD
DD

DD
DD

⟨n0,n1⟩

��2
22

22
22

22
22

22
22

t // C

i
��

∆B //

⟨1B,1B⟩

��

y
EA

⟨z0,z1⟩

��
B × B

s×s // A × A

with n0 = 1Bj = n1. This means that (B, A, p, s, x) is faithful. �

Now we are ready to state the main result of the present paper. Before doing this, we recall a useful characterization
of centralization of equivalence relations (Theorem 5.2 in [8], adapted to the case where normal subobjects coincide with
kernels):

Proposition 4.5. In a pointed exact protomodular category C, let R and S be two equivalence relations on an object A and
y : Y → A the normal subobject associated with S. Then [R, S] = 0 if and only if s0y : Y → R is normal.

Theorem 4.6. Let C be a pointed exact protomodular category, so that kernel pairs coincide with equivalence relations. The
following are equivalent:

1. C is action accessible;
2. C has centralizers for equivalence relations (in the sense of Definition 4.3).

Proof. We have already seen in Proposition 4.1 that homological action accessible categories have centralizers. Nowwe are
going to prove that if in C any equivalence relation has a centralizer, then C is action accessible.

We have to show that any split extension (B, A, p, s, x) admits a morphism into a faithful one. If the given one is
itself faithful, simply take the identity. If not, by Proposition 4.4, EB ≠ ∆B, hence EA ≠ ∆A. Thanks to the following
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inclusion:

X
x // A

p //

⟨sp,1A⟩

��

B
s

oo

s

��
X

⟨0,x⟩
// R[p]

r0 //
A

s0
oo

it suffices to find a morphism into a faithful split extension from the lower canonical split extension.
By hypothesis, [R[p], EA]A = 0, so there exists a double centralizing equivalence relation C:

C
p0 //
p1

//

d0

��

d1

��

EA

z0

��

z1

��
R[p]

r0 //
r1

// A

Let us consider then the coequalizers q : A → B, q : R[p] → A of EA and C respectively. Since C is exact, we can apply
Barr–Kock Theorem (see [9]) to the following diagram:

C
p0 //

d0
��

d1
��

EA
t0

oo

z0

��
z1

��
R[p]

q

��

r0 //
A

q

��

s0
oo

A
p //

B
s

oo

and conclude that the lower square is a pullback. This means that ker p = X and (B, A, p, s, x) is a split extension on X . We
want to show that it is faithful, applying Proposition 4.4.

Consider the following composite of morphisms in SplExt(X):

X
⟨0,x⟩ // R[p]

q

��

r0 //
A

q

��

s0
oo

X
x // A

p //

⟨sp,1A⟩

��

B
s

oo

s

��
X

⟨0,x⟩
// R[p]

r0 //
A

s0
oo

Let EA be the centralizer of R[p], and zA : ZA → A the associated normal subobject. By Proposition 4.5, s0zA is normal. Now
take the following diagram where the two squares are constructed as pullbacks:

K

q′

��

k // A

q

��
ZB

s′

��

zB // B

s
��

ZA
zA // A
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then, by composition, s0k results to be the pullback of s0zA along ⟨sp, 1A⟩q, and then it is normal in R[p]. So, again by
Proposition 4.5, for the equivalence relation EK associated to k : K → A, we have [EK , R[p]]A = 0 and consequently EK ≤ EA,
since EA is the centralizer. But this means that qk = 0 and then ZB = 0 because (zB, q

′) is a (mono, regular epi)-factorization.
Finally, by Proposition 4.4, the split extension

X
x // A

p //
B

s
oo

is faithful and the proof is completed. �
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