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Abstract: Extreme sea waves, although rare, can be notably dangerous when associated with energetic
sea states and can generate risks for the navigation. In the last few years, they have been the object of
extensive research from the scientific community that helped with understanding the main physical
aspects; however, the estimate of extreme waves probability in operational forecasts is still debated. In
this study, we analyzed a number of sea-states that occurred in a precise area of the Mediterranean sea,
near the location of a reported accident, with the objective of relating the probability of extreme events
with different sea state conditions. For this purpose, we performed phase-resolving simulations of
wave spectra obtained from a WaveWatch III hindcast, using a Higher Order Spectral Method. We
produced statistics of the sea-surface elevation field, calculating crest distributions and the probability
of extreme events from the analysis of a long time-series of the surface elevation. We found a good
matching between the distributions of the numerically simulated field and theory, namely Tayfun
second- and third- order ones, in contrast with a significant underestimate given by the Rayleigh
distribution. We then related spectral quantities like angular spreading and wave steepness to the
probability of occurrence of extreme events finding an enhanced probability for high mean steepness
seas and narrow spectra, in accordance with literature results, finding also that the case study of
the reported accident was not amongst the most dangerous. Finally, we related the skewness and
kurtosis of the surface elevation to the wave steepness to explain the discrepancy between theoretical
and numerical distributions.

Keywords: extreme waves; higher order spectral method; WaveWatch III

1. Introduction

The study and prediction of open seas states is of major importance for the safety of
navigation and marine structures. In the last few decades, many ship accidents have been
reported in the presence of extreme waves [1–3] in coastal and deep water, all over the
world. Most of these reports are from Atlantic and Pacific Ocean and the North Sea, owing
to the more extreme conditions that can be encountered in those areas, but a number of
them were also registered in the Mediterranean Sea. In many cases, large ships navigating
in apparently safe conditions, even if notably energetic, came across abnormally large
waves, at least twice as high as the significant wave height. These so called ‘rogue’ or ‘freak’
waves have been recognized and studied thoroughly by the scientific community and their
generation mechanisms have been established to be mainly due to dispersive focusing,
spatial focusing, waves interaction with wind, currents and topography, and modulation
(or Benjamin–Feir) instability [4–6]. Which of these mechanisms is the dominant one in
typical oceanic seas is still debated and, even if Benjamin–Feir instability seems to be the
main actor for narrowband or unidirectional spectra, in multidirectional short-crested seas,
its effect can be less relevant [4,7].
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Understanding their generation mechanisms has been of crucial importance when
attempting to predict their appearance in given sea conditions, in a probabilistic sense.
Indeed, talking about extreme or rogue or freak waves requires a statistical approach
because of the stochastic nature of ocean waves in general and of the low rate of occurrence
of these kind of events. Ocean waves in a given sea state can be predicted in terms of
probability of occurrence of a given wave or crest height, and different sea conditions
can give rise to different statistical description, with probability distributions that can be
predicted theoretically or fitted with ad-hoc representations.

If the wave field is considered as an infinite sum of elementary waves with different
frequencies and random phases, in the linear approximation, the wave and crest heights
are described by the Rayleigh distribution—namely, adopting the definition of rogue waves
H > 2.2 Hs, where Hs is the significant wave height, gives an exceedance probability of
PR(H > 2.2 Hs) = 6.25× 10−5, while adopting the crests criterion ηc > 1.25 Hs gives an
exceedance probability of PR(ηc > 1.25 Hs) = 3.73× 10−6. In real world, it has been shown
from measurements [8,9] and laboratory experiments [10] that the probability distribution
can be strongly non-Gaussian, especially concerning wave crests. However, establishing
whether reported accidents [3] were caused by extreme waves is impossible because of
the lack of a wave record, but interesting information can be obtained with a reanalysis
of those sea states. Namely, with proper tools and methodologies, it is now possible to
approach the problem with a quantitative statistical analysis and to associate the sea state
during an accident with a certain probability distribution.

In this work, we have focused the attention on a specific accident that occurred to
the cruise ship Louis Majesty in March 2010, which, during navigation from Barcelona to
Genoa in storm conditions with significant wave height higher than 4 m, encountered a
large wave hitting deck 5, 16.7 m above the floating line, and causing important damage to
the ship, several injured persons, and two deaths. The estimation of the real sea conditions
reconstructed by previous studies is not definitive and ranges from Hs ' 4 m [2], to
Hs ' 4.8 m [11], with nearby Begur buoy registering Hs ' 5 m. However, it is clear
how the wave hitting the ship was noticeably higher than the significant wave height. A
reanalysis of that accident has been done by Cavaleri et al. [11], modeling the sea state
with a system of two coupled Nonlinear Schrödinger (CNLS) equations, motivated by a
crossing sea condition found with the WAM hindcast. Their results suggested that the
incident angle of the two wave systems was associated with an enhanced maximum crest
amplitude, giving a possible physical interpretation for the presence of rogue waves in
crossing seas.

The first objective of our study is therefore to analyze the Louis Majesty accident,
and to evaluate the associated probability of occurrence of extreme events, comparing
the accident circumstances to other sea conditions in the same area, in order to establish
whether the sea conditions encountered by the ship were particularly unusual and if they
could be a priori related to a higher probability of occurrence of extreme waves. Secondly,
we will exploit such statistical analysis of many different sea states to assess the accuracy
of theoretical distributions in real conditions, which will help with understanding their
dependence on macroscopic spectral quantities and identifying the optimal formulations
to be used in operational forecasts.

The most natural numerical approach for a statistical reanalysis of this type is with
high resolution phase-resolving models, which describe the temporal evolution of the sea
surface, solving for both wave amplitude and phase. Indeed, phase-averaging models, e.g.,
WAM [12], WaveWatch III [13], typically employed to perform large-scale as well as regional
forecasts and hindcasts, give satisfactory results in terms of macroscopic observables,
as significant wave height, mean wave direction, peak period, angular spreading, etc.,
but lack in the description of local phenomena. Recent works [14,15] have introduced
the possibility to estimate extreme sea waves from spectral models, through statistical
distributions based on mean wave parameters, showing promising results in a comparison
with stereo camera observations. However, phase-resolving models have the advantage to
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directly reconstruct statistical distributions from the surface elevation, which is a prognostic
variable, and are therefore particularly suited for a reanalysis of single events. Concerning
deep water gravity waves, this approach consists of the numerical solution of the Euler
equations in potential form, which can be achieved with different methods. The more
widely adopted are for sure the Boundary Element Method (BEM) [16,17] and the Higher
Order Spectral (HOS) method proposed independently by Dommermuth and Yue [18]
and West et al. [19]. In particular, the latter has proven to be more powerful in terms
of computational efficiency and fast convergence and is the one that has been used in
the present study. The method has been widely validated in several configurations, e.g.,
nonlinear energy transfers [20,21], modulational instabilities [22] or freak waves [23,24].
In particular, there are a few recent studies where this method has been coupled with
wave forecasting models (WAM,WWIII) [7,25,26], simulating with the HOS method the
free evolution of the hindcast spectra extracted from the global model.

A similar coupled WWIII/HOS methodology has been used in this work, coupling
wave spectra from a wave hindcast produced by the Environmental Modelling and Moni-
toring Laboratory for the Sustainable Development (LaMMA) Consortium [27] with local
HOS phase-resolving simulations, without interaction with winds, currents, and topog-
raphy, in order to evaluate the sole effect of nonlinear interactions. With phase-resolving
simulations, it would then be possible to follow a statistical approach for the description of
the wave system, evaluating crest height distributions as well as integral statistics (skew-
ness, kurtosis) of surface elevation. As stated above, the present approach is mostly suitable
for offline simulations of wave spectra as its direct implementation in forecast routines is
not feasible because of its computational cost. However, associating in advance a given sea
state with a certain probability of extreme events can help to establish criteria that can be
used in operational wave models.

It is worth remarking that our analysis is not intended to give an absolute number
of this probability, which may vary significantly with different hindcast models, hindcast
resolution, atmospheric wind forcing models used for the hindcast, and so on, but, fixing
all these conditions, to compare it to other cases that have been analyzed.

The paper is organized as follows: in Section 2, we show the numerical methods used
for phase-resolving HOS simulations Section 2.1 and for WWIII hindcast Section 2.2. In
Section 2.3, we give details of the set of HOS simulations that has been performed. In
Section 3, we show our main results in terms of wave spectra Section 3.1 and wave statistics
Section 3.2. Finally, in Section 4, we draw our conclusions.

2. Numerical Methods
2.1. Higher Order Spectral Method

The HOS method is formulated under the assumptions of incompressible, inviscid,
and irrotational flow, which allow for applying the potential flow theory, expressing the
velocity field through a potential, V(x, y, z, t) = ∇φ(x, y, z, t), and the continuity equation
through the Laplace equation

∆φ = 0, (1)

with x, y the horizontal coordinates, and z the vertical one. The continuity equation is
coupled with a dynamic and a kinematic boundary condition, to ensure, respectively, the
continuity of the pressure field and a zero flux through the free surface η(x, y, t). These
two conditions, expressed in terms of the free surface elevation and the surface potential
φs(x, y, t) = φ(x, y, η, t), read as follows:

∂φs

∂t
= −gη − 1

2
|∇φs|2 +

1
2

(
1 + |∇η|2

)(∂φ

∂z

)2
at z = η(x, y, t), (2)

∂η

∂t
=
(

1 + |∇η|2
)∂φ

∂z
−∇φs · ∇η at z = η(x, y, t). (3)
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In our work, the time evolution of the above set of equations is numerically solved
through the HOS-ocean open-source code [23,28,29] (https://github.com/LHEEA/HOS-
ocean, accessed on 3 March 2010 ), which is based on the West et al. [19] version of the
HOS scheme for iterative evaluation of the vertical velocity W = ∂φ/∂z. The equations
are discretized in space on a pseudo-spectral regular grid in a double periodic domain in
the two horizontal directions, performing derivation operations in the spectral domain,
through the Fast Fourier Transform (FFT), and arithmetic operations in the physical space.
In the vertical direction, an infinite water depth is considered, since it is out of the scope of
this study to evaluate the effect of bathymetry and finite depth. Moreover, the analyzed
location described in next section is characterized by an approximate depth of d ≈ 1200 m;
thus, finite depth effects are negligible. Time discretization consists of a Runge–Kutta
4th-order scheme, with an adaptive time-step changed dynamically to achieve a prescribed
tolerance [23] (typically of the order 10−7–10−9). Nonlinear interactions among wave
components are accounted for up to an arbitrary order M in wave steepness. In the present
study, we have adopted a nonlinearity order of M = 3 in order to take into account up to
third order nonlinearities, with a full dealiasing.

An initial wave surface elevation field obtained as a realization of a given wave
spectrum is evolved in time without external forcing and dissipation. Phenomena like
wind–wave interactions and wave-breaking are not described in HOS-ocean, even if
they could be modeled and taken into account in HOS methods [24,30,31]. The initial
wave spectrum can be given in parametric form with the Joint North Sea Wave Project
(JONSWAP) spectrum or through a directional WWIII spectrum. The directional spectrum
S(ω, θ) is then converted into a wavenumber spectrum S(kx, ky) and the surface elevation
η(x, y, t = 0) and the velocity potential φ(x, y, t = 0) are initialized in a linear way with
random phases [21]. The Dommermuth adjustment scheme [23,32] is used to smooth the
initial transient from a linear to a fully nonlinear field in a few wave peak periods (5–10 Tp).
Several works [20,22,33,34] have validated the HOS method in different configurations,
e.g., standing wave, propagation of regular waves, nonlinear focusing of irregular waves,
crossing seas, with a good general agreement. Concerning the particular numerical code
used in this study, HOS-ocean, it has been demonstrated [29,34], for regular waves, an
exponential decay of error with nonlinearity order and the number of grid cells thanks
to the pseudospectral formulation. Moreover, wave focusing tests with different wave
steepness have shown an average global error of around 10% and of less than 5% on the
height of the focused wave, with respect to wave tank experiments.

2.2. WaveWatch III Hindcast

Wave data were extracted from the LaMMA Consortium wave hindcast, covering the
period 1990–2018 [27,35]. This wave hindcast was produced for the Mediterranean Sea
at high-resolution, up to 500 m on some coasts of the Ligurian and Tyrrhenian Seas, and
around 6 km on the rest of the Mediterranean coasts, while the minimum offshore resolution
is of 30 km. The wave model adopted was WaveWatch III (WW3) [13], a full-spectral third
generation ocean wind-wave model developed at National Oceanic and Atmospheric
Administration and National Centers for Environmental Predictions (NOAA/NCEP),
with an unstructured computational grid. The model solves for a transport equation in
conservative form of the spectral action density, where the effects of physical phenomena at
play (wind forcing, wave dissipation, nonlinear wave interactions, etc.), are added through
different explicit source/sink terms in the spectral space. Hindcast simulations were
performed using the discrete interaction approximation (DIA, [36]) to model nonlinear
wave–wave interactions, and the source term package ST4 [37,38], with default parameters,
to model wind forcing and dissipation due to wave breaking.

Wind forcing of the wave model was based on a dynamic downscaling of the ERA5
reanalysis dataset of the European Centre for Medium-Range Weather Forecasts (ECMWF),
obtained through a nesting between BOLAM [39] and MOLOCH [40] models, with a maxi-
mum resolution of about 2.5 km for the area of interest. In addition to gridded wave and

https://github.com/LHEEA/HOS-ocean
https://github.com/LHEEA/HOS-ocean


J. Mar. Sci. Eng. 2021, 9, 422 5 of 20

wind data, wave spectral data were extracted in more than 2000 points, distributed through-
out the Mediterranean, but with a particular concentration along the high-resolution coastal
areas. The wave spectrum has a resolution of 10◦ (36 directional bands) with 30 frequency
intervals, ranging from 0.0418 Hz to 1.1181 Hz. A wave model calibration was performed
in a previous work [27,35] comparing the numerical results for twelve storms with data
from seven buoys, in the area with higher resolution.

2.3. Numerical Simulations

We have focused our study on the accident that happened to the Louis Majesty cruise
ship on 3 March 2010 between 2:00 p.m. and 3:00 p.m. UTC. At that time, the position of
the ship was approximately 41◦51′ N, 3◦45′ E. For the present work, we have considered
the WWIII spectra at the location 41◦55′ N, 3◦39′ E, at a distance of about 11 km, which is
the closest point of extraction from our hindcast, corresponding to the position of the Begur
Buoy of Puertos del Estado [41]. Figure 1a shows the significant wave height and the wave
direction on the northwestern Mediterranean area at the time of the accident: as we can see,
the region in the neighborhood of the buoy and of the ship was characterized by a system
of waves coming from E N-E, with the most energetic conditions located approximately
in the middle of the Gulf of Lion. We can also see in Figure 1b a zoom on the area of the
accident showing the position of the buoy (circle) and the approximate position of the
ship (star). The time series of the significant wave height at the buoy position in Figure 2a,
measured by the buoy and by our hindcast, shows a good overall agreement for the year
2010, quantified in Figure 2b with a scatterplot between observed and model significant
wave height, resulting in a correlation coefficient of r = 0.95, and in a mean bias error of
MBE = 0.09. For a thorough assessment of hindcast performances, we remind the reader
to refer to [27]. It is worth noting that the hindcast underestimates the significant wave
height at the time of the accident Hs ≈ 4.1 m with respect to buoy observations Hs ≈ 5 m.
Moreover, a different expected significant wave height also with respect to the analysis of
Cavaleri et al. [11] denotes a certain variability between the hindcasts, which could lead
to slightly different results in absolute terms. In any case, focusing our attention on the
comparison amongst different sea states, all obtained from the same hindcast (resolution,
parametrization and wind forcing), excludes the related variability.

(a) (b)

Figure 1. Significant wave height and mean wave direction on the northwest Mediterranean Sea on 3 March 2010 at 3:00 p.m.
UTC (a), and zoom on the area of the accident (b). The star indicates ship position, the circle indicates Begur buoy position
http://www.puertos.es/es-es/oceanografia/Paginas/portus.aspx (accessed on 1 September 2020).

http://www.puertos.es/es-es/oceanografia/Paginas/portus.aspx
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Figure 2. Time series of the significant wave height during year 2010 from the present WWIII hindcast and from Begur
buoy (a), with the inset showing the period from 1 March 2010 to 4 March 2010; on the right panel; (b) scatter plot
representation of the significant wave height, with mean bias error (MBE), mean absolute error (MAE), root mean-square
error (RMSE), centered root mean-square error (cRMSE), and correlation coefficient (r).

In order to analyze the sea state conditions encountered by the Louis Majesty ship in
a broader context, we have performed a series of 54 simulations of different sea conditions
that occurred in the same location at different times of the 2010 year, selecting amongst the
most energetic ones (see Table 1). In particular, we have fixed a threshold for the significant
wave height Hs ' 2 m, and we have picked the events associated with distinct peaks in the
time series analysis, discarding consecutive cases with similar spectral characteristics. The
significant wave height Hs ≈ 4σ, where σ is the standard deviation of surface elevation,
spans from 1.9 m to 6.75 m, the wave steepness ε = kp · σ, where kp is the peak wavenumber,
spans from 0.028 to 0.066, and the angular spreading σθ from 0.2 to 1.09. For the sake of
completeness, we have also reported the peak period Tp and the Benjamin–Feir Index (BFI),
which is the ratio between wave steepness and spectral bandwidth. All these quantities
are evaluated directly from the directional wave spectrum through the relations reported
in Appendix A. Finally, the peak direction refers to the direction from where waves are
coming and for the bimodal cases to the direction of the dominant mode, which in most
cases is clearly larger than the secondary one.

For each “event,” we have extracted the directional wave spectrum at that specific
position from the WWIII hindcast, and we have used it to initialize the amplitude of the
surface elevation and the velocity potential of the HOS simulations, while the phases are
initialized randomly. In this way, each HOS simulation represents a different realization
and is subjected to statistical variability. For the Louis Majesty accident case, we have
performed different realizations, showing in the results an average value and a confidence
interval, to give an idea of the statistical error. In each case, we have properly rotated the
spectrum to align the mean direction of wave propagation with the x-axis. As a result of a
grid convergence study, we have adopted a resolution of 512× 512 dealiased modes for
all the simulations, with a domain size of 40 λp × 40 λp, where λp = 2π/kp is the peak
wavelength. This discretization means that the highest wavenumber solved by the HOS
solver (free of dealiasing errors) is kmax = 6.4 kp, which is consistent with previous literature
studies [22–24]. Moreover, it has been shown [42] that too high numerical resolutions, in
certain ranges of the physical parameters (Hs, Tp, ε), can lead to numerical instabilities due
to the impossibility of representing the wave-breaking phenomena, the surface elevation
being a single-valued function.
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Table 1. List of the events simulated with HOS model with the respective average spectral quantities: peak direction
(coming from), wave steepness ε, Benjamin–Feir Index (BFI), significant wave height Hs, peak period Tp and spectral
angular spreading σθ . ? denotes a crossing sea condition; the gray line corresponds to the Louis Majesty accident date and
time.

Case # Date Time Peak Direction (◦)
(Coming-From) ε (Steepness) BFI Hs (m) Tp (s) σθ (Spreading)

1 01/01/2010 09:00 214 0.028 0.154 2.7 9.74 0.444
? 2 01/01/2010 23:59 329 0.054 0.276 3.05 7.5 0.887

3 08/01/2010 11:00 360 0.062 0.390 5.6 9.54 0.470
? 4 09/01/2010 05:00 343 0.055 0.318 4.4 9.03 0.366

5 09/01/2010 20:00 344 0.056 0.320 4.2 8.67 0.316
? 6 15/01/2010 00:00 24 0.059 0.370 4.75 8.86 0.794
? 7 26/01/2010 10:00 73 0.039 0.173 2.8 8.38 0.638
? 8 26/01/2010 22:00 356 0.059 0.374 3.6 7.85 0.495
? 9 27/01/2010 08:00 23 0.062 0.366 4 8.21 0.635
? 10 28/01/2010 08:00 348 0.053 0.307 3.75 8.44 0.354

11 07/02/2010 10:00 344 0.057 0.335 3.23 7.61 0.362
? 12 09/02/2010 20:00 5 0.062 0.402 4.25 8.4 0.696
? 13 10/02/2010 07:00 351 0.062 0.377 4.42 8.6 0.528

14 10/02/2010 21:00 343 0.057 0.328 4.4 8.83 0.351
? 15 19/02/2010 08:00 19 0.066 0.425 4.25 8.14 0.729

16 03/03/2010 15:00 82 0.045 0.298 4.08 9.46 0.468
17 08/03/2010 13:00 73 0.054 0.319 6.75 11.22 0.294

? 18 10/03/2010 09:00 346 0.060 0.350 3.8 8.08 0.526
19 15/03/2010 08:00 348 0.054 0.325 3.6 8.25 0.330
20 30/03/2010 07:00 210 0.054 0.341 1.9 5.95 0.458

? 21 30/03/2010 21:00 301 0.046 0.241 2.3 6.97 1.094
22 05/04/2010 01:00 347 0.048 0.255 2.6 7.4 0.391

? 23 08/04/2010 12:00 346 0.057 0.335 3.25 7.68 0.458
? 24 23/04/2010 16:00 71 0.034 0.191 2.1 7.76 0.434

25 04/05/2010 09:00 352 0.064 0.393 6.2 9.78 0.421
26 15/05/2010 08:00 340 0.055 0.313 2.75 7.12 0.383
27 20/06/2010 23:59 344 0.055 0.319 4 8.53 0.363
28 21/06/2010 06:00 341 0.057 0.329 4 8.46 0.368
29 05/07/2010 23:59 343 0.056 0.327 2.72 7.03 0.326
30 06/07/2010 02:00 346 0.055 0.324 2.92 7.41 0.331
31 24/07/2010 00:00 346 0.056 0.336 2.84 7.25 0.340
32 25/07/2010 23:59 343 0.055 0.325 3.2 7.65 0.350
33 06/08/2010 04:00 350 0.055 0.330 2.43 6.71 0.357
34 28/08/2010 06:00 353 0.057 0.338 3.26 7.64 0.346
35 26/09/2010 07:00 350 0.057 0.354 3.8 8.24 0.349

? 36 10/10/2010 23:59 66 0.034 0.207 3.85 10.64 0.443
37 11/10/2010 12:00 70 0.044 0.244 5.22 10.89 0.296

? 38 12/10/2010 15:00 76 0.046 0.262 4 9.43 0.406
? 39 13/10/2010 05:00 85 0.045 0.252 3.2 8.45 0.563

40 03/11/2010 00:00 346 0.055 0.325 3.92 8.48 0.335
41 08/11/2010 16:00 230 0.058 0.358 2.88 7.11 0.350
42 09/11/2010 16:00 214 0.029 0.111 2.62 9.65 0.202

? 43 10/11/2010 23:00 339 0.056 0.333 2.84 7.28 0.638
44 16/11/2010 21:00 343 0.052 0.289 3.8 8.55 0.331
45 24/11/2010 07:00 347 0.053 0.311 2.74 7.31 0.352
46 26/11/2010 04:00 345 0.056 0.333 3.02 7.42 0.376
47 03/12/2010 19:00 348 0.057 0.335 2.51 6.73 0.441
48 09/12/2010 21:00 354 0.058 0.358 3.51 7.82 0.390
49 13/12/2010 03:00 21 0.050 0.281 3.12 7.82 0.342
50 15/12/2010 22:00 348 0.057 0.342 5.03 9.43 0.333

? 51 17/12/2010 21:00 343 0.056 0.354 3.12 7.49 0.551
52 24/12/2010 10:00 342 0.054 0.304 4.81 9.5 0.397
53 25/12/2010 21:00 345 0.056 0.321 4.93 9.48 0.312
54 26/12/2010 10:00 350 0.055 0.330 4.81 9.38 0.305
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Each set of simulations has been performed for a time of 500 Tp, which for the cases
considered means a physical time ranging from 55 to 90 minutes, largely exceeding the
typical duration of a wave record. Such a long duration was initially guessed to have
the possibility of making longer and more robust statistics. However, upon verification
that steady conditions were maintained, we restricted the averaging windows on shorter
intervals, as will be shown in Section 3. The surface elevation and spectra, which have
been used in the statistical analysis, are saved every peak period Tp [28,43,44].

3. Results and Discussion

In this section, we show the results of our set of numerical experiments focusing the
attention on the spectral evolution and on the statistical analysis of the surface elevation
and extreme events. For every case, we have done a single realization, averaging the
statistical quantities over a time window to obtain accurate statistics. Only for case #16,
which refers to the Louis Majesty accident, we have performed nine different realizations
to have an estimate of the confidence interval.

3.1. Spectral Evolution

In Figure 3, we show three snapshots at t = 0, t = 100 Tp and t = 250 Tp of the
surface elevation spectrum, available directly in the HOS method as the Fourier transform
of η(x, y), for three different cases. The Louis Majesty accident spectrum, which has an
angular spreading of σθ = 0.468, is compared to the two extreme cases (in terms of angular
spreading) of our set of simulations: case #21 with σθ = 1.09 and case #42 with σθ = 0.20.
The three pictures of the initial spectra reveal very different sea conditions. For case #42,
the shape is fairly symmetric with a low initial angular spreading that remains limited in
angular direction also for later times. For case #16 (Louis Majesty accident), the initial shape
is much more irregular with a large angular spreading that seems to grow more rapidly
with respect to the previous case. The presence of a second connected peak, even if much
smaller than the dominant one, highlights a possible imminent crossing sea condition,
which has been confirmed analysing spectra during the following daytime. Finally, case
#21 presents a double peak configuration with two distinct peaks at 215◦ and 340◦, and
different frequencies. In all the three cases, we can see how the spectra coherence decays
rapidly and with very similar time scales. According to this finding, we have decided to
make the statistical analysis only in time windows up to t = 100 Tp without going further.

In Figure 4, we show the omnidirectional spectrum S(k) =
∫ 2π

0 S(k, θ)dθ, where
S(k, θ) is evaluated through the complex amplitude function [21], at different times for
case #16. The scalings are very close to the k−2.5 power law, in accordance with Zakharov
and Filonenko theory [45] and with previous numerical studies [24,46]. However, for long
periods of time (t > 250 Tp), there is an accumulation of energy at a high wavenumber that
might be due to the absence of a physical dissipation in the model. It is worth remarking
that, in order to analyze the wave field evolution on longer times, ad-hoc terms to model
the energy dissipation should be added. They have been formulated by previous studies,
notably by filtering out high wave numbers with low pass filters in the spectral domain;
however, we have preferred to avoid this effect by analyzing the wave fields on shorter
time windows.
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Figure 3. Evolution of the wavenumber spectrum for three different cases: (a)–(c) case #16, (d)–(f) case #21, (g)–(i) case #42.
(a,d,g) t = 0, (b,e,h) t = 100 Tp, (c,f,i) t = 250 Tp. Contour lines range from 10−2.5 to 10−1.
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3.2. Wave Statistics
3.2.1. Integral Statistics

In this section, we show the statistics of the nonlinear wave fields. We start analyzing
integral statistics of the surface elevation η, like skewness λ3, and kurtosis λ4, which
determine respectively the asymmetry of the probability density function and the weight
of tails. It has been shown that these two statistical quantities, expressing respectively the
third and fourth order moments of a statistical distribution (see Appendix A for details),
are of great importance in determining an increased probability of occurrence of extreme
phenomena [47–49] due to nonlinear interactions. It is worth noting that the skewness is
λ3 = 0 (symmetric distribution) and the kurtosis λ4 = 3 for linear waves. Positive values
of skewness are mainly due to the nonlinear shape of waves (crests more frequents than
troughs), while values of kurtosis greater than 3 imply a higher frequency of extreme events
with respect to the linear distribution. Figure 5 shows the time evolution of the skewness
and the excess kurtosis of surface elevation. We have compared case #16 representing
the Louis Majesty accident, to case #4, where we have detected the maximum average
kurtosis. An initial transient of the order of 10 Tp, which is due to the smooth shifting
from a linear to a nonlinear field, is present in both the statistics. After this initial stage,
the skewness reaches a steady-state value in case #16, while in case #4 a higher peak is
observed, followed by a slow descent, reaching a more stationary value only after 400 Tp.
The evolution of the kurtosis is more irregular, but it oscillates around an average positive
value in both cases, without any significant dynamics.
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Figure 5. Evolution of skewness and excess kurtosis of the surface elevation: (a) case #16, (b) case #4.

It has been shown experimentally [10,43,50] and numerically [23,24] with HOS simula-
tions that, for narrowband JONSWAP spectra (large Benjamin–Feir index, see Appendix A),
third and fourth order statistics deviate strongly from Gaussianity, with especially the
kurtosis reaching values close to 4. Such high values of the kurtosis, due to the high tails
of the distribution, are directly linked to an increased probability of extreme events, as
recorded in such cases, and correspond typically to the modulational instability genera-
tion mechanisms. Complementary studies [7,26] have shown on the other side that HOS
simulations initiated with hindcast ocean spectra (WWIII, WAM) yield non-Gaussian crest
distributions associated with quasi-Gaussian values of skewness and kurtosis, claiming
that extreme waves in real sea states are mainly due to second-order bound harmonic
waves, instead of that to modulational instability.

3.2.2. Crest Distributions

Wave crests are defined as the local maxima of the surface elevation η and their
identification is straightforward also in short-crested seas, whereas the wave height might
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be of difficult definition and calculation. For this reason, in this study, we have restricted
the analysis to crest heights to compute distributions and probability of extreme events.
In particular, crests are identified from the surface elevation field as local space maxima.
The space-time analysis is done considering snapshots of the surface field spaced in time
by Tp to avoid considering multiple times exactly the same events. In Figure 6, we show,
for the same cases analyzed in the previous section, the distribution of wave crests in
terms of exceedance probability. In the same plot, we can see the comparison between
HOS results and theoretical predictions: linear Rayleigh, second-order Tayfun [51], and
third-order Tayfun [7,52], with the values of skewness and kurtosis obtained from HOS
simulations, and Forristall distribution [53] (see Appendix A). The comparison with the
linear Rayleigh distribution is used to have a standard reference which only depends on
the significant wave height and is therefore constant, fixed ηC/Hs. In this way, it is more
immediate to quantify the probability distributions in an absolute sense and to evaluate
their degree of nonlinearity. The HOS distribution is calculated using all the local maxima
in a time window between t = 20–100 Tp, in order to discard the initial transient and the late
evolution where effects like angular spreading and high wavenumber energy accumulation
start to play a role. For the computation of Tayfun distributions, we have used the mean
skewness and kurtosis of the surface elevation averaged in the same time window. The
number of crests identified in this time window, analyzing the surface elevation at regular
interval of ∆t = Tp, is of nc = 840,724 for case #16, and of nc = 913,386 for case #4.
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Figure 6. Exceedance probability of crest heights normalized with Hs, P(ζ) = Pr[ηc/Hs > ζ]. (a) case #16, (b) case #4. Black
solid line — Rayleigh distribution, blue dashed line −− Tayfun second order distribution, magenta short dashed line - -
Tayfun third order distribution, green dotted line · · · Forristall distribution, red squares �HOS simulation. The vertical line
at ηc/Hs = 1.25 represents the threshold to identify extreme events.

Even if the two distributions differ significantly from a quantitative point of view,
their comparisons to the respective theoretical distributions are similar. In both cases,
they are always higher than the Rayleigh distribution and in particular, at the threshold
ηc = 1.25 Hs, used for the identification of rogue waves; the difference is at least one order
of magnitude. Both Tayfun and Forristall distributions are very close to the results of
simulations, especially regarding the third-order distribution in case #4. This is less evident
in case #16, where the HOS distribution is even higher of the third-order Tayfun. As we
will show in the following section, this good matching with second- and third-order Tayfun
distributions is generally true for all the cases that we have tested and we can therefore
state that second-order nonlinearities are mainly responsible for extreme waves generation,
while third-order nonlinearities play a minor role for the sea states analyzed in this study.

This is in agreement with similar analysis carried out with the same coupled method
(WWIII/WAM with HOS) on different events [7,26].
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3.2.3. Dependence of Statistics on Macroscopic Observables

In this section, we present the overall results of all cases considered in this study,
showing the dependence between statistical integral quantities and macroscopic physical
observables. Notably, to quantify the deviation from the Rayleigh distribution, we evaluate
the probability associated with the number of crests exceeding the threshold ηc = 1.25 Hs,
and we normalize it with the same probability for the Rayleigh distribution. This probability
ratio, P/Pr, has been found to be always greater than one in our simulations, concentrating
in particular in the range between 10 and 20. The following figures are scatter plots where
each point represents a different case # of Table 1, with the red point highlighting the
Louis Majesty accident case, with error bars showing a 95% confidence interval estimated
with nine different realizations. In Figure 7a, we have related this probability with the
angular spreading σθ and the wave steepness ε for each case. In terms of the angular
spreading, we do not see a distinct correlation, but it just emerges that the upper envelope
is a decreasing function of σθ . This is in agreement with the findings of [24], where this
analysis was done for JONSWAP spectra at fixed steepness and bandwidth, and where
they showed a decay of the probability of rogue waves increasing σθ . In our case, the trend
is not so marked because the steepness varies among the cases, resulting in a number of
long crested waves (small spreading) associated with small steepness so that nonlinear
effects and deviation from Gaussian statistics become negligible. Indeed, as we can see in
Figure 7b, the correlation between the wave steepness ε and the probability of extreme
events is more clear, with an increased probability for higher values of the steepness. The
greater part of samples has values of ε between 0.05 and 0.06, and there are a few cases
with ε < 0.05. On the same plot, we show the probability that would be predicted by a
second- (blue line) and a third- (red line) order Tayfun distribution estimated with the sole
steepness parameter. The two distributions define the upper and lower limits with respect
to the actual values of the probabilities estimated from the HOS simulations; therefore, the
second order approximation is not sufficient to have an exact estimation, while the third
order one is overestimating the results. However, both of them significantly increase the
prediction of extreme events with respect to the Rayleigh distribution. We can also see
how, in terms of absolute probability, the Louis Majesty accident was not characterized by
particularly severe conditions if compared to other cases.
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Figure 7. Probability of extreme waves normalized with the Rayleigh probability P/Pr as a function of angular spreading
σθ (a), and wave steepness ε (b). The red diamond � indicates case #16 (Louis Majesty accident), with error bars indicating a
95% confidence interval. The blue line in (b) indicates the theoretical probability estimated from the second-order Tayfun
distribution. The red dashed line indicates the theoretical probability estimated from the third-order Tayfun distribution.
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A more detailed representation is given in Figure 8, where we show the comparison
of the probability of extreme events with different theoretical distributions by means of
different normalizations. In panel (a), the probability obtained from HOS simulations is
divided by the probabilities estimated from the generalized Tayfun second-order distribu-
tions [9,51], with different estimates of the steepness parameter, namely:

• the steepness parameter is estimated from the skewness of the surface elevation,
µ = λ3,HOS/3;

• the steepness parameter is estimated a priori from the peak wavenumber, µ = ε = kpσ;
• the steepness parameter is estimated a priori from the mean wavenumber, µ = ε = kmσ;
• the steepness parameter is estimated a priori from the mean wavenumber and cor-

rected with the bandwidth ν, µ = ε = kmσ(1− ν + ν2) [9].

In panel (b), the probability obtained from HOS simulations is divided by the third-
order Tayfun distribution, where the steepness parameter is estimated:

• from the skewness of the surface elevation;
• a priori from the peak wavenumber.

Such different formulations of the theoretical distributions have been compared
against HOS results in order to have a clearer idea on which one could be more promis-
ing in a forecasting optics. Fedele & Tayfun [9] proposed to include the bandwidth in
the steepness evaluation, showing better accuracy with respect to the simple mean wave
steepness [51], accurate only in narrowband conditions, while more recent works [7] found
a good agreement between theory and observations also with the latter definition. Thus,
a more comprehensive comparison of all the different parametrizations for different sea
conditions can be useful to generalize their use. The probability calculated from simula-
tions is on average ∼1.6 times the second-order Tayfun probability estimated from the
HOS skewness, and ∼1.1 times the third-order Tayfun probability estimated from the
HOS skewness and kurtosis. This implies that second-order nonlinearities are mainly
responsible for extreme waves generation and that third-order nonlinearities play a minor
role, although it is important to obtain a precise statistical description, as anticipated in
the previous section (see Figure 6). We can also see how, in both cases, when we evaluate
the Tayfun distributions a priori, it gives an overestimation of the probability of extreme
events, leading to values of P/Pt3 lower than one. Concerning the a priori estimate of the
second-order Tayfun distribution, Figure 8a shows that the version including the band-
width appears to be the most accurate, while the distribution evaluated with the mean
steepness is higher than the HOS distribution (P/Pt2 < 1), and the one evaluated with the
peak steepness is lower than the HOS distribution (P/Pt2 > 1). However it is worth noting
that, from a more qualitative point of view, they all show the same trend, namely they are
approximately constant with respect to the wave steepness and therefore they only differ
by a fixed amount. Moreover, considering as a reference, the self-consistent normalization
P/Pt2(λ3,HOS) identified by black circles, the closest parametrized distribution is the one
with the peak steepness, thus deriving definitive conclusions is not straightforward.

Figure 9a,b show the average values of the skewness and kurtosis of the surface
elevation of the HOS simulations. A clear correlation between the steepness and these two
integral statistics is evident, which, if related to the results from Figure 7b, also implies
higher probabilities of extreme waves for higher values of the skewness and kurtosis.
This is a central result of nonlinear wave theory [47,48] and is due to the fact that third
and fourth order statistical moments, measuring the departure from Gaussianity, give
an estimate of the degree of nonlinearity of the wave field. In the same figures, we have
reported the curves representing the values of skewness and kurtosis predicted in the
narrowband approximation [7,48,54], and also used to estimate the skewness and kurtosis
from the steepness in the Tayfun a priori distributions, λ3 = 3ε and λ4 = 18ε2. Even if the
type of dependence (linear and quadratic, respectively) is correct, the above expressions
do not ensure an exact fit of the skewness and the kurtosis obtained from the present
HOS simulations.
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Figure 8. Probability of extreme events normalized with second-order distributions (a), and with the Tayfun third-order
distribution P/Pt3 (b), as a function of wave steepness. The red diamond (�) indicates case #16 (Louis Majesty accident),
with error bars indicating a 95% confidence interval. Black circles (◦) correspond to P/Pt2 with µ = λ3,HOS/3 in the Tayfun
distribution. Blue squares (�) correspond to P/Pt2 with µ = ε = kpσ in the Tayfun distribution. Green stars (∗) correspond
to P/Pt2 with µ = kmσ(1− ν + ν2) in the Tayfun distribution. Cyan crosses (+) correspond to P/Pt2 with µ = kmσ. In panel
(b), black circles (◦) correspond to P/Pt3 with λ3 and λ4 from the HOS simulation. Blue squares (�) correspond to P/Pt3

with λ3 and λ4 estimated from µ = ε = kpσ in the Tayfun distribution.
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Figure 9. Dependence of skewness λ3 (a) and kurtosis λ4 (b) on wave steepness ε. The red diamond � indicates case #16
(Louis Majesty accident), with error bars indicating 95% confidence interval. The blue lines represent the theoretical curves
for the narrowband approximation λ3 = 3ε and λ4 = 18ε2.

Concerning the Louis Majesty case, the skewness and the kurtosis are well below the
mean when compared to the other cases. If we relate those integral statistical quantities to
the absolute probability of extreme waves, this is in accordance with the results shown in
Figure 7, where the HOS probability is normalized with the reference Rayleigh probability,
giving therefore an estimate of the absolute number of extreme events.

Finally, we show in Figure 10 the relation between the direction of wave peaks (coming-
from) and the probability of extreme events normalized with the third order Tayfun. The
directions from where waves are coming are mainly four: around ∼25◦ (Northeast), ∼80◦

(East), ∼210◦ (Southwest), ∼360◦ (North), with a clear dominance of the latter. In the same
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plot, we have highlighted the cases corresponding to initial crossing sea conditions, i.e.,
where at least two peaks at different angular directions are present (see Table 1). It is worth
noting that the cases where we have registered the higher discrepancy with respect to the
Tayfun third-order distribution are those relative to crossing seas, which is possibly related
to the fact that such distribution does not take into account energy partitioning amongst
distinct angular directions. Moreover, from a more phenomenological point of view, it
would be interesting to relate those cases with particular meteomarine conditions. Indeed,
an analysis of wave and meteorological maps suggests similar atmospheric circulation
conditions for the cases with enhanced probabilities of extreme events (those corresponding
to θdir ≈ 70–80◦), with a main flux coming from the northeast and a secondary flux from
the southeast, associated with a general cyclonic circulation. Concerning the Louis Majesty
case, it was not configured as a proper crossing sea because of the lack of a distinct second
peak, but it had a dominant and a very small secondary peak, and the regional circulation
was similar to the previously mentioned one. Investigating also wave spectra in the hours
following the accident, we have noticed the growth of the second peak for a few hours after
the accident. Therefore, even if a second large peak is not explicitly present at 3:00 p.m.
UTC, we can classify that event as an imminent crossing-sea condition, which is consistent
with the large angular spreading of the spectrum.
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Figure 10. Wave direction Θ (coming-from) versus probability of extreme waves normalized with the
Tayfun third-order probability P/Pt3. Blue stars ∗ denote crossing seas. The red diamond � indicates
case #16 (Louis Majesty accident), with error bars indicating a 95% confidence interval.

4. Conclusions

In this work, we have analyzed a number of sea states that occurred off the Cabo de
Begur, at the Begur buoy location during the year 2010. One of the cases that we have
analyzed refers to the date and time of the reported accident of the Louis Majesty cruise
ship, which happened in the close vicinity of that point. A total number of 54 sea states
were selected amongst the most energetic ones.

For every sea state, we have extracted the associated wave spectrum from a WWIII
hindcast and we have used these spectra to initialize phase resolving simulations with the
High Order Spectral Method. The objectives were: (a) to verify, with a statistical analysis,
the probability that the Louis Majesty ship had to encounter extreme conditions, comparing
the results to the other cases analyzed; and (b) to analyze the dependence of the probability
of extreme events from the macroscopic spectral quantities like angular spreading and
steepness, in order to verify the accuracy of the theoretical relations that can be used in
wave forecasting systems.

From the analysis of wave spectra, we have shown the wide range of conditions that
we have considered, with particularly big differences in the angular spreading and in the
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spectral shapes (single, double peaked). Moreover, we have used this preliminary evalua-
tion to restrict the statistical analysis to limited time windows because of the degradation
of the spectra and of an unphysical accumulation of energy at high frequency for long
periods of time.

Resolving the sea surface elevation has made a deep statistical analysis possible in
terms of integral statistics and distributions to gather information that is not available
from phase averaged models. The time evolution of skewness and excess kurtosis have
shown that no significant dynamics are present, and that both quantities reach average
values above the Gaussian ones, with kurtosis showing more significant oscillations around
the stationary-state. The distributions of wave crests show that the Rayleigh distribution
roughly underestimates the cumulative probability at the threshold ηc/Hs ' 1.25 of
around one order of magnitude, while second and third order Tayfun distributions give a
good prediction.

To have a global estimate of this trend for all the cases, we have shown a series of
plots where the probability of wave crests exceeding the given threshold is related to
the angular spreading of the spectrum, the wave steepness, and the wave directions. In
this way, it has been possible to show a quantitative comparison between the different
cases, and, in particular, it has emerged that the conditions for the Louis Majesty case
were not the worst, in terms of probability of extreme events. Moreover, we have shown
how theoretical distributions, based on spectral parameters like the Tayfun ones, give the
possibility of having a good prediction of the distribution of wave crests, and therefore
to have valuable criteria for the evaluation of the probability of extreme events. Tayfun
distributions evaluated with the actual values of skewness and kurtosis from simulations
have been computed as well to have a reference estimate for comparison with parametrized
distributions, finding a convergence between the numerical simulation and the reference
distributions passing from the second- to the third-order approximation. We have also
shown that, for the cases considered in this study, the relations derived for narrowband
waves can be used as an upper bound for the estimation of the skewness and the kurtosis
of the surface elevation, which measure quantitatively the nonlinearity of the wave field.

It is worth remarking that different parametrizations of the phase-averaged model
(WWIII), as well as the assumptions made with the HOS method (no wave interactions
with winds and currents, no wave-breaking dissipation), could affect the results in terms
of absolute numbers, and their effect should be addressed in complementary studies.
However, since our focus was on the inter-comparison between different sea-states with
fixed models and parameters conditions, this type of analysis can help to estimate the
different tendencies of some particular sea states to develop extreme waves. Moreover, the
comparison with theoretical distributions is fully consistent since they have been derived
from the sole nonlinear theory, without further physical assumptions. In our opinion, the
coupling of a phase-averaged wave model such as WWIII with the HOS method can give a
valuable contribution in the understanding of extreme waves phenomena and in offline
reanalysis of dangerous sea states in order to give guidelines for operational forecasting
models. Our analysis goes in this direction. Further works with different hindcast models,
hindcast grids, and geographical locations will help to delineate a complete picture and to
provide operational methods that could improve the safety of navigation.
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Appendix A

Appendix A.1. Spectral Integral Quantities

The total energy used for the computation of Hs is evaluated from the wave direc-
tional spectrum

E = σ2 =
∫∫

S(ω, θ) dω dθ . (A1)

The peak wavenumber kp refers to the frequency fp of the spectral peak, which is
estimated as follows [55,56]:

fp =

∫ ∞
0 f S4( f ) d f∫ ∞
0 S4( f ) d f

, (A2)

where S( f ) is the omnidirectional spectrum. The Benjamin–Feir Index (BFI) in the limit of
infinite depth is estimated as

BFI =
2
√

2ε

∆k/kp
'
√

2πε ·Qp , (A3)

where Qp is the peakedness parameter [57]. The angular spreading σθ is estimated as [7,13]:

σθ = [2(1−
√

a2 + b2

m0
)]1/2 , (A4)

where m0 is the zero order spectral moment, a =
∫∫

cos(θ)S(ω, θ) dω dθ and
b =

∫∫
sin(θ)S(ω, θ) dω dθ.

In the paper, three different definitions of the wave steepness have been used for the
computation of theoretical distributions, being

ε =kpσ , (A5)

µm =kmσ , (A6)

µa =kmσ(1− ν + ν2) , (A7)

where km is the mean spectral wavenumber related to the mean spectral frequency ωm = m1/m0,
and ν = (m0m2/m2

1 − 1)1/2 is the bandwidth.

Appendix A.2. Physical Integral Quantities

Deviations from Gaussianity in the distribution of surface elevation η(t) can be mea-
sured with the skewness and kurtosis, which weight respectively the asymmetry of the
distribution and the importance of tails. The skewness is defined as

λ3 =
η3

σ3 , (A8)

where σ is the standard deviation. The excess kurtosis is

λ4 =
η4

σ4 − 3 . (A9)
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Appendix A.3. Theoretical Distributions

The Rayleigh exceedance distribution of wave crests for linear waves is:

Pr(ηc/Hs) = exp
[
−8
( ηc

Hs

)2]
(A10)

The second-order Tayfun distribution [51] is

Pt2(ηc/Hs) = exp
[
−8ζ2

0

]
= exp

[
− (−1 + (1 + 8µηc/Hs)0.5)2

2µ2

]
, (A11)

where we have used µ = ε, µ = λ3,HOS/3, or µ = µm = kmσ. The third-order Tayfun
distribution is

Pt3(ηc/Hs) = exp[−8ζ2
0][1 + Λζ2

0(4ζ2
0 − 1)] , (A12)

where Λ is a parameter that expresses fourth order cumulants and can be approximated by
Λ ' 8λ4/3 [7,58]. The Forristall distribution [53] is

Pf r(ηc/Hs) = exp
[
−
( ηc

α Hs

)β]
, (A13)

with

α =0.356 + 0.2568S1 + 0.106Ur (A14)

β =2− 1.7912S1 + 0.0968U2
r , (A15)

and S1 = 2π Hs/(gT2
m), Ur = Hs/(k2

md3), with the latter being zero in our simulations
since we have considered infinite depth.

References
1. Didenkulova, I.; Slunyaev, A.; Pelinovsky, E.; Kharif, C. Freak waves in 2005. Nat. Hazards Earth Syst. Sci. 2006, 6, 1007–1015.

[CrossRef]
2. Nikolkina, I.; Didenkulova, I. Rogue waves in 2006–2010. Nat. Hazards Earth Syst. Sci. 2011, 11, 2913–2924. [CrossRef]
3. Didenkulova, E. Catalogue of rogue waves occurred in the World Ocean from 2011 to 2018 reported by mass media sources.

Ocean. Coast. Manag. 2020, 188, 105076. [CrossRef]
4. Kharif, C.; Pelinovsky, E. Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B/Fluids 2003, 22, 603–634.

[CrossRef]
5. Dysthe, K.; Krogstad, H.E.; Müller, P. Oceanic rogue waves. Annu. Rev. Fluid Mech. 2008, 40, 287–310. [CrossRef]
6. Onorato, M.; Residori, S.; Bortolozzo, U.; Montina, A.; Arecchi, F. Rogue waves and their generating mechanisms in different

physical contexts. Phys. Rep. 2013, 528, 47–89. [CrossRef]
7. Fedele, F.; Brennan, J.; De León, S.P.; Dudley, J.; Dias, F. Real world ocean rogue waves explained without the modulational

instability. Sci. Rep. 2016, 6, 27715. [CrossRef]
8. Mori, N.; Liu, P.C.; Yasuda, T. Analysis of freak wave measurements in the Sea of Japan. Ocean. Eng. 2002, 29, 1399–1414.

[CrossRef]
9. Fedele, F.; Tayfun, M.A. On nonlinear wave groups and crest statistics. J. Fluid Mech. 2009, 620, 221. [CrossRef]
10. Onorato, M.; Osborne, A.R.; Serio, M.; Cavaleri, L.; Brandini, C.; Stansberg, C. Observation of strongly non-Gaussian statistics for

random sea surface gravity waves in wave flume experiments. Phys. Rev. E 2004, 70, 067302. [CrossRef]
11. Cavaleri, L.; Bertotti, L.; Torrisi, L.; Bitner-Gregersen, E.; Serio, M.; Onorato, M. Rogue waves in crossing seas: The Louis Majesty

accident. J. Geophys. Res. Ocean. 2012, 117. [CrossRef]
12. Komen, G.J.; Cavaleri, L.; Donelan, M.; Hasselmann, K.; Hasselmann, S.; Janssen, P. Dynamics and Modelling of Ocean Waves;

Cambridge University Press: Cambridge, UK, 1996.
13. Tolman, H.L. User manual and system documentation of WAVEWATCH III TM version 3.14. MMAB Contrib. 2009, 276, 220.
14. Barbariol, F.; Alves, J.H.G.; Benetazzo, A.; Bergamasco, F.; Bertotti, L.; Carniel, S.; Cavaleri, L.; Chao, Y.Y.; Chawla, A.; Ricchi,

A.; et al. Numerical modeling of space-time wave extremes using WAVEWATCH III. Ocean Dyn. 2017, 67, 535–549. [CrossRef]
15. Benetazzo, A.; Barbariol, F.; Pezzutto, P.; Staneva, J.; Behrens, A.; Davison, S.; Bergamasco, F.; Sclavo, M.; Cavaleri, L. Towards

a unified framework for extreme sea waves from spectral models: Rationale and applications. Ocean Eng. 2021, 219, 108263.
[CrossRef]

16. Brebbia, C.A. The Boundary Element Method for Engineers; Number BOOK; Pentech Press: Devon, UK, 1980.

http://doi.org/10.5194/nhess-6-1007-2006
http://dx.doi.org/10.5194/nhess-11-2913-2011
http://dx.doi.org/10.1016/j.ocecoaman.2019.105076
http://dx.doi.org/10.1016/j.euromechflu.2003.09.002
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102203
http://dx.doi.org/10.1016/j.physrep.2013.03.001
http://dx.doi.org/10.1038/srep27715
http://dx.doi.org/10.1016/S0029-8018(01)00073-7
http://dx.doi.org/10.1017/S0022112008004424
http://dx.doi.org/10.1103/PhysRevE.70.067302
http://dx.doi.org/10.1029/2012JC007923
http://dx.doi.org/10.1007/s10236-016-1025-0
http://dx.doi.org/10.1016/j.oceaneng.2020.108263


J. Mar. Sci. Eng. 2021, 9, 422 19 of 20

17. Grilli, S.T.; Guyenne, P.; Dias, F. A fully nonlinear model for three-dimensional overturning waves over an arbitrary bottom. Int.
J. Numer. Methods Fluids 2001, 35, 829–867. [CrossRef]

18. Dommermuth, D.G.; Yue, D.K. A high-order spectral method for the study of nonlinear gravity waves. J. Fluid Mech. 1987,
184, 267–288. [CrossRef]

19. West, B.J.; Brueckner, K.A.; Janda, R.S.; Milder, D.M.; Milton, R.L. A new numerical method for surface hydrodynamics. J. Geophys.
Res. Ocean. 1987, 92, 11803–11824. [CrossRef]

20. Brandini, C. Nonlinear Interaction Processes in Extreme Waves Dynamics. Ph.D. Thesis, Università di Firenze, Florence,
Italy, 2000.

21. Tanaka, M. A method of studying nonlinear random field of surface gravity waves by direct numerical simulation. Fluid Dyn.
Res. 2001, 28, 41. [CrossRef]

22. Toffoli, A.; Bitner-Gregersen, E.; Osborne, A.R.; Serio, M.; Monbaliu, J.; Onorato, M. Extreme waves in random crossing seas:
Laboratory experiments and numerical simulations. Geophys. Res. Lett. 2011, 38. [CrossRef]

23. Ducrozet, G.; Bonnefoy, F.; Le Touzé, D.; Ferrant, P. 3D HOS simulations of extreme waves in open seas. Nat. Hazards Earth Syst.
Sci. 2007, 7, 109–122. [CrossRef]

24. Xiao, W.; Liu, Y.; Wu, G.; Yue, D.K. Rogue wave occurrence and dynamics by direct simulations of nonlinear wave-field evolution.
J. Fluid Mech. 2013, 720, 357–392. [CrossRef]

25. Bitner-Gregersen, E.; Fernández, L.; Lefèvre, J.; Monbaliu, J.; Toffoli, A. The North Sea Andrea storm and numerical simulations.
Nat. Hazards Earth Syst. Sci. 2014, 14, 1407. [CrossRef]

26. Dias, F.; Brennan, J.; Ponce de León, S.; Clancy, C.; Dudley, J. Local analysis of wave fields produced from hindcasted rogue wave
sea states. In International Conference on Offshore Mechanics and Arctic Engineering; American Society of Mechanical Engineers:
New York, NY, USA, 2015; Volume 56499, p. V003T02A020.

27. Vannucchi, V.; Taddei, S.; Capecchi, V.; Bendoni, M.; Brandini, C. Dynamical Downscaling of ERA5 Data on the North-Western
Mediterranean Sea: From Atmosphere to High-Resolution Coastal Wave Climate. J. Mar. Sci. Eng. 2021, 9, 208. [CrossRef]

28. Bonnefoy, F.; Ducrozet, G.; Le Touzé, D.; Ferrant, P. Time domain simulation of nonlinear water waves using spectral methods. In
Advances in Numerical Simulation of Nonlinear Water Waves; World Scientific: Singapore, 2010; pp. 129–164.

29. Ducrozet, G.; Bonnefoy, F.; Le Touzé, D.; Ferrant, P. HOS-ocean: Open-source solver for nonlinear waves in open ocean based on
High-Order Spectral method. Comput. Phys. Commun. 2016, 203, 245–254. [CrossRef]

30. Touboul, J. On the influence of wind on extreme wave events. Nat. Hazards Earth Syst. Sci. 2007, 7, 123–128. [CrossRef]
31. Seiffert, B.R.; Ducrozet, G. Simulation of breaking waves using the high-order spectral method with laboratory experiments:

wave-breaking energy dissipation. Ocean Dyn. 2018, 68, 65–89. [CrossRef]
32. Dommermuth, D. The initialization of nonlinear waves using an adjustment scheme. Wave Motion 2000, 32, 307–317. [CrossRef]
33. Bonnefoy, F. Modélisation Expérimentale et Numérique des états de mer Complexes. Ph.D. Thesis, Université de Nantes, Nantes,

France, 2005.
34. Ducrozet, G. Modelisation of Nonlinear Processes in Generation and Propagation of Sea States with a Spectral Approach. Ph.D.

Thesis, Université de Nantes, Nantes, France, 2007.
35. Brandini, C.; Capecchi, V.; Pasi, F.; Taddei, S.; Vannucchi, V. Special Project Progress Report SPITBRAN, Evaluation of Coastal Climate

Trends in the Mediterranean Area by Means of High-Resolution and Multi-Model Downscaling of ERA5 Reanalysis; Technical Report;
LaMMA Consortium: Florence, Italy, 2019.

36. Hasselmann, S.; Hasselmann, K.; Allender, J.; Barnett, T. Computations and parameterizations of the nonlinear energy transfer in
a gravity-wave specturm. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys.
Oceanogr. 1985, 15, 1378–1391. [CrossRef]

37. Ardhuin, F.; Rogers, E.; Babanin, A.V.; Filipot, J.F.; Magne, R.; Roland, A.; Van Der Westhuysen, A.; Queffeulou, P.; Lefevre, J.M.;
Aouf, L.; et al. Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. J. Phys.
Oceanogr. 2010, 40, 1917–1941. [CrossRef]

38. Leckler, F.; Ardhuin, F.; Filipot, J.F.; Mironov, A. Dissipation source terms and whitecap statistics. Ocean Model. 2013, 70, 62–74.
[CrossRef]

39. Buzzi, A.; Davolio, S.; Malguzzi, P.; Drofa, O.; Mastrangelo, D. Heavy rainfall episodes over Liguria in autumn 2011: Numerical
forecasting experiments. Nat. Hazards Earth Syst. Sci. 2014, 14, 1325–1340. [CrossRef]

40. Malguzzi, P.; Grossi, G.; Buzzi, A.; Ranzi, R.; Buizza, R. The 1966 “century” flood in Italy: A meteorological and hydrological
revisitation. J. Geophys. Res. Atmos. 2006, 111. [CrossRef]

41. Conjunto de Datos: REDEXT. Technical Report. Puertos del Estado. 2015. Available online: https://bancodatos.puertos.es/BD/
informes/INT_2.pdf (accessed on 1 September 2020).

42. Ducrozet, G.; Bonnefoy, F.; Perignon, Y. Applicability and limitations of highly nonlinear potential flow solvers in the context of
water waves. Ocean Eng. 2017, 142, 233–244. [CrossRef]

43. Toffoli, A.; Gramstad, O.; Trulsen, K.; Monbaliu, J.; Bitner-Gregersen, E.; Onorato, M. Evolution of weakly nonlinear random
directional waves: laboratory experiments and numerical simulations. J. Fluid Mech. 2010, 664, 313. [CrossRef]

44. Trulsen, K.; Nieto Borge, J.C.; Gramstad, O.; Aouf, L.; Lefèvre, J.M. Crossing sea state and rogue wave probability during the P
restige accident. J. Geophys. Res. Ocean. 2015, 120, 7113–7136. [CrossRef]

45. Zakharov, V.; Filonenko, N. Energy spectrum for stochastic oscillations of the surface of a liquid. Sov. Phys. Dokl. 1967, 11, 881.

http://dx.doi.org/10.1002/1097-0363(20010415)35:7<829::AID-FLD115>3.0.CO;2-2
http://dx.doi.org/10.1017/S002211208700288X
http://dx.doi.org/10.1029/JC092iC11p11803
http://dx.doi.org/10.1016/S0169-5983(00)00011-3
http://dx.doi.org/10.1029/2011GL046827
http://dx.doi.org/10.5194/nhess-7-109-2007
http://dx.doi.org/10.1017/jfm.2013.37
http://dx.doi.org/10.5194/nhess-14-1407-2014
http://dx.doi.org/10.3390/jmse9020208
http://dx.doi.org/10.1016/j.cpc.2016.02.017
http://dx.doi.org/10.5194/nhess-7-123-2007
http://dx.doi.org/10.1007/s10236-017-1119-3
http://dx.doi.org/10.1016/S0165-2125(00)00047-0
http://dx.doi.org/10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2
http://dx.doi.org/10.1175/2010JPO4324.1
http://dx.doi.org/10.1016/j.ocemod.2013.03.007
http://dx.doi.org/10.5194/nhess-14-1325-2014
http://dx.doi.org/10.1029/2006JD007111
https://bancodatos.puertos.es/BD/informes/INT_2.pdf
https://bancodatos.puertos.es/BD/informes/INT_2.pdf
http://dx.doi.org/10.1016/j.oceaneng.2017.07.003
http://dx.doi.org/10.1017/S002211201000385X
http://dx.doi.org/10.1002/2015JC011161


J. Mar. Sci. Eng. 2021, 9, 422 20 of 20

46. Onorato, M.; Osborne, A.R.; Serio, M.; Resio, D.; Pushkarev, A.; Zakharov, V.E.; Brandini, C. Freely decaying weak turbulence for
sea surface gravity waves. Phys. Rev. Lett. 2002, 89, 144501. [CrossRef] [PubMed]

47. Janssen, P.A. Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr. 2003, 33, 863–884.
48. Mori, N.; Janssen, P.A. On kurtosis and occurrence probability of freak waves. J. Phys. Oceanogr. 2006, 36, 1471–1483. [CrossRef]
49. Toffoli, A.; Benoit, M.; Onorato, M.; Bitner-Gregersen, E. The effect of third-order nonlinearity on statistical properties of random

directional waves in finite depth. Nonlinear Process. Geophys. 2009, 16, 131.
50. Mori, N.; Onorato, M.; Janssen, P.A.; Osborne, A.R.; Serio, M. On the extreme statistics of long-crested deep water waves: Theory

and experiments. J. Geophys. Res. Ocean. 2007, 112. [CrossRef]
51. Tayfun, M.A. Narrow-band nonlinear sea waves. J. Geophys. Res. Ocean. 1980, 85, 1548–1552. [CrossRef]
52. Tayfun, M.A.; Fedele, F. Wave-height distributions and nonlinear effects. Ocean Eng. 2007, 34, 1631–1649. [CrossRef]
53. Forristall, G.Z. Wave crest distributions: Observations and second-order theory. J. Phys. Oceanogr. 2000, 30, 1931–1943. [CrossRef]
54. Janssen, P.A. On some consequences of the canonical transformation in the Hamiltonian theory of water waves. J. Fluid Mech.

2009, 637, 1. [CrossRef]
55. Young, I. The determination of confidence limits associated with estimates of the spectral peak frequency. Ocean Eng. 1995,

22, 669–686. [CrossRef]
56. Serio, M.; Onorato, M.; Osborne, A.R.; Janssen, P.A. On the computation of the Benjamin–Feir Index. II Nuovo C. 2005, 28, 893–903.
57. Goda, Y. Random Seas and Design of Maritime Structures; World Scientific: Singapore, 2010.
58. Tayfun, M.A.; Fedele, F. Expected shape of extreme waves in storm seas. In Proceedings of the International Conference on

Offshore Mechanics and Arctic Engineering, San Diego, CA, USA, 10–15 June 2007; Volume 42681, pp. 53–60.

http://dx.doi.org/10.1103/PhysRevLett.89.144501
http://www.ncbi.nlm.nih.gov/pubmed/12366050
http://dx.doi.org/10.1175/JPO2922.1
http://dx.doi.org/10.1029/2006JC004024
http://dx.doi.org/10.1029/JC085iC03p01548
http://dx.doi.org/10.1016/j.oceaneng.2006.11.006
http://dx.doi.org/10.1175/1520-0485(2000)030<1931:WCDOAS>2.0.CO;2
http://dx.doi.org/10.1017/S0022112009008131
http://dx.doi.org/10.1016/0029-8018(95)00002-3

	Introduction
	Numerical Methods
	Higher Order Spectral Method
	WaveWatch III Hindcast
	Numerical Simulations

	Results and Discussion
	Spectral Evolution
	Wave Statistics
	Integral Statistics
	Crest Distributions
	Dependence of Statistics on Macroscopic Observables


	Conclusions
	
	Spectral Integral Quantities
	Physical Integral Quantities
	Theoretical Distributions

	References

