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We review the equation of state (EoS) approach to dark sector perturbations and apply it to fðRÞ gravity
models of dark energy. We show that the EoS approach is numerically stable and use it to set observational
constraints on designer models. Within the EoS approach we build an analytical understanding of the
dynamics of cosmological perturbations for the designer class of fðRÞ gravity models, characterized by the
parameter B0 and the background equation of state of dark energy w. When we use the Planck cosmic
microwave background temperature anisotropy, polarization, and lensing data as well as the baryonic
acoustic oscillation data from SDSS and WiggleZ, we find B0 < 0.006 (95% C.L.) for the designer models
with w ¼ −1. Furthermore, we find B0 < 0.0045 and jwþ 1j < 0.002 (95% C.L.) for the designer
models with w ≠ −1. Previous analyses found similar results for designer and Hu-Sawicki fðRÞ gravity
models using the effective field theory approach [Raveri et al., Phys. Rev. D 90, 043513 (2014); Hu et al.,
Mon. Not. R. Astron. Soc. 459, 3880 (2016)]; therefore this hints for the fact that generic fðRÞmodels with
w ≠ −1 can be tightly constrained by current cosmological data, complementary to solar system tests [Brax
et al., Phys. Rev. D 78, 104021 (2008); Faulkner et al., Phys. Rev. D 76, 063505 (2007)]. When compared
to a wCDM fluid with the same sound speed, we find that the equation of state for fðRÞ models is better
constrained to be close to −1 by about an order of magnitude, due to the strong dependence of the
perturbations on w.
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I. INTRODUCTION

With the observational campaign of supernovae type Ia
[1–4], followed by observations of the cosmic microwave
background (CMB) anisotropy [5,6], the baryon acoustic
oscillations (BAO) [7,8], and large scale structure [9–11], it
has become widely accepted that the expansion of the
universe is accelerating. The current observational data are
consistent with the standard Λ cold dark matter (CDM)
model, where the accelerated expansion is caused by the
cosmological constant Λ, and indicate no statistically
significant evidence for dark energy and modified gravity
models (see, e.g., [12] and references therein).
Nevertheless, the cosmological constant suffers from

important conceptual issues when it is interpreted in the
context of quantum field theory (see, e.g., [13] for a recent
review). This has led part of the community to question the
physical origin of the accelerated expansion and to inves-
tigate dark energy and modified gravity models (see,
e.g., [14]). Whether these models do not suffer the same
type of issues as the cosmological constant often remains
under debate.

Moreover, the forthcoming galaxy surveys and stage IV
CMB experiments will measure the acceleration of the
universe and its consequences on structure formation at a
level of accuracy never achieved before. Hence, research on
dark energy and modified gravity is well motivated by the
following question: In the light of this forthcoming data, will
the cosmological constant still be the best answer to cosmic
acceleration? In other words, is there a modified gravity or
dark energymodel thatwill account for the observational data
in a better way than the cosmological constant? Of course,
this has to be formulated in a precise statistical manner; see
[15] for an example in the context of inflationary models.
Recently, the Horndeski models [16–18] have received

growing attention due to their generality. They include a
scalar field coupled to gravity. The Horndeski Lagrangian
is the most general one that leads to second order equations
of motion for the scalar field. It is fully represented by four
arbitrary time dependent functions of the scalar field and its
kinetic term. Notable subclasses of the Horndeski models,
obtained by specifying the unknown functions, are quintes-
sence [19–26], k-essence [27–32], Brans-Dicke theory
[33,34], kinetic gravity braiding (KGB) [35,36], and
fðRÞ models [37–40]. The latter can also be constructed
by replacing the Ricci scalar R in the Einstein-Hilbert
Lagrangian by an arbitrary function, fðRÞ, and are themain
focus of this paper.
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Here, we are interested in fðRÞ models that mimic the
ΛCDM (or the wCDM) cosmological expansion history but
differ at the level of the dynamics of cosmological
perturbations. Different approaches have been developed
to study the phenomenology of cosmological perturbations
in dark energy and modified gravity in a unified way, with
the ultimate objective of deriving observational constraints.
These include the parametrized post-Friedmanian (PPF)
approach [41–44], the equation of state for perturbations
(EoS) approach [45–47] (see also [48] for an earlier and
similar approach), the effective field theory (EFT) approach
[49–53], and an alternative method [54]. They are in
principle equivalent (see [55] for a numerical consistency
analysis), although they differ with respect to the choices
of the phenomenological parametrization of dark energy
and modified gravity. So far, the EFT approach has been
applied to generic Horndeski models [51,52], while the
EoS approach has been applied specifically to quintes-
sence, k-essence, and KGB models [47], fðRÞ gravity
[56], and generalized Einstein-Aether theories [57]. In this
paper we use the EoS approach, for which the dark energy
and modified gravity models are specified in terms of the
anisotropic stress and pressure of the perturbed dark
energy fluid.
The paper is organized as follows. In Sec. II we review

the EoS approach and its numerical implementation in a
Boltzmann code for arbitrary dark energy and modified
gravity models. In Sec. III we recall the features of the
designer fðRÞ models that are relevant to our analysis. In
Sec. IV we study the phenomenology of cosmological
perturbations propagating in the dark energy fluid of the
models with constant wde, numerically as well as analyti-
cally. In Sec. V we present the linear matter power
spectrum, the CMB temperature angular anisotropy power
spectrum, and the CMB power spectrum of the lensing
potential, computed for several designer models, and we
derive observational constraints on the free parameters of
the designer models, i.e., wde and B0, from current CMB
and BAO data. In Sec. VI we compare fðRÞ and wCDM
gravity models and their observational constraints. We
discuss our results and conclude in Sec. VII. In
Appendix we present a comparison between the perturbed
equations of state obtained within the EoS [58] and EFT
approaches [51,52].
Unless otherwise stated, we use 8πG ¼ 1 throughout

the paper.

II. NUMERICAL IMPLEMENTATION OF THE
EQUATION OF STATE APPROACH

In the EoS approach, modifications to general relativity
are written in the right-hand sides of the field equations.
Then, they can be interpreted as a stress energy tensor,
mapping any modified gravity theory to a corresponding
dark energy fluid. More precisely, we have

Gμν ¼ Tμν þDμν; ð1Þ

where Gμν is the Einstein tensor, Tμν is the stress energy
tensor of the matter components, i.e., baryonic matter,
radiation, and dark matter, and Dμν is the stress-energy
tensor of the dark energy fluid. The background geometry
is assumed to be isotropic and spatially flat, with a line
element ds2 ¼ −dt2 þ a2δijdxidxj, where a is the scale
factor and t is the cosmic time. Because of the Bianchi
identities and the local conservation of energy for the
matter components, the stress energy tensor of the dark
sector is covariantly conserved,

∇μDμν ¼ 0: ð2Þ

The linear perturbation of the conservation equations (2)
yields the general relativistic version of the Euler and
continuity equations for the velocity and density perturba-
tion. They characterize the dynamics of cosmological
perturbations and can be written in terms of a gauge
invariant density perturbation, Δ, and a rescaled velocity
perturbation, Θ. These two quantities are defined as

Δ≡ δþ 3ð1þ wÞHθ; Θ≡ 3ð1þ wÞHθ; ð3Þ

where w≡ P=ρ is the background equation of state, ρ and
P are the homogeneous density and pressure, δρ is the
density perturbation, θ is the divergence of the velocity
perturbation, and H ≡ ðd ln a=dtÞ is the Hubble parameter.
The rescaled velocity perturbation, Θ, is not a gauge

invariant quantity, in the sense that its value depends on the
choice of the coordinate system; see, e.g., [59]. To see this,
say that Θ is evaluated in the conformal Newtonian gauge
(CNG), i.e., Θc ¼ Θ, where the superscript c indicates the
CNG. Then the value of the rescaled velocity perturbation
in the synchronous gauge (SG), Θs, is given, in Fourier
space, by

Θs ¼ Θc − 3ð1þ wÞT; ð4Þ

with

T ≡
(
ðh0 þ 6η0Þ=ð2K2Þ in the SG;

0 in the CNG;
ð5Þ

where K≡ k=ðaHÞ and k is the wave number of the
perturbation, h and η are the scalar metric perturbations in
the SG, and a prime denotes a derivative with respect to
ln a. Since the SG is defined as the rest frame of the CDM
fluid, we see that T is nothing other than the velocity
perturbation of the CDM fluid evaluated in the CNG.
To work in a gauge invariant way, with respect to the

synchronous and conformal Newtonian gauges, we can
define a gauge invariant velocity perturbation as
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Θ̂≡ Θþ 3ð1þ wÞT: ð6Þ

In the same line of thought, using the variable T, the
evolution equations for the gauge invariant density pertur-
bation and rescaled velocity perturbation can be written in a
way that is valid for both gauges [56]. These are the
so-called perturbed fluid equations and are given by

Δ0−3wΔ−2ΠþgKϵHΘ̂¼ 3ð1þwÞX;

Θ̂0 þ3

�
c2a −wþ1

3
ϵH

�
Θ̂−3c2aΔ−2Π−3Γ¼ 3ð1þwÞY;

ð7Þ

where c2a ≡ dP=dρ is the adiabatic sound speed and
gK ≡ 1þ K2=ð3ϵHÞ, with ϵH ≡ −H0=H and where

X ≡
�
η0 þ ϵHT in the SG;

ϕ0 þ ψ in the CNG;
ð8aÞ

Y ≡
�
T 0 þ ϵHT in the SG;

ψ in the CNG:
ð8bÞ

Finally, Π is the perturbed scalar anisotropic stress,1 and Γ
is the gauge invariant entropy perturbation. The gauge
invariant entropy perturbation can be expressed in terms of
the perturbed pressure, density, and rescaled velocity as

Γ ¼ δP
ρ

− c2aðΔ − ΘÞ: ð9Þ

The perturbed fluid equations (7) are valid for both matter
(that we shall denote with a subscript “m”) and dark energy
(that we shall denote with subscript “de”) fluid variables.
The Einstein-Boltzmann code CLASS [60,61] written in

C provides the infrastructure required to solve the dynamics
of matter perturbations. We have incorporated the EoS
approach for dark energy perturbations into CLASS and
dubbed the modified code CLASS_EOS_FR. The code
is publicly available on the internet.2 We have implemented
the perturbed fluid equations (7) for dark energy perturba-
tions in this exact same form. We now describe the
remaining technical steps necessary to close the system
of Eqs. (7) and integrate it in the code.
As prescribed by the EoS approach, we expand the

perturbed dark energy anisotropic stress and gauge invari-
ant entropy perturbation in terms of the perturbed fluid
variables. These are the so-called equations of state for dark
energy perturbations and are written as

Πde¼cΠΔde
ΔdeþcΠΘde

Θ̂deþcΠΔm
ΔmþcΠΘm

Θ̂mþcΠΠm
Πm;

Γde¼cΓΔde
ΔdeþcΓΘde

Θ̂deþcΓΔm
ΔmþcΓΘm

Θ̂mþcΓΓm
Γm;

ð10Þ

where the coefficients cαβ are a priori scale and time
dependent functions, but shall only depend on the homo-
geneous background quantities, such as the Hubble param-
eter, the background equation of state of dark energy, or the
adiabatic sound speeds. These functions are specified for
each dark energy and modified gravity model; e.g., see [56]
for fðRÞ gravity and [57] for generalized Einstein-Aether.
Note that the equations of state for perturbations for generic
fðRÞ models can also be obtained starting from a general
Horndeski model and specifying the appropriate free func-
tions to match with fðRÞ theories. In this case, the expres-
sions for the coefficients of cαβ are as reported in Appendix.
Initial conditions for dark sector perturbations are set at an

early time, aini, when dark energy is subdominant, i.e.,
ΩdeðainiÞ ≪ 1 where Ωde is the dark energy density param-
eter. If not specified from the specific dark energy model,
appropriate initial conditions for the dark energy perturba-
tions aregenerallyΔdeðainiÞ ¼ ΘdeðainiÞ ¼ 0.Note thatwhen
there exists an attractor for the dark energy perturbations
during matter domination, it is numerically more efficient to
set initial conditions that match the attractor (see Sec. IV).
In order to evaluate the equation of state (10) and

integrate Eqs. (7), we collect the perturbed matter fluid
variables at every time step. In our code, we do this in the
following way. First, we obtain the total matter gauge
invariant density perturbation via

ΩmΔm ¼ −
2

3
K2Z −ΩdeΔde with

Z≡
�
η − T in the SG

ϕ in the CNG
ð11Þ

and the gauge invariant matter velocity perturbation via
ΩmΘ̂m ¼ 2X − ΩdeΘ̂de; see [56] where these equations are
derived. Next, the matter pressure perturbation δPm and the
matter anisotropic stress σclassm are available in CLASS. We
use them to compute the matter anisotropic stress pertur-
bation (in our convention) Πm and the matter gauge
invariant entropy perturbation as

ρmΠm ¼ −
3

2
hðρm þ PmÞσclassm i; ð12Þ

ρmΓm ¼ hδPmi − c2a;mðΔm − ΘmÞ; ð13Þ

where the brackets mean a sum over all the matter fluid
components, i.e., baryons, CDM, photons and neutrinos, and

c2a;m ¼ wmΩm þ hw2
mΩmi

ð1þ wmÞΩm
ð14Þ

1Note that our θ and Π differ from θMB and σMB (anisotropic
stress) as defined in [59], by θMB ¼ k2

a θ and ðρþ PÞσMB ¼ − 2
3
ρΠ.

2Website: https://github.com/borisbolliet/class_eos_fr_public.
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is thematter adiabatic sound speed,whereΩm ≡ 1 −Ωde and
wm ≡ hwmΩmi=Ωm are the matter density parameter and
background equation of state, respectively. Last, we update
the total stress energy tensor accordingly as

δρtot ¼ hδρmi þ ρdeΔde − ρdeΘde;

ðρtot þ PtotÞθclasstot ¼ hðρm þ PmÞθclassm i þ 1

3
K2aHρdeΘde;

ðρtot þ PtotÞσclasstot ¼ hðρm þ PmÞσclassm i − 2

3
ρdeΠde;

δPtot ¼ hδPmi þ ρdeΓde þ c2a;deρdeðΔde − ΘdeÞ:

See footnote 1 for the CLASS perturbed velocity, which
follows the conventions of [59].
Although the numerical integration can be carried out

either in the conformal Newtonian gauge or in the syn-
chronous gauge in CLASS_EOS_FR, we find that, in the
super-Hubble regime, i.e., K2 ≪ 1, the synchronous gauge
performs better than the conformal Newtonian gauge.

III. A BRIEF REMINDER ON THE DESIGNER
f ðRÞ GRAVITY MODELS

In fðRÞ gravity, the fðRÞ functions are solutions to a
second order differential equation given by the projection
of the stress-energy tensor of fðRÞ on the time direction,
which can be written as [37,62–65]

f00 þ
�
3ϵH − 1 −

ϵ̄0H
ϵ̄H

�
f0 − ϵ̄Hf ¼ 6H2ϵ̄HΩde; ð15Þ

where the prime still denotes a derivative with respect to
ln a and ϵ̄H ¼ ϵ0H þ 4ϵH − 2ϵ2H [see Eq. (2.6a) of [56] for
the derivation in our conventions]. This equation holds for
any fðRÞ gravity model and at any time during the
expansion history. During the nonrelativistic matter era,
i.e., wm ¼ 0, this equation simplifies because ϵH ¼ 3=2,
ϵ̄0H ¼ 0, and ϵ̄H ¼ ϵH ¼ 3=2 [see Eq. (2.5) of [56]]. In this
regime, the solutions to (15) are

fðaÞ ¼ C
n
bþanþ þ b−an− þ e−

R
3ð1þwdeÞd ln a

o
; ð16Þ

with n� ¼ 7
4
ð−1� ffiffiffiffiffiffiffiffiffiffiffiffi

73=49
p Þ and C ¼ 6Ω0

deH
2
0

6w2
deþ5wde−2

. Solutions

with b− ≠ 0 are not admissible because they break the
condition lima→0fR ¼ 0 [66–68], where a subscript “R”
means a derivative with respect to the Ricci scalar. We
conclude that any viable fðRÞ gravity model can be para-
metrized, in the nonrelativisticmatter era, by the a priori time
dependent equation of state wdeðaÞ and a constant number
bþ.We then tradebþ for themore commonly used parameter

B≡ −
f0R

ϵHð1þ fRÞ
; ð17Þ

evaluated today and dubbed B0, since there is a one-to-one
correspondence betweenbþ andB0. Fromhere, there are two
ways to proceed. The first possibility is to specify explicitly a
fðRÞ function at all time, and then extract the time evolution
of Ωde and wde from the time derivatives of f. The second
possibility is to specify a time evolution forΩde and wde and
then integrate Eq. (15) to get fðRÞ at all time. This latter
approach is the so-called designer, or mimetic, fðRÞ
approach and leads to the fðRÞ gravity models that we
are interested in. Designermodels are particularly interesting
because their functional form is dictated by the chosen
background evolution of the dark fluid, and therefore there is
no arbitrariness in how the fðRÞ Lagrangian looks. In this
way the wanted background evolution is achieved exactly
and themodel has fewer degrees of freedom: the only value to
be determined is B0, which ultimately will dictate the
strength of the perturbations.
In CLASS_EOS_FR, we have implemented the designer

models with constant equation of state wde. The user
specifies a value for wde and B0, and then the code explores
a range of bþ solving (15), between aini and today, until it
finds the value of bþ that leads to the desired value of B0.
Note that the solution in (16) is singular for wde ≃ 0.30 and

FIG. 1. The redshift evolution of B ¼ −ðf0R=½ϵHð1þ fRÞ�Þ for
different designer fðRÞ models. Unless otherwise written,
we chose wde ¼ −1 and B0 ¼ 1. A grey line indicates negative
values. The background cosmologywas set to h ¼ 0.7,Ωde ¼ 0.7,
and Ωbh2 ¼ 0.022, where h ¼ H0=100 is the reduced Hubble
parameter.
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wde ≃ −1.13; however, as long as one avoids the two poles,
the numerical integration is efficient.
In [37,56], the designer models with wde ¼ −1 were

studied at both the background and the perturbation levels.
Here, we consider as well the designer models with wde ≠
−1 (and w0

de ¼ 0), i.e., the ones that mimic a wCDM
expansion history.
InFig. 1we show the redshift evolution of a set of solutions

to (15) for different values ofB0 andwde.We presentB, rather
thanfðRÞ itself, because this is themain quantity entering the
equations of state for perturbation Πde and Γde [56]. On the
bottom panel we fix B0 ¼ 1 and vary wde. For models with
wde < −1, B starts being negative and eventually becomes
positive at late time. This can be described analytically with
Eq. (16); see, e.g., [37].On the top panelwe fixwde ¼ −1 and
vary B0. As can be seen, as soon as dark energy dominates,
i.e., z≲ 0.3,B settles to its final valueB0. Changing the value
ofwde essentially amounts to a shift of the curves on this plot
because for a less negativewde dark energy dominates earlier.
The bottompanel shows thatwhenwekeepB0 fixed,B grows
more slowly for less negative wde. More precisely, with
Eq. (16) in the matter era, one finds B ∼ z3wde .

IV. EVOLUTION OF PERTURBATIONS IN THE
DARK ENERGY FLUID OF f ðRÞ GRAVITY

In this section we investigate numerically and analyti-
cally the evolution of cosmological perturbations for the
designer fðRÞ gravity models described in Sec. III. To this
aim, we use the formalism of the EoS approach described
in Sec. II.
To gain some understanding about the behavior of the

cosmological perturbations, we consider the expressions of
the equations of state for perturbations for a fðRÞ fluid with
constant equation of state parameter, i.e., c2a;de ¼ wde, and
when the matter sector is dominated by nonrelativistic
species, i.e., wm ¼ Πm ¼ Γm ¼ 0, as is the case after
radiation domination. Furthermore, we focus on modes
that enter the Hubble horizon before dark energy dominates
so that we have K2 ≫ 1 at all times. This assumption holds
for wave numbers in the observational range of interest to
us (see top panel of Fig. 2). Finally we assume B ≪ 1,
which is true at all times if B0 ≪ 1 and is equivalent to
M2 ≫ 1, with M2 ≡ 2ϵ̄H=ðϵHBÞ. In this regime, the equa-
tions of state for dark energy perturbations simplify to

Πde ¼ Δde; ð18aÞ

Γde ¼
�
1

3
− wde þ

M2

K2

�
Δde þ

1

3

Ωm

Ωde
Δm: ð18bÞ

Using the field equations (3.11a) and (3.11b) in [56], the
perturbed fluid equations (7) can be rewritten as a system of
two coupled second order differential equations for the
gauge invariant density perturbations,

FIG. 2. The redshift evolution of K2 for three wave numbers
and M2 (dashed line in the top panel), ΩdeΔde and γ (middle
panels), and σ8 as a function of wde (bottom panel) for different
designer fðRÞmodels. The attractor solution (20) and the growth
index γST (25) are the thick grey lines. Unless otherwise written,
we chose wde ¼ −1 and B0 ¼ 0.1 as well as the same cosmology
as in Fig. 1 with As ¼ 2.2 × 10−9 and ns ¼ 0.96.
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Δ00
m þ ð2 − ϵHÞΔ0

m −
3

2
ΩmΔm ¼ −

3

2
ΩdeΔde; ð19aÞ

Δ00
deþð2−ϵHÞΔ0

deþðK2þM2ÞΔde¼−
1

3

Ωm

Ωde
K2Δm: ð19bÞ

For the modes of interest, this set of equations provides a
faithful description of the dynamics of cosmological
perturbations as long as B ≪ 1. Again, this is always
the case before dark energy dominates (irrespective of B0).
In addition, if B0 ≪ 1, then these equations are also valid
during dark energy domination, because B is always
smaller than B0 (see Fig. 1). Let us assume B0 ¼ Oð1Þ,
or equivalently M2 ≫ 1, from now on. As we shall see in
Sec. V, this is a reasonable assumption given current
observational constraints.
The differential equation (19b) for the gauge invariant

energy density perturbation is similar to an harmonic
oscillator with a time dependent frequency ω2¼K2 þ
M2≫1. Since the oscillatory time scale is much smaller
than the damping time scale, i.e., the expansion rate, the
homogeneous solution to (19b) becomes rapidly subdomi-
nant compared to the particular solution. This confirms that
the specific values for the initial dark energyperturbations are
not important. More precisely, the dark energy density
perturbation relates to the matter density perturbation via

ΩdeΔde ¼ −
1

3

K2

K2 þM2
ΩmΔm: ð20Þ

We refer to [69] for the same result formulated in a
different language. In our code, we set the initial conditions
for Δde and Θde according to (20) at a time such that
K2=½3ðK2þM2Þ�¼jΩdeΔde=ΩmΔmj¼0.01. Note that given
this criterion, the initial starting time for dark energy
perturbation depends on the wave number.
We deduce from (20) the two regimes for the behavior of

subhorizon modes: (i) the general relativistic (GR) regime
when K2 ≪ M2, i.e., at early time, and (ii) the scalar-tensor
(ST) regime when K2 ≫ M2, i.e., at late time. This implies
ΩdeΔde ¼ − K2

M2 ΩmΔm in the GR regime, and ΩdeΔde ¼
− 1

3
ΩmΔm in the ST regime. Moreover, in both regimes, the

differential equation for the matter perturbation (19a)
becomes

Δ00
m þ ð2 − ϵHÞΔ0

m −
3

2
εΩmΔm ¼ 0; ð21Þ

where ε≡ ð4K2 þ 3M2Þ=ð3K2 þ 3M2Þ can be interpreted
as a modification to the gravitational constant [70]. One has
ε ¼ 4=3 in the ST regime and ε ¼ 1 in the GR regime.
Since one has K2 ∼ z−1 and M2 ∼ z−3wde during the matter
era, the ST regime starts earlier for less negative wde.
Equations (20) and (21) enable a clear discussion of the

dynamics of cosmological perturbations in fðRÞ gravity.

Before doing so, we go one step further and obtain the
growth index γ ≡ ln f= lnΩm of the matter perturbation
[71], where f ≡ Δ0

m=Δm is the growth rate.
Taking the time derivative of the growth rate and using

(21) we find

γ0 þ 3wdeΩde

lnΩm
γ þ Ωγ

m

lnΩm
−

3Ω1−γ
m

2 lnΩm
ε ¼ 3wdeΩde − 1

2 lnΩm
; ð22Þ

for the growth index. To linearize this equation, we use the
approximations lnΩm ≈ −Ωde and Ωγ

m ≈ 1 − γΩde, which
are valid when Ωde ¼ Oð1Þ. We get

γ0 þ
�
1 − 3wde þ

3

2
ε

�
γ ¼ 3

2

�
1 − ε

Ωde
þ ε − wde

�
: ð23Þ

This can be solved analytically for a constant ε. We find

γ ¼ 3ð1 − εÞ
2þ 3ε

Ωm;0

Ωde;0
ð1þ zÞ−3wde þ 3ðε − wdeÞ

2þ 3ε − 6wde
: ð24Þ

In the GR regime the first term on the right-hand side
vanishes, and the second term gives a constant γwCDM ¼
3ð1 − wdeÞ=ð5 − 6wdeÞ, i.e., the wCDM growth index. If in
addition wde ¼ −1, the growth index is γΛCDM ¼ 6=11≈
0.545, i.e., the well-known ΛCDM result. In the ST regime,
the growth index is not constant any more due to the first
term on the right-hand side. We find

γST ¼ 1

2
þ 1

6ð1 − wdeÞ
−

Ωm;0

6Ωde;0
ð1þ zÞ−3wde : ð25Þ

Since the first term on the right-hand side of (24) is always
negative, we have γST < γwCDM as well as γST < γΛCDM.
We now summarize the important consequences for the

dynamics of perturbations in fðRÞ gravity that are deduced
from the above considerations.
(1) For B < 0 (or M2 < 0), the homogeneous solution

to (19b) is unstable. Therefore, the gauge invariant
density perturbation for both matter and dark energy
grows exponentially with time. This is not compat-
ible with the dynamics of matter perturbations in
the matter dominated era, and consequently fðRÞ
models with B0 < 0 or wde < −1 are not viable;
see Fig. 1.

(2) The gauge invariant density perturbation in the dark
energy component relates to that of the matter
component in a simple way given in (20). In the
GR regime, the dark energy perturbation is negli-
gible compared to the matter perturbation, while in
the ST regime both are of the same magnitude;
see Fig. 2.

(3) In wCDM, for less negative wde structures are less
gravitationally bounded compared to ΛCDM be-
cause dark energy starts dominating earlier. Hence
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there is an anticorrelation between wde and the
amplitude of clustering, i.e., σ8, in wCDM models
(see, e.g., Fig. 16 of [72]). In fðRÞ gravity matter
perturbations grow at a faster rate than in wCDM and
ΛCDM because γST < γwCDM [see Eq. (25)]. This,
combined with the fact that the ST regime starts
earlier for less negative wde, implies a correlation
between wde and σ8 (see bottom panel of Fig. 2), and
can be used to discriminate between fðRÞ gravity
and wCDMmodels of dark energy [see also the next
section for a comparison between wCDM and fðRÞ
models].

In the next section we compute relevant observables that we
use to set observational constraints on the designer fðRÞ
gravity models.

V. IMPACTOF f ðRÞGRAVITYONOBSERVABLES
AND CONSTRAINTS

The CMB angular anisotropy power spectrum is a
snapshot of the acoustic waves in the photon-baryon fluid
at decoupling, distorted by the integrated Sachs-Wolfe
effect (ISW) and the lensing due to the subsequent
gravitational collapse of the matter. How and when can
dark energy perturbations in fðRÞ gravity affect the CMB
anisotropy? Since in viable fðRÞ gravity models dark
energy perturbations are subdominant at early time (see
point 2 above), they cannot have any impact on the physical
phenomena at play at the epoch of decoupling. However,
they alter the growth of structure from the end of the matter
dominated era (see point 3 above). Therefore, they may

have an impact on the late ISW effect (see, e.g., [73]) and
lensing of the CMB anisotropy (see, e.g., [74]). The late
ISW effect is contributing to the CMB temperature
anisotropy on large angular scales (l≲ 20) and the lensing
power spectrum of the CMB probes structure formation on
a wider range of scales (l≲ 1000). So we expect the CMB
angular anisotropy power spectrum to be affected by dark
energy perturbations only at low multipoles, i.e., where the
cosmic variance limits the constraining power of the CMB
data. Hence, the lensing power spectrum shall be a more
compelling probe of dark energy perturbation than the
CMB temperature anisotropy angular power spectrum.
In the left panels of Fig. 3 we show the CMB temperature

angular anisotropy power spectrum computed for several
designer models with different wde and B0, against the
ΛCDM prediction. We see that significant differences
appear when B0 ≳ 1 and that the late ISW effect can be
strongly enhanced for larger values of B0. Moreover, at
fixed B0 the late ISW contribution is more significant for
less negative wde, as can be understood with the results of
Sec. IV (see point 3 above). In the middle panels we show
the CMB lensing power spectrum computed in the same
settings. Its amplitude is larger for larger B0 and less
negative wde, again in agreement with the analysis of
Sec. IV. Similar conclusions apply to the linear matter
power spectrum presented in the right panels of Fig. 3. In
particular, for scales that are still in the GR regime today
(k ≈ 10−3h Mpc−1), the amplitude of the matter power
spectrum is close to the ΛCDM prediction, while for scales
that entered the ST regime during the matter dominated era
(k≳ 10−2h Mpc−1), its amplitude is enhanced.

FIG. 3. Effects of fR gravity on the CMB angular temperature power spectrum (left), the lensing power spectrum (middle), and the
linear matter power spectrum (right) for different designer fðRÞ models against the ΛCDM predictions. Unless otherwise written, we
chose wde ¼ −1 and B0 ¼ 0.1 as well as the same cosmology as in Fig. 2.
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For observational constraints, we consider the following
combinations of data sets: CMBþ BAO and CMB,
BAOþ lensing. For CMB and lensing we refer to the
Planck 2015 public likelihoods for low-l and high-l
temperatures as well as polarization and lensing data [5].
For BAO we refer to the distance measurements provided
by the WiggleZ Dark Energy Survey [75] and SDSS [76].
We use Montepython [77] for the Monte Carlo Markov
chain sampling of the parameter space. We varied the six
base cosmological parameters as well as all the Planck
nuisance parameters. For those, we used the same priors as
the Planck Collaboration [5]. In addition, we varied the
background dark energy equation of state wde and logB0

that characterize the designer fðRÞ models. For wde we
used a uniform prior between −1 and 0. For logB0 we used
a uniform prior between −6 and 1. In Tables I and II, we
show the 68% C.L. and 95% C.L. constraints from our
analyses.
For designer models with wde ¼ −1, B0 and σ8 are

determined at 68% C.L. for CMBþ BAO. We get B0 ≈
0.01 and σ8 ≃ 1.0� 0.1. If we add the information relative
to clustering at late time, via the CMB lensing data, B0 and
σ8 are not determined, but constrained to B0 ≲ 0.006 and
σ8 < 1.0 (95% C.L.).
For designer models with wde ≠ −1, B0 is not deter-

mined any more by CMBþ BAO. Moreover, because of
the correlation between wde and the amplitude of clustering
(see bottom panel of Fig. 2), σ8 takes substantially larger
values than with the wde ¼ −1models. When we add CMB
lensing data, the posterior mean value of σ8 is brought
down by 15% and more importantly the 68% C.L. region
for the dark energy background equation of state is reduced
by a factor of 10. We get ð1þ wdeÞ < 0.0006; in other
words, the expansion history has to be very close
to ΛCDM.

VI. COMPARISON WITH wCDM MODELS

To quantify the relative importance of perturbations in
(designer) fðRÞ models, we can compare their obser-
vational constraints with a wCDM model where the
background equation of state w is free to vary (but
constant in time) and we keep the sound speed (defined
in the frame comoving with the fluid) c2s ¼ δp=δρ ¼ 1
fixed. To study the perturbations of such a model, we
use the CLASS implementation of the PPF framework as
described in [78]. When wde ≥ −1, this framework
recovers the behavior of canonical minimally coupled
scalar field models, and it is accurate also when
wde ≈ −1. A welcome aspect of the PPF formalism is
that it allows one to study the evolution of perturbations
in the phantom regime (wde < −1), which is usually
preferred by supernovae data [3,79]. In addition, the
crossing of the “phantom barrier” (wde ¼ −1) is allowed,
covering therefore also the more general case of non-
canonical minimally coupled models, such as k-essence.
The PPF formalism allows also sound speeds c2s ≠ 1, as
in k-essence models, but here we limit ourselves to the
standard case of luminal sound speed, as this is also the
value in fðRÞ models.
We note, in principle, that in wCDMmodels wde can take

values smaller than −1 (this is the so-called phantom
regime), while in the designer fðRÞ models we consider
in this work the phantom crossing is not allowed due to
instabilities (see Sec. IV).
Moreover, we saw that in fðRÞ gravity small variations

of wde lead to large variations in σ8 (see bottom panel of
Fig. 2), while in wCDMmodels small variations of wde lead
to small variations in σ8: in the range of wde presented in the
bottom panel of Fig. 2, for the same cosmological param-
eters, σ8 would vary by less than 1%.

TABLE I. Posterior mean (68% C.L.) for logB0, σ8, and wde for designer fðRÞmodels that mimic a ΛCDM and a wCDM expansion.
The ellipses indicate the absence of 68% C.L. constraints; in this case only the 95% C.L. upper limits are relevant (see Table II).

CMBþ BAO
(ΛCDM)

CMBþ BAO þ lensing
(ΛCDM)

CMBþ BAO
(wCDM)

CMBþ BAOþ lensing
(wCDM)

logB0 −2.01þ1.26
−0.19 � � � � � � � � �

σ8 1.04þ0.10
−0.03 � � � 1.13þ0.05

−0.03 0.98þ0.05
−0.03

ð1þ wdeÞ × 103 0 0 8.10þ1.50
−8.10 0.64þ0.08

−0.64

TABLE II. Posterior upper limits (95% C.L.) for logB0, σ8, and wde for designer fðRÞ models that mimic a ΛCDM and a wCDM
expansion.

CMBþ BAO
(ΛCDM)

CMBþ BAOþ lensing
(ΛCDM)

CMBþ BAO
(wCDM)

CMBþ BAOþ lensing
(wCDM)

logB0 <−0.78 <−2.2 <−1.26 < − 2.35
σ8 <1.13 <0.99 <1.18 <1.04
ð1þ wdeÞ × 103 0 0 <20 <2.1
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Using the same data sets described before, in Tables III
and IV we show the 68% C.L. and 95% C.L. constraints on
σ8 and wde for the wCDM fluid, respectively. For wde, we
use a uniform prior between −2 and 0.
Our results agree with [5]. In particular, the preferred

value for wde is in the phantom regime. It means that these
data sets favor a higher value of σ8 with respect to the
ΛCDM cosmology, as was the case for the fðRÞ models.
Our last remark is that since σ8 depends weakly on wde in

wCDM compared to fðRÞ, the constraints on wde in
wCDM are weaker than in fðRÞ by 1 order of magnitude
(see Tables III and IV).

VII. DISCUSSION AND CONCLUSION

Intense observational and theoretical efforts are being
deployed to unveil the nature of the cosmic acceleration of
the universe. Going beyond the cosmological constant Λ,
two main hypotheses can be explored: dark energy and
modified gravity. Many models belonging to these two
broad groups can be described in terms of the Horndeski
Lagrangian. In this work we concentrated on a well studied
subclass of Horndeski theories, the so-called fðRÞ gravity
models. Such modifications to GR may affect both the
background expansion history and the evolution of cos-
mological perturbations. In this paper we considered the
designer fðRÞ gravity models for which the fðRÞ function
is tuned to reproduce the wCDM expansion history.
We used the EoS approach to study analytically the

dynamics of linear cosmological perturbations in this
context, and we implemented it numerically in our
CLASS_EOS_FR code. To prove the reliability of our
numerical implementation, we compared our results with
several other fðRÞ codes publicly available such as
MGCAMB [80,81], FRCAMB [82], EFTCAMB [83–85] and
found agreement at the subpercent level for all of them [55],
except for MGCAMB which disagreed by more than 5%
relative error with the other codes for the computation of
the matter power spectrum for k > 1h Mpc−1.

Unlike for the simple wCDM dark energy model, we
found that for designer fðRÞ gravity models a less negative
wde leads to a larger σ8 (see point 3 above). To arrive at this
conclusion we derived an analytical formula for the growth
index γ [see Eq. (25)].
Using CMB lensing data we found that designer fðRÞ

models with ð1þ wdeÞ > 0.002 and B0 > 0.006 are dis-
favored at 95% C.L. Note that similar constraints were
obtained for the designer fðRÞ models also by [83], using
cosmological data as we did here. The authors of [86]
performed a similar analysis on the Hu-Sawicki fðRÞ
models and found, as we did, a higher value of σ8 with
respect to the ΛCDM value.3 Moreover, for the screening
mechanism to happen on solar system scales the authors of
[88,89] found j1þ wdej ≲ 10−4 for generic fðRÞ models.
The results we obtained are consistent with these

previous analyses and hint for the fact that generic fðRÞ
models with wde ≠ −1 can be ruled out based on current
cosmological data, complementary to solar system tests.
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APPENDIX: COMPARISON BETWEEN THE
EOS AND EFT APPROACHES FOR DARK

ENERGY PERTURBATIONS

In this section we compare the expressions for the
entropy perturbations and the perturbed anisotropic stress
of [56] with the corresponding expressions from [52] in the
conformal Newtonian gauge. In the following we will
denote with the superscript “BBP” variables in [56] and
with “GLV” variables in [52]. In addition, we use the
subscript “m” for all matter species and

ζi ¼
gKϵH − ϵ̄H
3gKϵH

−
dPi

dρi
: ðA1Þ

TABLE III. Posterior mean (68% C.L.) for σ8 and wde for a
wCDM model.

CMBþ BAO CMBþ BAOþ lensing

σ8 0.85þ0.02
−0.02 0.83þ0.02

−0.02
ð1þ wdeÞ × 102 −7.35þ7.76

−5.9 −4.7þ6.5
−6.1

TABLE IV. Posterior upper limits (95% C.L.) for σ8 and wde for
a wCDM model.

CMBþ BAO CMBþ BAOþ lensing

σ8 <0.89 <0.87
ð1þ wdeÞ × 102 <5.9 <8

3Using CFHTLenS data [87], the normalization of the matter
power spectrum is significantly closer to the ΛCDM value,
implying a lower value of fR;0 (B0 in our notation) and, using
their Eq. (10) (see also their Fig. 2), wde ≈ −1.
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In fðRÞ gravity the equations of states for scalar perturbations, in both formalisms are [52,56]

ΠBBP
de ¼ K2

3gKϵH

�
Δde −

f0R
2ð1þ fRÞ

Θde þ
Ωm

Ωde

fR
1þ fR

Δm −
Ωm

Ωde

f0R
2ð1þ fRÞ

Θm

�
−

fR
1þ fR

Ωm

Ωde
Πm; ðA2aÞ

ΓBBP
de ¼

�
ζde−

ϵ̄H
3gKϵH

2ð1þfRÞ−f0R
f0R

�
Δde−ζdeΘdeþ

Ωm

Ωde

�
ζm−

ϵ̄H
3gKϵH

2fR−f0R
f0R

�
Δm−

Ωm

Ωde
ζmΘm−

Ωm

Ωde
Γm; ðA2bÞ

PGLV
de ΓGLV

de ¼ γ1γ2 þ γ3α
2
BK

2

γ1 þ α2BK
2

ðδρde − 3HqdeÞ þ
γ1γ4 þ α2BK

2

γ1 þ α2BK
2
Hðqde þ qmÞ þ

1

3
ðδρm − 3HqmÞ −

dPde

dρde
δρde − δpm; ðA2cÞ

PGLV
de ΠGLV

de ¼ γ8α
2
BK

2

2ðγ1 þ α2BK
2Þ ðδρde − 3HqdeÞ −

γ9K2

2ðγ1 þ α2BK
2ÞHðqde þ qmÞ; ðA2dÞ

where the functions γi are given by γ1 ¼ 3α2BϵH, γ3 ¼ 1
3
, γ2 ¼ 1

3
− ϵ̄H

3ϵHαB
, γ4 ¼ 1 − ϵ̄H

ϵH
, γ8 ¼ −2, and γ9 ¼ −6α3B. We further

define αB ¼ f0R
2ð1þfRÞ. Note that with respect to [52], we defined PdeΠGLV

de ¼ − k2

a2 σ
GLV
de .

Unlike [58], the authors of [52] use a nonstandard continuity equation for the effective dark energy fluid, which implies

ρGLVde ¼ ρBBPde þ 3M2
plH

2fR;

PGLV
de ¼ PBBP

de −M2
plH

2ð3 − 2ϵHÞfR;

for the background and

δρGLVde ¼ ð1þ fRÞδρBBPde þ fRδρBBPm ;

δPGLV
de ¼ ð1þ fRÞδPBBP

de þ fRδPBBP
m ;

qGLVm þ qGLVde ¼ −
1þ fR
3H

fρBBPde ΘBBP
de þ ρBBPm ΘBBP

m g;

qGLVde ¼ −
1

3H
fð1þ fRÞρBBPde ΘBBP

de þ fRρBBPm ΘBBP
m g;

PGLV
de ΠGLV

de ¼ ½ð1þ fRÞPBBP
de ΠBBP

de þ fRPBBP
m ΠBBP

m �;
for the perturbed fluid variables. From this, we conclude that both formalisms are equivalent.
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