
14 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Comment on Moriña and Navarro (2017)

Published version:

DOI:10.1080/03610918.2022.2032162

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1845197 since 2022-03-02T17:12:39Z

Letter to the Editor

Comment on Moriña and Navarro (2017)

Maria Teresa Giraudo ∗1, Fulvio Ricceri2

and Elena Rosso1

1Department of Mathematics ”Giuseppe Peano”, University of Turin, Via Carlo Alberto 8,

Turin, Italy

2Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole

10, Orbassano (TO), Italy and Unit of Epidemiology, Regional Health Service ASL TO3,

Via Sabaudia 164, Grugliasco (TO), Italy

Keywords

Competing risks; Simulation; R; survsim; Survival probability

This letter intends to comment on some aspects of the software described in the arti-

cle Moriña and Navarro (2017). The goal of that work, as specified in the Abstract,
∗Corresponding author: mariateresa.giraudo@unito.it

1

was to introduce the latest version published at the time of writing the article of

the R package survsim, in which new functions were added allowing to simulate a

cohort in a competing risks setting using cause-specific hazards models.

The package survsim had already been introduced by the same authors in Moriña

and Navarro (2014), where its use in simple survival analysis, in recurrent events

survival analysis, and in multiple events survival analysis is described in detail. The

main novelty of the version at the time (1.1.4, available on CRAN) consisted in the

fact that it allowed to simulate survival data also in the presence of competing risks

by means of the function crisk.sim, with a structure otherwise similar to that of

the previous functions. It is possible to simulate cause-specific hazards according

to Weibull distribution, of which exponential is a particular case, log-normal distri-

bution, or log-logistic distribution. Moreover, a random effect can be introduced in

order to take individual heterogeneity into account and one can also assign covariate

values to the simulated cohort individuals. The possible distributions for covariates

are normal, uniform, and Bernoulli distributions. To simulate the data for each

individual, the function crisk.sim calls the further internal function crisk.ncens.sim.

We used the functions in the version 1.1.5 of the package survsim, available on

CRAN from May 17, 2018, to simulate survival data for the study of a methodologi-

cal problem related to competing risk analysis. In this context, we found an error in

the implementation of the hazard function hW (t) for the Weibull distribution and a

limitation in the simulation of censored subjects within the function crisk.ncens.sim.

As reported in Moriña and Navarro (2017), the formula of the hazard function

2

for the Weibull distribution should be

hW (t) = λjpt
p−1, (1)

with the parametrization λj = e−pt(β0+Xjβj) and where all terms are defined as

explained in the cited paper. In the code, however, the exponent p is incorrectly

assigned also to the term p of the product in (1) (i.e. the implemented hazard is

λjp
ptp−1).

The error has not been corrected even in the latest version of the software (1.1.6,

available on CRAN from May 14, 2021). When the Weibull distribution is selected

for the cause-specific hazards in the context of competitive risks studies, this leads

to unreliable simulations of the all cause time to event density.

To illustrate this problem, we have simulated a cohort of n = 100000 subjects in a

framework with two competing causes that they can suffer. We did not add censoring

since it was not relevant in this context, while we considered one Bernoulli covariate

and we chose the following set of parameters for the two Weibull distributions of the

times to event:

• cause 1:


p = 2

β0 = 7.65

β1 = −0.11

3

• cause 2:


p = 2

β0 = 7.33

β1 = −0.66

In both cases the follow-up time was fixed at 10 years, corresponding to 3650 days. In

Figure 1 we compare the theoretical all cause time to event densities corresponding

to the subcohort with and without covariate effect (continuous lines, right and left

panel respectively) with the simulated densities obtained by using the original code

in crisk.ncens.sim (dotted lines) and by using a corrected version of the code (dashed

lines). It is evident from the plots that the original code does not produce the correct

density in either cases, as opposite to the version that we implemented.

[Figure 1 near here]

Moreover, we noticed that the simulation procedure of times to event imple-

mented in the function crisk.ncens.sim does not produce subjects withdrawn alive

from the study. Indeed, an event is simulated for a subject when the inversion algo-

rithm finds a root for the distribution function of the all cause time to event inside

the interval from the starting epoch to the follow up time. If this does not happen

and the simulated censoring time lies outside the follow-up period, the individual is

assigned all the same the status of event occurred. In this case the time to event

coincides with the follow-up duration and a cause is chosen between the two possi-

ble ones (if two competing events are considered) according to the usual binomial

experiment. In this way the proportion of individuals that have not experienced any

4

of the competing events is always null. This is a limitation as patients can have a

high chance of surviving beyond the study period.

To illustrate this problem, we used the simulation procedure to estimate the prob-

ability of survival at 1, 5 and 10 years in the same situation of competing risks

described above. In Table 1 we report the estimates of the survival probabilities

obtained by using the original not corrected code in crisk.ncens.sim and by using

a corrected version of the code and we compare them with the theoretical values.

Since the error in the computation of the Weibull hazard is still present here, in any

case the original program would not give a correct estimation of the survival, but

the returned value is in any case always null.

[Table 1 near here]

We conclude this Letter by pointing out that both the error in the implemen-

tation of the hazard function for the Weibull distribution and the limitation in the

event simulation routine inside the function crisk.ncens.sim could be remedied with

small corrections to the function code. This would allow an efficient use of the whole

package survsim, which is a useful tool for all those involved in research in the field

of survival analysis in general and of competing risks in particular. A proposal for

the update of the function, called in this version new.crisk.ncens.sim, is shown in

the Appendix hereon.

5

References

[1] Moriña D. and Navarro A. Competing risks simulation with the survsim

R package. Communications in Statistics - Simulation and Computa-

tion 2017; 46(7): 5712-5722.

[2] Moriña D. and Navarro A. The R package survsim for the simulation of

simple and complex survival data. Journal of Statistical Software 2014;

59(2): 1-20.

6

Appendix

new.crisk.ncens.sim<-function(foltime, anc.ev, beta0.ev, anc.cens, beta0.cens,

z = NULL, beta = 0, eff = 0, dist.ev, dist.cens, i, nsit)

{

nid <- NA

start <- NA

stop <- NA

obs <- NA

time <- NA

pro <- vector()

cause <- NA

a.ev <- vector()

b.ev <- vector()

a.cens <- NA

b.cens <- NA

obs[1] <- 1

k.ev <- 1

sum <- 0

cshaz <- list()

az1 <- vector()

it<-0

if (is.null(z)) {

for (j in 1:nsit) {

az1[j] <- 1

}

}

else {

for (j in 1:length(z)) {

7

if (!is.na(z[[j]][1]) && z[[j]][1] == "gamma")

az1[j] <- rgamma(1, as.numeric(z[[j]][2]), as.numeric(z[[j]][3]))

if (!is.na(z[[j]][1]) && z[[j]][1] == "exp")

az1[j] <- rgamma(1, 1, as.numeric(z[[j]][2]))

if (!is.na(z[[j]][1]) && z[[j]][1] == "weibull")

az1[j] <- rweibull(1, as.numeric(z[[j]][2]),

as.numeric(z[[j]][3]))

if (!is.na(z[[j]][1]) && z[[j]][1] == "unif")

az1[j] <- runif(1, as.numeric(z[[j]][2]), as.numeric(z[[j]][3]))

if (!is.na(z[[j]][1]) && z[[j]][1] == "invgauss")

az1[j] <- rinvgauss(1, as.numeric(z[[j]][2]),

as.numeric(z[[j]][3]))

}

if (length(z) == 1) {

for (j in 2:nsit) {

az1[j] <- az1[j]

}

}

}

if (dist.cens == "llogistic") {

tc <- exp(rlogis(1, beta0.cens, anc.cens))

}

else {

if (dist.cens == "weibull") {

a.cens <- anc.cens

b.cens <- (1/exp(-anc.cens * (beta0.cens)))^(1/anc.cens)

tc <- rweibull(1, a.cens, b.cens)

}

8

else {

if (dist.cens == "lnorm") {

tc <- rlnorm(1, beta0.cens, anc.cens)

}

else {

if (dist.cens == "unif") {

tc <- runif(1, beta0.cens, anc.cens)

}

}

}

}

suma <- vector()

for (m2 in 1:nsit) {

suma[m2] <- 0

for (m1 in 1:length(beta)) {

suma[m2] <- suma[m2] + beta[[m1]][m2] * eff[m1]

}

}

if (all(is.na(suma)))

suma <- rep(0, nsit)

for (k in 1:nsit) {

if (dist.ev[k] == "llogistic") {

a.ev[k] <- 1/exp(beta0.ev[k] + suma[k])

b.ev[k] <- anc.ev[k]

cshaz[[k]] <- function(t, r) {

par1 <- eval(parse(text = "a.ev[r]"))

par2 <- eval(parse(text = "b.ev[r]"))

z <- eval(parse(text = "az1[r]"))

9

return(z * (par1 * par2 * (t^(par2 - 1)))/(1 +

par1 * (t^par2)))

}

}

else {

if (dist.ev[k] == "weibull") {

a.ev[k] <- beta0.ev[k] + suma[k]

b.ev[k] <- anc.ev[k]

cshaz[[k]] <- function(t, r) {

par1 <- eval(parse(text = "a.ev[r]"))

par2 <- eval(parse(text = "b.ev[r]"))

z <- eval(parse(text = "az1[r]"))

return(z * ((1/par2)/((exp(par1))^(1/par2)))*

t^((1/par2) - 1))

}

}

else {

if (dist.ev[k] == "lnorm") {

a.ev[k] <- beta0.ev[k] + suma[k]

b.ev[k] <- anc.ev[k]

cshaz[[k]] <- function(t, r) {

par1 <- eval(parse(text = "a.ev[r]"))

par2 <- eval(parse(text = "b.ev[r]"))

z <- eval(parse(text = "az1[r]"))

return(z * (dnorm((log(t) - par1)/par2)/(par2 *

t * (1 - pnorm((log(t) - par1)/par2)))))

}

}

10

}

}

}

A <- function(t, y) {

res <- 0

for (k in 1:length(cshaz)) {

res <- res + integrate(cshaz[[k]], lower = 0.00001,

upper = t, r = k, subdivisions = 2000)$value

}

res <- res + y

return(res[1])

}

u <- runif(1)

if (A(0.001, log(1 - u)) * A(foltime, log(1 - u)) > 0) {

tb <- foltime

cause <- 0

}

else

{tb <- uniroot(A, c(0, foltime), tol = 1e-05, y = log(1 - u))$root

it<-1

sumprob <- 0

for (k in 1:length(cshaz)) {

sumprob <- sumprob + cshaz[[k]](tb, k)

}

for (k in 1:length(cshaz)) {

pro[k] <- cshaz[[k]](tb, k)/sumprob

}

cause1 <- rmultinom(1, 1, prob = pro)

11

for (k in 1:length(cshaz)) {

if (cause1[k] == 1)

cause <- k

}}

az <- az1[k]

nid <- i

if (tc < tb) {

tb <- tc

it <- 0

cause<-0

}

sim.ind <- data.frame(nid = nid, cause = cause, status = it, time= tb, z = az)

for (k in 1:length(eff)) {

sim.ind <- cbind(sim.ind, x = eff[k])

}

return(sim.ind)

}

12

Covariate Follow-up (years) Original code Corrected version Theoretical value

10 0 0.0002402 0.0001593
0 5 0 0.1144569 0.1123423

1 0 0.9163347 0.9162663

10 0 0 1.142e-11
1 5 0 0.0015476 0.0018383

1 0 0.7781463 0.7772777

Table 1: Survival probabilities

13

Figure captions

• Figure 1: Simulated densities (dotted lines: original code; dashed lines: cor-

rected version) compared with the theoretical ones (continuous lines)

14

