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Abstract

Exponential polynomials are essential in subdivision for the reconstruction of specific families of curves and
surfaces, such as conic sections and quadric surfaces. It is well known that if a linear subdivision scheme is
able to reproduce a certain space of exponential polynomials, then it must be level-dependent, with rules
depending on the frequencies (and eventual multiplicities) defining the considered space. This work discusses
a general strategy that exploits annihilating operators to locally detect those frequencies directly from the
given data and therefore to choose the correct subdivision rule to be applied. This is intended as a first
step towards the construction of self-adapting subdivision schemes able to locally reproduce exponential
polynomials belonging to different spaces. An application of the proposed strategy is shown explicitly on an
example involving the classical butterfly interpolatory scheme. This particular example is the generalization
of what has been done for the univariate case in Donat and López-Ureña (2019), which inspired this work.

Keywords: annihilating operators, exponential polynomials, level-dependent subdivision

1. Introduction

This paper is concerned with the reproduction of exponential polynomials in a bivariate framework using
recursive subdivision schemes. The reproduction of exponential polynomials is very important not only in
connection with geometric modelling (to model shapes like conics or quadrics, see Beccari et al. (2007),
Beccari et al. (2009), Lee and Yoon (2010) and Novara and Romani (2015)), but also in connection with
applications like biomedical imaging (where sphere-like geometries naturally arise, see Uhlmann et al. (2014),
Conti et al. (2015), Badoual et al. (2017a) and Badoual et al. (2017b)) or nuclear magnetic resonance
spectroscopy data analysis (where multi-exponential decays frequently appear, see Li et al. (2015) and
Campagna et al. (2020)). To reproduce shapes like conics or quadrics, subdivision schemes use two different
strategies. The first consists in the construction of non-linear, geometrically-driven subdivision rules that
are able to generate limit curves/surfaces sensitive to the geometry of the initial points (Sabin and Dodgson,
2005; Chalmovianský and Jüttler, 2007; Deng and Wang, 2010; Romani, 2010; Albrecht and Romani, 2012;
Michálková and Bastl, 2015). The second relies on the definition of linear subdivision rules with the capability
of reproducing exponential polynomials (Beccari et al., 2010; Conti and Romani, 2010; Conti et al., 2011,
2016a; Romani et al., 2016). Here, we follow the strategy in this second group of papers.

We remark that, even if the study of reproduction capabilities of subdivision schemes and their analysis
are well developed in both the stationary and non stationary settings (see Charina et al. (2005), Conti et al.
(2018) and Conti et al. (2019)), all available analysis tools require the preliminary knowledge of the space
the scheme is capable to reproduce. Such a capability is also known to be connected to the approximation
order of the scheme (see Levin (2005), Charina and Conti (2013), Jeong et al. (2013), Conti et al. (2016b),
Novara et al. (2016) and references therein).
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In dimension d ∈ N, a space of exponential polynomials is specified by a matrix of frequencies Γ :=
[γh]νh=1 ∈ Cd×ν with an associated matrix of corresponding multiplicities M := [mh]νh=1 ∈ Nd×ν , ν ∈ N
and it is defined as

WΓ,M := span
{

xαh eγ
T
hx : αh multi-index with 0 ≤ αh ≤mh − 1

}ν
h=1

. (1)

Up to now, in all subdivision schemes reproducing the space WΓ,M , the level-dependent refinement rules
involve explicitly the frequencies Γ and the corresponding multiplicities M . This is a major drawback
since, usually, there is no a priori knowledge of the initial data, i.e., if they are samples of a function F in
WΓ,M , which prevents the choice of the right subdivision rules for the reconstruction of F . This problem
is amplified considering shapes composed of different functions belonging to several exponential polynomial
spaces. Indeed, in the latter situation, local values of the frequencies have to be detected from the initial
data, since different subdivision rules have to be chosen locally for the exact reproduction of the different
sections.

In Donat and López-Ureña (2019) this problem is addressed, in the univariate setting only, for a specific
family of exponential polynomial spaces. In particular the authors constructed and analysed an interpolatory
level-independent non-linear subdivision scheme reproducing the space

Wγ = span
{

1, eγx, e−γx
}
, x ∈ R, (2)

for every γ ∈ R≥0 ∪ i(0, π), where i(0, π) denotes the open interval {it : t ∈ (0, π)} on the imaginary axis.
Their strategy exploits the orthogonal rules that annihilate the space (2). Orthogonal rules are one possible
way to derive non-stationary subdivision schemes capable of reproducing spaces of exponential polynomials
(see e.g. Dyn et al. (2003)). Indeed, in Donat and López-Ureña (2019), it is shown that from the orthogonal
rules it is possible to derive the frequency γ as a function of the data attached to a stencil of the scheme.

The aim of this work is to illustrate a strategy for the automatic detection of frequencies (and eventual
multiplicities) of exponential polynomial spaces in a very general multidimensional context. The presented
approach is based on the so called annihilating operators, or annihilators, which generalize the concept of
orthogonal rules (see the recent paper Conti et al. (2020)) to the multivariate setting.

To keep the exposition clear and to show the strength of this strategy in applications, a recurring example
is considered in all sections. This pivotal example deals with exponential polynomial spaces of the form

Wγ := span{ 1, eγ
Tx, e−γ

Tx, eγ̃
Tx, e−γ̃

Tx }, γ =

[
γ1

γ2

]
∈ Ω2, γ̃ =

[
γ1

−γ2

]
, (3)

where
Ω := R≥0 ∪ i(0, π), (4)

in which spheres, cylinders, hyperboloids and other shapes can be described. We first provide linear level-
dependent subdivision rules for the reconstruction of functions in Wγ , starting from their samples on Z2.
These rules depend on the frequency γ. Then we construct a family of local annihilators that allow us
to detect γ in a non-linear way from the data related to a single stencil of the scheme. The stencils here
considered are the ones from the classical 8-point interpolatory subdivision scheme called butterfly scheme
(Dyn et al., 1990). This is the natural extension to the bivariate case of what has been done in Donat and
López-Ureña (2019).

The paper is organized as follows. In Section 2 we recall basic notions on subdivision schemes in a very
general setting, introducing new notations when needed. The concept of step-wise reproduction is recalled
in Section 3, where we also obtain the linear level-dependent rules needed to reproduce one Wγ in (3). Then,
in Section 4 we provide a useful local family of annihilators for {Wγ}γ∈Ω2 over Z2 and we use them to detect
the frequency γ from the initial data attached to a single stencil of the butterfly scheme. We then summarize
the tools needed in order to reproduce the used strategy for a general family of exponential polynomials (1).
Finally, in Section 5, we show how the detection procedure in Section 4 can be further improved in order to
detect the type of stencil associated to a finite ordered set of samples of an exponential polynomial.
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2. Subdivision Preliminaries

Before recalling some standard facts about subdivision, the authors would like to inform the reader that,
in order to make the proposed strategy as general as possible and to make the manuscript as consistent
as possible, some non-standard notation is introduced. In particular, to deal with the general space of
exponential polynomials (1), it is crucial to consider complex-valued sequences instead of real-valued ones.

Let d ∈ N and consider a sequence of discrete sets of distinct vertices {Ξ(k) ⊂ Rd}k∈N0
(N0 := N∪{0}) so

that there exists limk→∞ Ξ(k) = D which is either Rd or a compact connected subset of it. In a very general
setting, a d-variate scalar subdivision scheme S := {S(k)}k∈N0

is a sequence of subdivision operators, where,
at each subdivision level k, S(k) refines sequences of data attached to Ξ(k) thus yielding sequences of data
attached to Ξ(k+1), i.e.,

S(k) : `(Ξ(k),C) −→ `(Ξ(k+1),C),

where `(Ξ,C) denotes the set of sequences f = [fj ∈ C]j∈Ξ. We say that S is convergent if, for every set of
initial data f (0) ∈ `(Ξ(0),C), the sequence of refined data {f (k+1) = S(k) f (k)}k∈N0

, attached to the vertices
Ξ(k+1), converges to the graph of a continuous function denoted as S∞f (0).

A standard assumption in applications is that every subdivision operator acts locally, i.e. for every

j ∈ Ξ(k+1), there exists a finite ordered set B(k)
j ⊂ Ξ(k), called stencil, and a function

Ψ
(k)
j : Cn

(k)
j −→ C, n

(k)
j := #B(k)

j ,

called subdivision rule, so that

f
(k+1)
j = Ψ

(k)
j

(
f (k)|B(k)

j

)
, ∀j ∈ Ξ(k+1). (5)

Here, the restriction operator •|B(k)
j

: `(Ξ(k),C) → Cn
(k)
j is well defined because of the stencil B(k)

j being

ordered.

Example 2.1. The classical butterfly scheme for the tri-directional grid can be described in this setting as
follows:

(a) d = 2 and D = R2;

(b) for every k ∈ N0, Ξ(k) = 2−kZ2;

(c) for every k ∈ N0 and j ∈ Ξ(k+1),

B(k)
j =



j, if j ∈ Ξ(k),

j + 2−k−1

{ [
−1
0

]
,

[
1
0

]
,

[
−1
−2

]
,

[
1
2

]
,

[
3
2

]
,

[
−1
2

]
,

[
−3
−2

]
,

[
1
−2

] }
, if j ∈ 2Z+1

2k+1 × Z
2k (horizontal stencil),

j + 2−k−1

{ [
0
−1

]
,

[
0
1

]
,

[
−2
−1

]
,

[
2
1

]
,

[
2
3

]
,

[
2
−1

]
,

[
−2
−3

]
,

[
−2
1

] }
, if j ∈ Z

2k × 2Z+1
2k+1 (vertical stencil),

j + 2−k−1

{ [
−1
−1

]
,

[
1
1

]
,

[
−1
1

]
,

[
1
−1

]
,

[
3
1

]
,

[
−1
−3

]
,

[
−3
−1

]
,

[
1
3

] }
, if j ∈ 2Z+1

2k+1 × 2Z+1
2k+1 (diagonal stencil);

(6)

(d) for every k ∈ N0, if j ∈ Ξ(k+1),

Ψ
(k)
j : C −→ C

z 7−→ z,

otherwise,

Ψ
(k)
j : C8 −→ C

z = [zh]h=1,...,8 7−→
∑8
h=1 ah zh = zTa,
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with
a = [ah]8h=1 =

[
1
2 ,

1
2 ,

1
8 ,

1
8 , −

1
16 , −

1
16 , −

1
16 , −

1
16

]T
. (7)

The configurations of (c) and (d) for the horizontal, vertical and diagonal case are shown in Figure 1.

1
2

1
2

− 1
16

1
8 − 1

16

− 1
16

1
8 − 1

16

1
2

1
2

− 1
16

1
8

− 1
16

− 1
16

1
8

− 1
16

1
2

1
2

− 1
16

− 1
16

− 1
16

− 1
16

1
8

1
8

Figure 1: From left to right: the configuration of set B(k)
j related to the horizontal, vertical and diagonal case in (6), respectively.

The cross indicates position j, while the bullets illustrate the elements of B(k)
j . The adjacent numbers are the corresponding

elements of the mask (7).

The subdivision rules described in (d) do not depend on the subdivision level k (level-independence) nor
on the vertex j (shift-invariance): there are essentially two different subdivision rules used at all subdivision
levels, one for vertices already existing in the previous level (also known as replacement rule) and one for
newly added vertices (also known as insertion rule). Moreover, these rules are linear operators. When this
is the case, the vector a is called mask and the subdivision scheme is said to be linear.

Definition 2.1. We say that a subdivision scheme reproduces a set of functions W ⊂ {F : Rd −→ C} on D
if and only if, for every F ∈W ,

f (0) = F (Ξ(0)) = [ F (j) ]j∈Ξ(0) =⇒ S∞ f (0) = F |D. (8)

For instance, the butterfly scheme described in Example 2.1 is able to reproduce polynomials with total
degree up to 3 (see, e.g., Charina and Conti (2013)).

While some useful functions, like polynomials, can be reproduced using linear level-independent subdivi-
sion rules, to reproduce other interesting types of function, such as exponential polynomials, it is necessary
to consider level-dependent subdivision rules.

3. Linear Level-dependent Rules for Exponential Polynomial Reproduction

Let n ∈ N and consider an n-dimensional space of functions W with basis {bh : X −→ C}h=1,...,n, i.e.

W = span{ bh : h = 1, . . . , n } = {
∑n
h=1 ch bh : ch ∈ C } ,

where X ⊆ Rd is an open domain such that Ξ(k) ⊂ X for every k ∈ N0 (in particular D ⊆ X). If one wants
to reproduce W on D with a subdivision scheme, a natural strategy is to ask a slightly stronger property
than (8), namely:

Definition 3.1. We say that a subdivision scheme stepwise reproduces W if and only if, for every F ∈W ,
k ∈ N0,

f (k) = F (Ξ(k)) =⇒ f (k+1) = F (Ξ(k+1)). (9)
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In particular, if we seek linear subdivision rules, we have the following result.

Proposition 3.1. Given {Ξ(k)}k∈N0
and {B(k)

j }k∈N0,j∈Ξ(k) , there exists a linear subdivision scheme stepwise
reproducing the space W , with subdivision rules

Ψ
(k)
j (z) =

n
(k)
j∑
h=1

a
(k)
j,h zh = zT a

(k)
j , k ∈ N0, j ∈ Ξ(k+1), (10)

for some a
(k)
j ∈ Cn

(k)
j if and only if, for every k ∈ N0 and j ∈ Ξ(k+1), a

(k)
j is a solution of

V
(k)
j a

(k)
j = bj, (11)

where
bj :=

[
bh(j)

]n
h=1

∈ Cn, V
(k)
j :=

[
b`
]
`∈B(k)

j

∈ Cn×n
(k)
j .

Proof. The result follows from the fact that V
(k)
j in (11) is an alternant matrix. Indeed, if

F (x) =

n∑
h=1

ch bh(x) ∈ W,

from (5) and (9) it follows that, for every k ∈ N0 and every j ∈ Ξ(k+1),

F (j) = f
(k+1)
j = Ψ

(k)
j

(
f (k)|B(k)

j

)
= Ψ

(k)
j

(
F
(
B(k)
j

) )
.

This, due to (10), becomes

F (j) =
[
F (`)

]T
`∈B(k)

j

a
(k)
j .

With c = [ch]nh=1 ∈ Cn, we can write F (j) = cT bj, for every j ∈ Ξ(k), k ∈ N0. Thus, for every c ∈ Cn,

cT bj = cT V
(k)
j a

(k)
j ,

which implies (11). The other implication is straightforward.

Example 3.1. Let us construct a linear subdivision scheme with (a), (b) and (c) given as in the butterfly
scheme in Section 2, that is able to reproduce on R2 the space Wγ in (3). To do so, we must study (11) for

each of the four possible configurations of B(k)
j in (6). The case j ∈ Ξ(k) is trivial, since it implies B(k)

j = {j}.
Thus (11) becomes

bj a
(k)
j = bj =⇒ a

(k)
j = 1 =⇒ Ψ

(k)
j (z) = z.

Let us now consider the horizontal case. The resulting system (11) is underdetermined since V
(k)
j ∈ C5×8

and it is possible to show that, asking for the same symmetries as (7), there exists a unique solution

a
(k)
j = [a

(k)
j,h ]8h=1 with 

a
(k)
j,1 = a

(k)
j,2 = 1

2φ
(k)
1

,

a
(k)
j,3 = a

(k)
j,4 =

2(φ
(k)
1 )2−1

4φ
(k)
1

(
φ
(k)
1 +1

) ,

a
(k)
j,5 = a

(k)
j,6 = a

(k)
j,7 = a

(k)
j,8 = − 1

8φ
(k)
1

(
φ
(k)
1 +1

) ,
(12)
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where φ
(k)
1 := cosh

(
2−k−1γ1

)
. The vertical case can be obtained from the horizontal one by exchanging the

role of γ1 and γ2, thus replacing φ
(k)
1 in (12) with φ

(k)
2 := cosh

(
2−k−1γ2

)
. The setting for the diagonal case is

the same, an underdetermined system with 5 equations and 8 unknowns that, under symmetry requirements,

admits the unique solution a
(k)
j = [a

(k)
j,h ]8h=1 with

a
(k)
j,1 = a

(k)
j,2 =

2φ
(k)
1 φ

(k)
2

(
(φ

(k)
1 )2+(φ

(k)
2 )2−1

)
−(φ

(k)
1 )2−(φ

(k)
2 )2

4φ
(k)
1 φ

(k)
2

(
(φ

(k)
1 )2+(φ

(k)
2 )2−2

) ,

a
(k)
j,3 = a

(k)
j,4 =

(φ
(k)
1 )2+(φ

(k)
2 )2−φ(k)

1 φ
(k)
2 −1

4φ
(k)
1 φ

(k)
2

(
(φ

(k)
1 )2+(φ

(k)
2 )2−2

) ,

a
(k)
j,5 = a

(k)
j,6 = a

(k)
j,7 = a

(k)
j,8 =

1−φ(k)
1 φ

(k)
2

8φ
(k)
1 φ

(k)
2

(
(φ

(k)
1 )2+(φ

(k)
2 )2−2

) .

(13)

Remark 3.1. For the practical implementation of rules (12) and (13), one has to carefully deal with the cases
where the rules are not well defined, i.e. when, for k ∈ N0, one of the following holds

Φ
(k)
1 , Φ

(k)
2 ∈ { 0, −1 } or

(
Φ

(k)
1

)2

+
(

Φ
(k)
2

)2

− 2 = 0.

This however overtakes the aim of this work which, referring to this specific example, is to detect γ from
the samples f (0) = F (Ξ(0)) of a function F ∈Wγ , for some γ ∈ Ω2.

As expected, since the basis of Wγ depends on the frequency γ, the resulting subdivision rules given by

(12) and (13) also depend on it, in the form of φ
(k)
1 and φ

(k)
2 , which also depend on the subdivision level k

(but not on j). On the other hand, in order to use such subdivision rules, one has only to compute φ
(0)
1 and

φ
(0)
2 , since

φ
(k)
h = cosh

( γh
2k+1

)
=

√
cosh

(
γh
2k

)
+ 1

2
=

√
φ

(k−1)
h + 1

2
, k ∈ N, h = 1, 2. (14)

The fact that we were able to obtain (12) and (13) depending only on φ
(k)
1 and φ

(k)
2 is heavily related to

the structure of {Ξ(k)}k∈N0
, {B(k)

j }k∈N0,j∈Ξ(k+1) and Wγ . For general sets of vertices, stencils and spaces of

exponential polynomials WΓ,M as in (1), if there exists a
(k)
j , for every k ∈ N0 and j ∈ Ξ(k+1), solving (11),

it will have a much more complicated expression in terms of the elements of Γ and M .

4. Annihilating Operators and Parameters Detection

In contrast to Section 2 and 3, in which a general setting was first built and then specialized in Example
2.1 and 3.1, respectively, here we follow a different approach. To get the reader acquainted to the proposed
strategy, we present first how the detection of the frequency γ for the family of spaces {Wγ}γ∈Ω2 in (3) can
be done for the specific setting in Example 2.1 and 3.1. Then a description of the procedure in the general
setting is given. This should allow the reader to get an intuition about the tools and the properties needed
for the general case.

Example 4.1. Consider the setting described by Example 2.1 and 3.1. As proven in Conti et al. (2020),
for every γ ∈ Ω2, v0,v1,v2,v3,v4 ∈ R2,

∆0
v0

∆γ
v1

∆−γv2
∆γ̃

v3
∆−γ̃v4

F (x) = 0, ∀F ∈Wγ , x ∈ R2, (15)

where
∆γ

v F (x) := F (x + v) − eγ
Tv F (x). (16)
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Because of the structure of (16), the left-hand-side of (15) involves the samples of F at the points

{ x + ε0v0 + ε1v1 + ε2v2 + ε3v3 + ε4v4 : εh ∈ {0, 1}, h ∈ {0, . . . , 4} } .

We consider now the discrete analogue of (15), keeping the same notation when possible to underline the
analogy with the continuous case. Since Ξ(0) = Z2, for every x,v0,v1,v2,v3,v4 ∈ Z2, the operator

Nx,v0,v1,v2,v3,v4 : Ω2 × `(Ξ(0),C) −→ C

(γ, f) 7−→ ∆0
v0

∆γ
v1

∆−γv2
∆γ̃

v3
∆−γ̃v4

f
∣∣
x
,

(17)

where

∆γ
v : `(Ξ(0),C) −→ `(Ξ(0),C)

f 7−→ τvf − eγ
Tv f ,

τv : `(Ξ(0),C) −→ `(Ξ(0),C)

f = [fj]j∈Ξ(0) 7−→ g = [gj = fj+v]j∈Ξ(0) ,

is called an annihilator for {Wγ}γ∈Ω2 on Ξ(0), since, for every F ∈Wγ , γ ∈ Ω2, it satisfies

Nx,v0,v1,v2,v3,v4

(
γ, F (Ξ(0))

)
= 0.

Remark 4.1. With an abuse of notation but without ambiguity, the restriction operator | is used at the end
of (17) without parenthesis, even if it is applied as the last operator in the chain, after the operators of
the form ∆γ

v . In what follows, this convention is maintained in similar situations to make the notation less
cumbersome.

Each annihilator of the form (17) is identified by an element of Z12, since x,v0,v1,v2,v3 and v4 can be
chosen as arbitrary vectors in Z2. To proceed with the computations, we restrict ourselves to a very special
subfamily of (17) that is enough to detect the frequency γ and is noteworthy for other properties. Let us
define, for x,v, e ∈ Ξ(0), the operator

Nx,v,e : Ω2 × `(Ξ(0),C) −→ C

(γ, f) 7−→ ∆0
v ∆γ

e ∆−γe f |x.
(18)

Now, for

e1 :=

[
1
0

]
and e2 :=

[
0
1

]
,

one can observe that

∆γ
e1

= ∆γ̃
e1
, ∆γ

e2
= ∆−γ̃e2

, ∆−γe1
= ∆−γ̃e1

and ∆−γe2
= ∆γ̃

e2
. (19)

According to (19), it can be proved that also the operators Nx,v,e1 and Nx,v,e2 annihilate {Wγ}γ∈Ω2 on

Ξ(0) for every x,v ∈ Z2 (see Conti et al. (2020) for details). Of particular interest are the annihilators of
the form

Nx,e1+2e2,e1 , Nx,e1,e2 , Nx,e2,e1 , Nx,2e1+e2,e2 , Nx,e1+e2,e1 and Nx,e1+e2,e2 , (20)

because they are pairwise related to the horizontal (the first and the second operator), vertical (the third
and the fourth operator) and diagonal stencils (the fifth and the last operator) in (6), respectively. This is
a consequence of the following result.

Proposition 4.1. For every x,v, e ∈ Ξ(0),

Nx,v,e(γ, f) = −2 cosh(γTe) ∆0
vf
∣∣
x+e

+ ∆0
vf
∣∣
x+2e

+ ∆0
vf
∣∣
x

= cT f |B ,
(21)
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where
c =

[
−2 cosh(γTe), 2 cosh(γTe), 1, −1, 1, −1

]T
,

B = x + { v + e, e, v + 2e, 2e, v, 0 } .
In particular, for f (0) = F (Ξ(0)), F ∈Wγ , γ ∈ Ω2 and ∆0

vf (0)
∣∣
x+e
6= 0,

cosh(γTe) =
∆0

vf (0)
∣∣
x+2e

+ ∆0
vf (0)

∣∣
x

2 ∆0
vf (0)

∣∣
x+e

. (22)

Proof. From definition (17) we get

Nx,v,e(γ, f) = ∆0
v ∆γ

e ∆−γe f
∣∣
x

= ∆0
v ∆γ

e1
(τef − e−γ

T e f)
∣∣∣
x

= ∆0
v

(
τe(τef − e−γ

T e f)− eγT e(τef − e−γ
T e f)

) ∣∣∣
x

= ∆0
v

(
τeτef − 2 cosh(γTe)τef + f

) ∣∣
x

= −2 cosh(γTe) ∆0
vf
∣∣
x+e

+ ∆0
vf
∣∣
x+2e

+ ∆0
vf
∣∣
x
,

where for the last equality we exploit the fact that ∆0
vτe = τe∆0

v. Moreover, since Nx,v,e is an annihilator
for {Wγ}γ∈Ω2 over Ξ(0), Nx,v,e(γ, f (0)) = 0. Thus, if ∆0

vf
∣∣
x+v
6= 0, (21) can be solved for cosh(γTe) so

obtaining (22).

As a consequence of (21), we get the following expressions for the operators in (20):

Nx,e1+2e2,e1(γ, f) = 2 cosh(γ1) ( fx+e1 − fx+2e1+2e2 ) + fx+3e1+2e2 + fx+e1+2e2 − fx+2e1 − fx,

Nx,e1,e2
(γ, f) = 2 cosh(γ2) ( fx+e2

− fx+e1+e2
) + fx+e1 + 2e2

+ fx+e1
− fx+2e2

− fx,

Nx,e2,e1
(γ, f) = 2 cosh(γ1) ( fx+e1

− fx+e1+e2
) + fx+2e1+e2

+ fx+e2
− fx+2e1

− fx,

Nx,2e1+e2,e2
(γ, f) = 2 cosh(γ2) ( fx+e2

− fx+2e1+2e2
) + fx+2e1+3e2

+ fx+2e1+e2
− fx+2e2

− fx,

Nx,e1+e2,e1
(γ, f) = 2 cosh(γ1) ( fx+e1

− fx+2e1+e2
) + fx+3e1+e2

+ fx+e1+e2
− fx+2e1

− fx,

Nx,e1+e2,e2
(γ, f) = 2 cosh(γ2) ( fx+e2

− fx+e1+2e2
) + fx+e1+3e2

+ fx+e1+e2
− fx+2e2

− fx.

In particular, for j ∈ (2Z+1)/2×Z (horizontal stencil), we have thatNj−3e1/2−e2,e1+2e2,e1
andNj−e1/2−e2,e1,e2

require only elements of f |B(0)
j

to be computed. Moreover, when well defined, (22) gives us
cosh(γ1) =

f
(0)

j+3e1/2+e2
+ f

(0)

j−e1/2+e2
− f(0)

j+e1/2−e2
− f(0)

j−3e1/2−e2

2
(
f
(0)

j−e1/2−e2
− f(0)

j+e1/2+e2

) ,

cosh(γ2) =
f
(0)

j+e1/2+e2
+ f

(0)

j+e1/2−e2
− f(0)

j−e1/2+e2
− f(0)

j−e1/2−e2

2
(
f
(0)

j−e1/2
− f(0)

j+e1/2

) .

(23)

The same can be done for j ∈ Z × (2Z + 1)/2 (vertical stencil), Nj−e1−e2/2,e2,e1
and Nj−e1−3e2/2,2e1+e2,e2

,
obtaining 

cosh(γ1) =
f
(0)

j+e1+e2/2
+ f

(0)

j−e1+e2/2
− f(0)

j+e1−e2/2
− f(0)

j−e1−e2/2

2
(
f
(0)

j−e2/2
− f(0)

j+e2/2

) ,

cosh(γ2) =
f
(0)

j+e1+3e2/2
+ f

(0)

j+e1−e2/2
− f(0)

j−e1+e2/2
− f(0)

j−e1−3e2/2

2
(
f
(0)

j−e1−e2/2
− f(0)

j+e1+e2/2

) ,

(24)
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and for j ∈ (2Z + 1)/2 × (2Z + 1)/2 (diagonal stencil), Nj−3e1/2−e2/2,e1+e2,e1
and Nj−e1/2−3e2/2,e1+e2,e2

,
obtaining 

cosh(γ1) =
f
(0)

j+3e1/2+e2/2
+ f

(0)

j−e1/2+e2/2
− f(0)

j+e1/2−e2/2
− f(0)

j−3e1/2−e2/2

2
(
f
(0)

j−e1/2−e2/2
− f(0)

j+e1/2+e2/2

) ,

cosh(γ2) =
f
(0)

j+e1/2+3e2/2
+ f

(0)

j+e1/2−e2/2
− f(0)

j−e1/2+e2/2
− f(0)

j−e1/2−3e2/2

2
(
f
(0)

j−e1/2−e2/2
− f(0)

j+e1/2+e2/2

) .

(25)

The configurations of vertices involved in these equations are shown in Figure 2.

1 2 cosh(γ1) 1

−1 −2 cosh(γ1) −1

2 cosh(γ1)

−2 cosh(γ1)

1

−1

1

−1
−2 cosh(γ1)

2 cosh(γ1)

−1

1

−1

1

Nj−3e1/2−e2,e1+2e2,e1
Nj−e1−e2/2,e2,e1

Nj−3e1/2−e2/2,e1+e2,e1

−2 cosh(γ2)

2 cosh(γ2)

−1 1

−1 1

1

2 cosh(γ2)

1

−1

−2 cosh(γ2)

−1

−2 cosh(γ2)

2 cosh(γ2)

−1

1

1

−1

Nj−e1/2−e2,e1,e2
Nj−e1−3e2/2,2e1+e2,e2

Nj−e1/2−3e2/2,e1+e2,e2

Figure 2: The configuration of the vertices involved in the local annihilators for the detection of cosh(γ1) (on the top row)

and cosh(γ2) (on the bottom row), in the case of B(0)
j , j ∈ Ξ(1) \Ξ(0), being an horizontal stencil (first column, (23)), a vertical

stencil (central column, (24)) or a diagonal stencil (third column, (25)), where the cross indicates the vertex j.

Remark 4.2. One way to deal with the cases when (23), (24) or (25) are not well defined is to consider more
local annihilators in order to get a one-to-one correspondence between a solution (γ, f) for the system given
by all the annihilators and a function in {Wγ}γ∈Ω2 . This is also the strategy presented in Section 5 to solve
another issue, and is presented there in more details (see Remark 5.1).

Remark 4.3. Since, Ξ(k) = 2−kΞ(0) and F ∈Wγ ⇔ F (2−k·) ∈W2−kγ , for every k ∈ N, equations (23), (24)

and (25) can be recast for φ
(k−1)
1 = cosh(2−kγ1) and φ

(k−1)
2 = cosh(2−kγ2) simply substituting f (0) with

f (k). The resulting subdivision rules obtained combining (12) and (13) with (23), (24) and (25) are then
non-linear and level-independent.

Remark 4.4. The choice of Ω2 in (4) as the set of frequencies is natural in the following sense. Since for
applications we are interested in real-valued sequences f (0), from (23), (24) and (25) follows that cosh(γh) ∈
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R, for h = 1, 2, and this is true if and only if γh ∈ (R + iπZ)∪iR. In order to get a one-to-one correspondence
between [cosh(γ1), cosh(γ2)]T and the space Wγ in (3), considering the periodicity of the cosine function,
the fact that Wγ = W−γ = Wγ̃ = W−γ̃ and the recurrence relation (14), it is natural to consider γh ∈
R≥0 ∪ i(0, π), h = 1, 2, for the detection procedure here described.

To summarize, starting from a class of annihilators for the samples of functions in {Wγ}γ∈Ω2 over

Ξ(0) = Z2, we were able to find equations that can be used to detect the frequency γ directly from the initial
data f (0). These equations are also local, in the sense that they only involve vertices coming from a single

stencil B(0)
j , j ∈ Ξ(1), thus they could be even used to detect different frequencies for samples of piecewise

functions with pieces belonging to different function spaces Wγ (see, e.g., Figure 4).

In the general case, suppose to have a sequence of vertices {Ξ(k)}k∈N0 , a set of stencils {B(k)
j }k∈N0,j∈Ξ(k+1)

and a set of frequencies and multiplicities Ω̂ ⊂ Cd×ν × Nd×ν , and let {a(k)
j }k∈N0,j∈Ξ(k+1) , depending on Γ

and M , be such that the associated linear subdivision scheme is able to stepwise reproduce the family of
exponential polynomial spaces {WΓ,M}(Γ,M)∈Ω̂ as in (1). Given f (0) = F (Ξ(0)) for some F ∈ WΓ,M with

(Γ,M) ∈ Ω̂ unknown, in order to use the correct subdivision rules to reproduce F , our goal is to detect
(Γ,M) directly from f (0). To do so we define annihilating operators, as in Example 4.1.

Definition 4.1. Let B be a set of vertices. An operator N : Ω̂× `(B,C) −→ C is said to be an annihilator

for the family of spaces {WΓ,M}(Γ,M)∈Ω̂ over B if and only if, for every (Γ,M) ∈ Ω̂,

N ((Γ,M), F (B)) = 0, ∀F ∈WΓ,M .

Every annihilator N of {WΓ,M}(Γ,M)∈Ω̂ over Ξ(0) then provides an equation of the form

0 = N
(

(Γ,M), F (Ξ(0))
)

= N ((Γ,M), f (0)),

involving only the data f (0) and the unknown frequencies and multiplicities (Γ,M). Thus, a family of
annihilators {Nh}h∈I , where I is a set of indices, yields a system of equations with the same unknowns.
The equations involved are in general non-linear and the possibility to solve the system for Γ and M heavily
depends on the structure of the annihilators. The construction of good annihilators has therefore a critical
role and it has to be investigated case by case. To do so, exploiting the symmetries of the set of vertices, the
stencils and the considered spaces can be crucial, as shown in Example 4.1, in order to obtain useful results
for applications, such as local formulas for the detection of frequencies.

5. Stencil-type Detection

For the classical butterfly scheme in Example 2.1, the subdivision rules (d) distinguish only stencils that
consist of a single vertex from stencils given by a set of 8 ordered vertices. In particular, there is a unique
rule for all the 8-point stencil, namely horizontal, vertical and diagonal. Thus, for k ∈ N0, f (k) ∈ `(Ξ(k),C),
j ∈ Ξ(k+1), given p = f (k)

∣∣
B(k)

j

∈ C8 there is no ambiguity in applying the subdivision rule (7), no matter the

type of stencil B(k)
j . Instead, as for Example 3.1, we have three different rules, defined in (12) and (13), that

must be applied depending on B(k)
j being horizontal, vertical or diagonal, respectively. All these different

types of stencils consist of 8 ordered points that have the same topological structure (Figure 3, plain bullets).
Thus, if we are given only p ∈ C8, without information about the type of stencil p is attached to, there is
ambiguity with respect to the correct subdivision rule to be used on it. The same holds for Example 4.1,
since there we obtained three different systems of equations, (23), (24) and (25), to detect γ ∈ Ω2 using data
attached to a horizontal, a vertical or a diagonal stencil, respectively, that can all be applied to a generic
data vector p ∈ C8.

In a general setting, suppose to have a set T of different types of stencils, all with cardinality H ∈ N
and the same topological configuration. It is natural to ask the following question: is it possible, given only
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p2p1

p7

p6

p8

p5p4

p3

p10p9

Figure 3: The generic topological configuration of the ordered data p = [ph]10h=1 ∈ C10, with p = f (k)|
B(k)
j

, attached to the

stencil B(k)
j , input for the extended insertion rule to compute the new vertex j ∈ Ξ(k+1) \Ξ(k) (cross). The plain bullets denote

the data for the stencils of the classical butterfly scheme (Example 2.1 (c)), while the empty bullets denote the two added
points needed for stencil-type detection (Example 5.1 (c’)).

p ∈ CH , to determine the correct stencil-type t ∈ T in order to choose the right equations for the detection
of the frequencies (and the eventual multiplicities) and the correct subdivision rule? Annihilators prove
themselves useful again to answer this question. As for Section 4, we first show how this can be done for
the setting introduced in Example 2.1, 3.1 and 4.1 and then we highlight the crucial points of this strategy
to be used in the general setting.

Example 5.1. In order to achieve the desired result, for reasons that will be clear soon, we need to consider
slightly bigger stencils than the ones defined in Example 2.1. In particular, we substitute (c) with

(c’) for every k ∈ N0 and j ∈ Ξ(k+1),

B(k)
j =



j, if j ∈ Ξ(k),

j + 2−k−1

{[
−1
0

]
,

[
1
0

]
,

[
−1
−2

]
,

[
1
2

]
,

[
3
2

]
,

[
−1
2

]
,

[
−3
−2

]
,

[
1
−2

]
,

[
−3
0

]
,

[
3
0

]}
, if j ∈ 2Z+1

2k+1 × Z
2k (horizontal stencil),

j + 2−k−1

{[
0
−1

]
,

[
0
1

]
,

[
−2
−1

]
,

[
2
1

]
,

[
2
3

]
,

[
2
−1

]
,

[
−2
−3

]
,

[
−2
1

]
,

[
0
−3

]
,

[
0
3

]}
, if j ∈ Z

2k × 2Z+1
2k+1 (vertical stencil),

j + 2−k−1

{[
−1
−1

]
,

[
1
1

]
,

[
−1
1

]
,

[
1
−1

]
,

[
3
1

]
,

[
−1
−3

]
,

[
−3
−1

]
,

[
1
3

]
,

[
−3
−3

]
,

[
3
3

]}
, if j ∈ 2Z+1

2k+1 × 2Z+1
2k+1 (diagonal stencil).

(26)

Namely, the horizontal, vertical and diagonal stencils now have two additional points, which make them
coincide with the stencils of the so called extended butterfly scheme. The shared topology of these three
different types of stencils is shown in Figure 3. The linear rules (7), (12) and (13) can be extended accordingly
simply setting to 0 the coefficients related to the two newly added points.

Without loss of generality, consider k = 0. For the local detection of γ, in Example 4.1 we exploited the
annihilators (20). These annihilators involve data from a single stencil of the classical butterfly scheme and
we extracted all the information they could give us detecting γ in (23), (24) and (25). Given p ∈ C8, we
can apply all these equations, setting f (0)|B(0)

j

= p, and obtain three different values for γ in Ω2 that we call

γhori, γvert and γdiag, respectively.
The idea now is to obtain, again via annihilators, further conditions to test which, between γhori, γvert

and γdiag, is the correct one to be chosen. To do so, we need more annihilators. Unfortunately, the ones in the
family (18) are not enough. For instance, for the diagonal case, the annihilators used in (25) are the unique
ones belonging to the family (18) that are supported in a single diagonal stencil of the classical butterfly
scheme. Thus, in order to have more annihilators available, we are forced to introduce two additional points
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to each stencil associated with an insertion rule as described in (26). This way we can also consider operators
of the following forms

N+
x,v0,v1,v2,v3

: Ω2 × `(Ξ(0),C) −→ C

(γ, f) 7−→ ∆0
v0

∆γ
v1

∆−γv2
∆γ̃

v3
f |x,

(27)

and
N−x,v0,v1,v2,v3

: Ω2 × `(Ξ(0),C) −→ C

(γ, f) 7−→ ∆0
v0

∆γ
v1

∆−γv2
∆−γ̃v3

f |x,
(28)

where x, v0, v1, v2, v3 ∈ Z2. As for equation (21) in Proposition 4.1, one can prove that (27) and (28)
act on f in a linear way. Moreover, suitable choices of x, v0, v1, v2, v3 ∈ Z2 make them local annihilators

of Wγ over Ξ(0) involving data in a single stencil B(0)
j . In particular, for j ∈ Ξ(1) \ Ξ(0), we consider the

following local annihilators: for the horizontal case,

Nj−3e1/2,e1,e1
, N+

j−3e1/2−e2,e1,e2,e1,e1+e2
, N−j−3e1/2−e2,e1,e1,e2,e1+e2

; (29)

for the vertical case,

Nj−3e2/2,e2,e2
, N+

j−e1−3e2/2,e2,e1,e2,e1+e2
, N−j−e1−3e2/2,e2,e2,e1,e1+e2

; (30)

for the diagonal case,

N+
j−3e1/2−3e2/2,e1+e2,e2,e1,e1+e2

, N+
j−3e1/2−3e2/2,e1,e2,e1+e2,e1+e2

, N−j−3e1/2−3e2/2,e1,e1+e2,e2,e1+e2
. (31)

Since all the stencils {B(0)
j }j∈Ξ(1)\Ξ(0) have cardinality 10, annihilators in (29), (30) and (31) can be seen

naturally as operators acting on Ω2 × C10 instead of Ω2 × `(Ξ(0),C).
The reason why we choose three additional annihilators for each case is the following. Without loss of

generality, due to the shift-invariance of the space Wγ , γ ∈ Ω2, consider j = [1/2, 0]T ∈ Ξ(1) \ Ξ(0) that

belongs to the horizontal stencil B(0)
j . If f (0) = F (Ξ(0)) for some F ∈ Wγ , γ ∈ Ω2, it satisfies the system of

equations given by (23) and (29), i.e.,

Nj−3e1/2−e2,e1+2e2,e1

(
γ, f (0)

∣∣
B(0)

j

)
= 0,

Nj−e1/2−e2,e1,e2

(
γ, f (0)

∣∣
B(0)

j

)
= 0,

Nj−3e1/2,e1,e1

(
γ, f (0)

∣∣
B(0)

j

)
= 0,

N+
j−3e1/2−e2,e1,e2,e1,e1+e2

(
γ, f (0)

∣∣
B(0)

j

)
= 0,

N−j−3e1/2−e2,e1,e1,e2,e1+e2

(
γ, f (0)

∣∣
B(0)

j

)
= 0.

(32)

Thus, we can build a basis for the data according to next decomposition:

C10 = Wγ

(
B(0)
j

)
⊕ Wγ

(
B(0)
j

)⊥
,

where
Wγ

(
B(0)
j

)
:=

{
F
(
B(0)
j

)
: F ∈Wγ

}
⊂ C10.
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Now, it is straightforward to observe that the dimension of Wγ

(
B(0)
j

)
is 5. As for equation (21) in Propo-

sition 4.1, it is easy to see that the action of each of the 5 annihilators in (32) against f (0)
∣∣
B(0)

j

is just the

multiplication by a vector of coefficients belonging to Wγ

(
B(0)
j

)⊥
. Then, since the chosen annihilators are

linearly independent, a solution (γhori,p) ∈ Ω2 × C10 to (32) implies the existence of a unique function
F ∈Wγhori

such that p = f (0)
∣∣
B(0)

j

, for f (0) = F (Ξ(0)). For the sake of conciseness, the proof of their linear

independence is omitted.

Remark 5.1. System (32) also solves the problem exposed in Remark 4.2. Indeed, if the first two equations
of (32) can not be solved for γ, one can actually choose any subset of equations in (32) in order to detect γ.
If this is not possible for any subset of equations, this means that (32) is satisfied by (γ,p) for all γ ∈ Ω2,
which implies p is obtained from the samples of a function F that belongs to all the spaces Wγ , γ ∈ Ω2.
Thus, it does not matter which subdivision rule is used among (12) and (13) and which frequency γ is
chosen: F will always be reproduced.

The same conclusions are achieved for the vertical case by j = [0, 1/2]T ∈ Ξ(1) \ Ξ(0) and the system

Nj−e1−e2/2,e2,e1
(γvert,p) = 0,

Nj−e1−3e2/2,2e1+e2,e2
(γvert,p) = 0,

Nj−3e2/2,e2,e2
(γvert,p) = 0,

N+
j−e1−3e2/2,e2,e1,e2,e1+e2

(γvert,p) = 0,

N−j−e1−3e2/2,e2,e2,e1,e1+e2
(γvert,p) = 0,

(33)

and for the diagonal case by j = [1/2, 1/2]T ∈ Ξ(1) \ Ξ(0) and the system

Nj−3e1/2−e2/2,e1+e2,e1

(
γdiag,p

)
= 0,

Nj−e1/2−3e2/2,e1+e2,e2

(
γdiag,p

)
= 0,

N+
j−3e1/2−3e2/2,e1+e2,e2,e1,e1+e2

(
γdiag,p

)
= 0,

N+
j−3e1/2−3e2/2,e1,e2,e1+e2,e1+e2

(
γdiag,p

)
= 0,

N−j−3e1/2−3e2/2,e1,e1+e2,e2,e1+e2

(
γdiag,p

)
= 0.

(34)

Given p ∈ C10 then one can proceed as follows. First, using the first two equations of each system (32),
(33) and (34), one can compute, when possible, γhori, γvert and γdiag as done in (23), (24) and (25). Then,
for each computed pair (γhori,p), (γvert,p) and (γdiag,p), one can check if one of the systems (32), (33)
and (34) is fully satisfied. If only one of them is satisfied, then we interpret the data as from an horizontal,
vertical or diagonal stencil, respectively, and thus we use the corresponding subdivision rule. If more than
one system is satisfied, it can be proved that all the corresponding subdivision rules give the same result
for the newly inserted vertex. If none of them is satisfied it means that there is no function F in any of the
spaces Wγ , γ ∈ Ω2, interpolating p over a stencil.

The previous strategy can be easily generalized for each subdivision level k ∈ N, similarly to what has
been done in Remark 4.3, and easily implemented. This yields a non-linear level-independent subdivision
procedure able to reproduce locally functions from the spaces {Wγ}γ∈Ω2 , that can be turned into a scheme
with some adjustments. The result of a first naive attempt to do so is shown in Figure 4, where the initial
data on the left are sampled from a piecewise surface consisting of a sphere, a cylinder and a hyperboloid,
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Figure 4: First row: a piecewise surface consisting of a sphere, a cylinder and a hyperboloid. Second row: a piecewise surface
consisting of an ellipsoid, an elliptic cone and an elliptic hyperboloid. First column: the initial mesh. The other columns
are subdivision reconstructions from this mesh after 5 subdivision steps. Second column: result of the procedure described
in Example 5.1. Third column: result of the classical butterfly scheme. Last column: result of a level-dependent scheme
reproducing the sphere/ellipsoid.

in the first row, and an ellipsoid, an elliptic cone and an elliptic hyperboloid, in the second row. Here, when
none of the systems (32), (33) and (34) is satisfied, the classical butterfly scheme rule (7) is used.

To summarize what we learnt from Example 5.1: disposing of the right set of annihilators for a family of
exponential polynomial spaces can give us the opportunity to detect the correct rule to use when different
rules are applied to stencils with the same topological configuration. In particular, let, for every t ∈ T ,
{N t

h}h∈It (It being a set of indices) be a family of linear annihilators for the spaces {WΓ,M}(Γ,M)∈Ω̂, that

involves data over a single stencil of type t. Assume also that, for every (Γ,M) ∈ Ω̂, dim(WΓ,M ) = N ∈ N.
If, for every t ∈ T , there are H −N linearly independent annihilators in {N t

h}h∈It , those can be exploited
to check the existence and uniqueness of a function F in a specific WΓ,M that interpolates a given vector
of data p ∈ CH attached to the common configuration in T . This, together with what has been discussed
in Section 4, opens the possibility to construct a fully automatic subdivision scheme that is able to locally
detect the type of stencil and the corresponding rules to reproduce all the exponential polynomials belonging
to the family of spaces {WΓ,M}(Γ,M)∈Ω̂. As shown in Example 5.1, one can proceed as follows: for every set

of data fitting in a stencil,

if we are able to extract from the annihilators a unique value for (Γ,M) and t, with a well-defined
associated non-linear rule that reproduces W(Γ,M),

then we use that particular subdivision rule on the data;

else we use the subdivision rule of a fixed scheme, e.g. the classical butterfly scheme.

However, one has to be aware that the convergence of such a subdivision procedure is not guaranteed
and must be studied separately, along with its behaviour in the transition region between the samples of
exponential polynomials belonging to different spaces.
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