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Abstract—Performance modelling is a fundamental part of the
design and operation of reliable manufacturing systems. Based
on the probabilistic model checking formalism [11] supported
by the PRISM tool [13], in this paper we present a framework
for automatic generation of 1) formally expressed discrete-state
Markov chain (DTMC) models of production lines, and 2) of a
number of related key performance indicators given in terms of
temporal logic formulae. Since the framework is fully parametric
it can straightforwardly be used for comparative analysis of
different system configurations. In order to tackle scalability
issues we present two alternative encodings of the DTMC model
corresponding to a given production system and discuss how they
compare. We demonstrate the effectiveness of the framework
through a number of experiments.

Index Terms—Manufacturing systems, Model checking, Pro-
duction performance evaluation

I. INTRODUCTION

The design of modern industrial production systems is
strongly affected by product quality and delivery reliability
requirements. The ability to guarantee that products are issued
within given time deadlines and that they match given quality
standards are essential factors throughout the design and
maintenance of a manufacturing system.

In this paper we consider production line models composed
of buffers and unreliable machines with Markov behavior.
Building on previous works dealing with the same or similar
models (see, e.g., [1], [2], [7]–[9]), in this paper we introduce
an integrated framework for formal modeling and performance
analysis of such systems. Our proposal is to describe the
system with a well-known and widely applied model checking
tool called PRISM [13] which allows for specifying the system
in terms of a DTMC, expressing and calculating performance
indices, and verifying complex temporal properties of the
model [11]. The presentation in this paper is limited to two-
state machines and linear production lines without branching
or loops but extensions to overcome these assumptions are
straightforward in the same framework. For what concerns
the description of the model in PRISM, we implement two
approaches. The first approach builds the DTMC correspond-
ing exactly to the model but suffers from scalability problems
and cannot be applied with more than 5 machines. The second
one instead scales well with the number of machines in the
system but results in a modified model with a slightly enlarged

state space whose behavior however is easy to map to that of
the original model.

The paper is organized as follows. Section II provides
the description of the considered systems. In Section III a
brief introduction to probabilistic model checking is given.
Section IV shows how to deal with the considered type of
production lines is PRISM. In Section V we experiment with
the proposed ideas. Conclusions are drawn in Section VI.

II. SYSTEM DESCRIPTION

A linear production system (or production line for short) is
a type of manufacturing system in which parts visit a number
of workstations (called also machines) in a fixed order (see
Figure 1) and following a single path (no branching). Machines
process one part per time unit. In many industries there are
production processes that can be described by such a simple
model, for example food industry, automotive industry, paper
industry, or semiconductor manufacturing.
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Fig. 1. A production line with n machines.

In this paper we assume two-state machines: a machine can
be either up (or UP or U for short) or broken (or DOWN
or D for short). The state of a machine changes in a random
fashion. In each time unit (called also slot) an operational
machine can break with probability pi, 1 ≤ i ≤ n, where
n is the number of machines. A broken down machine gets
instead repaired with probability ri, 1 ≤ i ≤ n. Standalone
availability of a given machine Mi, i.e., the probability that
Mi is up assuming that it is not affected by the rest of the
system, can be calculated simply as ri/(ri + pi).

Between two adjacent machines there is a buffer where parts
can be stored. Accordingly, the number of buffers is n − 1.
The capacity of the ith buffer, i.e., the number of parts it can
hold, is denoted by ni with 1 ≤ i ≤ n− 1.

We refer to the ith machine by Mi and to the ith buffer
by Bi. As for terminology, Bi is called the upstream buffer
of Mi+1 and the downstream buffer of Mi. The first machine
does not have an upstream buffer and we assume that parts are
always available to the first machine (it never gets starved).
The last machine does not have a downstream buffer and we978-1-7281-2989-1/21/$31.00 ©2021 IEEE



assume that it can always output processed parts (i.e., it never
gets blocked because of its full downstream buffer).

A machine is operational if it is UP , its upstream buffer
is not empty (i.e., it is not starved) and its downstream buffer
is not full (i.e., it is not blocked). An important and natural
assumption to keep in mind is that only operational machines
can break down. In other words, a machine that is UP but
starved and/or blocked cannot break down, it remains in its
UP state.

Let us turn our attention to the dynamics of the model.
As already mentioned we assume that things happen in slots,
i.e., we have a discrete time model. We can think of the
update of the state of the model in a time unit as a two-phase
procedure: first, the states of all the machines are determined
(probabilistically) then the buffer occupancies are changed
accordingly (our second PRISM encodings will follow exactly
this logic.) If machine Mi is operational and does not break
down (which happens with probability 1 − pi) then it takes
one part from its upstream buffer and puts one part in its
downstream buffer. If it breaks down then it does not move any
part. If it is UP but either starved or blocked or both then it
remains UP with probability 1 and does not move any part. If
machine Mi is DOWN then it gets repaired with probability
ri and in the same slot it can move a part from its upstream
buffer to its downstream buffer. If it remains DOWN (with
probability 1− ri) then it does not move any part.

The state of the model is given by the state of the machines
and the number of parts in the buffers, i.e. by a (2n−1)-tuple
of the form

(m1, b1,m2, b2, . . . bn−1,mn)

where mi ∈ {U,D} is the state of the i-th machine and bi ∈
{0, . . . ni} is the number of parts in buffer Bi. The stochastic
process at hand is a discrete time Markov chain (DTMC).

In order to give an examples for a transition of the
DTMC, consider a line with three machines being in the state
(U, 4, D, 0, U) with buffer sizes n1 = n2 = 10. Accordingly,
the last machine is starved and cannot change state. The first
machine either breaks down or remains up and the second
either gets repaired or remains down. This means that there
are four possible transitions with associated probabilities as
follow

(U, 4, D, 0, U)
(1−p1)·(1−r2)−−−−−−−−−→ (U, 5, D, 0, U)

(U, 4, D, 0, U)
p1·(1−r2)−−−−−−→ (D, 4, D, 0, U)

(U, 4, D, 0, U)
(1−p1)·r2−−−−−−→ (U, 4, U, 1, U)

(U, 4, D, 0, U)
(p1·r2−−−−→ (D, 3, U, 1, U)

Figure 2 shows the complete state-transition graph of the
DTMC for a 2 machines line and assuming n1 = 4 as the
size of the single buffer (for the sake of space we denote
p = 1 − p). Assuming that the initial state is (U, 0, U) the
number of reachable states is 13. Note that the initial state
is transient meaning that the system cannot reach it once it is
left. The state space is irregular close to the boundaries (empty

or full buffer). For example, having the buffer full is possible
only with M1 up and M2 down.

III. PROBABILISTIC MODEL CHECKING

The integrated framework for modelling and performance
analysis of production lines we propose in this paper is
based on probabilistic model checking (PMC) [3]–[5]. The
overall idea behind model checking [6] is that of providing
a modeller with algorithms for the automatic verification of
properties formally expressed in terms of formulae of a given
temporal logic. In the “classical” model checking settings
models are state-transition graphs and the verification of a
temporal logic property ϕ yields a boolean result: ϕ is either
satisfied or not satisfied by the model. PMC extends classical
model checking to the realm of probabilistic models, i.e.,
to “probabilistic” state-transition graphs (including DTMCs).
Given a probabilistic model M the verification of property
ϕ yields a probability value, denoted P (M, ϕ) = p ∈ [0, 1],
which reads “formula ϕ is satisfied byM with probability p”.

Because of the inherent discrete-time nature of the produc-
tion lines we consider, our framework is based on the version
of PMC that targets DTMC which is known as probabilistic
computational tree logic (PCTL) model checking. We briefly
summarise the basic elements (syntax and semantics) of PCTL
model checking referring the reader to the literature for a
complete treatment [10], [11].
DTMCs and model checking. In the context of PCTL model
checking a DTMC is a k-dimensional (k ∈ N) process whose
set of state S is assumed to be S ⊆ Nk, i.e. a state s ∈ S
is assimilated to a k-tuple of countable state variables, with
si denoting the i-th state variable. Furthermore a subset of
states can be specified through an atomic proposition µ (i.e. a
statement of the propositional logic built on top of the DTMC
state variables) with the following form

∨
j(
∧
i≤k si ∼ ni),

where si denotes the i-th state variable of the DTMC,
∨

the logical disjunction,
∧

the logical conjunction, ∼∈ {<
,≤,=, 6=,≥, >}, ni ∈ N. For example, w.r.t. to the DTMC
in Figure 2, atomic proposition µ1 : (b1 = 3) corresponds to
subset of state Sµ1

: {(U, 3, U), (U, 3, D), (D, 3, D)}, whereas
µ2 : (m1 6=D∧b1>0∧b1<3)∨(b1 > 3) corresponds to subset
of state Sµ1 = {(U, 1, U), (U, 2, D), (U, 2, U), (U, 4, D)}. A
path of a DTMC is an observable execution of the DTMC,
i.e. a sequence of states σ : s1, s2, . . . , si, . . . such that for
each state si there is a non-null probability to jump to si+1,
that is P(si, si+1) > 0, where P is the transition probability
matrix of the DTMC. A DTMC model inherently induces a
probability space on the underlying set of paths such that the
probability measure of an event, i.e., a set of infinite paths
sharing a common finite prefix σn =: s1, s2, . . . , sn, is defined
as Prob(σn) =

∏n−1
i=1 P(si, si+1).

PCTL syntax. The PCTL temporal logic allows for rea-
soning about the dynamics underlying a DTMC model by
means of formulae that involve both classical operators (i.e.,
conjunction, negation) of the propositional logic as well as
temporal operators (e.g., next and until). Specifically PCTL
formulae are split into state-formulae (ϕ), i.e., for expressing
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Fig. 2. The DTMC for the MBM system with buffer size n1=4 consists of 13 states.

conditions whose truth is established w.r.t. states of a DTMC,
as opposed to path-formulae (φ), i.e., for conditions whose
truth is established w.r.t. possible evolutions that can be
observed from a given state of the DTMC. Formally PCTL
formulae are terms of the following grammar:

ϕ ::= > | µ | ¬ϕ | ϕ1 ∧ ϕ2 | P∼p[φ]
φ ::= Xϕ | ϕ1 U≤k ϕ2 | F≤kϕ

where > stands for the true formula, µ denotes an atomic
proposition (i.e., an inequality involving a model’s state-
variables), ¬ and ∧ are the basic negation and conjunction
connectives of propositional logic and X is the next temporal
operator, U≤k is the time-bounded until temporal operator
with k ∈ N being the bounding interval and F≤k is the (time
bounded) sometime in the future operator, which is a special
case of the until where φ ≡ >.
PCTL semantics. PCTL formulae are interpreted w.r.t. the
states of a DTMC. To specify a property of a DTMC we
always use a state formula ϕ. Intuitively, a state s satisfies a
formula ϕ, denoted s |= ϕ, that do not involve the probabilistic
operator P∼[·] if by substituting the state variables present in
ϕ with the corresponding values of s the formula evaluates
to true. Conversely a formula P∼p[φ] is satisfied in s if from
s the probability of taking a path that satisfies φ falls in the
interval corresponding with ∼ p.

For path formulae φ we consider two basic temporal opera-
tors X (next) and U[t1,t2] (time-bounded until). Path formulae
φ are interpreted w.r.t. a path σ. A next formula Xϕ is satisfied
by σ if ϕ is satisfied in the state which is next to the initial
state of σ, i.e., σ[1] |= ϕ. A (time-bounded) until formula
ϕ1 U[t1,t2] ϕ2 is satisfied by σ if varphi2 is true within

k ∈ [t1, t2] transitions from the initial state σ[0] and ϕ1 is
true up until this point.

Example 1: Referring to the DTMC model of Figure 2 let us
consider the following example of informally stated temporal
property together with its corresponding PCTL encoding. φ1:
” there is at least 25% probability that, within 2 time units,
the buffer gets empty and the second machine never breaks
down ever since.“. The PCTL encoding of φ1 is as follows:

φ1 ≡ P≥0.25[(m2 = U)U≤2(b1 = 0)]

Let us suppose we want to verify whether φ1 is satisfied
in state (D, 2, U), i.e., the state where the first machine is
broken, the second machine is working and the buffer contains
2 items. Since the DTMC contains only one reachable state
corresponding to the buffer being empty (D, 0, U) we have to
consider the probability measure of those paths σ that starting
from (D, 2, U) (i.e., σ[0] = (D, 2, U)) lead us to (D, 0, U)
with at most 2 transitions. From the state-transition graph of
Figure 2 it is straightforward to see that there exists a single a
finite path σ1 : (D, 2, U), (D, 1, U), (D, 0, U) that satisfies the
until formula (m2 = U)U≤2(b1 = 0) (in fact σ1 has length ≤
2, and condition b1 = 0 is matched in the last state of σ1 while
m2 = U is matched all along. Therefore the probability to
satisfy (m2 = U)U≤2(b1 = 0) in state (D, 2, U) corresponds
to the probability measure of σ1, i.e., Prob(σ1) = (r1 · p2)2
hence (U, 2, U) |= φ1 as long as (r1 · p2)2 ≥ 0.25.

IV. PRODUCTION LINES IN PRISM

A. PRISM modelling language

PRISM [12] is a probabilistic model checking tool suitable
for the verification of different kinds of probabilistic models,



including discrete-time and continuous-time Markov chains.
It provides the user with a simple state-based modelling lan-
guage, called reactive modules, which uses (bounded) discrete-
valued variables to characterise the states of the system and
guarded commands to characterise the (probabilistic) state-
transitions. A PRISM program consists of a collection of
modules each of which represents the behaviour of a part of the
modelled system. Notice that in many cases a PRISM model
can be conveniently defined in terms of a single module, in
others, it can be decomposed in a number of (synchronising)
modules. Each PRISM module consists of a list of guarded-
commands where a guarded-command is a program instruction
with the following format:

[action name] guard → probabilistic updates;

where
• action name is an optional label that can be used to

synchronise commands of different modules,
• guard is a boolean condition on state variables
• probabilistic updates is a ’+’ separated list of updates

with the following form

p1 : (update1) + ...+ (pn) : (updaten)

where pi ∈ [0, 1] and
∑
pi = 1 and updatei is a ’&’

separated list of single variable updates with the following
form:

(var1’ = exp1)&...&(varm’ = expm)

where expi is an integer-valued expression (built accord-
ing to a specific syntax, see [13]).

dtmc
const double p1=0.01; // fail probability
const double r1=0.1; // repair probability
const int m1init=1; // initial state
module M1 // a faulty/repairable machine

m1 : [0..1] init m1init;
[fail] m1=1 → p1 : (m1’=0) + (1− p1) : (m1’=1);
[repair] m1=0 → r1 : (m1’=1) + (1− r1) : (m1’=0);

endmodule

Fig. 3. PRISM encoding of a DTMC model for a faulty/repairable machine

Example 2: Figure 3 shows a simple example of PRISM
code for a 2-states DTMC model representing a faulty/re-
pairable production machine. The PRISM model consists of a
single module named M1, which uses a single binary (state)
variable named m1. The model depends on 2 real-valued
parameters that represent the probability that, at a given instant
of time, a fault occurs on the machine while it is operational
(p1), the probability that the machine gets repaired (when it
is broken) (r1) plus an integer-valued parameter representing
the initial state of the machine (initM1). Module M1 consists
of 2 guarded commands. Command labelled [fail] is enabled
when the machine is operational (i.e. guard m1=1), and in
this case with probability p1 variable m1 is updated to M1’=0,

whereas with probability (1-p1) variable m1 is left unchanged.
Conversely command labelled [repair] is enabled when the
machine is broken (i.e. m1=1), and in this case with probability
r1 m1 is set to m1’=1, whereas with probability (1-r1) variable
m1 is left unchanged.
PRISM synchronised modules. PRISM supports modular
modelling, i.e. a PRISM model may consists of a set of
synchronising modules. In practice synchronisation is obtained
through equally labelled commands spread between different
modules (see Example 3). If in a given state s, a command
labelled [label1] of a module M1 is enabled then it is going
to synchronise with any other command labelled [label1] of
any another module which also happens to be enabled in s.
The update corresponding to the synchronisation of several
commands is, by definition, given by the product of the
updates of each synchronising command. For example let
us consider the synchronisation of the 2 commands labelled
[action1] of modules M1 and M2 in the code snippet below.

module M1
[action1] guard1 → p1 : (updt1,1) + ...+ (pn) : (updtn,1)

endmodule
module M2
[action1] guard2 → q1 : (updt1,2) + ...+ (qm) : (updtm,2)

endmodule

The update corresponding to the synchronisation of commands
[action1] is:

p1q1 : (updt1,1)&(updt1,2) + ...+ pnqm : (updtn,1)&(updtm,2)

dtmc
const double p1=0.01; // fail probability
const double r1=0.1; // repair probability
const int m1init=1; // machine initial state
const int b1init=0; // buffer initial state
const int n1=5; // buffer size
module M1 // a faulty/repairable machine

m1 : [0..1] init m1init;
[tic] m1=1 → p1 : (m1’=0) + (1− p1) : (m1’=1);
[tic] m1=0 → r1 : (m1’=1) + (1− r1) : (m1’=0);

endmodule
module B1 // a finite-size buffer

b1 : [0..n1] init b1init;
[tic] m1=1 → 1 : (b1’=min(b1 + 1, n1));
[tic] m1=0 → 1 : (b1’=max(b1− 1, 0));

endmodule

Fig. 4. PRISM encoding of a DTMC model for a faulty/repairable machine

Example 3: Figure 4 shows an extension of Example 2
where the faulty machine M1 is now coupled with a finite-
size buffer B1. The machine behavior is unchanged however
it now synchronises with the buffer (action [tic]) reproducing
the following behaviour: when the machine is operational an
item is added into the buffer, conversely, when the machine is
broken an element is removed from the buffer.

B. PRISM models of production lines

The dynamics of the production line systems (Section II)
is of a fully synchronous nature: the state of the machines



dtmc
module ProductionLine
m1 : [0..1] init m1init;
m2 : [0..1] init m2init;
m3 : [0..1] init m3init;
b1 : [0..n1] init b1init;
b2 : [0..n2] init b2init;
[] (m1=0)&(m2=0)&(m3=0)&(b1=0)&(b2=0) →

(1− r1) ∗ (1− r2) ∗ (1− r3) : true+
(1− r1) ∗ (1− r2) ∗ r3 : (m3’=1)+
(1− r1) ∗ r2 ∗ (1− r3) : (m2’=1)+
(1− r1) ∗ r2 ∗ r3 : (m2’=1)&(m3’=1)+
r1 ∗ (1− r2) ∗ (1− r3) : (m1’=1)&(b1’=b1 + 1)+
r1 ∗ (1− r2) ∗ r3 : (m1’=1)&(m3’=1)&(b1’=b1 + 1)+
r1 ∗ r2 ∗ (1− r3) : (m1’=1)&(m2’=1)&(b1’=b1 + 1)+
r1 ∗ r2 ∗ r3 : (m1’=1)&(m2’=1)&(m3’=1)&(b1’=b1 + 1);

[] (m1=0)&(m2=0)&(m3=0)&(b1=0)&(0<b2)&(b2<n2) →
(1− r1) ∗ (1− r2) ∗ (1− r3) : true+
(1− r1) ∗ (1− r2) ∗ r3 : (m3’=1)&(b2’=b2− 1)+
(1− r1) ∗ r2 ∗ (1− r3) : (m2’=1)+
(1− r1) ∗ r2 ∗ r3 : (m2’=1)&(m3’=1)&(b2’=b2− 1)+
r1 ∗ (1− r2) ∗ (1− r3) : (m1’=1)&(b1’=b1 + 1)+
r1 ∗ (1− r2) ∗ r3 : (m1’=1)&(m3’=1)&(b1’=b1 + 1)&(b2’=b2− 1)+
r1 ∗ r2 ∗ (1− r3) : (m1’=1)&(m2’=1)&(b1’=b1 + 1)+
r1 ∗ r2 ∗ r3 : (m1’=1)&(m2’=1)&(m3’=1)&(b1’=b1 + 1)&(b2’=b2− 1);

[] (m1=0)&(m2=0)&(m3=0)&(b1=0)&(b2=n2) →
...
module

Fig. 5. PRISM code snippet for the monolithic 1-slot model of a 2-machines
production line.

as well as that of the buffers are updated synchronously.
Such characteristic affects the definition of PRISM code for
modelling of production lines.

In the remainder we present two distinct, yet semantically
equivalent, approaches for modelling production lines through
PRISM, which we refer to as 1-slot, respectively 2-slot,
models1. Models of the 1-slot type exactly reproduces the
actual fully synchronous behaviour of a production line, i.e.
each transition of the underlying DTMC corresponds with a
transition of the actual DTMC of the considered system. On
the other hand models of the 2-slot family split the fully
synchronous behaviour, by introducing a fictitious transition
through which the determination of the successor of a state
is achieved by splitting the updates of the state variables in
two steps: in the first step ([tic]) the state of the machines is
updated, in the second step ([tic]) the state of the buffers is
updated consequently.

In terms of PRISM code the two families of models compare
as follows: models of 1-slot type consist of a single module
made up with a large number of commands (since each
PRISM command must consider the “global” configuration
of the system, hence resulting in a combinatorial explosion of
conditions to be considered by each command’s guard), while
models of 2-slot kind, are based on a modular approach (i.e.
a 2-slot model consists of collection of modules, one for each
machine plus one for each buffer) result in a much reduced
code.

1) Monolithic 1-slot type of mode: The main aspect that
affect the definition of a synchronised model is that the

1PRISM models are available at https://gitlab-research.centralesupelec.fr/
2011ballarinp/PRISMProductionLines

dtmc
global b0:[0..1] init 1; // fictitious start buffer
global b3:[0..1] init 1; // fictitious end buffer
module Phase
ph : [1..2] init 1;
[tic] ph=1 → 1 : (ph’=2); // first slot: update machines state
[toc] ph=2 → 1 : (ph’=1); // second slot: update buffer state
endmodule
module M1 // intermediate machine, b0: upstream buffer, b1: downstream buffer

m1 : [0..1] init m1init;
[tic] m1=1→ p1 : (m1’=(b1=n1|b0=0)?1 : 0) + (1− p1) : (m1’=1);
[tic] m1=0 → r1 : (m1’=1) + (1− r1) : (m1’=0);
[toc] true → 1 : true;

endmodule
module B1 // intermediate buffer, m1: upstream machine, m2: downstream machine,

b1 : [0..n1] init b1init;
[tic] true → 1 : true;
[toc] ((m1=1 & b0>0 & b1<n1) & !(m2=1 & b1>0 & b2<n2)) →

; 1 : (b1’=b1 + 1); // increase buffer occupation
[toc] (!(m1=1 & b0>0 & b1<n1) & (m2=1 & b1>0 & b2<n2)) →
1 : (b1’=b1− 1); // decrease buffer occupation

[toc] ( (!(m1=1 & b0>0 & b1<n1) & !(m2=1 & b1>0 & b2<n2)) |
((m1=1 & b0>0 & b1<n1) & (m2=1 & b1>0 & b2<n2)) ) →

1 : (b1’=b1); // buffer unchanged
endmodule
module M2= M1[m1=m2, b0=b1, b1=b2, p1=p2, r1=r2, n1=n2,

m1init=m2init]
endmodule
module B2= B1[b1=b2, m1=m2, m2=m3, b0=b1, b2=b3, n1=n2, n2=n3,

b1init=b2init]
endmodule
module M3= M2[m2=m3, b1=b2, b2=b3, p2=p3, r2=r3, n2=n3,

m2init=m3init]
endmodule

Fig. 6. PRISM code snippet of the 2-slot DTMC model for a 3 machines
production line

transitions depend on both the current state of each workstation
as well as the current occupation level of each buffer. In
this respect it is worth noticing that if a workstation’s state
can be up or down, for the buffers we need to distinguish 3
possibilities: empty (E), full (F ), and some (S) (i.e., neither
empty nor full). This means that for a system consisting of
n workstations there are 2n · 3n−1 combinations that has to
be taken into account (e.g., with n = 2 machines there are
12 possibilities, with n = 3 machines there are 72, and so
on). In terms of PRISM code therefore this implies that (at
least) 2n · 3n−1 guarded-commands are needed (with guards
corresponding to relevant combinations of state conditions),
which is something that undermines the scalability of PRISM
modelling.

Figure 5 shows a portion of PRSIM code of 1-slot type
generated for a 3-machines system: it consists of a single
module equipped with 5 state variables (3 for the machines
and 2 for the buffers). The code in Figure 5 only depicts the
first 2 (out of 72) guarded commands needed for capturing the
dynamics of a 3-machines system. The first command encodes
the possible evolution of the system when all machines are
down and buffers are empty ((m1 = 0)&(m2 = 0)&(m3 =
0)&(b1 = 0)&(b2 = 0)), the second command concerns the
behaviour for when the machines are all down the first buffer
is empty while the second is neither empty nor full.

2) Modular 2-slot type of model: As discussed above
the straightforward PRISM encoding of a fully-synchronous



production line system consisting of n workstations requires
2n · 3n−1 PRISM instructions. Here we present a different
kind of PRISM encoding that allows for reducing the number
of necessary PRISM instructions to 2n·. The main idea behind
this alternative PRISM encoding is that of removing the
buffer’s occupation from the conditions that should be ac-
counted for the characterisation of the state-transitions. In this
manner we characterise the system’s dynamics only in function
of the state of the workstations for which we have a total of
2n possibilities. In practical terms this alternative encoding is
obtained by removing the buffer-occupation conditions from
the guard of a PRISM command and by letting the update part
of the command depend on buffer’s occupation (by means of
conditional expressions).

Figure 6 shows the 2-slot type version of the PRSIM code
generated for a 3-machines system. It consists of a module
named Phase (responsible for driving the 2-slot dynamic)
plus 3 modules machines and 2 modules buffer. Notice that
only the code for one machine module and for one buffer
module needs to be explicitly given: the code for the other
machines and buffer is obtained through PRISM module
renaming facility (which handly allows for making copies of
a module by renaming of variables and parameters). Module
Phase drives the synchronisation: on action [tic] each machine
module synchronously update the state of the machine (while
each buffer does not do anything through action [tic]), while
on action [toc] each buffer module update its state (while
each machine does not do anything through action [toc]). By
comparing Figure 5 and Figure 6 it is evident that the 2-
slot type of PRISM model is indeed a lot shorter than the
1-slot type. As discussed in SectionV-A the price to pay for
such shorter PRISM code is in terms of the state-space of the
underlying DTMC.

C. Sanity check properties

Since the definition of a PRISM model for this class of
production systems is a cumbersome activity prone to errors,
we identified a number of necessary conditions, named sanity
checks, that a model must verify in order to be considered
valid. If even just one of such properties is not verified then
the model under construction is certainly not representing the
correct behavior of the production line system. Below we give
a list of informally described sanity checks (denoted SCi)
together with their formal encoding in terms of PCTL formulae
(φSCi ). They refer to a generic n machines production line
with mi and bi representing, the state of the i-th machine,
respectively buffer, and ni representing the size of i-th buffer:
SC1. “A machine cannot be broken and its downstream

buffer being full”

φSC1
≡ P≤0[F (

n−1∨
i=1

(mi=0 ∧ bi=ni))]

SC2. “Two adjacent buffers that are both full cannot both
become not-full in one time unit”

φSC2
≡

n−2∧
i=1

φSC2,i

with

φSC2,i≡ [(bi=ni) ∧ (bi+1=ni+1)]⇒ P≤0[X ((bi<ni)∧(bi+1<ni+1))]

SC3. “An empty buffer cannot become non-empty in one time
unit if its upstream buffer is empty.”

φSC3
≡

n−2∧
i=1

(
[(bi=0) ∧ (bi+1=0)]⇒ P≤0[X (bi+1>0))]

)

SC4. “ A full buffer cannot stay full when its downstream
machine gets repaired”

φSC4
≡

n−1∧
i=1

(
(bi=ni)⇒ P≤0[(mi+1=0) U (mi+1=1 ∧ bi<ni))]

)

The PRISM models generated by our framework (both of 1-
slot and 2-slot type) have been all validated w.r.t. the above
listed the sanity checks.

V. NUMERICAL EXPERIMENTS

A. State space and calculation of steady state

Based on PRISM facilities for model construction and
steady-state computation we first compared the 1-slot and
2-slot approaches w.r.t. the state-space size, and run time
for building the model and for computing the steady-state
distribution2. Figure 7 depicts results of such comparison.
Model parameters are the following. The number of machines
is 3,4 or 5. The buffers have the same capacity. The machine
parameters (pi, ri) are chosen randomly in such a way that
standalone machine availability is in the interval [0.9,0.95]
and repair probability is 20 times larger than break down
probability. The number of states (1st sub-figure) is about
doubled by the 2-slot approach. Interestingly, this increase
almost disappears when it comes to the number of the tran-
sitions (2nd sub-plot). This is due to the fact that in the 2nd
phase of the 2-slot approach every state has a single outgoing
transition with probability one (corresponding to the update
of the buffer occupation levels) and the number of transitions
is dominated by the many outgoing arcs most states have
in the 1st phase. For what concerns the execution times of
constructing the representation of the state space (3rd sub-
plot) the 2-slot approach performs better due to the minor
complexity of the corresponding PRISM description. The
larger the number of machines the higher the difference. When
it comes to calculating the steady state distribution (number
of iterations on the 4th sub-plot and total execution time in
the 5th) the 1-slot approach outperforms the 2-slot encoding
because the presence of the transitions with probability 1
makes the convergence toward steady state slower for the 2-
slot approach.

It happens however that models that cannot be managed
with the 1-slot approach can be solved with the 2-slot encod-
ing. 1-slot models with more than 5 machines cannot be solved
on an ordinary portable computer because of the huge size of

2Experiments were run on standard portable computers



Fig. 7. Characteristics of the state space and corresponding calculations

the 1-slot encoding. With the 2-slot approach and relatively
small buffer sizes, 6 or 7 machines can be dealt with. In the
rest of the paper we report results obtained with the 1-slot
approach.

To conclude we point out that (for this kind of system)
the computation of the throughput (denoted by E) coincides
with a steady-state measure. This is because within a linear,
loops-free, layout, parts cannot be lost and follow the same
path, therefore the throughput of any single machine equals
the throughput of the whole system, hence any machine can be

used to determine the throughput. In particular, the throughput
equals the steady-state probability (denoted by S) that a given
machine is up and it is neither blocked nor starved. Hence we
have

E =S(m1 = U ∧ b1 < n1) =

S(m2 = U ∧ b1 > 0 ∧ b2 < n2) =

S(mn−1 = U ∧ bn−2 > 0 ∧ bn−1 < nn−1) = ... =

S(mn = U ∧ bn−2 > 0)

B. Lead time of specific parts

Next we show that the PRISM encoding allows for specify-
ing and calculating lead time distribution of a part that enters
the system in a specific situation. In other words, knowing the
state of the system when a given part enters, we can calculate
the probability that it will be ready (exits the system) in a given
number of time units. Also in [9] a way to calculate lead time
distributions is proposed. In that work however the lead time
of a random part is determined assuming no knowledge on the
state of the system when the part enters.

The calculations are carried out the following way. We set
the initial state of the model (both machine and buffer states) to
the state of the system when the considered part enters the first
buffer. We modify the initial state of M1 to down and make
it irreparable by setting r1 to 0. In this way no more parts
can enter the system and the moment in which the considered
part is ready coincides with the moment in which all buffers
become empty. Accordingly, the lead time distribution of the
considered part is equal to the distribution of the time that is
needed to reach a state in which all buffers are empty.

In PRISM the distribution of time to empty buffers can be
formulated using the property

P=?[F
≤T (b1 = 0 ∧ b2 = 0 ∧ b3 = 0)]

where we assumed to have three buffers in the model and used
P=? to indicate that we want PRISM to return the probability
and not only a yes or no answer. As a result, PRISM calculates
the probability that the considered part is ready after T time
units and by varying T the lead time distribution is obtained.

Some experiments are reported in Figure 8. The number
of machines is 4, all buffers are with capacity equal to 20.
We vary the initial buffer occupancy levels but keep the initial
total number of parts identical. The initial state of M1 is down
(and it remains down as explained above). The initial state of
M2 is up for all experiments. The initial state of M3 and
M4 is instead varied. In all cases, since there are 30 parts
initially in the system, at least 30 time units are necessary
to reach empty buffers. Another common feature is that the
cumulative distribution function tends to 1 because eventually
the system gets empty with probability 1. As expected the
fastest convergence to 1 is with the cases when M3 and M4 are
up initially (upper three curves of the upper sub-plot). Among
these cases, the more parts are in the last buffer initially the
shorter the lead time will be. The other three curves of the
same sub-plot are with M3 and M4 down initially. Also in
this case the more parts are in the last buffer the better. Not



surprisingly, in this case the probability that the system gets
empty in 30 time units is much lower. On the lower sub-plot
we have the cases in which M3 is up and M4 is down initially,
or vice-versa. It is interesting to note that in the case M3 up
and M4 down the initial buffer state does not affect much the
results. This is due to the fact that with M4 down the last
buffer can get full with high probability in all cases. On the
other hand, with M3 down and M4 up initially, the results are
highly affected by the initial occupation levels.

Fig. 8. Cumulative lead time distribution of a part entering the system in a
specific state

With a property containing the U operator, it is possible
to calculate the lead time distribution under some condition.
Consider

P=?[(m2 = 1)U≤T (b1 = 0 ∧ b2 = 0 ∧ b3 = 0)]

which can be used to determine the distribution of time to
empty buffers conditioned by machine M2 never breaking.
We performed the same experiments as before and the results
are shown in Figure 9. The curves do not tend to 1 because,
while it is guaranteed that the system gets empty, it cannot
be ensured that M2 does not break down in the meantime.
Accordingly, every curve in Figure 9 is under the correspond-
ing curve of Figure 8 for any value of the x-axis. The curves
with the same number of parts initially in B1 tend to the same
value. This is due to the fact that these share the number of
parts that M2 has to process and hence share also the number
of time units in which M2 can break down. As expected, the
potential vulnerabilities of M2 are more amplified when it has
to process more parts. For example, the curves with 18 parts
initially in B1 tend to a lower value than those with 10.

VI. CONCLUSION

In this paper we described a framework that allows for both
the definition of DTMCs describing production systems and
their analysis. The analysis can concern classical performance
indices (throughput, probability of empty or full buffer, etc.)

Fig. 9. Conditioned cumulative lead time distribution of a part entering the
system in a specific state

and also more complex temporal behavior of the system (like
lead time distributions). The framework was implemented
using PRISM, a probabilistic model checker, assuming two-
state machines and linear production lines but can easily be
extended to more general machine models and system layout.
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