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We study the conformal data of a generic superconformal line defect preserving half of the supercharges
in a four-dimensional N ¼ 2 conformal theory. We prove a theory independent relation between the one-
point function of the stress tensor in the presence of the line defect and the two-point function of
the displacement operator. When the defect is interpreted as a heavy charged particle in a gauge theory, the
result relates the energy emitted through bremsstrahlung with the coupling of the stress tensor to the particle
at rest.
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Introduction.—When studying quantum field theory, the
typical experiment consists of probing the vacuum and
measuring the response of the system far from the probed
region. A prototypical observable is the energy emitted by a
heavy particle, which accelerates in a medium that contains
massless degrees of freedom. In gauge theory, this process
is called bremsstrahlung, and the natural question to be
asked is the relation between the energy emitted and the
trajectory of the particle. The answer, in any conformal
field theory (CFT) and for any one-dimensional classical
probe—or conformal line defect for short—is [1]

ΔE ¼ 2πB
Z

dt _v2; ð1Þ

where _v is the proper acceleration and B is the brems-
strahlung function. For instance, in Maxwell’s theory,
B ¼ e2=12π2, where e is the charge of the accelerated
particle. In [1], an exact formula was given for the case
of a 1=2-Bogomol’nyi-Prasad-Sommerfield (BPS) Wilson
line in N ¼ 4 super Yang-Mills (SYM) theory:
B ¼ λ∂λhWi=2π2, where λ is the ‘t Hooft coupling and
hWi is the expectation value of the circular Wilson loop,
which can be computed exactly [2–4]. In fact, B is
accessible through a variety of physical observables.
Especially relevant is its relation to the cusp anomalous
dimension Γcusp, which controls the logarithmic divergence
in the expectation value of a Wilson loop with a cusp, as

well as the leading IR divergence in the scattering of
massive particles [5,6]. If φ is the angle of the cusp,
B determines the smooth limit φ → 0, ΓcuspðφÞ ∼ −Bφ2.
On the other hand, the energy deposited at infinity is

computed by integrating the appropriate component of the
stress tensor. In particular, in the presence of a constantly
accelerated probe, the expectation value of the stress tensor
is determined by a single constant, usually dubbed h in this
context. One might expect that a theory independent
relation should exist between B (the emitted energy) and
h (the energy measured at infinity). Unfortunately, this is
not the case, probably due to nonradiative contributions to
h. In [7], a way of subtracting these spurious terms was
devised for BPS line defects in theories with enough
supersymmetries, leading to the conjecture

B ¼ 3h; ð2Þ

in four dimensions. Direct computation of the two sides
confirmed Eq. (2) for 1=2-BPS Wilson lines in N ¼ 4
SYM theory [1,8,9], while evidence has been provided for
1=2-BPS Wilson loops in N ¼ 2 superconformal field
theories [10], as well as for the three-dimensional version
of the conjecture for 1=2- and 1=6-BPS Wilson lines in
N ¼ 6 super Chern-Simons theory [7,11–14]. The relation
of the stress tensor with a change in the geometry motivated
the authors of [10] to also conjecture an exact expression
for the bremsstrahlung function B ¼ ∂b loghWbijb¼1=4π

2,
where the Wilson loop is placed on a squashed sphere with
squashing parameter b.
We see that the relation (2) not only has a clear and

interesting physical content, it also guarantees the computa-
tional advantage of accessing the same quantity through
different observables. The goal of this Letter is to prove
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that Eq. (2) holds for any 1=2-BPS line defect in four-
dimensional N ¼ 2 superconformal theories.
The main ingredient is the fact that every conformal

defect supports a displacement operatorD, which expresses
the response of the theory to a deformation of the defect.
The coefficient of its two-point function is proportional to
B [1]. Crucially, the two-point function of D with the stress
tensor contains both B and h [15]. In the rest of the Letter,
we derive the constraints imposed by supersymmetry on the
coupling of the stress tensor multiplet to the displacement
multiplet, and we show that they are sufficient to prove the
conjecture (2) in the most general formulation.
1=2-BPS Wilson lines.—Although our result is general,

let us describe the most important example. The amount of
supersymmetry preserved by a Wilson line is determined
by the contour along which the line is stretched and by the
explicit form of the connection. ForN ¼ 2 theories in four
dimensions, it is possible to define a Wilson line that
preserves half of the original supersymmetries. In particu-
lar, for a straight line contour parametrized as xμðτÞ ¼
ð0; 0; 0; τÞ in Euclidean signature, the supersymmetry
variation of the gauge field can be compensated by the
transformation of the complex scalar in the vector multiplet
such that the operator

W ¼ TrP exp

�
i
Z

dτA
�

A ¼ A4 þ ϕþ ϕ̄; ð3Þ

is annihilated by the combination of supercharges

Qa
α ¼ Qa

α − iσ4α _αQ̄
a _α: ð4Þ

Here and in the following, α ¼ 1, 2 is a Lorentz index,
a ¼ 1, 2 is an R-symmetry index, and σμ ¼ ðτi; i1Þ, τi
being the Pauli matrices. Raising and lowering conventions
are as in Wess and Bagger [16], but ϵ12 ¼ −ϵ12 ¼ 1. When
the originalN ¼ 2 theory is conformal, the set of preserved
generators also includes the one-dimensional conformal
algebra fP4; D; K4g, the rotations in the orthogonal direc-
tions Mα

β , the superconformal charges Sa
α ¼ Saα þ iσ4α _αS̄

a _α,
and the preserved SUð2ÞR R-symmetry Jab. These gener-
ators span an ospð4�j2Þ subalgebra of the full suð2; 2j2Þ
superalgebra [note the maximal bosonic subalgebra of
the former is soð4�Þ ⊕ suð2ÞR, where soð4�Þ ∼ soð3Þ ⊕
soð1; 2Þ]. Defect operators are organized in irreducible
representations of the preserved superalgebra. In particular,
highest weight operators are characterized by three charges
½Δ; j; R�, associated with the maximal bosonic subalgebra
soð1; 2Þ ⊕ suð2Þ ⊕ suð2ÞR.
In the following, we will not rely on a Lagrangian

description of the line defect, rather we only use the
preserved superalgebra. The results are thus valid for
any 4d N ≥ 2 superconformal theory with a line defect
preserving ospð4�j2Þ.

Stress tensor and displacement supermultiplets.—It is a
well-known fact of supersymmetric theories that a single
multiplet accommodates the stress tensor operator as well
as the Noether currents associated with supersymmetry
and R symmetry. InN ¼ 2 theories in four dimensions, the
superprimary of the current multiplet is a scalar O2. The
multiplet includes two fermions χaα, χ̄ _α

a, the R-symmetry
currents jμ and jμab associated with Uð1ÞR and SUð2ÞR
respectively, the supercurrents Jμaα and J̄μ _αa associated with
the supercharges Qa

α and Q̄ _α
a, and the (1, 0) and (0, 1) fields

Hαβ, H̄ _α _β. When the theory is perturbed by an extended
probe, some of the currents are broken by contact terms
localized on the defect. For instance, the stress tensor
conservation law in the presence of a straight line defect is
modified as follows:

∂μTμmðx; τÞ ¼ δ3ðxÞDmðτÞ; ð5Þ
where the index μ ¼ 1;…; 4 spans the whole four-
dimensional space, while the index m ¼ 1, 2, 3 labels
the directions orthogonal to the line, which is stretched
along x4. The defect operator on the rhs of (5) is called the
displacement operator and has quantum numbers ½2; 1; 0�.
Similarly, the conservation law for the broken U(1)
R-symmetry current reads

∂μjμðx; τÞ ¼ δ3ðxÞOðτÞ; ð6Þ
where OðτÞ is a defect scalar operator of charges ½1; 0; 0�.
Also, the supersymmetry currents Jμaα and J̄μ _αa split into
preserved (J μa

α ) and broken (Jμaα ) supercurrents. For the
latter, the conservation law is broken to

∂μJ
μa
α ¼ δ3ðxÞFa

αðτÞ: ð7Þ
In this case, the fermionic operator on the rhs has charges
½3=2; 1=2; 1=2�. The algebraic structure of ospð4�j2Þ forces
the three defect operators O, Fa

α, and Dm to sit in the same
supermultiplet. This can be seen in the following way.
Consider the Hilbert space on a cylinder surrounding the
Wilson line. States are defined by Euclidean path integra-
tion, in particular jWi is obtained by path integrating
with no insertions other than the straight line defect.
Equations (5)–(7) imply that integrating the broken currents
on the cylinder produces the same state as the integration of
the corresponding defect operators,

RjWi ¼ −i
Z

dτOðτÞjWi≡ −i
Z

dτjOi; ð8Þ

Qa
αjWi ¼ −2i

Z
dτFa

αðτÞjWi≡ −2i
Z

dτjFa
αi; ð9Þ

PαβjWi ¼ −i
Z

dτDαβðτÞjWi≡ −i
Z

dτjDαβi: ð10Þ
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HereR,Qa
α, andPαβ are obtained by integrating jμ, J

μa
α , and

Tμm, respectively, and where we are using the 3D sigma
matrices ðσmÞαβ, taken to be the Pauli matrices, to go
between the vector index in the three-dimensional orthogo-
nal space (m) and αβ. By repeatedly applying the commu-
tation relations for the ospð4�j2Þ algebra, one finds

Qa
αRjWi ¼ 1

2
Qa

αjWi ¼ −i
Z

dτjFa
αi;

Qa
αQb

βjWi ¼ 2ϵabPαβjWi ¼ −2iϵab
Z

dτjDαβi;

Qa
αPβγjWi ¼ 0: ð11Þ

Notice that this procedure is blind to conformal descend-
ants that would appear as total derivatives in the integrand.
Nevertheless, the coefficient of the total derivative can
always be fixed by implementing the action of the anti-
commutator fQa

α;Qb
βg. After doing that, we find

½Qa
α;O� ¼ Fa

α; ð12Þ

fQa
α; Fb

βg ¼ 2ϵabDαβ − 2ϵabϵαβ∂τO;

½Qa
δ ;Dαβ� ¼ −∂τFa

αϵβδ − ∂τFa
βϵαδ: ð13Þ

Equation (11) is a manifestation of the general fact that the
displacement operator is always the top component of its
protected supermultiplet. This is often a sufficient condition
to identify the displacement supermultiplet only based on
representation theory. Also in this case a careful analysis of
the ospð4�j2Þ representation theory shows that the multiplet
we described is the only multiplet that can accommodate
the displacement operator, i.e., a top component of dimen-
sion one, singlet under SUð2ÞR and a vector of SO(3). In
particular, the highest weight must obey the semishortening
Q1

αQ1
βϵ

αβjψi ¼ 0, thus fixing its scaling dimension as
Δ ¼ 2Rþ jþ 1. Further shortening of the multiplet comes
from the fact that the superconformal primary has
R ¼ j ¼ 0, which then matches the multiplet displayed
in (13).
For the particular case of the Wilson line, the previous

arguments can be made very explicit by using the variation
of the Wilson line under an infinitesimal symmetry trans-
formation

δhWi ¼ i
Z

dτhδAiW; ð14Þ

which immediately allows us to compute the operators in
the displacement supermultiplet

O ¼ ϕ̄ − ϕ; ð15Þ

Fa
α ¼ λaα − iσ4α _αλ̄

a _α; ð16Þ

Dm ¼ −iðFm4 þDmϕþDmϕ̄Þ: ð17Þ

where the complex scalar ϕ, the Weyl fermions λaα, and the
gauge field Aμ are the components of an N ¼ 2 vector
multiplet, Fμν is the field strength, and Dm is the ordinary
covariant derivative Dm ¼ ∂m − iAm. Using the supersym-
metry transformations given in [10], one can recover
Eq. (13), with the important observation that the role of
the total derivative for the Wilson line defect is played by
the covariant derivative D4 ¼ ∂4 − iA (see [12,13,17]).
Displacement two-point functions.—The normali-

zation of the operators in the displacement supermultiplet
is fixed by the Ward identities (5)–(7). Therefore, the
Zamolodchikov norms defined by the defect two-point
functions are defect conformal data. In particular, imple-
menting superconformal Ward identities for the preserved
supercharges, one can fix all of the defect two-point
functions of the operators in the displacement supermul-
tiplet in terms of a single constant. Such constant can be
defined by the displacement two-point function

hDmð0ÞDnðτÞiW ¼ 12Bδmn

τ4
; ð18Þ

where we used the result of [1] to relate the displacement
two-point function to the bremsstrahlung function. Then,
using superconformal Ward identities, one can fix

hOð0ÞOðτÞiW ¼ 2B
τ2

; ð19Þ

hFa
αð0ÞFb

βðτÞiW ¼ −ϵαβϵab
8B
τ3

: ð20Þ

Stress tensor one-point functions.—In this section, we
briefly review the results of [10], where the authors showed
that nonvanishing one-point functions of the operators in
the stress tensor multiplet can be fixed up to a single
constant. Once more we define such constant using the top
component of the multiplet, i.e., the stress tensor

hTmnðx; τÞi ¼ −
h
x4

ðδmn − 2nmnmÞ; ð21Þ

hTm4ðx; τÞi ¼ 0; hT44ðx; τÞiW ¼ h
x4

; ð22Þ

where nm ¼ ðxm=jxjÞ. The other operators that acquire a
nonvanishing one-point function in the presence of a
1=2-BPS line defect are the scalar superprimary O2 and
the two-form Hα

β,

hO2ðx; τÞiW ¼ 3h
8x2

; ð23Þ
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hHβ
αðx; τÞiW ¼ 3ihxmðσmÞαβ

4x4
: ð24Þ

Displacement stress tensor two-point function.—The
authors of [15] showed that the bulk to defect two-point
function coupling the stress tensor to the displacement
operator can be completely fixed in terms of B and h. In
particular, the residual conformal symmetry allows for
three different structures with the correct transformation
properties. These structures are associated with three
independent constants, which are then related to B by
the Ward identity,

∂μhTμmðx; τÞDnðτ0ÞiW ¼ δ3ðxÞhDmðτÞDnðτ0ÞiW; ð25Þ
and to h by the integrated relation

hPmTμνðx; τÞiW ¼ −i
Z

dτ0hTμνðx; τÞDmðτ0ÞiW: ð26Þ

In the following, we will apply the same procedure to the
other components of the stress tensor and displacement
supermultiplets. For the defect superprimary O and a
generic bulk operator O, we can use

hROðx; 0ÞiW ¼ −i
Z

dτhOðx; 0ÞOðτÞiW; ð27Þ

which is a rather powerful constraint since it sets to zero the
coupling of O with U(1) neutral operators (an exception
to this rule is the two-point function hjμOiW , which we
will consider below). Since the stress tensor supermultiplet
contains a single U(1) charged bosonic operator, Eq. (27)
allows us to fix

hHβ
αðx; 0ÞOðτÞiW ¼ −

3hnmðσmÞαβ
4πx2ðx2 þ τ2Þ : ð28Þ

As we mentioned, the only other nonvanishing two-point
function involvingO is the one with the U(1) current jμ, for
which the rhs of (27) is identically zero (one can easily see
that the kinematical structure derived in [15] integrates to
zero). Nevertheless, we can use the additional Ward identity

∂μhjμðx; τÞOðτ0ÞiW ¼ δ3ðxÞhOðτÞOðτ0ÞiW ð29Þ

to determine the two-point function in terms of B,

hj4ðx; 0ÞOðτÞiW ¼ B
π

τ

jxjðx2 þ τ2Þ2 ; ð30Þ

hjmðx; 0ÞOðτÞiW ¼ B
2π

nmðτ2 − x2Þ
x2ðx2 þ τ2Þ2 : ð31Þ

Similar Ward identities can be derived using broken
supercharges

hQa
αXðx; 0ÞiW ¼ −2i

Z
dτhXðx; 0ÞFa

αðτÞiW; ð32Þ

where X is a bulk fermionic operator. The latter constraint
is particularly powerful since it relates fermionic bulk to
defect correlators to bosonic bulk one-point functions.
Since for the two-point function hχaαðx; 0ÞFβ

bðτÞiW con-
formal invariance together with parity invariance allow for
a single kinematical structure, the relation (32) implies

hχaαðx; 0ÞFβ
bðτÞiW ¼ 3h

2π

iδβατ − ðσmÞαβxm
jxjðx2 þ τ2Þ2 : ð33Þ

Supersymmetric Ward identities.—We can obtain further
constraints on the correlator between the displacement
and stress tensor supermultiplets by applying super-
symmetric Ward identities, which come from preserved
supercharges. For instance, given the two-point function
hχaαðx; 0ÞOðτÞiW , the constraint δsusyW ¼ 0 translates into
hδsusy½χaαðx; 0ÞOðτÞ�iW ¼ 0, and consequently,

0 ¼ δabhHβ
αðx; 0ÞOðτÞiW þ δab

1

2
hjβαðx; 0Þ;OðτÞiW

þ i
2
δabδ

β
αhj4ðx; 0Þ;OðτÞiW − hχaαðx; 0ÞFβ

bðτÞiW; ð34Þ

where jβα ¼ jmðσmÞαβ. Inserting Eqs. (28), (30), (31),
and (33) into Eq. (34), one can easily see that the only
solution is

B ¼ 3h; ð35Þ

thus proving the relation conjectured in [7,10].
Outlook.—In this Letter, we proved a theory independent

relation between energy emitted by a supersymmetric line
defect and the value of the stress tensor in the background
of the line. From a defect CFT point of view, Eq. (2) may be
a precious input in the study of this class of line defects
through the conformal bootstrap [18,19]. Notice that
relations between h and the two-point function of the
displacement are not uncommon in the realm of defect
CFTs [20–25]. Equation (2) essentially follows from the
representation theory of ospð4�j2Þ and from the trans-
formation rules of conformal defects under the symmetries
of the theory they belong to, summarized in (5)–(7). At a
technical level, it would be nice to set up a more concise
derivation in superspace. In this respect, let us remark that,
in the special case of 1=2-BPS defects in four-dimensional
N ¼ 4 superconformal theories, Eq. (2) can be quickly
derived from the formulation developed in [26,27]. It
would also be interesting to study the detailed contribution
of the self-energy to h in the picture of [7]: this may also
boost our understanding of nonsupersymmetric Wilson
lines (see also [30,31] for related discussions). Of course,
the actual value of B and h is interesting per se. The

PHYSICAL REVIEW LETTERS 121, 141601 (2018)

141601-4



prescription given in [10] for computing h using the matrix
model for a deformed background, though motivated by a
clear geometrical picture, surely deserves further analysis.
In particular, it would be interesting to understand whether
a general prescription exists for computing correlation
functions of current multiplet operators by taking deriva-
tives with respect to the squashing parameter of the matrix
model [32,33]. Finally, an immediate direction of future
research concerns other supersymmetric defects: the three-
dimensional counterpart of the conjecture [7] may be
tackled with the same techniques, and it is interesting to
ask more generally if relations of this kind are obeyed by
defects of different dimension and codimension.
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