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1 Introduction

The AdS/CFT correspondence [1] identifies the spectrum of anomalous dimensions of lo-

cal operators in a conformal field theory with the energy spectrum of strings in an AdS

background. In its prototypical instance, the spectrum of the superstring in AdS5 × S5

matches that of local operators in the planar limit of N = 4 SYM theory. Moreover, the

spectral problem of the latter is conjectured to be integrable [2, 3]. This allows to interpo-

late exactly the anomalous dimensions data from weak to strong coupling, which in turn

enables to compare them with the strong coupling predictions from string theory.
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A well studied example of this state-operator correspondence and the underlying in-

tegrability of the spectral problem is the sector of twist-two operators in planar N = 4

SYM. These operators have the schematic form Tr(ZDS
+Z), where Z are complex scalars of

N = 4 SYM theory, D+ is the covariant light-cone derivative and S is the spin of the opera-

tor. Such operators are closed under renormalization, i.e. they only mix among themselves,

thus providing a closed sector. At weak coupling, in the large spin limit, the anomalous

dimension of twist-two operators scales logarithmically [4], with a slope given by the cusp

anomalous dimension Γcusp, which is a non-trivial function of the ’t Hooft coupling. In

the strong regime, such twist-two operators are conjectured to be dual to a folded string

spinning around its center of mass in AdS3 ⊂ AdS5 [5]. Its rather complicated solution

was spelled out in [6]. In the large spin limit this solution simplifies and corresponds to

a homogeneous long string stretching up to the boundary of AdS5 [5] (that we shall also

refer to as the GKP string). The cusp anomalous dimension Γcusp represents its uniformly

distributed energy.1 This ubiquitous quantity emerges also in the gauge theory as the co-

efficient of the UV divergence of a cusped, light-like Wilson loop [8–10]. From the string

perspective, the worldsheet area corresponding to the spinning string solution is equivalent

to that of a null cusp [11, 12], thus explaining the appearance of the same function in two

naively unrelated contexts.

The interpolation between the weak and strong coupling descriptions can be made

precise thanks to integrability, by means of a set of Bethe equations [13]. In particular,

the integrability based BES equation [14] allows in principle to compute Γcusp to any

desired order in both regimes. At strong coupling this expansion corresponds to considering

the classical energy of the string in the null cusp background and adding its quantum

corrections that can be computed by summing over all excitations about the vacuum.

Focussing on the individual excitations, they are interpreted at weak coupling as describing

the spectrum of anomalous dimensions of higher twist operators, obtained from twist-

two ones by insertion of extra fields. Integrability allows to extract exact results for the

excitations as well. In particular, from the Bethe ansatz description, not only the energy

but also the momentum of the excitations can be computed, so that their exact dispersion

relations were derived in [15] (previous results appeared in [4, 16–18]). Moreover, their

scattering amplitudes have also been studied in [19–21].

Recently, additional interest on the GKP string excitations was triggered by the OPE

approach to light-like polygonal Wilson loops and scattering amplitudes [22–29], where the

GKP scattering factors appear as crucial building blocks.

The AdS4/CFT3 correspondence offers another setting where to study analogous prob-

lems. Indeed, on the one hand there exists a well defined correspondence between a three-

dimensional conformal field theory (the ABJM model [30]) and a dual string theory, namely

type IIA on AdS4 × CP3. On the other hand the ABJM theory was conjectured to be in-

tegrable [31–35] and its Bethe equations to be related to those of N = 4 SYM in a precise

and simple way. Interestingly, the all loop Bethe ansatz for the ABJM theory features an

interpolating function of the coupling h(λ), which is trivial for N = 4 SYM. Therefore,

1In general subleading corrections at strong coupling in the large spin limit were considered in [7].
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ABJM theory offers a rather similar, though somewhat different environment, where to

put the AdS/CFT and integrability machinery in action.

The spinning string problem has been extensively studied in the ABJM theory as

well [36–40], where the one-loop corrections to its energy were computed. These correspond

to the cusp anomalous dimension of ABJM at strong coupling, which can be computed from

integrability via a BES equation, which is the same as for N = 4 SYM, up to the presence

of the effective coupling h(λ). Therefore the comparison of the two results yields the strong

coupling expansion of the interpolating function.

As in N = 4 SYM attention was devoted not only to the sum over all the excitations on

top of the spinning string ground state, but also to the excitations themselves. In particular,

the model governing the low-energy excitations of the AdS4 × CP3 GKP vacuum in the

Alday-Maldacena limit [12] was pointed out in [41]. It belongs to a larger group of models

which were considered in [42], where it was argued that they are integrable.

In [19] the asymptotic Bethe ansatz for the ABJM GKP string was studied, from which

the authors argued the dispersion relations and S-matrix for the excitations. One difference

with respect to N = 4 SYM is that there is no closed subsector with derivatives and scalar

fields only and the simplest set of operators dual to the spinning string solution is of the

form Tr(D+ . . . D+Y
1D+ . . . D+ψ

†
4+D+ψ

1
+D+Y

†
4 ) built out of bifundamental matter fields

(Y 1, ψ1
+), (Y †4 , ψ

†
4+). To identify the GKP vacuum one has to look for the state with the

lowest possible twist. In this case it is provided by a twist-one2 operator (to be compared

to the twist-two vacuum of N = 4) containing two bifundamental matter fields and a large

number S of covariant derivatives. In this picture the lowest lying excitations are the

twist-1/2 matter fields which transform in the 4 and 4̄ representations of SU(4). They are

accompanied by twist-1/2 fermions in the 6 representation of SO(6) and a tower of twist-`

excitations, neutral under SU(4), corresponding to the transverse component of the gauge

field [19]. Despite the qualitative difference with respect to N = 4 SYM, the similarity of

the two integrable models predicts closely related dispersion relations for the excitations

in the two theories.

In the present paper we provide an explicit computation of the one-loop corrections to

the dispersion relations of the excitations of the ABJM GKP string at strong coupling, via

sigma model perturbation theory. This constitutes a strong verification of the predictions

of integrability at the quantum level. In order to make the computation feasible, we use

the Lagrangian of the AdS4×CP3 superstring in the light-cone gauge, expanded about the

light-like cusp background. Indeed on the one hand this setting was proved to be equivalent

to that of the GKP spinning string, on the other hand the light-cone gauge Lagrangian

turns out to be more tractable and suitable for perturbative computations.

In the context of AdS5×S5 this approach, initiated in [43, 44], allowed for the computa-

tion of the two-loop free energy [45], which is interpreted as the cusp anomalous dimension

via the AdS/CFT correspondence. In a following paper [46] the quantum dispersion re-

lations for the excitations of this model were computed at one loop and compared to the

integrability predictions of [15]. A refined analysis on the stability of the heaviest scalar

2Notice that both scalar fields and fermions in three dimensions have twist 1/2.
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mode, the binding energy of gauge excitations bound states and the corrections to the

dispersion relation of massless states was presented in [47].

A parallel program was started for the AdS4 × CP3 case. In [48–50] the light-cone

gauge superstring Lagrangian was derived. In [51] it was expanded around the null cusp

background and the two-loop correction to the cusp anomalous dimension of ABJM at

strong coupling was determined. This also provided a non-trivial check on the conjectured

exact expression of the interpolating function of the ’t Hooft coupling h(λ) [52], featured

in integrability based computations in ABJM. As for the AdS5 × S5 case, the light-cone

gauge Lagrangian offers an efficient setting for computing the dispersion relations of the

excitations on the cusp background. In this paper we determine their quantum corrections

at one loop and compare them with the predictions from the Bethe ansatz of [19]. Here

we summarize our results. The string theory spectrum at λ→∞ consists of

AdS3 transverse mode (ϕ) : m2
ϕ = 4 (1.1)

AdS4 outside AdS3 (x) : m2
x = 2 (1.2)

CP3 ({za, z̄a}, a = 1, 2, 3) : m2
z = 0 (1.3)

Massive fermions (ηa, θa) : m2
ηa = m2

θa = 1 (1.4)

Massless fermions (η4, θ4) : m2
η4 = m2

θ4 = 0 (1.5)

We find the following quantum corrections to the dispersion relations and masses of those

excitations, which can be compared to the results of [46] by replacing h(λ)→
√
λ

4π

E2(p, λ) =

[
p2 +m2 +

q

h(λ)
+O(λ−1)

] [
1 +

c p2 + d

h(λ)
+O(λ−1)

]
(1.6)

qϕ = 0 qx = − 1

4
qz = 0 qηa = qθa = 0 qη4 = qθ4 = 0

cϕ = − 1

8
cx = − 1

4
cz = − 11

12π
cηa = cθa = −1

2
cη4 = cθ4 = − 7

4π
(1.7)

dϕ = 0 dx = 0 dz = 0 dηa = dθa = 0 dη4 = dθ4 =
1

π

For massive modes the quantum dispersion relations of the string description are in

agreement with those of integrability. On the other hand, an identification of the massless

modes and their dispersion relations turns out to be rather problematic in a perturbative

approach. A similar mismatch has been already highlighted in [47] in the context of AdS5×
S5. In that case the five massless scalars of the superstring sigma model are not in direct

correspondence with the six massless degrees of freedom of the integrability description

(and the low energy O(6) sigma model). Moreover it was pointed out that the perturbative

expansion of their dispersion relations as computed from the superstring sigma model is

ill-defined because of IR divergences. We encounter a parallel mismatch for massless modes

in the AdS4 × CP3 case, where the four complex scalars coupled to a Dirac fermions of

the perturbative string sigma model are not in correspondence with the excitations of the

integrability description. The reason why this is so can be traced to the nonperturbative

dynamics of the low-energy excitations, which describe the Bykov model. This is a CP3
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sigma model coupled to a Dirac fermion. Nonperturbatively, the fermion condensates,

spontaneously breaking the U(1) symmetry of the model and giving a mass to its gauge field.

This screens long range interactions and prevents scalars from confining (which happens

in bosonic CPN models). The massless fermion confines and hence does not constitute

an asymptotic degree of freedom of the theory. Eventually the spectrum consists of 4+4

excitations (spinons) acquiring a nonperturbative mass, which are identified with the holes

of the integrability description.

Furthermore, as was pointed out in [47] for the AdS5×S5 case, the heaviest scalar mode

of the sigma model is not present in the integrability analysis as an elementary excitation.

A similar issue is encountered in the AdS4×CP3 setting and in the following we comment

on the interpretation of such a mode.

Finally, for gauge excitations integrability predicts the formation of bound states and

allows to compute their binding energy exactly. Following a similar analysis to [47], we esti-

mate this binding energy from the non-relativistic limit of the scattering amplitude between

these modes, which is compatible with the integrability result in the static approximation.

The paper is organized as follows: in section 2 we review the light-cone gauge La-

grangian of AdS4 × CP3 and its expansion up to fourth order in the fields, about the null

cusp background. Section 3 contains the computation of the one-loop correction to the dis-

persion relations of the excitations. In section 4 we comment the results and compare them

to those of N = 4 SYM and integrability. Section 5 is devoted to a discussion on the rôle

of the heaviest scalar. The possibility for the excitations to form bound states is explored

in 6 in the non-relativistic limit. Finally in the conclusions 7 we summarize our findings.

In appendix A we spell out the details of the expanded light-cone Lagrangian up to fourth

order in the excitations. In appendix C we provide an alternative form of the Lagrangian,

namely the WZ type which we use in appendix D to rewrite it using Dirac fermions.

2 The light-cone gauge Lagrangian

We review the light-cone gauge fixed action of AdS4 × CP3 and its expansion about the

null cusp background.

2.1 The light-cone gauge AdS4 × CP3 Lagrangian

The starting point is the AdS4 × CP3 metric, which we take to be

ds2
10 = R2

(
1

4
ds2

AdS4
+ ds2

CP3

)
, (2.1)

where R is the CP3 radius. The AdS4 metric in the Poincaré patch reads

ds2
AdS4

=
dw2 + dx+dx− + dx1dx1

w2
x± ≡ x2 ± x0 , (2.2)

where x± are the light-cone coordinates, xm = (x0, x1, x2) span the boundary of AdS4 and

w ≡ e2ϕ is the radial direction. We parametrize CP3 with complex variables za and z̄a,

transforming in the 3 and 3̄ of SU(3) respectively,

ds2
CP3 = gMN z

M zN = gab dz
a dzb + gab dz̄a dz̄b + 2 g b

a dza dz̄b , (2.3)
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where

gab =
1

4|z|4
(
|z|2 − sin2 |z|+ sin4 |z|

)
z̄a z̄b , gab =

1

4|z|4
(
|z|2 − sin2 |z|+ sin4 |z|

)
za zb ,

g b
a =

sin2 |z|
2|z|2

δba +
1

4|z|4
(
|z|2 − sin2 |z| − sin4 |z|

)
z̄a z

b and |z|2 ≡ za z̄a . (2.4)

In addition to the bosonic fields which parametrize the AdS4×CP3 metric, the Lagrangian

contains the fermionic coordinates ηa and θa with index a = 1, 2, 3, transforming in the

fundamental representation of SU(3). They stem for the 24 unbroken supersymmetries of

the background, out of the original 32 of type IIA supergravity. The eight supersymetries

broken by the background manifest themselves with the fermions η4, θ4. Complex conju-

gation of fermions is achieved by raising the indices {a, 4}. Fermions with upper index a

(ηa, θa) transform in the anti-fundamental of SU(3).3

The κ-symmetry light-cone gauge-fixed Lagrangian of [48, 49] takes the form

S = − T

2

∫
dτ dσ L (2.5)

L = γij
[
e−4ϕ

4

(
∂ix

+∂jx
− + ∂ix

1∂jx
1
)

+ ∂iϕ∂jϕ+ gMN∂iz
M∂jz

N

+ e−4ϕ
(
∂ix

+$j + ∂ix
+∂jz

MhM + e−4ϕB ∂ix
+∂jx

+
) ]

− 2 εije−4ϕ
(
ωi∂jx

+ + e−2ϕC ∂ix
1∂jx

+ + ∂ix
+∂jz

M`M
)

,

in terms of

$i = i
(
∂iθaθ

a − θa∂iθa + ∂iθ4θ
4 − θ4∂iθ

4 + ∂iηaη
a − ηa∂iηa + ∂iη4η

4 − η4∂iη
4
)
, (2.6)

ωi = η̂a∂̂iθ
a + ∂̂iθaη̂

a +
1

2

(
∂iθ4η

4 − ∂iη4θ
4 + η4∂iθ

4 − θ4∂iη
4
)
, (2.7)

B = 8
[
(η̂aη̂

a)2 + εabcη̂
aη̂bη̂cη4 + εabcη̂aη̂bη̂cη4 + 2η4η

4
(
η̂aη̂

a − θ4θ
4
)]
, (2.8)

C = 2 η̂aη̂
a + θ4θ

4 + η4η
4 , (2.9)

hM = 2
[
Ωa
Mεabcη̂

bη̂c − ΩaMε
abcη̂bη̂c + 2

(
ΩaM η̂

aη4 − Ωa
M η̂aη4

)
+ 2

(
θ4θ

4 + η4η
4
)

Ω̃ a
a M

]
,

(2.10)

`M = 2 i
[
ΩaM η̂

aθ4 + Ωa
M η̂aθ4 +

(
θ4η

4 − η4θ
4
)

Ω̃ a
a M

]
(2.11)

A few explanations of the objects appearing in the Lagrangian are in order. The string

tension T , including the anomalous radius shift, is given by [53]

T =
R2

2π
= 2

√
2

(
λ− 1

24

)
, (2.12)

3Compared to [48, 49, 51], here we omit the bars to indicate the complex conjugation of fermions. This

does not generate any confusion and simplifies several expressions.
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where λ ≡ N
k is the ’t Hooft coupling. The parameters N and k are the rank and the level

of the Chern-Simons U(N)k×U(N)−k ABJM field theoretical description at weak coupling

and correspond to the units of four- and two-form flux respectively in the string theory

dual in the strong regime. Corrections from the anomalous shift begin to affect terms at

λ−1 order in perturbation theory and can be disregarded in this paper where we work at

first order, hence we approximate T = 2
√

2λ throughout this paper. When presenting

results we also use the interpolating function h(λ) in order to make a more direct contact

with predictions from integrability. To one loop order for λ� 1

h(λ) =

√
λ

2
=
T

4
. (2.13)

The Ωa
M and ΩaM appearing in the Lagrangian are the complex vielbein of CP3,

ds2
CP3 = Ωa

MΩaN dz
M dzN , and Ω̃ a

a is associated to a one-form corresponding to the fiber

direction of S7, when dimensionally reducing from the supermembrane action in the D = 11

AdS4 × CP3 background. Explicitly,

Ωa = dz̄a
sin |z|
|z|

+ z̄a
sin |z|(1− cos |z|)

2|z|3
(dzcz̄c − zcdz̄c) + z̄a

(
1

|z|
− sin |z|
|z|2

)
d|z|, (2.14)

Ωa = dza
sin |z|
|z|

+ za
sin |z|(1− cos |z|)

2|z|3
(zcdz̄c − dzcz̄c) + za

(
1

|z|
− sin |z|
|z|2

)
d|z|. (2.15)

and

Ω̃ a
a = i

sin2 |z|
|z|2

(dza z̄a − za dz̄a) . (2.16)

Finally, the hatted fermions appearing in the Lagrangian are just a rotation

η̂a = T b
a ηb + Tab η

b , η̂a = T ab η
b + T ab ηb , (2.17)

by matrices T

Tâ
b̂ =

(
T b
a Tab
T ab T ab

)
=

(
δba cos |z|+ z̄a z

b 1−cos |z|
|z|2 i εacb z

c sin |z|
|z|

−i εacb z̄c sin |z|
|z| δab cos |z|+ za z̄b

1−cos |z|
|z|2

)
. (2.18)

The bosonic world-sheet local symmetry is fixed with a “modified” conformal gauge

γij = diag
(
−e4ϕ, e−4ϕ

)
, (2.19)

and imposing the light-cone gauge condition

x+ = p+ τ , p+ = const . (2.20)

2.2 The null cusp vacuum and fluctuations

The Lagrangian (2.5) admits a vacuum corresponding to a null cusp at the boundary of

AdS4 [11, 45]

w ≡ e2ϕ =

√
τ

σ
x1 = 0

x+ = τ x− = − 1

2σ
za = z̄a = 0 . (2.21)

– 7 –
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We can expand around this background setting

x1 = 2

√
τ

σ
x̃ w =

√
τ

σ
w̃ w̃ = e2ϕ̃

za = z̃a z̄a = ˜̄za a = 1, 2, 3

η =
1√
2σ

η̃ θ =
1√
2σ

θ̃ . (2.22)

Next we rotate the Lagrangian (2.5) to Euclidean signature and redefine the worldsheet

coordinates as t = 2 log τ and s = 2 log σ, so that the fluctuation Lagrangian reads

SE =
T

2

∫
dt dsL , L = LB + L(2)

F + L(4)
F , (2.23)

where

LB = (∂tx̃+ x̃)2 +
1

w̃4
(∂sx̃− x̃)2 + w̃2 (∂tϕ̃)2 +

1

w̃2
(∂sϕ̃)2 +

1

4

(
w̃2 +

1

w̃2

)
+ w̃2 g̃MN ∂tz̃

M ∂tz̃
N +

1

w̃2
g̃MN ∂sz̃

M ∂sz̃
N (2.24)

L(2)
F = i

[
∂tθ̃aθ̃

a − θ̃a∂tθ̃a + ∂tθ̃4θ̃
4 − θ̃4∂tθ̃

4 + ∂tη̃aη̃
a − η̃a∂tη̃a + ∂tη̃4η̃

4 − η̃4∂tη̃
4
]

+
2i

w̃2

[
ˆ̃ηa

(
∂̂sθ̃

a− ˆ̃
θa
)

+
(
∂̂sθ̃a − ˆ̃

θa

)
ˆ̃ηa+

1

2

(
∂sθ̃4η̃

4 − ∂sη̃4θ̃
4+η̃4∂sθ̃

4 − θ̃4∂sη̃
4
)]

+ ∂tz̃
M h̃M +

4 i

w̃3
C̃ (∂sx̃− x̃)− 2i

w̃2
∂sz̃

M ˜̀
M (2.25)

L(4)
F =

1

w̃2
B̃ . (2.26)

In the above expression B̃, C̃, h̃M and ˜̀
M are obtained form the quantities B, C, hM and

`M in (2.6) by just replacing the original fields with the corresponding fluctuations.

From the action (2.23) we see that the excitations consist of one heavy scalar ϕ of

mass m2
ϕ = 4, one light scalar x with mass m2

x = 2, six real massless scalars za and z̄a,

six massive fermions ηa and θa of mass m2
ψ = 1 and two massless fermions θ4 and η4. The

low-energy asymptotic excitations are the massless scalars coupled to the massless fermion,

as in the Bykov model [41].

Compared to [51] we introduced an additional factor of 2 in the redefinition of the

worldsheet coordinates to ease the comparison with results from integrability. This effec-

tively doubles the masses of the excitations. Let us also mention that an alternative form

of the Lagrangian can be derived, where the rotation on fermions is undone at the price of

introducing a covariant derivative. This Lagrangian in the WZ parametrization is spelled

out in appendix C. In order to consider fermionic asymptotic states it could be useful

to express the fermionic degrees of freedom in term of Dirac spinors. The Lagrangian is

expressed in such a form in appendix D.

2.3 Feynman rules

Provided with an explicit Lagrangian for the fluctuations around the cusp background,

we can expand it and extract the relevant Feynman rules for performing perturbative

computations.
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Figure 1. Diagram topologies for the two-point function one-loop corrections.

The bosonic propagators are diagonal and read

Gϕϕ(p) =
1

T

1

p2 + 4
Gzaz̄b(p) =

1

T

2 δba
p2

Gxx(p) =
1

T

1

p2 + 2
. (2.27)

The fermionic propagators are not diagonal and, instead, take the form

Gη4η4(p) = Gθ4θ4(p) =
1

T

p0

p2
Gη4θ4(p) = Gθ4η4(−p) = − 1

T

p1

p2

Gηaηb(p) = Gθaθb(p) =
1

T

p0

p2 + 1
δba Gηaθb(p) = Gθaηb(−p) = − 1

T

p1 + i

p2 + 1
δba . (2.28)

The interaction vertices are obtained expanding the Lagrangian (2.23) in the fluctuation

fields. For the one-loop computation only terms with up to four fields are relevant. They

are the same as those of [51] and we spell them out in the appendix A, for completeness.

3 One-loop dispersion relations

In this section we compute the one-loop corrections to the two-point functions of the

elementary fields of the action (2.23). One-loop self-energy diagrams come in three different

topologies: a bubble, a 1PI tadpole and a non-1PI tadpole contributions, which are depicted

in figure 1. The latter are allowed since the heavy scalar ϕ has a non-trivial expectation

value [51]. Indeed the only one-loop contribution comes from a fermionic loop giving

〈ϕ〉 = 3 I[1] , (3.1)

with the tadpole integral I[m2] defined below in (3.2). Bubble and tadpole diagrams give

rise to integrals with several powers of loop momentum (up to six) in the numerator.

These are reduced to scalar integrals via Passarino-Veltman reduction. According to the

regularization procedure introduced in [45], we perform such a reduction in strictly two

dimensions. This entailed consistent results for the computation of the free energy up to

two loops both in the AdS5 × S5 and AdS4 × CP3 cases and the dispersion relations in

AdS5×S5 at one loop. Therefore we expect this choice of regularization to be suitable for

the present case as well.

After tensor reduction one is left with two kinds of integral: tadpoles and bubbles

I[m2] ≡
∫

d2k

(2π)2

1

k2 +m2

I[m2
1,m

2
2] ≡

∫
d2k

(2π)2

1[
k2 +m2

1

] [
(k + p)2 +m2

2

] . (3.2)
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The latter are ultraviolet convergent and IR finite if both propagators are massive and

evaluate to

I[m2
1,m

2
2] =

log
p2+m2

1+m2
2+
√

(p2+m2
1+m2

2)2−4m2
1m

2
2

p2+m2
1+m2

2−
√

(p2+m2
1+m2

2)2−4m2
1m

2
2

4π
√

(p2 +m2
1 +m2

2)2 − 4m2
1m

2
2

. (3.3)

Whenever one of the masses vanishes the bubble suffers from infrared singularities which

can be isolated in terms of tadpole integrals using [46]

I[0,m2] =
1

p2 +m2

(
1

2π
log

p2 +m2

m2
− I[m2] + I[0]

)
. (3.4)

Tadpoles are UV divergent. We verify that in dispersion relations they always drop out

because they are multiplied by factors going to zero on-shell. Nevertheless they are present

in the off-shell corrections to the two-point functions. In some cases they appear in finite

combinations, but in other they do produce ultraviolet singularities, indicating that the

corresponding fields undergo a non-trivial wave function renormalization. In particular we

observe that the heavy scalar ϕ and the light one x are UV and IR finite even off-shell. On

the other hand massless scalars and massive fermions are UV and IR divergent off-shell,

though their divergence vanishes on-shell. Curiously massless fermions are UV (and not IR)

divergent off-shell, while they are also finite when the on-shell condition is imposed. It is

interesting to note how IR divergences appear for particles with a SU(3) ⊂ SU(4) structure.

In AdS5 × S5 a similar phenomenon was observed for quantities with a SO(5) ⊂ SO(6)

structure and it was expected from the theorems in [54, 55], implying that IR divergences

appear in any non-SO(6) invariant quantities. In the case at hand a similar mechanism

is expected to work. Indeed, the SU(4) symmetry of the CP3 sigma-model is broken to

SU(3) by the choice of the vacuum and the appearance of IR divergence are a signal of the

non-existence of two-dimensional Goldstone modes. The new feature of the AdS4 × CP3

model is the presence of a massless Dirac fermion in the low-energy description [41], which

was not present in the higher-dimensional case. As we mentioned, the dispersion relation

of this massless Dirac fermion does not contain IR divergences as one should expect being

it in the singlet of SU(4). As far as UV divergences are concerned, their appearance in

the off-shell two-point function is not a novel feature for UV-finite string sigma models

and recently it was found to be present also in the near-BMN expansion of superstring in

AdSn × Sn × T 10−2n integrable backgrounds [56].

We collect the tree level structure of propagators according to

〈•(p) ? (−p)〉(1) =
1

T

G•?(p)

p2 +m2
•
F

(1)
•? , (3.5)

for generic fields • and ?. When performing the usual one-loop resummation of non-1PI

contributions the on-shell (p0 =
√
−m2 − p2

1) value of the function F
(1)
•? shifts the pole of

the propagator. From this shift one can read off the corrections to the dispersion relations

in (1.6). In particular evaluating the shift at p1 = 0 one computes the mass shift q in

equation (1.6) and subsequently the coefficients c and d by subtraction. We now spell

out the details of the results for the perturbative one-loop corrections to the dispersion

relations and masses of each particle in the fluctuation Lagrangian (2.23).
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3.1 Light scalar

The x scalar self-energy one-loop correction reads

F (1)
xx =

(
p2

1 + 1
) (
−12 p2I[1, 1]

(
p4 + 4 p2

1

)
− 16

(
p4 + 8 p2 + 4

)
I[2, 4]

(
p2 − 2 p2

1

))
p4

+

+
16 (I[2]− I[4])

(
p2 + 2

) (
p2

1 + 1
) (
p2 − 2p2

1

)
p4

, (3.6)

where the difference of UV divergent tadpoles gives a finite remainder I[2] − I[4] = log 2

and hence x does not need any renormalization. The self-energy evaluated on-shell reads

F (1)
xx

∣∣∣
p2=−2

=
(
p2

1 + 1
)2
. (3.7)

The one-loop corrected dispersion relation then becomes

p2 + 2 =
1

2
√

2λ
F (1)
xx

∣∣∣
p2=−2

+O(λ−1) , (3.8)

that is, in Lorentzian signature (p0, p1)→ (−iE, p)

E2 = p2 + 2− 1

4h(λ)

(
p2 + 1

)2
+O(λ−1) . (3.9)

At p = 0 one can read off the one-loop correction to the mass

m2
x = 2− 1

4h(λ)
+O(λ−1) < 2 . (3.10)

The fact that the first perturbative correction to the mass at strong coupling is decreasing

its value is in general agreement with the trend put forward in [15], according to which the

masses of the gauge excitations should tend to 1 at weak coupling.

3.2 Heavy scalar

We now turn to the heavy scalar mode ϕ, whose one-loop correction to the self-energy is

found to be

F (1)
ϕϕ = 4 (3I[1]− I[2]− 2I[4])

(
p2 + 4

)
−

12
(
p2 + 4

)
p2

1I[1, 1]
(
p4 + 4 p2

1

)
p4

+
8
(
p2 + 4

)2
I[4, 4]

(
p2 − 2 p2

1

)2
p4

+ 2I[2, 2]

(
64 p4

1

p4
− 64 p2

1

p2
+
(
p2 + 4

)2)
. (3.11)

Again, the difference of UV divergent tadpoles leave a finite remainder 3I[1]− I[2]−2I[4] =

5 log 2. Therefore the field ϕ does not renormalize, to one loop order. Evaluating the

self-energy on-shell we obtain

F (1)
ϕϕ

∣∣∣
p2=−4

=
1

2
p2

1

(
p2

1 + 4
)
. (3.12)

In going on-shell the integral I[1, 1] is singular, which is explained as coinciding with the

threshold energy for production of a pair of fermions. This integral is multiplied by a
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power of (p2 + 4), enforcing the limit to vanish. Then the one-loop corrected dispersion

relation reads

p2 + 4 =
1

2
√

2λ
F (1)
ϕϕ

∣∣∣
p2=−4

+O(λ−1) . (3.13)

Switching to Lorentzian signature it becomes

E2 = p2 + 4− 1

8h(λ)
p2
(
p2 + 4

)
+O(λ−1) . (3.14)

The one-loop correction to the mass is clearly seen to vanish. This agrees with the analysis

of [12], according to which the mass of this mode is protected. In section 5 we discuss more

deeply the analytic structure of the one-loop correction (3.11) and its implications for the

rôle of the heavy scalar in the asymptotic states of the model.

3.3 Massless scalars

The one-loop contribution to the two-point function of the massless scalars suffers from both

IR and UV divergences, which can be expressed in terms of tadpoles using the identity (3.4).

The z scalar self-energy one-loop correction reads

F (1)
zz =

1

2πp4

[
8πp2 I[1, 1](p2−p2

1)
(
p4+4 p2

1

)
+2
(
p2+4

) (
p4−8p2p2

1 + 8p4
1

)
log

(
p2 + 4

4

)
+
(
p6−p4

(
2p2

1+1
)
+8p2p2

1−8p4
1

)
log
(
p2 + 1

) ]
+

4

3
(I[0]− 3I[1]) p2 . (3.15)

Then one can see that I[4] tadpoles cancel and the rest is proportional to I[0]− 3 I[1] which

is UV (and IR) divergent, but it is multiplied by p2 and vanishes on-shell. The on-shell

self-energy evaluates

F (1)
zz

∣∣∣
p2=0

=
11

3π
p4

1 , (3.16)

where the residual UV and IR divergences disappear. Hence the one-loop corrected dis-

persion relation reads

E2 = p2 − 1

h(λ)

11

12π
p4 +O(λ−1) . (3.17)

At p = 0 one can read off the one-loop correction to the mass, which is seen to vanish.

3.4 Massive fermions

The kinetic terms of the fermion Lagrangian mix the fermion fields. Hence we have to

consider separately the corrections to the two-point functions 〈ηaηa〉, 〈θaθa〉 and 〈ηaθa〉.
Their computation involves several contributions and the final forms are not particularly

illuminating; we spell them out in appendix B. We point out that the off-shell one-loop

corrections to 〈ηaηa〉 and 〈θaθa〉 are finite, whereas that for 〈ηaθa〉 is UV divergent, al-

though the divergent term cancels on-shell. This implies that the massive fermions, like

the massless scalars, undergo wave-function renormalization. The correction to the 〈ηaθa〉
two-point function is also IR divergent off-shell. Once more the divergent term vanishes

on-shell. We will comment on the rôle of IR divergences in section 4.
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The different two-point functions all coincide on-shell corroborating the hypothesis

that all the massive fermions have the same dispersion relation

F
(1)
ηaηa

∣∣∣
p2=−1

= F
(1)
θaθa

∣∣∣
p2=−1

= F
(1)
ηaθa

∣∣∣
p2=−1

= 2 p2
1

(
p2

1 + 1
)
. (3.18)

Thus the one-loop corrected dispersion relation takes the form

E2 = p2 + 1− 1

2h(λ)
p2
(
p2 + 1

)
, (3.19)

from which one sees that the mass does not receive corrections. Again, this conclusion is

in agreement with the integrability prediction that the massive fermion mass is protected

from strong to weak coupling.

3.5 Massless fermions

The two-point functions for massless fermions are different, depending on the fields, and

are UV but not IR divergent. Nevertheless they coincide on-shell, where they are all finite

F
(1)
η4η4

∣∣∣
p2=0

= F
(1)
θ4θ4

∣∣∣
p2=0

= F
(1)
η4θ4

∣∣∣
p2=0

=
p2

1

(
7p2

1 − 4
)

π
. (3.20)

Hence the one-loop correction to the dispersion relation reads

E2 = p2 − 1

4π h(λ)
p2
(
7p2 − 4

)
, (3.21)

from which the mass is not corrected. The massless fermions are a novel feature of the

AdS4 × CP3 (ABJM) with respect to the AdS5 × S5 (N = 4) case, and we comment on

the correction (3.21) to their dispersion relation in the next section.

4 Comparison with N = 4 SYM and integrability predictions

The physics of the excitations on top of the GKP vacuum for the ABJM model has been

extensively analysed using integrability in [19]. In particular the dispersion relations of its

modes were computed exactly. The Bethe ansatz analysis reveals a remarkable similarity

with respect to the AdS5 × S5 spinning string setting. Therefore we start commenting on

the results of the previous section by comparing them with the corresponding findings of

N = 4 SYM. We observe that all the dispersion relations for massive modes are related to

those of the corresponding fields in the AdS5 × S5 sigma model, by

E(p)
(1)
AdS5×S5 = E(p)

(1)

AdS4×CP3 . (4.1)

For massless modes such a comparison is not possible, since it is not even clear what to

compare: in AdS5 × S5 there are only massless scalars, whereas for AdS4 × CP3 these are

coupled to a massless fermion. Moreover, the scalar excitations over the GKP vacuum in

the integrability analysis of [19] transform in the 4 and 4̄ of SU(4) whereas the superstring

elementary excitations transform only in the fundamental representation of the SU(3) sym-

metry which survives in the Goldstone vacuum. This is similar to what happens in N = 4
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SYM where the scalar excitations in the string picture are organized in vectors of SO(5),

the explicit symmetry of the O(6) sigma model expanded around the Goldstone vacuum.4

The dynamics of the massless Dirac fermion is also deeply non-perturbative and can be

understood from the low-energy Bykov model [41]. This is a CP3 sigma model coupled to

a Dirac fermion, with SU(4) × U(1) symmetry group. Contrary to the bosonic CP3 sigma

model, which exhibits confinement of the scalars, the addition of the fermions makes its

rather different, nonperturbatively. Indeed the fermion forms a chiral condensate which

breaks the U(1) symmetry spontaneously and make the gauge field of the CP3 sigma model

massive and dynamical. This in turn prevents it from confining the scalars, which become

the spinons of the Bykov model [42]. Hence the massless fermion is not an asymptotic

degree of freedom of the theory.

Because of all these differences in the spectra of the superstring and integrability de-

scriptions, as in the N = 4 SYM case, a comparison between their results is only partially

possible. We start commenting on massive modes. In the asymptotic Bethe ansatz ap-

proach the dispersion relation of the massive modes of N = 4 SYM is predicted to be the

same as that of the corresponding massive excitations of ABJM.

For the bosons, the quantum correction to the dispersion relation of the light massive

scalar agrees with the integrability result.

The heavy scalar, as in N = 4 SYM, is absent in the Bethe ansatz description. There-

fore its rôle in the sigma model should be analysed carefully and we postpone a thorough

discussion of this issue to section 5. Here we just stress that at one loop order the heavy

scalar has the same dispersion relation as the corresponding heavy field in N = 4 SYM. For

fermions, the one-loop corrected dispersion relation for massive modes is in full agreement

with the integrability prediction.

Turning to the massless scalar modes, only the fact that the mass does not receive per-

turbative corrections is compatible with the integrability predictions. Indeed, the Bethe

equations analysis reveals that the model has a gap and such modes acquire an exponen-

tially small mass, non-perturbatively. This parallels what occurs to the scalars of the O(6)

sigma model emerging in AdS5 × S5 in the Alday-Maldacena limit [12, 57]. Apart from

that, there is no direct identification between the dispersion relations of massless fields of

the superstring description and the non-perturbative modes of integrability. Insisting in

comparing the two results at the same order in λ just shows that they do not match. An

explanation to this phenomenon, as pointed out in [47], originates from the presence of

perturbatively massless fields. This induces IR divergences in loop computations, which

appear as logarithms of the infrared scale of the theory. Indeed the explicit computation

of some one-loop two-point functions already shows the presence of IR divergences, though

they always drop out from the dispersion relations. The infrared cutoff of the theory is set

by the non-perturbative mass of the particles which, roughly, scales exponentially with the

coupling
√
λ. This implies that logarithms of this scale behave like powers of the coupling,

4In this contest the analysis of [54] gives a recipe for computing O(N) invariant correlation functions in

the O(N) sigma model and in [55] it was proven that they are free of IR divergences. It is an interesting

question whether the same technique can be applied to the Bykov model or even to the full non-linear string

sigma model in AdS5 × S5 or in AdS4 × CP3.
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effectively lowering the perturbative order to which these terms contribute. In practice this

means that an IR divergence appearing at l loops contributes to the (l − 1)-loop result,

invalidating the perturbation theory predictivity at that order. Therefore it is likely that

the one-loop dispersion relations for massless modes (3.17) and (3.21) are not trustworthy

due to two-loop IR divergences despite being IR finite at one loop. This argument could

actually spoil the computation of the one-loop dispersion relations for massive fields, where

IR divergences could also appear at two loops. However the theorems in [54, 55] suggest

that O(6) invariant quantities should be IR finite and since ϕ and x are singlets under O(6)

we expect their correlation functions to be reliable in perturbation theory. It would be in-

teresting to ascertain this explicitly via a two-loop computation of the two-point functions.

We finally comment on the massless fermion. This computation should not be plagued

by the IR problems which affect massless scalars and hence be reliable. The result (3.21)

indicates that the dispersion relation of the massless fermion acquires a perturbative cor-

rection. In particular, in a small momentum (energy) expansion, we observe a quantum

correction to the speed of light (i.e. the coefficient of the p2 term). This term looks odd,

since in this limit the physics is governed effectively by the CP3 sigma model coupled to

a fermion, which is relativistic and does not predict such a correction. This apparent

clash may be reconciled recalling that in the Bykov model nonperturbative effects induce

confinement of the fermion which is thus not expected to be present in the full spectrum

of excitations at finite coupling (which consists of 4+4 spinons). Consequently, as the

fermion is not an observable degree of freedom, we do not attribute to the computation of

the perturbative correction to its two-point function (3.21) any deep physical meaning.

5 Comments on the heaviest scalar

As is the case for N = 4 SYM, the heaviest scalar mode ϕ, which is present in the

Lagrangian (2.23), does not correspond to an elementary excitation in the Bethe ansatz

description, based on the conjectured integrability of the model. The rôle of this field was

deeply analysed in the literature for AdS5×S5 [21, 26, 46, 47]. A possible explanation that

was put forward to explain this mismatch is that the ϕ field is not an asymptotic state

of the quantum theory, along the lines of the arguments of [58]. This latter hypothesis

and its consequences can be studied perturbatively. In particular the analytic structure of

the two-point function should tell whether it exists as an asymptotic state and whether

it is stable or it can decay into lighter particles, such as a pair of massive fermions. This

kind of analysis was performed at one loop in [46] and [47]. The punchline is that up to

one-loop order the scalar ϕ is a stable threshold composite state of two fermions. Its would

be pole in the two-point function coincides with the branching point of the two-fermion

continuum square root and hence the scalar cannot be interpreted as a genuine asymptotic

bound state. However, depending on the next order corrections, this conclusion can vary

according to how the ϕ and the fermion dispersion relations get modified.

In [26] the contribution of the heavy scalar appears naturally as a SU(4)-singlet com-

pound state of two fermions which perfectly reproduces one of the two-particle contributions

to the excited flux-tube. The energy and the momentum of this two-particle state at finite
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coupling are simply related to the energy and momentum of the fermionic excitations. In

particular analysing this relation at strong coupling one finds that

Eϕ(p)− 2Eψ

(p

2

)
= −π

2p4(p2 + 4)
3
2

8λ
+O(λ−

3
2 ) , (5.1)

where λ is the N = 4 SYM ’t Hooft coupling. The minus sign in the r.h.s. of this equation

predicts that at two-loops the pole of the heavy scalar two-point function actually moves

below the threshold. The results of [26] show that this property holds also at finite coupling

preventing ϕ from decaying into two fermions. Although the pole of the heavy scalar two-

point function is shifted below the threshold, the analysis of the singlet channel in the

scattering phase of two fermions shows that the unwanted pole is located in the unphysical

strip of the rapidity complex plane [26, 59]. This in turn means that ϕ cannot be a true

asymptotic state of the theory.

The same arguments should also apply to the heavy scalar in the AdS4 × CP3 model.

However they go beyond the one-loop computation carried out in this paper. What our

analysis can test is the integrability prediction that up to one-loop the ϕ scalar should

appear as a stable threshold bound state of two fermions. This expectation can be verified

along the lines of [46] and [47] as follows. The one-loop contribution to the denominator

of the resummed two-point function has the form

F (1)
ϕϕ (p) = a0 + a1/2(p2 + 4)

1
2 + . . . , (5.2)

where all other terms vanish more rapidly in the vicinity of the tree-level mass condition. In

particular we note the presence of the square root
√
p2 + 4. Although it is not immediate

to see the emergence of this term from (3.11), it arises from the denominator of I[1, 1],

appearing in the fermion loop diagram. Close to the threshold, the inverse corrected two-

point function

G−1
ϕ (p) = p2 + 4− 1

2
√

2λ
F (1)
ϕϕ (p) +O(λ−1) (5.3)

vanishes at

p2 = −4 +
1

2
√

2λ
a0 +O(λ−1) , (5.4)

where here a0 = 1
2p

2
1(p2

1 + 4). This location lies below the branch cut threshold induced

by the square root, meaning that it corresponds to a genuine pole. From this one would

conclude that the ϕ scalar does represent an asymptotic state of the theory. However

this does not take into account that the physical threshold for fermion production is also

shifted by quantum corrections. One can imagine the structure of the resummed two-point

function to all orders to have the form (in Lorentz signature)

G−1
ϕ (p) = −E2 + 4E2

ψi

(p

2

)
−

a1/2

2
√

2λ

(
−E2 + 4E2

ψi

(p

2

)) 1
2

+ . . . , (5.5)

where 4Eψi
(p/2) = 4 − a0

2
√

2λ
+ O(λ−1) is the quantum corrected dispersion relations of

the massive fermions. Its expansion to first order in λ−
1
2 would be in agreement with the

perturbative computation (3.11), although the latter does not guarantee nor hint that (5.5)
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should hold at higher order. Assuming this is the case, the would be pole at E2 = 4E2
ψi

(p
2

)
coincides with the branching point of the square root. Moreover if the coefficient of the

square root a1/2 is positive (as the one-loop computation shows it is the case) no other phys-

ical poles are present in the two-point function, but only a pole on the second, unphysical,

sheet of the square root, located at

E2 = 4E2
ψi

(p

2

)
−
a2

1/2

8λ
+O(λ−

3
2 ) (5.6)

where a1/2 can be extracted expanding (3.11) near the threshold and reads

a1/2 =
3 p2(p2 + 4)

4
(5.7)

As a result ϕ does not represent a real asymptotic state of the theory. Insisting on this

logic, we can derive a conjectural analogue of (5.1), for the AdS4 × CP3 case

Eϕ(p)− 2Eψi

(p

2

)
= −9 p4(p2 + 4)

3
2

256λ
+O(λ−

3
2 ) , (5.8)

which would be interesting to check against an integrability based prediction and a full

two-loop perturbative computation.

6 Bound states

The Bethe equation analysis of the GKP excitations shows that the light scalars x can

form bound states, whose energy can be computed. These are not immediately detectable

from the superstring approach, however, following [47] we can attempt to estimate their

energy to leading order. This is done treating the x fields as non-relativistic and comput-

ing the scattering amplitude of a pair of them. From this one can extract the effective

(attractive) potential experienced by the two particles. In particular, this is done by com-

puting their 2→ 2 scattering amplitude and comparing it with the Born approximation in

quantum mechanics

M(k) = −2 (2m)2

∫
dx e−ikx V (x) , (6.1)

where k is the momentum transfer of the scattering process. This means that the effective

potential V (x) is basically the Fourier transform of the amplitude up to numerical constants

due to different normalization of the wave-function and Bose statistics. To lowest order

in a momentum expansion, the scattering amplitudes become constants and their Fourier

transform is proportional to a δ-function. The problem then reduces to a many-body

system of particles interacting pairwise with a δ-function potential Vij(x) = −g δ(xi − xj).
Such a model admits a two-particle bound state with one energy level E = −µ g2

2 , where µ

is the reduced mass of the system (µ = 1√
2

for the x scalars). More generally the binding

energies for bound states of ` particles of mass m are also known [60]

E` = −mg2

24
`(`2 − 1) . (6.2)
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Figure 2. Tree level scattering xx→ xx.

This energy can be compared to the static limit of the lowest order expansion for λ� 1 of

the binding energy derived from integrability. This is given by

Ebinding,`(p) = E`(p)− `E1

(
p

`

)
, (6.3)

where E`(p) is the dispersion relation for the relevant twist ` excitation.

In N = 4 SYM such a program was successfully carried out for the gauge excitation,

showing agreement with the integrability prediction at p = 0. In this section we perform

a similar computation for the mass
√

2 mode of the AdS4 ×CP3 superstring. At tree level

the amplitude for xx → xx scattering receives contributions from all s, t and u channels,

as in figure 2. In the zero momenta limit the contributions from the t and u channels are

equal and give

Mxx→xx, t =Mxx→xx, u = 25
√

2λ+O(k) , (6.4)

whereas the s-channel contributes with an opposite result, corresponding to a repulsive

interaction. Altogether the amplitude gives

Mxx→xx = 25
√

2λ+O(k) , (6.5)

from which we find the effective potential (after properly rescaling fields by a T−1/2 factor

and introducing h(λ) (2.13))

Vxx(x) = − 1

4h(λ)
δ(x) . (6.6)

Plugging this into (6.2) we give an estimate for the binding energy of the twist ` gauge

bound state

Ebinding,`(0) = −
√

2 `(`2 − 1)

384h(λ)2
+O(λ−2) , (6.7)

which is equivalent to the corresponding one for AdS5×S5, once the replacement h(λ)→
√
λ

4π

is performed. Thus it agrees with the integrability prediction of [15] at first order at

strong coupling.

According to the parallel analysis of [26] in AdS5 × S5, multi-fermion states are also

present in the theory. These appear as bound states of the two-fermion composites which

we have identified as the mass 2 excitations ϕ of the sigma model. This composite states

of 2n fermions are expected to have mass 2n and consequently the bound states of ϕ to

have zero binding energy at vanishing momentum.5 We therefore repeat the same analysis

as above for the scalars ϕ, in order to check whether the binding energy is vanishing at
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ϕ
ϕ

ϕ

Figure 3. Tree level scattering ϕϕ→ ϕϕ.

leading order in the static limit. The lowest order scattering amplitude for ϕϕ → ϕϕ is

given by the sum of the diagrams in figure 3. Once again the t− and the u−channel give

two identical contributions in the static limit

Mϕϕ→ϕϕ, t =Mϕϕ→ϕϕ, u = 27
√

2λ+O(k) . (6.8)

In this case also the four point vertex gives an attractive contribution which is once more

equal to

Mϕϕ→ϕϕ, 4 = 27
√

2λ+O(k) . (6.9)

The s-channel contribution, as in the previous case, contributes with a repulsive interaction

which compensates exactly the other terms

Mϕϕ→ϕϕ, s = −3× 27
√

2λ+O(k) . (6.10)

In conclusion

Mϕϕ→ϕϕ = O(k) , (6.11)

which implies that the bound state of ϕ has vanishing binding energy in the static limit

in agreement with the integrability prediction. As a further check we performed the same

computation in AdS5 × S5 where the vertices are modified by relative factors and we

found that the mechanism is exactly the same. Therefore, as expected, the binding energy

vanishes also in that case.

7 Conclusions

In this paper we have studied perturbatively the dynamics of the excitations on top of the

GKP vacuum in the AdS4×CP3 string background, which is dual to the ABJM theory, at

strong coupling. This model is conjectured to be integrable, which allowed to solve exactly

for several physical quantities such as the dispersion relations of the elementary excitations

and their scattering amplitudes. We have performed a direct perturbative computation

of the dispersion relations for the excitations appearing in the superstring description to

one loop order at strong coupling. We have used the light-cone gauge Lagrangian of the

AdS4×CP3 sigma model expanded about the cusp background, which is equivalent to the

spinning string solution and is more efficient for perturbative computations.

Summarizing our findings:

• We have ascertained that the dispersion relation for massive modes coincides with

that predicted by the asymptotic Bethe ansatz [19]. This constitutes a test of inte-

grability of the model, in the strong coupling regime.

5We would like to thank B. Basso for explaining this to us.
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• For massless modes a comparison between the supertring perturbative approach and

the integrability modes is not straightforward, as already stressed in the similar con-

text of the AdS5×S5 superstring [47]. We verify that this is also true for the ABJM

dual sigma model, where it is hard to match the elementary massless modes with the

spinons of the integrability description, and consequently there is no clear identifica-

tion of their dispersion relations.

• We have analysed in detail the dispersion relation of the heaviest scalar in the spec-

trum of the string fluctuations. Such a mode is absent as an elementary state in

the integrability approach and in AdS5 × S5 has been interpreted as a two-fermion

state appearing as a pole in the fermion S-matrix, but in the unphysical strip in the

rapidity plane, preventing it from being associated to an asymptotic state [26]. Such

a pole is expected to appear at two-loop order since up to one loop it merges with the

branching point of the two-fermion continuum. In agreement with the expectation

that the same phenomenon could happen in the AdS4 × CP3 case, we find that to

one loop order the dispersion relation of the heaviest scalar exhibits a pole which

coincides with the threshold for production of two fermions.

• We have estimated the binding energy of bound states of gauge and two-fermion

excitations from the non-relativistic limit of their 2 → 2 scattering amplitude. The

results are consistent with the integrability predictions in the static approximation.
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A Details on the expanded Lagrangian

In this appendix we provide the expanded fluctuation Lagrangian (2.23) up to quartic order

in the fields. The vertices come with a factor 1
2 , with respect to the original Lagrangian,

from the prefactor T
2 in the action. In order not to clutter the expressions we drop the tildes

and the coupling T , which is understood to appear in each vertex insertion in Feynman

diagrams. The cubic interactions read

Vϕxx = − 4ϕ [(∂s − 1)x]2 Vϕ3 = 2ϕ
[
(∂tϕ)2 − (∂sϕ)2

]
Vϕ|z|2 = 2ϕ

[
|∂tz|2 − |∂sz|2

]
Vzηη = − εabc∂tz̄aηbηc + h.c. Vzηθ = − 2 εabcz̄aηb(∂s − 1)θc − h.c.

Vϕηθ = − 4 i ϕ ηa(∂s − 1)θa − h.c. Vxηη = − 4 i ηaηa(∂s − 1)x

Vzηaη4 = − 2 ∂tz
aηaη4 + h.c. Vzηaθ4 = 2 ∂sz

aηaθ4 − h.c.

Vϕη4θ4 = − 2 i ϕ (θ4∂sη4 − ∂sθ4η4)− h.c. Vxψ4ψ4
= − 2 i (η4η4 + θ4θ4)(∂s − 1)x
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whereas the quartic vertices are

Vz4 =
1

6

[
(z̄a∂tz

a)2 + (z̄a∂sz
a)2 + (za∂tz̄a)

2 + (za∂sz̄a)
2

−|z|2
(
|∂tz|2 + |∂sz|2

)
− |z̄a∂tza|2 − |z̄a∂sza|2

]
(A.1)

Vϕ2xx = 16ϕ2 [(∂s − 1)x]2 Vϕ4 = 4ϕ2

[
(∂tϕ)2 + (∂sϕ)2 +

2

3
ϕ2

]
Vϕ2|z|2 = 4ϕ2

[
|∂tz|2 + |∂sz|2

]
Vżz̄ψ4ψ4

= − 2 i (η4η4 + θ4θ4)z̄b∂tz
b + h.c.

Vη2η4η4 = 8 η4η4η
aηa Vz′z̄ψ4ψ4

= − 2 i (η4θ4 − θ4η4)z̄b∂sz
b − h.c.

Vη4 = 4(ηaηa)
2 Vϕ2η4θ4 = 4 i ϕ2 (θ4∂sη4 − ∂sθ4η4)− h.c.

Vη4η4θ4θ4 = − 8 η4η4θ
4θ4 Vϕxψ4ψ4

= 12 i ϕ (η4η4 + θ4θ4)(∂s − 1)x

Vη3η4 = 4 εabcηaηbηcη4 + h.c. Vzzηaη4 = − 2 i εabc∂tz
azbηcη4 + h.c.

Vϕzηaθ4 = − 8ϕ∂sz
aηaθ4 − h.c. Vϕzηθ = 8ϕεabcz̄aηb(∂s − 1)θc − h.c.

Vzzηaθ4 = 2 i εabc∂sz
azbηcθ4−h.c. Vzzηη = − 2 i (z̄a∂tz

aηbηb − z̄b∂tzaηbηa) + h.c.

Vϕxηη = 24 i ϕ ηaηa(∂s − 1)x Vzzηθ = −2 i [|z|2ηa(∂s−1)θa−z̄bzaηa(∂s−1)θb]

− h.c.

Vϕ2ηθ = 8 i ϕ2 ηa(∂s − 1)θa − h.c. Vxzηη = − 4 (∂s − 1)xεabcz̄aηbηc − h.c. (A.2)

B Self-energies of fermions

In this appendix we collect the off-shell fermion self-energies. For massive fermions

they read

F
(1)
ηaηa =

2

p6

[ (
p2 + 1

) (
(−2I[1]− I[2]− I[4]) p6

+ p4
(
(6I[1] + I[2]− 7I[4]) p2

1 − 2I[1] + I[2] + I[4]
)

+p2
(
(26I[1]−5I[2]−21I[4]) p2

1+(16I[4]−16I[1]) p4
1

)
−4 (10I[1]−I[2]−9I[4]) p4

1

)
−
(
p2 + 1

) (2p2
1

(
p4 − p2 + 4 p2

1

)
log
(
p2 + 1

)
π

−
(
3p4+4p6+p8−63p2p2

1−56p4p2
1−9p6p2

1+108p4
1+108p2p4

1+16p4p4
1

)
I[1, 4]

)
+
(
p2 − p2

1

) (
p2
(
p2 + 1

)3
+ 4

(
p4 − 4 p2 − 1

)
p2

1

)
I[1, 2]

]
(B.1)

F
(1)

θθ̄
= 2

p2
1 + 1

p6

[ (
p2 + 1

) (
p4 (6I[1] + I[2]− 7I[4])

+ p2
(
10I[1]−I[2]−9I[4]+(16I[4]−16I[1]) p2

1

)
−4 (10I[1]−I[2]−9I[4]) p2

1

)
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−
(
p2 + 1

)(2
(
p4 − p2 + 4 p2

1

)
log
(
p2 + 1

)
π

−
(
27p2+36p4+9p6−108p2

1−108p2p2
1−16p4p2

1

)
I[1, 4]

)
−
(
p2
(
p2 + 1

)3
+ 4

(
p4 − 4 p2 − 1

)
p2

1

)
I[1, 2]

]
(B.2)

F
(1)

ηθ̄
=

2

p6

[ (
p2 + 1

) (
(−4I[0] + 2I[1]− I[2] + I[4]) p6

+ p4
(

(14I[1] + I[2]− 15I[4]) p2
1 − 4I[1] + I[2] + 3I[4]

)
+ p2p2

1

(
(16I[4]− 16I[1]) p4

1 + 38I[1]− 5I[2]− 33I[4]
)

+ 4 (I[2] + 9I[4]− 10I[1]) p4
1

)
−
(
p2 + 1

)(2
(
p4 − 3p2 + 4 p2

1

)
log
(
p2 + 1

)
π

+
(

9p4+12p6+3p8−99p2p2
1

− 100p4p2
1−17p6p2

1+108p4
1+108p2p4

1+16p4p4
1

)
I[1, 4]

)
+
(
p2 − p2

1

) (
p2(p2 + 1)3 + 4

(
p4 − 4p2 − 1

)
p2

1

)
I[1, 2]

]
(B.3)

For massless fermions they are

F
(1)
η4η̄4

= F
(1)

θ4θ̄4
=

1

4πp6

(
6
(
1 + p2

) (
p6 + 12p2p2

1 − 16p4
1 − p4

(
1 + 4p2

1

))
log
(
p2 + 1

)
+
(
p4
(
4 + p2

)2 − 32p2
(
6 + 5p2 + p4

)
p2

1 + 64
(
2 + p2

)2
p4

1

)
log

(
p2

4
+ 1

)
+
(
4p4 + p8 − 48p2p2

1 + 64p4
1

)
log

(
p2

2
+ 1

))
− (6I[1] + I[2] + I[4]) p2 (B.4)

F
(1)

η4θ̄4
=

1

4πp6

(
6
(
1 + p2

) (
3p6 + 20p2p2

1 − 16p4
1 − p4

(
5 + 4p2

1

))
log
(
p2 + 1

)
+
(
p4
(
4+p2

)
(20+9p2)−32p2

(
2+p2

) (
5 + 2p2

)
p2

1+64
(
2+p2

)2
p4

1

)
log

(
p2

4
+1

)
+
(
20p4 + p8 − 80p2p2

1 + 64p4
1

)
log

(
p2

2
+ 1

))
− (6I[1] + I[2] + I[4]) p2 (B.5)

C Lagrangian in Wess-Zumino type parametrization

The Lagrangian in Wess-Zumino (WZ) type parametrization was written down in appendix

A of [51] and we refer the reader to that reference for further details on the explicit expres-

sion. Here we start from that expression6 and we expand it around the null-cusp solution

along the same lines of section 2.2. The fluctuations fields are introduced in (2.22) and plug-

ging them into the lagrangian in WZ type parametrization we find a bosonic Lagrangian

6With respect to [51] we reabsorb a factor of i in the definition of the covariant derivative eliminating it

from the definition of Ωâ
b̂.

– 22 –



J
H
E
P
1
1
(
2
0
1
5
)
0
3
1

which is identical to (2.24) and a fermionic part given by

L
(2)
F = − iη̃a∂tη̃a − iη̃a∂tη̃a − iθ̃a∂tθ̃a − iθ̃a∂tθ̃a −

2 i

w̃2
[η̃a(∂s − 1)θ̃a − η̃a(∂s − 1)θ̃a]

− iη̃4∂tη̃4 − iη̃4∂tη̃
4 − iθ̃4∂tθ̃4 − iθ̃4∂tθ̃

4 − i

w̃2
(η̃4∂sθ̃4 − η̃4∂sθ̃

4 − θ̃4∂sη̃4 + θ̃4∂sη̃
4)

− 4 i

w̃3
(2η̃bη̃b + η̃4η̃4 + θ̃4θ̃4)(∂s − 1)x̃− 2 Ωt

cη̃aη̃bεacb + 2 Ωtcη̃aη̃bε
acb

− η̃âΩtâ
b̂η̃b̂ − θ̃

âΩtâ
b̂θ̃b̂ −

2

w̃2
η̃âCâ

b̂Ωsb̂
ĉθ̃ĉ − 4 Ωta

a(η̃4η̃4 + θ̃4θ̃4)

− 4

w̃2
Ωsa

a(η̃4θ̃4 − θ̃4η̃4)− 4 η̃aΩ
a
t η̃4 + 4 η̃aΩtaη̃

4 +
4

w̃2
(η̃aΩs

aθ̃4 + η̃aΩsaθ̃
4) (C.1)

where we used the short-hand notation

ηâ =

(
η̃a
η̃a

)
, ηâ = (η̃a, η̃a) , (C.2)

Ωâ
b̂ =

(
Ω b
a − δbaΩ c

c εacbΩ
c

−εacbΩc −Ω a
b + δabΩ c

c

)
, Câ

b̂ =

(
δba 0

0 −δab

)
. (C.3)

The vielbein Ωa and Ωa are given in (2.14), whereas the spin connection Ωa
b reads

Ω b
a = i

(1− cos |z|)
|z|2

(z̄adz
b − dz̄azb)− iz̄azb

(1− cos |z|)2

2|z|4
(dzcz̄c − zcdz̄c). (C.4)

One can check that, after the assignments (D.1), the lagrangian (D.3) exactly repro-

duces (C.1).

The expansion can be carried out in the same way for the quartic part which reads

L
(4)
F =

8

w̃2
[(η̃aη̃

a)2 + εabcη̃aη̃bη̃cη̃4 + εabcη̃
aη̃bη̃cη̃4 + 2 η4η̃

4η̃aη̃
a − 2 η̃4η̃

4θ̃4θ̃
4] . (C.5)

D Lagrangian with Dirac fermions

When considering the S-matrix for excitations on top of the GKP vacuum it could be useful

to rewrite the Lagrangian in an equivalent form where the asymptotic degrees of freedom are

more manifest. Here we start from the lagrangian in the Wess-Zumino type parametrization

expanded around the null-cusp solution as shown in appendix C. We introduce four Dirac

fermions {Ψa,Ψ4} which are related to the previous degrees of freedom by7

Ψa =

(
ηa

−θa

)
Ψ4 =

(
η4

−θ4

)
. (D.1)

Following [47] we use the Euclidean gamma matrices

γt =

(
0 −1

−1 0

)
γs =

(
1 0

0 −1

)
(D.2)

7Here the fields in the Lagrangian are the same as in (2.26) although the tilde is omitted for simplicity.
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and the projectors Π± = 1±γs
2 . In order to simplify the expression of the Lagrangian

we notice that there is a recurrent structure for the operators in Dirac space which is

a generalization of the standard slashed notation reminiscent of the non-conformally flat

worldsheet metric. Therefore, given an operator O in Dirac space we introduce the notation

\O = Otγ
t + 1

w̃2Osγ
s. The bosonic part of the Lagrangian is identical to the one given

in (2.24), whereas the quadratic part in fermions is significantly modified and reads

L
(2)
F = − 2 i Ψ̄a

(
∂\+

1

w2

)
Ψa − 2 i Ψ̄4∂\Ψ4 − 2 i Ψ̄aΠ+Ψa∂s

1

w2
− i Ψ̄4γ

sΨ4∂s
1

w2

+
4 i

w3

(
2 Ψ̄aγ

tΠ+Ψa + Ψ̄4γ
tΨ4
)

(∂s − 1)x+ 2 Ψ̄a \Ωb
a
Ψb + 2 Ψ̄a \Ωb

b
Ψa

− εabcΨT aΩt
b(1 + 2 Π+)Ψc − 1

w2
εabcΨ

T aγtΩs
bΨc

+ εabcΨ̄aΩtb(1 + 2 Π−)Ψ̄T
c −

1

w2
εabcΨ̄aγ

tΩsbΨ̄
T
c

+ 4 ΨT aΠ+ \Ωaγ
tΨ4 − 4 Ψ̄aΠ− \Ω

a
γtΨ̄T

4 + 4 Ψ̄4 \Ωa
a
Ψ4 (D.3)

The vielbein Ωa and Ωa and the spin connection Ωa
b are given in (2.14) and (C.4). Their

time and space components are defined in the obvious way as Ω = Ωtdt+Ωsds which holds

for all the possible indices configuration. Let us stress that the Lagrangian now depends

only on the operators Ωa, Ωa and Ωa
b and all the dependence on the matrices T has been

reabsorbed in those quantities. The fact that Ωa is expanded only in odd powers of z

and Ωa
b only in even powers starting from O(z2) drastically simplifies the expansion of

the Lagrangian.

The part containing four powers of fermions can be written as

L
(4)
F = +

8

w2
[(Ψ̄aγ

tΠ+Ψa + Ψ̄4γ
tΠ+Ψ4)2 − (Ψ̄4γ

tΨ4)2

+ εabcΨ
T aΠ+Ψb ΨT cΠ+Ψ4 + εabcΨ̄aΠ−Ψ̄T

b Ψ̄cΠ−Ψ̄T
4 ] (D.4)

The Lagrangian can be easily expanded up to quartic order in the fields. From the

quadratic Lagrangian we can read out the spectrum of the theory

L2 = ∂ix∂
ix+ 2x2 + ∂iφ∂

iφ+ 4φ2 + ∂iz
a∂iz̄a − 2 i Ψ̄a

(
/∂ + 1

)
Ψa − 2 i Ψ̄4/∂Ψ4 . (D.5)

Here worldsheet indices are raised and lowered with the euclidean two-dimensional flat

metric and the slash simply denotes the combination /∂ = γs∂s + γt∂t. As expected the

field content of the theory consists of eight bosons, one of mass 4, one of mass 2 and six

massless, and four dirac fermions, three of mass 1 and one massless. The cubic Lagrangian

introduces the interaction and breaks the worldsheet Lorentz invariance yielding a non-

relativistic dispersion relation. With Dirac fermions it reads

L3 = 4φ
[
−2(∇sx)2 + (∂tφ)2 − (∂sφ)2 + |∂tz|2 − |∂sz|2

−2 i∇sΨ̄aΠ−Ψa + 2 i Ψ̄aΠ−∇sΨa − i ∂sΨ̄4γ
sΨ4 + i Ψ̄4γ

s∂sΨ
4
]

− εabc
[
∂sz

bΨT aγtΨc + ∂tz
bΨT a(1 + 2Π+)Ψc

]
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− εabc
[
∂sz̄bΨ̄aγ

tΨ̄T
c − ∂tz̄bΨ̄a(1 + 2Π−)Ψ̄T

c

]
+ 4ΨT aΠ+/∂z̄aγ

tΨ4 − 4Ψ̄aΠ−/∂z
aγtΨ̄T

4 + 4 i (2Ψ̄aγ
tΠ+Ψa + Ψ̄4γ

tΨ4)∇sx (D.6)

where we introduced the short-hand notation ∇s = ∂s−1 and the derivative is understood

to act only on the nearest neighbor field.

The quartic Lagrangian is slightly more involved

L4 = 8φ2

[
4(∇sx)2 + ∂iφ∂

iφ+
1

6
φ2 + ∂iz

a∂iz̄a − 2 i∇sΨ̄aΠ+Ψa

−2 i Ψ̄aΠ+∇sΨa + i ∂sΨ̄4γ
sΨ4 − i Ψ̄4γ

s∂sΨ
4

]
+

1

3

[
z̄a∂iz

az̄c∂
izc + za∂iz̄az

c∂iz̄c − za∂iz̄az̄c∂izc − |z|2∂iza∂iz̄a
]

+4φ
[
εabc∂sz

bΨT aγtΨc + εabc∂sz̄bΨ̄aγ
tΨ̄T

c − 4ΨT aΠ+γ
s∂sz̄aγ

tΨ4

+4Ψ̄aΠ−γ
s∂sz

aγtΨ̄T
4 − 6 i (2Ψ̄aγ

tΠ+Ψa + Ψ̄4γ
tΨ4)∇sx

]
+i
[
Ψ̄a(z̄b/∂z

a − za/∂z̄b)Ψb − Ψ̄a(z̄b/∂z
b − zb/∂z̄b)Ψa + 2 Ψ̄4(z̄a/∂z

a − za/∂z̄a)Ψ4
]

+8
[
(Ψ̄aγ

tΠ+Ψa + Ψ̄4γ
tΠ+Ψ4)2 + εabcΨ

T aΠ+Ψb ΨT cΠ+Ψ4

+εabcΨ̄aΠ−Ψ̄T
b Ψ̄cΠ−Ψ̄T

4 − (Ψ̄4γ
tΨ4)2

]
(D.7)
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