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High-order conservative reconstruction schemes for finite volume methods

in cylindrical and spherical coordinates

A. Mignone

Dipartimento di Fisica, Universitá di Torino, via Pietro Giuria 1, 10125 Torino, Italy

Abstract

High-order reconstruction schemes for the solution of hyperbolic conservation laws in orthogonal curvi-
linear coordinates are revised in the finite volume approach. The formulation employs a piecewise poly-
nomial approximation to the zone-average values to reconstruct left and right interface states from within
a computational zone to arbitrary order of accuracy by inverting a Vandermonde-like linear system of
equations with spatially varying coefficients. The approach is general and can be used on uniform and
non-uniform meshes although explicit expressions are derived for polynomials from second to fifth degree
in cylindrical and spherical geometries with uniform grid spacing. It is shown that, in regions of large
curvature, the resulting expressions differ considerably from their Cartesian counterparts and that the
lack of such corrections can severely degrade the accuracy of the solution close to the coordinate origin.
Limiting techniques and monotonicity constraints are revised for conventional reconstruction schemes,
namely, the piecewise linear method (PLM), third-order weighted essentially non-oscillatory (WENO)
scheme and the piecewise parabolic method (PPM).

The performance of the improved reconstruction schemes is investigated in a number of selected
numerical benchmarks involving the solution of both scalar and systems of nonlinear equations (such as
the equations of gas dynamics and magnetohydrodynamics) in cylindrical and spherical geometries in
one and two dimensions. Results confirm that the proposed approach yields considerably smaller errors,
higher convergence rates and it avoid spurious numerical effects at a symmetry axis.

Keywords: finite volume, reconstruction methods, curvilinear geometry, hydrodynamics,
magnetohydrodynamics (MHD), methods: numerical

1. Introduction

Unsteady, time-dependent compressible flows often involve complex flow interactions featuring both
continuous and discontinuous waves. Numerical computations based on finite-volume (FV) discretizations
have now established as a reliable tool to model such flows and delivering oscillation-free stable solutions
while preserving conservation of relevant physical quantities such as mass, momentum and energy. FV
methods (for a review see the books from [1, 2]) rely on a conservative discretization based on the integral
formulation of the underlying system of partial differential equations (PDEs) where volume averages
(rather than point values) are evolved in time. Average quantities can thus vary only when an unbalance
exists between the fluxes entering and leaving the region boundary. The computation of the interface flux
is the heart of these methods and it is usually achieved by employing proper upwinding techniques that rely
on the solution of a Riemann problem between discontinuous left and right states at cell interfaces. These
states are reconstructed from the volume averages of the solution and several techniques are available
in literature, e.g., second-order TVD methods ([3, 4, 5, 1, 2]), third-order piecewise parabolic method
([6]), essentially non-oscillatory (ENO, [7]) and weighted essentially non-oscillatory (WENO [8, 9], see
also [10], [11], [12], [13] and references therein), monotonicity preserving (MP, [14]) schemes. Generally
speaking, the reconstruction is a two-step process where a high-order accurate estimate of the interface
values is first provided and later modified (or limited) to fulfill monotonicity constraints.

Traditionally, most reconstruction techniques have been devised for Cartesian geometry and a vast
literature exists on this subject. Curvilinear systems, nevertheless, are often preferred and employed
in modeling many scientific applications such as, for instance, geophysical or atmospheric flows, flows
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in turbomachinery, astrophysical accretion disks orbiting around a central object or, more simply, flows
with rotational symmetry around a vertical axis.

In this respect, it should be stressed that little attention has been devoted to the development of high-
order finite volume methods in curvilinear coordinate systems [15, 16, 17, 18, 19] and that straightforward
application of Cartesian-based reconstruction schemes to a curvilinear grid may suffer from a number
of drawbacks and inconsistencies that have often been overlooked. For second-order accurate schemes,
this has already been demonstrated by a number of authors (e.g., [15, 16] and, more recently, [19]) who
recognized that volume averages should be assigned to the centroid of volume rather than the geometrical
cell center. Higher than second-order schemes, on the other hand, still deserve a more careful treatment
since simple-minded extensions of plane-parallel reconstruction methods may easily lead to incorrect
results and severely compromise the accuracy of the solution in proximity of a symmetry axis. In the
original formulation of the Piecewise Parabolic Method (PPM, [6]), for instance, the authors suggested
to perform the reconstruction in the volume coordinate (rather than the linear one) so that the same
algorithm used for a Cartesian mesh could be employed on a cylindrical or spherical radial grid. In doing
so, however, the resulting interface states become formally first-order accurate even for smooth flows.
This shortcoming was addressed in [17] (see also [18]) and corrected by first interpolating the indefinite
integral of a conserved fluid quantity and then differentiating the resulting polynomial with respect to
the linear coordinate to obtain the desired point values at a cell interface. Although formally correct,
this approach has the disadvantage of being potentially singular at the coordinate origin and that the
resulting interface states may loose one or even two orders of accuracy.

The intent of the present work is to re-formulate and improve, in the context of orthogonal curvilinear
coordinates, some of the most widely used reconstruction techniques employed by FV methods. The
proposed formulation is based on a piecewise polynomial reconstruction from the volume averages of
conserved quantities lying in adjacent zones yielding, in one dimension, interface states that are formally
correct to arbitrary order of accuracy. This approach is presented in Section 2 for a scalar conservation
law and it is general enough to be employed on regularly- as well as irregularly- spaced grids. Closed
form solutions are derived on uniform radial grids in cylindrical and spherical geometries for polynomials
of second up to fifth degree. For a more complex coordinate system and/or non-uniform grids the
reconstruction process can still be carried out by using numerical quadrature and/or the solution of a
linear system of equations at the beginning of the computation. In order to suppress spurious oscillations,
conventional limiting techniques for second-order TVD, WENO and PPM schemes are revised in Section
3 for the case of cylindrical and spherical geometries. Extension to nonlinear systems of equations is
treated in Section 4 where reconstruction from primitive variables and integration of geometrical source
terms are discussed. Finally, in Section 5, the proposed schemes are tested and compared on one- and
two-dimensional selected test problems in cylindrical and spherical geometries. Both scalar hyperbolic
conservation laws and nonlinear systems of equation are considered.

2. Problem formulation

2.1. Finite volume discretization in curvilinear coordinates

Given an orthogonal system of coordinates (x1, x2, x3) with unit vectors ê1, ê2, ê3 and scale factors
(h1, h2, h3), we now wish to solve the scalar conservation law

∂Q

∂t
+∇ ·F = S , (1)

where Q is a conserved fluid quantity, F = (F1, F2, F3) is the corresponding flux vector, S is a source
term while the divergence operator takes the form

∇ ·F =
1

h1h2h3

[

∂

∂x1
(h2h3F1) +

∂

∂x2
(h1h3F2) +

∂

∂x3
(h1h2F3)

]

. (2)

Eq. (1) is discretized on a computational domain divided into N1×N2×N3 cells (or zones) with lower
and upper coordinate bounds respectively given by (x1,i− 1

2
, x2,j− 1

2
, x3,k− 1

2
) and (x1,i+ 1

2
, x2,j+ 1

2
, x3,k+ 1

2
)

so that the mesh spacings are denoted with

∆x1,i = x1,i+ 1
2
− x1,i− 1

2
; ∆x2,j = x2,j+ 1

2
− x2,j− 1

2
; ∆x3,k = x3,k+ 1

2
− x3,k− 1

2
, (3)
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while the cell volume is defined by

∆Vi,j,k =

∫ x
3,k+1

2

x
3,k−

1
2

∫ x
2,j+1

2

x
2,j− 1

2

∫ x
1,i+1

2

x
1,i− 1

2

h1h2h3 dx1dx2dx3 . (4)

For convenience, let i = (i, j, k) ∈ Z
3 be a vector of integer numbers giving the position of a computational

zone in a three-dimensional lattice with 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3. The position of the cell
interfaces orthogonal to the direction given by êd will therefore be denoted with i± 1

2 êd. Integrating Eq.
(1) over the cell volume and applying Gauss’s theorem yields the conservative discretization

d

dt
〈Q〉

i
+

1

∆Vi

∑

d

[

(

AdF̃d

)

i+ 1
2 êd

−
(

AdF̃d

)

i− 1
2 êd

]

= 〈S〉
i
, (5)

where 〈Q〉
i
denotes the volume average of Q over the control volume, d = 1, 2, 3 spans across multiple

directions, F̃d is the flux averaged over the surface Ad with outward normal pointing in the direction êd.
Thus, when d = 1 (for instance), one has i+ 1

2 êd = (i + 1
2 , j, k) and

F̃1,i+ 1
2 ê1

=
1

A1,i+ 1
2 ê1

∫ x
2,j+1

2

x
2,j− 1

2

∫ x
3,k+1

2

x
3,k−

1
2

F1h2h3dx2dx3 ; A1,i+ 1
2 ê1

=

∫ x
2,j+ 1

2

x
2,j− 1

2

∫ x
3,k+1

2

x
3,k−

1
2

h2h3dx2dx3 .

(6)
where both F1 and the scale factors h1, h2, h3 are functions of the position vector at the interface
(x1,i+ 1

2
, x2, x3). Similar expressions hold for d = 2 and d = 3 by cyclic index permutation.

In cylindrical coordinates (x1, x2, x3) ≡ (R, φ, z), (h1, h2, h3) ≡ (1, R, 1) and Eq. (5) takes the form

d 〈Q〉
i

dt
=−

(

F̃RR
)

i+ 1
2 êr

−
(

F̃RR
)

i− 1
2 êr

∆VR,i
−

(

F̃φ

)

i+ 1
2 êφ

−
(

F̃φ

)

i− 1
2 êφ

Ri∆φj

−

(

F̃z

)

i+ 1
2 êz

−
(

F̃z

)

i− 1
2 êz

∆zk
+ 〈S〉

i

(7)

where (F̃R, F̃φ, F̃z) are the surface-averaged flux components in the three directions and ∆VR,i = (R2
i+ 1

2

−
R2

i− 1
2

)/2 is the cell radial volume.

Similarly, in spherical coordinates (x1, x2, x3) ≡ (r, θ, φ), (h1, h2, h3) = (1, r, r sin θ) and one obtains

d 〈Q〉
i

dt
=−

(

F̃rr
2
)

i+ 1
2 êr

−
(

F̃rr
2
)

i− 1
2 êr

∆Vr,i
−

(

F̃θ sin θ
)

i+ 1
2 êθ

−
(

F̃θ sin θ
)

i− 1
2 êθ

r̃i∆µj

− ∆θj
∆µj

(

F̃φ

)

i+ 1
2 êφ

−
(

F̃φ

)

i− 1
2 êφ

r̃i∆φk
+ 〈S〉

i

(8)

where (F̃r , F̃θ, F̃φ) are the surface-averaged vector components of the flux F in the three coordinate
directions and

∆Vr,i =
r3
i+ 1

2

− r3
i− 1

2

3
; r̃i =

2

3

r3
i+ 1

2

− r3
i− 1

2

r2
i+ 1

2

− r2
i− 1

2

; ∆µj = cos θj− 1
2
− cos θj+ 1

2
(9)

are geometrical factors.
The interface fluxes are normally computed by solving a Riemann problem between adjacent discon-

tinuous states. Using, for example, a simple midpoint quadrature rule one has

F̃d,i+ 1
2 êd

≈ R
(

QL
i+ 1

2 êd
, QR

i+ 1
2 êd

)

, (10)
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where R(·, ·) is an approximate Riemann solver flux whereas QL
i+ 1

2 êd
and QR

i+ 1
2 êd

are the one-sided limit

values (from below and from above, respectively) of the piecewise polynomial reconstructions from within
the two adjacent zones i and i+ êd. In compact notations:

QL
i+ 1

2ed
= lim

x→x
−

i+1
2
êd

Qi (x) ; QR
i+ 1

2ed
= lim

x→x
+

i+1
2
êd

Qi+êd
(x) , (11)

where xi is a short-hand notation for (x1,i, x2,j , x3,k).
In the rest of this work we restrict our attention to one-dimensional reconstruction methods and leave

multi-dimensional high-order approximations to forthcoming papers.

2.2. Conservative reconstruction from volume averages

Consider a non-uniform grid spacing with zone width ∆ξi = ξi+ 1
2
−ξi− 1

2
, where ξ ∈ (x1, x2, x3) is the

coordinate along the reconstruction direction and ξi+ 1
2
denotes the location of the cell interface between

zones i and i+ 1. Let 〈Q〉i be the cell average of Q inside zone i at some given time, that is,

〈Q〉i =
1

∆Vi

∫ ξ
i+1

2

ξ
i− 1

2

Q(ξ)
∂V
∂ξ

dξ where ∆Vi =

∫ ξ
i+1

2

ξ
i− 1

2

∂V
∂ξ

dξ , (12)

and ∂V/∂ξ is a one-dimensional Jacobian and ∆Vi is the local cell volume.
We now wish to find a p-th accurate approximation to the actual solution by constructing, within a

given zone i, a polynomial distribution

Qi(ξ) = ai,0 + ai,1(ξ − ξci ) + ai,2(ξ − ξci )
2 + · · ·+ ai,p−1(ξ − ξci )

p−1 (13)

where {ai,n} are coefficients to be determined and ξci may be taken to be the cell center although the final
interface values do not depend on the particular choice of ξci and one may as well set ξci = 0. The method
has to be locally conservative meaning that the polynomial Qi(ξ) must fit the neighboring cell-averages:

∫ ξ
i+s+1

2

ξ
i+s− 1

2

Qi(ξ)
∂V
∂ξ

dξ = ∆Vi+s 〈Q〉i+s for − iL ≤ s ≤ iR (14)

where the stencil includes iL cells to the left and iR cells to the right of the i-th zone so that iL+iR+1 = p.
Straightforward manipulation of Eq. (14) leads to the following p × p linear system in the coefficients
{ai,n}:











βi−iL,0 · · · βi−iL,p−1

...
. . .

...

βi+iR,0 · · · βi+iR,p−1





















ai,0

...

ai,p−1











=











〈Q〉i−iL

...

〈Q〉i+iR











(15)

where

βi+s,n =
1

∆Vi+s

∫ ξ
i+s+1

2

ξ
i+s− 1

2

(ξ − ξci )
n ∂V
∂ξ

dξ (16)

are geometry-dependent coefficients.
When ξci = 0 one has, by definition, that βi+s,0 = 1 while βi,1 defines the centroid of volume ξ̄i (also

called the center of gravity or barycenter) which in cylindrical and spherical coordinates is given by

βi,1 ≡ ξ̄i =















































Ri +
∆R2

12Ri
cylindrical, ξ = R

ri +
2ri∆r2

12r2i +∆r2
spherical, ξ = r

θi− 1
2
cos θi− 1

2
− sin θi− 1

2
− θi+ 1

2
cos θi+ 1

2
+ sin θi+ 1

2

cos θi− 1
2
− cos θi+ 1

2

spherical, ξ = θ

(17)
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Unlike the actual cell center, the centroid of volume is no longer equidistant from the cell interfaces.
However, its importance stems from the fact that, up to second-order accuracy, the volume average of
any function Q can be interchanged with the function point-value evaluated at the centroid:

〈Q〉i −Qi(ξ̄i) ≈
∆ξ2

24

d2Q

dξ2

∣

∣

∣

∣

ξ=ξ̄i

. (18)

This result follows from Eqs. (13) and (14) with ξci = ξ̄i and s = 0. Equation (18) demonstrates that
zone-averaged quantities should be assigned to the centroid of volume rather than the cell center as it is
ordinarily done in Cartesian coordinates, see also [15, 16, 18].

Once the coefficients {ai,n} are found by inverting Eq. (15), the leftmost and rightmost interface
values Q+

i and Q−
i may be obtained through:

Q+
i = QL

i+ 1
2
= lim

ξ→ξ
(−)

i+1
2

Qi(ξ) ; Q−
i = QR

i− 1
2
= lim

ξ→ξ
(+)

i− 1
2

Qi(ξ) . (19)

Although formally correct, the main disadvantage of the previous approach is that Eq. (15) has to be
solved for each grid cell and at each time step during the numerical computation. This can be a rather
time-consuming task.

A more efficient formulation consists in rewriting the leftmost and rightmost interface values directly
as a linear combination of the adjacent cell averages,

Q±
i =

iR
∑

s=−iL

w±
i,s 〈Q〉i+s , (20)

where, after combining Eqs. (13) and (15), the weights w±
i,s can be shown to satisfy (see Appendix

Appendix A)











βi−iL,0 · · · βi−iL,p−1

...
. . .

...

βi+iR,0 · · · βi+iR,p−1











T 









w±
i,−iL

...

w±
i,iR











=











1

...

(ξi± 1
2
− ξci )

p−1











, (21)

where T denotes transpose and the coefficients automatically satisfy the normalization condition

s=iR
∑

s=−iL

w±
i,s = 1 . (22)

In this way, the computation of left and right states does not depend on the solution values but only
on the geometry and grid structure. For this reason, Eq. (21) may be solved just once after the grid
has been constructed and the weights w±

i,k can be stored into memory (at a very modest cost) for later
re-use. A number of remarks are worth making.

1. The reconstruction stencil can be chosen to be symmetric with respect to the cell center when
iL = iR (p odd) or symmetric with respect to the cell interface when iR = iL + 1 (p even), see also
[20]. In the former case, the leftmost and rightmost edge values from within the cell are written
in terms of the w+

i,k and w−
i,k coefficients using the same zone-centered polynomial. In this way,

adjacent interface values will automatically be discontinuous, i.e., Q+
i 6= Q−

i+1 as they are obtained
by different polynomials. This is the common approach adopted, for example, in WENO schemes.
Conversely, for a face-centered polynomial, left and right states can be initialized to the same unique
value Q+

i = Q−
i+1 which can be expressed in terms of the w+

i,k coefficients alone. The original PPM
is based on this approach.

2. The final interface values (20) depend only on the order of the polynomial and the stencil {iL, iR}
but not on the particular value of ξci used to write Eq. (13). The same conclusion holds also for
the weight coefficients and one may as well set ξci = 0 in Eq. (21) and (16).
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3. A simplification occurs when the Jacobian is a simple power of ξ, that is, ∂ξV = ξm wherem = 0, 1, 2
correspond to Cartesian, cylindrical and spherical radial coordinates, respectively. In this case the
β coefficients (computed with ξc = 0) simplify to

βi+s,n =
m+ 1

n+m+ 1

ξn+m+1
i+s+ 1

2

− ξn+m+1
i+s− 1

2

ξm+1
i+s+ 1

2

− ξm+1
i+s− 1

2

, (23)

and Eq. (21) can be solved analytically.
On a uniform grid in the cylindrical radial coordinate (for instance) one obtains, for iL = iR = 1,

w+
i,−1 = − (2i− 3)(2i2 − 1)

12(i2 − i− 1)(2i− 1)
; w+

i,0 =
(10i2 − 9i− 11)

12(i2 − i− 1)
; w+

i,1 =
(2i+ 1)(4i2 − 9i+ 4)

12(i2 − i− 1)(2i− 1)
(24)

w−
i,−1 =

(2i− 3)(4i2 + i− 1)

12(i2 − i− 1)(2i− 1)
; w−

i,0 =
(10i2 − 11i− 10)

12(i2 − i− 1)
; w−

i,1 = − (2i+ 1)(2i2 − 4i+ 1)

12(i2 − i− 1)(2i− 1)
(25)

where i = Ri+ 1
2
/∆R is the grid index starting at i = 1 (first active computational zone). Notice

that the weights are defined solely in terms of the grid index and do not explicitly depend on the
grid spacing or radial distance. This feature makes the implementation on adaptively refined grid
easier as the coefficients need not be recomputed when a new grid is created.
In the limit of small curvature, i → ∞, Eqs. (24) and (25) reproduce the well-known Cartesian
weights for third-order accurate reconstruction,

w+
i,−1 = w−

i,1 → −1

6
; w+

i,0 = w−
i,0 → 5

6
; w+

i,1 = w−
i,−1 → 1

3
. (26)

The complete expressions of the interpolation weights w±
i,k for third-, fourth- and fifth-order spatial

accuracy (p = 3, 4, 5) in the radial coordinate are given in Appendix Appendix B for Cartesian,
cylindrical and spherical geometries.

4. For the spherical meridional coordinate (∂ξV = sin ξ) one has

βi+s,n =
1

cos ξis− − cos ξis+

n
∑

k=0

k!

(

n

k

) [

ξn−k
is−

cos

(

ξis− +
kπ

2

)

− ξn−k
is+

cos

(

ξis+ +
kπ

2

)]

(27)

where is± is a short-hand for i + s ± 1
2 . However, in this case, the final analytical expressions

are quite lengthy and it is advisable to approach the solution of Eq. (21) numerically using, for
example, straightforward LU decomposition.

5. Eq. (21) retains its validity also when the grid spacing in not uniform. In these cases, it is also
more convenient to resort to direct numerical inversion.

6. Eq. (21) can be solved to compute the point-value of Q(ξ) not only at the cell interfaces but
also at any other point inside the cell. In particular, setting the constant column vector on the
right hand side to (1, 0, . . . , 0)T (together with ξi = 0 in Eq. 16) allows to find the expansion
coefficients needed to approximate the function value at the cell center. This is useful in the
context of nonlinear systems of equations where the reconstruction can be performed from the
volume averages of primitive variables rather than conservative ones, see Section 4.

3. Limiting techniques and monotonicity constraints

3.1. Second-order piecewise linear reconstruction (PLM)

Second-order accurate reconstructions can be recovered by fitting a linear polynomial (p = 2) through
either (〈Q〉i , 〈Q〉i+1) or (〈Q〉i , 〈Q〉i−1) which amounts to solving Eq. (21) with {iL, iR} = {0, 1} or
{iL, iR} = {1, 0}, respectively. The final result can be cast in terms of the forward (f) and backward (b)
difference approximations to the derivative:

Q
±,[f]
i = 〈Q〉i +∆QF

i

ξi± 1
2
− ξ̄i

∆ξi
; Q

±,[b]
i = 〈Q〉i +∆QB

i

ξi± 1
2
− ξ̄i

∆ξi
, (28)
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where

∆QF
i = ∆ξi

( 〈Q〉i+1 − 〈Q〉i
ξ̄i+1 − ξ̄i

)

; ∆QB
i = ∆ξi

( 〈Q〉i − 〈Q〉i−1

ξ̄i − ξ̄i−1

)

(29)

are the forward and backward approximations to the first derivative while ξ̄i is the centroid of volume,
Eq. (17). The previous expressions are exact for a linear function even on a non-uniform grid.

In order to suppress the appearance of unwanted new extrema, the two slopes can be combined
together using a nonlinear slope limiter:

Q±
i = 〈Q〉i +∆Qi

ξi± 1
2
− ξ̄i

∆ξi
, (30)

where the slope ∆Qi is traditionally written in terms of a nonlinear limiter function ϕ(υ) such that

∆Qi = ∆QF
i ϕ(υ) where υ =

∆QB
i

∆QF
i

. (31)

Sweby [5] (see also [21, 2]) has shown that, in order for the method to be Total Variation Diminishing
(TVD), the limiter function must satisfy the following conditions: i) the final slope should be expressed
as a weighted average of the forward and backward derivatives, ii) zero gradient must be assigned near
local extrema, iii) the reconstruction remains symmetric when ∆QF

i and ∆QB
i are swapped and iv) the

reconstructed values always lie between the bounds set by neighboring cells:

min
(

〈Q〉i , 〈Q〉i±1

)

≤ Q±
i ≤ max

(

〈Q〉i , 〈Q〉i±1

)

. (32)

Although conditions i), ii) remain unaltered in curvilinear geometry, the symmetry and monotonicity
conditions iii) and iv) are slightly different due the fact that the forward and backward undivided gradients
are weighted over the distance between adjacent volume centroids. These considerations lead to the
following modified constraints for the function ϕ(υ) when υ ≥ 0:























min(1, υ) ≤ ϕ(υ) ≤ max(1, υ)

ϕ

(

1

υ

)

=
ϕ(υ)

υ

ϕ(υ) ≤ min
(

cFi , c
B
i υ
)

where cFi =
ξ̄i+1 − ξ̄i

ξi+ 1
2
− ξ̄i

; cBi =
ξ̄i − ξ̄i−1

ξ̄i − ξi− 1
2

, (33)

while ϕ(υ) = 0 when υ < 0. Note that, in order to preserve the correct symmetry when υ → 1/υ,
the coefficients cFi and cBi must also be interchanged: (cFi , c

B
i ) → (cBi , c

F
i ). The corresponding Sweby’s

diagrams are represented in Fig 1 for υ = ∆QB/∆QF (left panel) and υ = ∆QB/∆QF (right panel) for
i = 2 in spherical coordinates. The permitted TVD region is shown as the shaded area and it becomes
askew with respect to the uniform Cartesian grid case (dotted lines). In the limit of vanishing curvature,
ξ̄i → ξi, one has that the coefficients cFi = cBi → 2 and the monotonicity condition in Eq. (33) reduces
to the usual condition ϕ(υ) ≤ min(2, 2υ).

Several limiter functions that satisfy Eq. (33) can be devised and three among the most popular
limiters are here extended to the curvilinear case. The simplest (albeit most diffusive) choice is the
minmod limiter [19]:

ϕMM (υ) = max
[

0, min(1, υ)
]

or ∆Qi = Minmod
(

∆QF
i , ∆QB

i

)

, (34)

where the Minmod function returns the argument with the smallest absolute value if they all have the
same sign and zero otherwise:

Minmod (a, b) =
sgn(a) + sgn(b)

2
min(|a|, |b|) . (35)

Another popular choice due to [22] is the van Leer (or harmonic mean) limiter:

ϕ(υ) =
υ + |υ|
1 + |υ| or ∆Qi =











2∆QF
i ∆QB

i

∆QF
i +∆QB

i

if ∆QF
i ∆QB

i > 0 ,

0 otherwise .

(36)
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Figure 1: Sweby’s diagrams for υ = ∆QB
i /∆QF

i (left) and υ = ∆QF
i /∆QB

i (right) for i = 2 (second active computational
zone) on a radial spherical grid. The shaded area gives the TVD region delimited by the constraints imposed in Eq. (33).
The dotted lines give the corresponding limits on a Cartesian grid with uniform spacing. The black, blue and red solid lines
refer to the Minmod, modified van Leer (VL) and monotonized central (MC) limiter defined, respectively, by Eq. (34), (37)
and (38). The dashed blue line is the original van Leer limiter.

Unfortunately Eq. (36) does not necessarily satisfy the monotonicity constraint given by the third in Eq.
(33) and may overrun the TVD region as shown in Fig 1. Here the following modified van Leer (VL)
limiter is proposed:

ϕV L(υ) =











υ(cFi υ + cBi )

υ2 + (cFi + cBi − 2)υ + 1
for υ ≥ 0 ,

0 for υ < 0 .

(37)

The previous expression is a monotonically increasing function for cBi > 0, υ > 0, has the correct
asymptotic behavior as υ → ∞ and it reduces to the conventional harmonic mean (36) when cFi = cBi → 2.
Moreover, Eq. (37) is continuously differentiable for υ ≥ 0, lies inside the allowed TVD region and preserve
the correct symmetry when υ → 1/υ and (cFi , c

B
i ) → (cBi , c

F
i ).

Finally, the arithmetic average between the two slopes can be considered yielding

ϕMC(υ) = max

[

0,min

(

1 + υ

2
, cFi , c

B
i υ

)]

. (38)

In the limit of vanishing curvature Eq. (38) reproduces the well known monotonized central (MC) limiter
[3]. Beware that the arithmetic average of the two slopes does not give, in curvilinear geometry, a second-
order accurate approximation to the derivative neither at the cell center nor at the barycenter. However,
it still proves to have smaller numerical dissipation.

Unless otherwise stated, the linear reconstruction scheme given by Eq. (30) with the MC limiter given
by Eq. (38) will be referred to as the piecewise linear method (PLM) while the uncorrected version (i.e.
Cartesian-like) will be denoted with PLM0.

3.2. Third order WENO reconstruction (WENO3)

The third-order WENO reconstruction employs the information available on a three-point stencil
(i − 1, i, i + 1) to reconstruct left and right interface values through a convex linear combination of
second-order accurate values:

Q±
i = ω±

i,0Q
±,[f]
i + ω±

i,1Q
±,[b]
i . (39)

where Q
±,[f]
i and Q

±,[b]
i are, respectively, the linearly reconstructed values based on the forward and

backward derivatives given by Eqs. (28) and (29) while ω±
i,0 and ω±

i,1 are nonlinear weights assigned to the
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two stencils {ξi−1, ξi} and {ξi, ξi+1}. The nonlinear weights should adapt to the relative smoothness of
the solution on each candidate stencil [9] and are functions of the cell averages involved. A possible choice
are the standard weight functions defined in the original formulation by [9] although the corresponding
WENO reconstruction may degenerate to second-order near local extrema. A better and less dissipative
approach is to employ the new weight functions of [13] (see also [23]) conveniently adapted to the case of
a curvilinear mesh system by defining

ω±
i,0 =

α±
i,0

α±
i,0 + α±

i,1

; ω±
i,1 =

α±
i,1

α±
i,0 + α±

i,1

; α±
i,k = d±i,k

(

1 +

∣

∣∆QF
i −∆QB

i

∣

∣

2

βi,k +
∣

∣Qref
i

∣

∣

2

)

(40)

for k = 0, 1. In the expression above d±i,k are the linear weights, βi,0 =
(

∆QF
i

)2
, βi,1 =

(

∆QB
i

)2
are

the smoothness indicators while Qref
i is a reference value ensuring that, for smooth solutions, one has

ω±
i,k − d±i,k = O(∆ξ2i ), see [13]. Numerical experiments presented in this paper have suggested that Qref

i

can be chosen as

Qref
i =

Cref

N
max

(

| 〈Q〉i−1 |, | 〈Q〉i |, | 〈Q〉i+1 |
)

, (41)

where Cref is positive constant and N is the number of grid zones in the ξ direction. In the numerical
tests presented here, Cref = 20 is used although strongly nonlinear problems involving discontinuous
waves may benefit from using a lower value.

It should be noted that, in Cartesian geometry, the linear coefficients are grid-independent and equal
to d+i,0 = 2/3, d+i,1 = 1/3 while the previous expressions become identical to those of [13]. Furthermore,

there is no need to define d−i,k in the Cartesian case since the reconstruction of Q−
i is mirror symmetric

with respect to the cell central point (i.e., d−i,0 = d+i,1, d
−
i,1 = d+i,0). These properties are lost in a curvilinear

coordinate system whenever ∂2V/∂ξ2 6= 0 because adjacent zones have now different volumes and there
is no translational invariance. Therefore two sets of coefficients must be defined in each cell to retrieve
the leftmost and rightmost interface values. However, one can still take advantage of the normalization
condition d±i,0 + d±i,1 = 1.

For a third-order reconstruction the linear weights can be found by matching the coefficients of 〈Q〉i±1

in Eq. (20, using iL = iR = 1) with those obtained from Eq. (28) using Eq. (29):

d+i,0 = w+
i,1

ξ̄i+1 − ξ̄i

ξi+ 1
2
− ξ̄i

; d−i,0 = w−
i,1

ξ̄i+1 − ξ̄i

ξi− 1
2
− ξ̄i

(42)

while the remaining weights are simply given by d±i,1 = 1 − d±i,0. Equations (40) and (42) are also valid

on non-equidistant meshes as long as w±
i,1 are consistently computed from Eq. (21). For a uniform

mesh spacing, instead, w±
i,1 are respectively given by Eqs. (B.5) and (B.9) in cylindrical and spherical

coordinates while the volume centroids ξ̄ are computed using Eq. (17). Finally, note that in the limit
of vanishing curvature, i → ∞, the linear weights defined above tend to the Cartesian limits d+0 = 2/3,
d−0 = 1/3 of the classical third-order WENO scheme.

3.3. Piecewise parabolic method (PPM)

In the Piecewise Parabolic Method (PPM, [6]) a parabolic interpolant is uniquely determined by the
cell average 〈Q〉i and by the left and right extrapolated edge values:

Qi(ξ) = Q−
i + y

[

Q+
i −Q−

i + (1− y)Q6,i

]

, (43)

where y = (ξ − ξi− 1
2
)/∆ξi and Q6,i is a parabolic coefficient giving a measure of the second-derivative.

The left and right interface values Q−
i and Q+

i should be initially computed using a third-order (or higher)
accurate approximation and then further modified to satisfy monotonicity constraints.

In the original formulation [6], the authors suggested that left and right interface states could be
obtained in curvilinear coordinates by interpolating the variables in the volume coordinate (rather than
the radial coordinate) using the same formalism adopted on a Cartesian mesh. However, as noted by
[17], this approach suffers from two major disadvantages. First of all, the resulting interface values are
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only first-order accurate and the error becomes increasingly large near the coordinate origin. In spherical
coordinates, for instance, a parabolic profile would be approximated by q(r) ≈ a0 + a1r

3 + a2r
6 rather

than q(r) ≈ a0 + a1r + a2r
2. Secondly, reconstruction in the volume coordinate has to be performed on

a non-equidistant mesh even if the original radial grid is uniformly spaced.
To overcome these shortcomings, the authors in [17] suggested to interpolate the primitive function

FQ(ξ) =

∫ ξ

Q(ζ)ζmdζ , (44)

so that the point values of Q could be obtained by straightforward differentiation, Q(ξ) = dFQ(ξ)/(ξ
mdξ).

In cylindrical geometry (m = 1), for example, this approach is formally equivalent to obtaining the
interface values of RQ(R) rather than Q(R) (see also [18]) resulting in the loss of one order of accuracy.
In spherical geometry (m = 2), the situation worsens as the resulting profile would be Q(r) = a−2/r

2 +
a−1/r+ a0+ a1r thus decreasing by 2 the order of accuracy. Furthermore this procedure cannot be used,
in this form, at the origin since the resulting states would clearly be singular.

In the present approach, the (unlimited) interface values are directly computed using Eq. (20) to the
desired order of accuracy to produce regular and well-behaved interface values also when ξ = 0. The
unlimited left and right interface values are then corrected to ensure that the resulting parabolic profile is
bounded between neighboring cell averages and monotone. This is achieved through the following steps.

1. Interface values must be constrained to lie between adjacent cell averages. This is obtained by
resetting Q±

i to the maximum or the minimum of the two averages if the original estimate falls
outside this range:

Q±
i → min

[

Q±
i , max

(

〈Q〉i , 〈Q〉i±1

)]

; Q±
i → max

[

Q±
i , min

(

〈Q〉i , 〈Q〉i±1

)]

(45)

Note that we do not use the conventional van-Leer limiting as in the original PPM formulation [6].

2. Monotonicity is then enforced by requiring that no extrema in the distribution given by Eq. (43)
appear for 0 ≤ y ≤ 1. This involves two modifications. First, the distribution is flattened whenever
〈Q〉i is a local maximum or minimum. Second, when an extremum takes place close to y = 0 or
y = 1, the interface value on the opposite edge of the zone is modified so thatQ(y) has zero derivative
at y = 1 or y = 0, respectively. From Eq. (43) this condition is verified when |Q+

i −Q−
i | ≤ |Q6,i|.

These criteria lead to the following redefinition of the parabolic limiter [6] in curvilinear geometry
as

Q±
i → 〈Q〉i +































0 if δQ+
i δQ

−
i ≥ 0 ,

−h∓
i + 1

h±
i − 1

δQ∓
i if

∣

∣δQ±
i

∣

∣ ≥ h∓
i + 1

h±
i − 1

∣

∣δQ∓
i

∣

∣ and δQ+
i δQ

−
i < 0

δQ±
i otherwise

(46)

where δQ±
i = Q±

i −〈Q〉i and h±
i are geometrical factors derived below. Note that the first of the two

conditions impairs the order of accuracy to first order at smooth extrema (this deficiency has been
recently overcome by [24, 25]). The test condition for the second case follows from the definition of
the Q6,i coefficient which can be found upon integrating Eq. (43) over the cell volume. The result
can be cast in the following general expression:

Q6,i = −
(

h+
i δQ

+
i + h−

i δQ
−
i

)

, with h±
i = ∓∆ξi

∫ ξ
i+1

2

ξ
i− 1

2

(

ξ − ξi∓ 1
2

)

dV

∫ ξ
i+1

2

ξ
i− 1

2

(

ξ − ξi− 1
2

)(

ξ − ξi+ 1
2

)

dV
. (47)
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where dV = (∂V/∂ξ) dξ. Specializing to Cartesian, cylindrical and spherical coordinates one obtains

h±
i =











































































3 Cartesian, ξ = x

3± ∆Ri

2Ri
cylindrical, ξ = R

3 +
2∆ri(±10ri +∆ri)

20r2i +∆r2i
spherical, ξ = r

±
∆θi

(

∆µ̃i +∆θi cos θi± 1
2

)

∆θi(sin θi− 1
2
+ sin θi+ 1

2
)− 2∆µi

spherical , ξ = θ ,

(48)

where ∆µi = cos θi− 1
2
− cos θi+ 1

2
, ∆µ̃i = sin θi− 1

2
− sin θi+ 1

2
.

Although traditionally a 4th-order accurate approximation is employed to construct the right-extrapolated
edge values, three different schemes are considered here based on third-, fourth- and fifth-order approxi-
mations to the interface values and labeled with PPM3, PPM4 and PPM5, respectively. For the sake of
comparison, the fourth-order scheme which does not employ any geometrical correction (i.e. Cartesian-
like) will be denoted with PPM0.

4. Extension to nonlinear systems

The formalism introduced the previous sections can be extended to nonlinear systems of conservation
laws in a component-wise manner by considering more than one equation of the form (1). In this case,
U defines an array of conservative variables while Q should be regarded as one component of this set,
i.e., Q ∈ U.

In what follows, two crucial aspects concerning the employment of high order methods in curvilinear
geometry are discussed. First, in Section 4.1 it is shown how higher than second-order reconstruction
schemes can be employed on a different set of variables (i.e. non-conservative). This is relevant when the
employment of, say, primitive variables (density, velocity and pressure) is preferred over the conservative
ones (density momentum and energy). Second, in §4.2 the numerical integration of geometrical source
terms arising when using differential operators in curvilinear coordinates is discussed. In particular, it is
shown how high (second- and third-) order quadrature rules can be derived in cylindrical and spherical
coordinates.

4.1. Reconstruction from volume averages of primitive variables

The reconstruction of the interface states from volume averages may not be necessarily carried on the
conserved variables but on a different set, say V = V (U) where V is a nonlinear variable transformation.
In the case of gas dynamics, for instance, conserved fluid variables include density ρ, momentum ρv and
total energy E whereas primitive variables are customary chosen as V = (ρ,v, p) where v and p denote
velocity and thermal pressure, respectively.

The reason behind introducing such a transformation is based on a consolidated experience suggesting
that interpolation of primitive variables rather than conservative ones leads to less oscillatory and better-
behaved results. At the second order level this poses no difficulty since it is a well known result that (see
Eq. (18)

〈V〉i = V (〈U〉i) +O(∆x2) , (49)

and therefore one may interchange the volume averages of the conserved and primitive variables indif-
ferently. However, wih order higher than 2, this operation becomes inaccurate and one has to be more
careful when computing 〈V〉i. Here we follow the approach of [25] and extend it to the case of curvilinear
coordinates. The method can be summarized through the following steps.

1. Start from volume averages of conservative variables, 〈U〉i.
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2. Using Taylor expansion, form point values of conserved variables using a three-point stencil

Ui = wi,−1 〈U〉i−1 + wi,0 〈U〉i + wi,1 〈U〉i+1 + ǫ , (50)

where wi,−1, wi,0 and wi,1 are geometry-dependent coefficients and ǫ is the leading error term.
In Cartesian coordinates, for instance, one has the simple expressions

wi,±1 = − 1

24
, wi,0 =

13

12
, ǫ =

3

640

(

∂4U

∂ξ4

)

i

∆ξ4 , (51)

which, upon re-arranging terms, give the fourth-order approximation to Ui:

Ui = 〈U〉i −
∆2 〈U〉i

24
+O(∆x4) , (52)

where ∆2 〈U〉i = 〈U〉i+1−2 〈U〉i+〈U〉i−1 is a second-order accurate approximation to the undivided
second derivative.
In cylindrical coordinates (ξ = R) one finds

wi,±1 = −J ± 1

24J
, wi,0 =

13

12
, ǫ =

3

160J

(

∂3U

∂R3

)

i

∆R3 +
3

640

(

∂4U

∂R4

)

i

∆R4 , (53)

where J ≡ i− 1/2 = 1/2, 3/2, 5/2, ... is a half-integer number labeling the zone. From the previous
expressions one can immediately see that, close to the origin, the approximation is third-order
accurate while, in the limit of vanishing curvature (J → ∞), one recovers the Cartesian limit given
by Eq. (51).
Finally, in spherical coordinates (ξ = r) one obtains, after some algebra,

wi,±1 = − (12J2 ± 24J + 13)(80J4 − 288J2 ± 216J + 15)

72∆s

wi,0 =
(12J2 + 1)(1040J4 − 2448J2 + 1815)

36∆s
,

(54)

where ∆s = 320J6 − 720J4 + 492J2 + 45. As before, the leading error term can be written as the
sum of two contributions,

ǫ =
J

4

48J4 − 120J2 + 91

∆s

(

∂3U

∂r3

)

i

∆r3 +
1344J6 − 2640J4 + 1516J2 + 405

896∆s

(

∂4U

∂r4

)

i

∆r4 (55)

showing that, when r ∼ ∆r, the approximation is again third-order accurate. On the contrary, in the
limit of vanishing curvature, the weights given by Eq. (54) and the error in Eq. (55) reproduce the
corresponding Cartesian limits given by Eq. (51) and the solution becomes fourth-order accurate.

3. Convert point-values of the conserved variables into primitive using the nonlinear change of vari-
ables:

Vi = V (Ui) (56)

and approximate V(ξ) with a parabolic profile inside the i-th zone:

V(ξ) = Vi +

[

Vi+1 −Vi−1

2∆ξ

]

(ξ − ξi) +

[

Vi+1 − 2Vi +Vi−1

∆ξ2

]

(ξ − ξi)
2

2
(57)

where the terms in square brackets are second-order approximations to the first and second deriva-
tive of V, respectively.

4. Form volume averages of primitive variables by straighforward integration. The final results reads

〈V〉i =







































1

24
Vi−1 +

11

12
Vi +

1

24
Vi+1 (Cartesian)

J − 1

24J
Vi−1 +

11

12
Vi +

J + 1

24J
Vi+1 (cylindrical)

20J2 − 40J + 3

40(12J2 + 1)
Vi−1 +

220J2 + 17

20(12J2 + 1)
Vi +

20J2 + 40J + 3

40(12J2 + 1)
Vi+1 (spherical)

(58)
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The previous expressions give third-order accurate approximations to the volume average of the primitive
variables close to the origin while, for large J , the error becomes O(∆ξ4).

The conversion from volume averages to point values is carried out without any particular form of
limiting and it has been succesfully employed in those (1D) problems containing only smooth profiles.
Still, spurious oscillations may arise in presence of discontinuities since the conversion operation consists,
essentially, of subtracting the (unlimited) second derivative from the solution. Future extension of this
work should consider a more careful treatment in order to avoid the onset of unphysical values.

4.2. Source term integration

The choice of a curvilinear coordinate system is based on a local vector basis that has no fixed
orientation in space but changes from point to point. In the case of the Euler equations, for instance,
this leads to the appearance of additional source terms in the momentum equation arising upon taking
the divergence of the momentum flux tensor. A typical example consists of the pressure and centrifugal
terms in the radial momentum equation which, in cylindrical coordinates, reads

S =
p+ ρv2φ

R
, (59)

where p is the gas pressure, ρ is the density and vφ is the azimuthal velocity. Other terms such as body
forces (e.g. gravity) or viscous drag may also be present.

In general, source terms in the FV formalism should be treated as averages over the cell volume as in
Eq. (5):

〈S〉i =
1

∆Vi

∫ i+ 1
2

i− 1
2

S ξmdξ , (60)

where m = 0, 1, 2 for Cartesian, cylindrical and spherical geometry, respectively. However, in some cases,
the integral may be reduced to a somewhat simpler form by taking advantage of the explicit spatial
dependence. This is the case for geometrical source terms containing 1/ξ factors (such as Eq. 59) for
which Eq. (60) can be written as

〈S〉i =
1

∆Vi

∫ i+ 1
2

i− 1
2

Ŝξm−1dξ , (61)

where Ŝ is regular near the origin since does not explicitly depend on ξ and m ≥ 1.
Eq. (60) or (61) may be computed using different quadrature rules. To second-order accuracy, for

example, one can replace the volume average in Eq. (60) with the integrand evaluated at the corresponding
centroid of volume (by the same argument used in Sec. 3.1) yielding

〈S〉i ≈ Sξ=ξ̄ +O(∆ξ2) . (62)

Alternatively, Eq. (60) or (61) may be approximated using a trapezoidal rule based on a linear fit
through the leftmost and rightmost interface values. This yields, in the case of Eq. (60),

〈S〉i ≈
ξi+ 1

2
− ξ̄i

∆ξi
Si− 1

2
+

ξ̄i − ξi− 1
2

∆ξi
Si+ 1

2
+O(∆ξ2) , (63)

where one may use, for example, Si− 1
2
≡ S(V−

i ) and Si+ 1
2
≡ S(V+

i ). The previous expression extends
the trapezoidal rule to cylindrical and spherical geometries and is exact for second-order polynomials.
Note also that, in the limit of vanishing curvature, the weights in Eq. (63) become equal to 1/2 (Cartesian
case). Likewise, for Eq. (61), one obtains

〈S〉i =



























Ŝi− 1
2
+ Ŝi+ 1

2

2Ri
for m = 1

(

6ri −∆ri
12r2i +∆r2i

Ŝi− 1
2
+

6ri +∆ri
12r2i +∆r2i

Ŝi− 1
2

)

for m = 2



























+O(∆ξ2) (64)
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Eqs. (62), (63) and (64) are second-order accurate.
A third-order accurate expression based on Simpson quadrature rule is

〈S〉 = γ−
i Si− 1

2
+ γiSi + γ+

i Si+ 1
2
+O(∆ξ4) or 〈S〉 = γ̂−

i Ŝi− 1
2
+ γ̂iŜi + γ̂+

i Ŝi+ 1
2
+O(∆ξ4) , (65)

requiring three function evaluations. The weight coefficients γ and γ̂ for the first or second expression
can be found from Eq. (60) or (61), respectively, by fitting a parabola through the interface values and
the central point. The results for m = 1 and m = 2 for a source term of the type (60) are found to be

(

γ−
i , γi, γ

+
i

)

=























(

1

6
− ∆R

12Ri
,
2

3
,
1

6
+

∆R

12Ri

)

for m = 1 ,

(

20ri(ri −∆ri) + 3∆r2i
10(12r2i +∆r2i )

,
2

5

20r2i +∆r2i
12r2i +∆r2i

,
20ri(ri +∆ri) + 3∆r2i

10(12r2i +∆r2i )

)

for m = 2 ,

(66)
while, for Eq. (61), they become:

(

γ̂−
i , γ̂i, γ̂

+
i

)

=























(

1

6Ri
,

2

3Ri
,

1

6Ri

)

for m = 1 ,

(

2ri −∆ri
12r2i +∆r2i

,
8ri

12r2i +∆r2i
,

2ri +∆ri
12r2i +∆r2i

)

for m = 2 .

(67)

Note that Eq. (65) requires the knowledge of the solution at the cell center which, for a third-order
accurate polynomial, can be found from Eq. (43) using y = 1/2.

As a final remark, we point out that the trapezoidal or Simpson quadrature rules approximating Eq.
(61) have the advantage of being well-behaved near the coordinate origin making them more suited for
source terms containing diverging factors like 1/ξ. Conversely, Eqns. (63) and the first of (65) may
become singular.

5. Numerical benchmarks

In this section the accuracy of the proposed reconstruction schemes is measured using selected nu-
merical benchmarks in one and two dimensions. For the sake of comparison, the governing conservation
laws are evolved in time using the explicit third-order TVD Runge-Kutta time stepping [26, 27]

U∗ = Un +∆tnL (Un) ,

U∗∗ =
3

4
Un +

1

4
U∗ +

∆tn

4
L (U∗) ,

Un+1 =
1

3
Un +

2

3
U∗∗ +

2

3
∆tnL (U∗∗) .

(68)

where U is an array of conservative quantities and L is a discrete approximation to the right hand side
of the conservation laws. In the scalar case, for instance, L corresponds to the right hand side of Eq. (7)
or Eq. (8) for cylindrical or spherical coordinates, respectively.

The time step ∆tn is computed from the Courant-Friedrichs-Lewy (CFL) condition:

∆tn = Ca

[

max
i

(

1

D

∑

d

λd,i

∆ld,i

)]−1

(69)

where Ca is the Courant number, D is the number of spatial dimensions while λd and ∆ld are, respectively,
the maximum signal speed and the zone spatial length in the direction êd .

Numerical benchmarks for a scalar conservation law in one and two dimensions are first presented in
Section 5.1 while verification tests for nonlinear systems are discussed in Section 5.2. Unless otherwise
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stated, errors for a generic flow quantity Q are computed using the L1 discrete norm defined by

ǫ1(Q) =

∑

i

∣

∣

∣〈Q〉
i
− 〈Q〉ref

i

∣

∣

∣∆Vi ,

∑

i

∆Vi

(70)

where the summation extends to all grid zones, 〈Q〉ref
i

is the volume average of the reference (or exact)
solution and ∆Vi is the zone volume.

5.1. Scalar advection tests

5.1.1. Advection equation in cylindrical and spherical radial coordinates

As a first benchmark, the one-dimensional advection equation in cylindrical and spherical geometries
is considered:

∂Q

∂t
+

1

ξm
∂

∂ξ
(ξmQv) = 0 , (71)

where v = αξ is a linear velocity profile, α = 1 is a constant and m = 0, 1, 2 for Cartesian, cylindrical or
spherical geometry (respectively). Eq. (71) admits the exact solution

Qref(ξ, t) = e−(m+1)αtQ
(

ξe−αt, 0
)

, (72)

where Q(ξ, 0) is the initial condition. For the present test, a Gaussian profile is employed:

Q(ξ, 0) = e−a2(ξ−b)2 , (73)

where a and b are constants. The computational grid spans the interval ξ ∈ [0, 2] with Nξ regularly spaced
zones and initial condition given by Eq. (73) is integrated over the corresponding zone-volume ∆Vi using
a five-point Gaussian quadrature rule to correctly initialize 〈Q〉i at t = 0. Boundary conditions are
symmetric at the origin (ξ = 0) while zero-gradient is imposed at ξ = 2. Two different sets of parameters
are considered, namely, {a = 10, b = 0} (set A) corresponding to a monotonically decreasing profile and
{a = 16, b = 1/2} (case B) yielding a maximum at ξ = 1/2. Computations are carried out until t = 1
using a CFL number of 0.9 while the interface flux (Eq. 10) is computed using upwinding:

F̃i+ 1
2
=

1

2

[

vi+ 1
2

(

Q−
i+1 +Q+

i

)

−
∣

∣

∣vi+ 1
2

∣

∣

∣

(

Q−
i+1 −Q+

i

)

]

(74)

Fig. 2 shows the spatial profiles obtained using N = 64 zones at t = 1 in cylindrical (ξ = R, top
panel) and spherical coordinates (ξ = r, bottom) for the two sets, respectively. For the monotonically
decreasing profile (Case A), all schemes yields comparable errors with the exception of WENO3 which
shows superior performance as it does not suffer from clipping in proximity of the maximum located at
the coordinate origin. The non-monotonic case (B) tests more severely the accuracy of the proposed
interpolation methods. Here, WENO3 is still the best shape-preserving method (at this resolution)
followed by PPM5, PPM4, PPM3 and, lastly, by PLM which shows the largest numerical diffusion.

A resolution study is presented in Fig 3 with the corresponding errors and orders of convergence (in
L1 norm) being sorted in Table 1. For set A (left panels in Fig 3), WENO3 and PPM3 show third-
order accuracy, PPM4 and PPM5 converge somewhat faster (∼ N−4) while PLM converges as N−2, as
expected. On the contrary, the original PPM scheme without any geometric correction (PPM0, cross
symbols) is only 2nd-order accurate owing to the interpolation errors generated close to ξ = 0. At the
maximum resolution (N = 2048 zones), the error obtained with PPM4 is & 103 times smaller than the
traditional PPM scheme.

For parameter set B (with a maximum in the initial profile), only WENO3 is truly 3rd-order accurate
whereas the orders of accuracy of the different PPM versions decrease to 2 owing to the well-known
clipping phenomenon near local extrema. Here the difference between geometrically-corrected schemes
such as PPM4 and the traditional PPM0 are less evident.
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Figure 2: Spatial profiles at t = 1 for the radial advection test problem using N = 64 grid zones in cylindrical (top panels)
and spherical coordinates (bottom panels). Left and right panels refer, respectively, to computations carried out with
{a = 10, b = 0} and {a = 16, b = 1/2}. For the sake of clarity, a smaller portion of the computational domain is shown.

5.1.2. Advection equation in the meridional spherical coordinate

In order to assess the accuracy of the proposed reconstruction schemes in the meridional spherical
coordinate θ we consider, in analogy with the previous test, the solution of

∂Q

∂t
+

1

sin θ

∂

∂θ
(sin θQv) = 0 , (75)

where v = αθ is a linear velocity profile. Eq. (75) can be solved exactly, yielding

Qref(θ, t) = e−αt sin(e
−αtθ)

sin θ
Q
(

e−αtθ, 0
)

. (76)

Without loss of generality, α = 1 is considered in the following.
A one-dimensional computational grid spanning the interval θ ∈ [0, π/2] is set up with N zones. At

t = 0 the following initial condition is prescribed:

Q(θ, 0) =











[

1 + cos (a(θ − b))

2

]2

for |θ − b| < π

a
,

0 otherwise ,

(77)

where a and b are constants. Note that Eq. (77) is continuous at θ = b± π/a up to the third derivative.
The initial solution values are given by the volume average of Eq. (77) over the cell and integration stops
at t = 1 using a CFL number Ca = 0.9 while the interface flux is computed using Eq. (74).

Two different choices of a and b are considered: the first one corresponding to a monotonically
decreasing profile ({a = 10, b = 0}), and the second one resulting in a non-monotone function ({a =
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Figure 3: L1 norm errors for the radial advection problem at t = 1 in cylindrical coordinates (top panels) and spherical co-
ordinates (bottom panels) as function of the resolution. Left and right panels refer, respectively, to computations performed
with {a = 10, b = 0} and {a = 16, b = 1/2}. Third- and second-order ideal scalings are given by the dashed lines.

16, b = a/π}) with a maximum at θ = b. Results for different resolutions N = 2n (n = 5, . . . , 10), shown
in Fig 4 and Table 2, confirm the general trend already established for the radial advection test, see
§5.1.1. Overall, PPM and WENO schemes have comparable errors and converge to the exact solution
with third- (or higher-) order accuracy in the monotonic profile case. The situation is somehow different
for the non-monotonic profile (right panel in Fig 4) where only WENO3 achieves the expected order of
accuracy. The loss of accuracy for the PPM schemes is due, once again, to the clipping at extrema. By
comparing the performance of the original PPM0 scheme to that of the others, one can again conclude
that geometrical corrections are particularly important close to the coordinate origin.

5.1.3. Advection of a cosine bell

The solid-body rotation of a cosine bell profile on the surface of the sphere is considered [28]. The
problem is solved in the (θ, φ) coordinates with velocity given by the non-deformational field

v = (vr, vθ, vφ) =

(

0, − 1

sin θ

∂Ψ

∂φ
,
∂Ψ

∂θ

)

, (78)

where Ψ = −u0(cos θ cosα−cosφ sin θ sinα) is the horizontal stream function while α gives the inclination
angle between the axis of rotation and the polar axis of the spherical coordinate system (θ = 0). Setting
α = 0, for instance, gives a purely azimuthal velocity field v = (0, 0, u0 sin θ) (advection parallel to
the equator). Conversely, for α = ±π/2, the axis of rotation coincides with the x direction so that
v = ±(0, u0 sinφ, u0 cos θ cosφ) and any initial profile lying in the yz plane is transported across the
poles.
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Table 1: L1 norm errors and orders of convergence for the radial advection test in cylindrical (columns 3-6) and spherical
(columns 7-10) coordinates at t = 1 for the selected reconstruction schemes. The errors are given for different sets of the
constants {a, b} used to define the initial Gaussian profile, Eq. (73).

Cylindrical Spherical
{a = 10, b = 0} {a = 16, b = 1/2} {a = 10, b = 0} {a = 16, b = 1/2}

Method Nr ǫ1 (Q) OL1
ǫ1 (Q) OL1

ǫ1 (Q) OL1
ǫ1 (Q) OL1

PLM 32 3.36E-004 - 1.48E-002 - 3.04E-005 - 5.58E-003 -

64 1.02E-004 1.73 5.93E-003 1.32 1.16E-005 1.39 2.27E-003 1.30

128 2.07E-005 2.30 2.15E-003 1.47 2.34E-006 2.31 8.62E-004 1.40

256 4.61E-006 2.16 6.35E-004 1.76 5.13E-007 2.19 2.48E-004 1.80

512 1.08E-006 2.09 1.82E-004 1.80 1.20E-007 2.10 6.99E-005 1.83

1024 2.63E-007 2.04 4.92E-005 1.89 2.90E-008 2.05 1.88E-005 1.90

2048 6.48E-008 2.02 1.28E-005 1.95 7.13E-009 2.02 4.86E-006 1.95

WENO3 32 2.12E-004 - 1.26E-002 - 2.22E-005 - 4.79E-003 -

64 2.91E-005 2.87 3.94E-003 1.68 2.84E-006 2.97 1.50E-003 1.68

128 4.46E-006 2.71 8.24E-004 2.26 4.70E-007 2.60 3.15E-004 2.25

256 6.18E-007 2.85 1.26E-004 2.71 6.83E-008 2.78 4.84E-005 2.70

512 7.95E-008 2.96 1.63E-005 2.94 8.90E-009 2.94 6.31E-006 2.94

1024 9.97E-009 2.99 2.06E-006 2.99 1.12E-009 2.99 7.97E-007 2.99

2048 1.24E-009 3.00 2.58E-007 3.00 1.40E-010 3.00 9.97E-008 3.00

PPM3 32 2.51E-004 - 1.38E-002 - 2.18E-005 - 5.20E-003 -

64 4.23E-005 2.57 4.98E-003 1.47 4.95E-006 2.14 1.88E-003 1.47

128 5.43E-006 2.96 1.25E-003 1.99 6.08E-007 3.03 4.80E-004 1.97

256 6.74E-007 3.01 1.87E-004 2.74 7.41E-008 3.04 7.12E-005 2.75

512 8.24E-008 3.03 3.06E-005 2.61 9.10E-009 3.02 1.16E-005 2.61

1024 1.01E-008 3.02 5.58E-006 2.45 1.13E-009 3.01 2.12E-006 2.46

2048 1.25E-009 3.01 9.99E-007 2.48 1.40E-010 3.01 3.77E-007 2.49

PPM4 32 1.41E-004 - 1.23E-002 - 1.24E-005 - 4.68E-003 -

64 1.42E-005 3.31 3.78E-003 1.70 1.23E-006 3.33 1.41E-003 1.73

128 1.13E-006 3.65 9.27E-004 2.03 8.65E-008 3.83 3.36E-004 2.07

256 7.18E-008 3.97 2.09E-004 2.15 5.37E-009 4.01 7.56E-005 2.15

512 4.50E-009 4.00 4.54E-005 2.20 3.32E-010 4.02 1.64E-005 2.20

1024 2.83E-010 3.99 9.82E-006 2.21 2.05E-011 4.01 3.57E-006 2.20

2048 1.77E-011 4.00 2.11E-006 2.22 1.27E-012 4.02 7.75E-007 2.21

PPM5 32 1.89E-004 - 1.17E-002 - 1.46E-005 - 4.43E-003 -

64 1.11E-005 4.09 3.69E-003 1.67 6.86E-007 4.41 1.38E-003 1.68

128 7.07E-007 3.98 6.70E-004 2.46 2.56E-008 4.74 2.51E-004 2.47

256 3.98E-008 4.15 1.25E-004 2.42 7.79E-010 5.04 4.68E-005 2.42

512 2.34E-009 4.09 2.36E-005 2.41 2.28E-011 5.09 8.83E-006 2.41

1024 1.42E-010 4.04 4.69E-006 2.33 8.19E-013 4.80 1.76E-006 2.33

2048 9.23E-012 3.95 1.01E-006 2.22 8.32E-014 3.30 3.78E-007 2.22

The initial cosine bell to be advected is given by

Q =







1

2
[1 + cos (πσ/σ0)] if σ < σ0

0 otherwise ,

(79)

where σ is the great circle distance between the point (θ, φ) on the sphere and the center (θc, φc):

σ = cos−1 [cos θc cos θ + sin θc sin θ cos(φ− φc)] . (80)

Here, σ0 = 1/3 while the initial position of the cosine bell is centered around θc = π/2, φc = 3π/2. In what
follows only advection through the poles (α = π/2) is considered which results in a particularly challenging
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Figure 4: Errors in L1 norm vs. resolution for the meridional linear advection test at t = 1 using {a = 10, b = 0} (left
panel) and {a = 16, b = π/a} (right panel). The ideal second- and third-order scaling are shown as dashed lines.

test owing to the grid singularities at θ = 0, π where latitudinal fluxes have zero value (sin θ = 0) and
transport is accomplished only by the contribution of longitudinal fluxes. Computations are performed
at three different resolutions: 32× 64 (low, ∆θ = ∆φ = 5.625◦), 64× 128 (mid, ∆θ = ∆φ = 2.8125◦) and
128× 256 (high, ∆θ = ∆φ = 1.40625◦) computational zones.

In order to ease the comparison with previous results we plot, in Fig. 5, the time history of the l1
and l∞ errors during the first revolution at the resolutions of 64× 128 (dashed line) and 128× 256 (solid
line) grid zones. The final error values (including also the l2 error) can be inspected from Table 3. Here
l1, l2 and l∞ are the normalized errors computed as in [28]:

l1(Q) =

∑

i
|Qi −Qref

i
|∆Vi

∑

i
|Qref

i
|∆Vi

; l2(Q) =

√

∑

i
|Qi −Qref

i
|2∆Vi

∑

i
|Qref

i
|2∆Vi

; l∞(Q) =
maxi(|Qi −Qref

i
|)

maxi(|Qref
i

|) , (81)

where i = (j, k) is a 2D integer vector spanning the computational zones in (θ, φ).
Errors steadily increase with time and show sudden peaks (in l∞) in proximity of pole crossing at

t ≈ 1/4 and t ≈ 3/4. Our results indicate that PPM5 gives the best accuracy followed by PPM4 and
then by WENO3 and PPM3 with comparable errors. It is worth noticing that PLM requires twice the
resolution to match the accuracy obtained with PPM5. The corresponding orthographic projections of
the solutions are shown in Fig 6 for WENO3 (left panels) and PPM5 (right panels) for the middle and
high resolutions together with the exact solution. The distortion of the cosine bell is significantly reduced
at the largest resolution (128× 256). Our results compare favourably to those obtained by other authors,
see, for instance, [29, 30].

Notice that all presented schemes do not achieve higher than second-order accuracy owing to the fact
that, in 2D, the flux integral computed at a zone interface (e.g. Eqns. 6 and 10) is approximated using
a midpoint quadrature rule.
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Table 2: L1 norm errors and orders of convergence for different reconstruction schemes for the meridional advection test at
t = 1 using {a = 10, b = 0} (columns 3 and 4) and {a = 16, b = π/a} (columns 5 and 6).

a = 10, b = 0 a = 16, b = π/a
Method Nθ ǫ1 (Q) OL1

ǫ1 (Q) OL1

PLM 32 3.95E-004 - 3.97E-003 -

64 1.31E-004 1.59 1.30E-003 1.61

128 2.95E-005 2.15 3.90E-004 1.74

256 6.92E-006 2.09 9.74E-005 2.00

512 1.67E-006 2.05 2.43E-005 2.00

1024 4.12E-007 2.02 6.05E-006 2.01

2048 1.02E-007 2.01 1.50E-006 2.02

WENO3 32 2.29E-004 - 2.88E-003 -

64 2.41E-005 3.25 3.74E-004 2.94

128 4.71E-006 2.36 5.90E-005 2.67

256 6.71E-007 2.81 9.22E-006 2.68

512 8.75E-008 2.94 1.22E-006 2.92

1024 1.11E-008 2.98 1.56E-007 2.97

2048 1.39E-009 3.00 1.96E-008 2.99

PPM3 32 1.85E-004 - 3.30E-003 -

64 4.23E-005 2.13 6.32E-004 2.38

128 6.19E-006 2.77 1.23E-004 2.36

256 7.30E-007 3.08 2.34E-005 2.39

512 9.03E-008 3.01 4.20E-006 2.48

1024 1.12E-008 3.01 7.66E-007 2.45

2048 1.39E-009 3.01 1.40E-007 2.45

PPM4 32 8.76E-005 - 2.57E-003 -

64 9.97E-006 3.13 5.87E-004 2.13

128 8.44E-007 3.56 1.30E-004 2.17

256 6.41E-008 3.72 2.81E-005 2.22

512 4.66E-009 3.78 6.10E-006 2.20

1024 3.33E-010 3.81 1.33E-006 2.20

2048 2.42E-011 3.78 2.82E-007 2.23

PPM5 32 7.28E-005 - 2.50E-003 -

64 5.25E-006 3.79 4.75E-004 2.40

128 2.91E-007 4.17 9.36E-005 2.34

256 1.79E-008 4.03 1.79E-005 2.39

512 1.30E-009 3.78 3.53E-006 2.34

1024 1.06E-010 3.61 7.00E-007 2.33

2048 9.97E-012 3.41 1.45E-007 2.27
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Figure 5: Time history of the normalized errors (left: l1 errors, right: l∞ errors) for the cosine bell test using 64 × 128
(dashed lines) and 128× 256 (solid lines) grid zones.

Figure 6: Orthographic projections of the computed solution (solid contours) and exact solution (dotted contour) for the
cosine bell advection test after one revolution. Panels to the left and to the right show the results obtained with WENO3

and PPM5, respectively, at the resolutions of 64 × 128 (top) and 128 × 256 (bottom) grid zones.

21



Table 3: Errors measurements for the cosine bell test after one revolution for the selected reconstruction schemes using
three different grid sizes.
Method Nθ ×Nφ l1 (Q) l2 (Q) l∞ (Q)

PLM 32 × 64 8.67E-001 6.02E-001 6.08E-001

64 × 128 3.92E-001 3.13E-001 3.17E-001

128 × 256 1.28E-001 1.07E-001 1.11E-001

WENO3 32 × 64 7.41E-001 5.12E-001 5.15E-001

64 × 128 2.67E-001 2.12E-001 2.11E-001

128 × 256 5.66E-002 4.43E-002 5.19E-002

PPM3 32 × 64 7.68E-001 5.59E-001 5.65E-001

64 × 128 2.88E-001 2.42E-001 2.55E-001

128 × 256 5.61E-002 5.21E-002 6.86E-002

PPM4 32 × 64 6.38E-001 4.81E-001 4.93E-001

64 × 128 1.80E-001 1.50E-001 1.96E-001

128 × 256 5.40E-002 4.93E-002 7.80E-002

PPM5 32 × 64 5.77E-001 4.49E-001 4.63E-001

64 × 128 1.33E-001 1.14E-001 1.48E-001

128 × 256 3.81E-002 3.65E-002 5.95E-002
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5.2. Nonlinear systems of equations

The performance of the reconstruction schemes is now investigated on problems requiring the solu-
tion of nonlinear system of conservation laws. Although conservative variables are evolved in time, the
reconstruction is performed on the volume averages of primitive variables following the procedure out-
lined in Section 4. This choice has shown to yield less oscillatory results in some of the problems below
(in particular, see Section 5.2.2). Unless otherwise stated, the interface flux (10) is approximated with
a simple Rusanov Lax-Friedrichs scheme [31] with local speed estimate. The time step in Eq. (69) is
computed using the maximum characteristic speed of the system.

5.2.1. Homologous dust collapse

Figure 7: Numerical solutions of the homologous pressureless collapse at t = 0.065 showing density and velocity. Left panel:
comparison between PPM5 and PPM0. Right panel: comparison between PLM and PLM0. In all panels the reference
solution for the density is shown as a solid line.

The spherically symmetric collapse of a dust sphere under the influence of its own gravity ([32]) is a
valuable benchmark demonstrating the importance of geometrical corrections in a finite difference or FV
scheme in curvilinear coordinates [15, 33].

The problem consists of a unit sphere initially at rest filled with constant density ρ = 1 obeying
the laws of a pressure-less fluid (dust) and complemented by the Poisson equation for the gravitational
potential:







































∂ρ

∂t
+

1

r2
∂

∂r

(

ρvrr
2
)

= 0 ,

∂(ρvr)

∂t
+

1

r2
∂

∂r

(

ρv2rr
2
)

= −ρΨ′ ,

1

r2
∂

∂r
(r2Ψ′) = 4πGρ ,

(82)

where Ψ′ = ∂rΨ is the gravitational acceleration, Ψ is the gravitational potential andG is the gravitational
constant.

The problem has an analytical solution [32] demonstrating that the collapse proceeds while preserving
a linear velocity profile (vr ∝ −r) and a uniform constant density inside a sphere of radius r(t) given by
the relation

(

8πG

3
ρ0

)1/2

t =

(

r(t)

r0

)1/2(

1− r(t)

r0

)1/2

+ sin−1

(

1− r(t)

r0

)1/2

. (83)

where ρ0 and r0 are the initial gas density and radius. As pointed out by [15], a numerical code with
second- (or higher-) order spatial accuracy should reproduce the profiles exactly.

Eqs. (82) are solved until t = 0.065 on the domain r ∈ [0, 1] using 200 zones and a CFL number
Ca = 0.4. Reflective boundary conditions are applied at r = 0 while at the sphere boundary (r = 1)
density has zero gradient and the velocity is set to scale as ∼ 1/

√
r, appropriate for a free-fall trajectory.
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Numerical values can be scaled to actual physical units by introducing a reference density ρ0, length
L0 and velocity V0 and modifying the constant in the Poisson solver by letting 4πG → 4πGρ0(L0/V0)

2.

Following [15], we use ρ0 = 109 gr/cm
3
, L0 = 6.5 × 108 cm and V0 = L0/t0 where t0 = 1 sec is our time

reference unit.
The gravitational acceleration term Ψ′ is readily obtained at cell interfaces by integrating the Poisson

equation:

Ψ′
i+ 1

2
=

4πG

r2
i+ 1

2

i
∑

l=1

ρl∆Vl . (84)

For the purpose of the test, it is sufficient to compute the source term in the momentum equation using
second-order accuracy. Since the gravitational acceleration is known at cell interface, a natural choice is
to use the trapezoidal rule (63) giving

− 1

∆Vi

∫ i+ 1
2

i− 1
2

ρΨ′r2 dr ≈ −
(

ri+ 1
2
− r̄i

∆r
ρ−i Ψ′

i− 1
2
+

r̄i − ri− 1
2

∆r
ρ+i Ψ′

i+ 1
2

)

, (85)

where Ψ′
i+ 1

2

is obtained from (84).

Fig. 7 compares the results obtained with the fourth-order PPM and linear (PLM) schemes with
the corresponding uncorrected versions. The density reference solution (overplotted) can be found at
any time t by solving Eq. (83) for r(t) and then using mass conservation: ρref(t) = ρ0r

3
0/r

3(t). The
density plateau and the linear velocity profiles are correctly preserved close to the origin for the corrected
schemes. Results obtained with the remaining schemes behave similarly to PPM4 and are not shown to
avoid cluttered plots. On the contrary, the uncorrected versions (PPM0 and PLM0) show a systematic
accumulation of mass near the center and a deviation from linearity in the velocity profile (although to
a less degree) owing to an incorrect numerical discretization. Our results favourably compare to those
obtained by other investigators using second-order finite difference schemes, e.g., [15, 33, 34].

5.2.2. Radial wind test problem

Figure 8: Numerical solution for the isothermal radial wind problem with constant density after one time step using α0 = 100
in cylindrical (left panel) and spherical (right panel) coordinates. The profiles show v/ξ̄ for the original PPM0 scheme with
no geometrical correction (stars) and the PPM5 scheme (diamonds).

The radial advection problem presented in Section 5.1.1 can be generalized to the Euler equations of
gas dynamics in one dimension,
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mp/ξ
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, (86)

where ρ is the mass density, v is the radial velocity, p is the gas pressure, E is the total energy density
and m = 0, 1, 2 for Cartesian, cylindrical or spherical (radial) coordinates. For an isothermal flow, the
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Figure 9: Spatial profiles at t = 0.4 for the radial wind problem using N = 64 grid zones in cylindrical (top panels) and
spherical coordinates (bottom panels). Left and right panels refer, respectively, to computations carried out with a = 10,
b = 0 (left) and a = 16, b = 1/2 (right). For the sake of clarity, only a smaller portion of the computational domain is
shown.

energy equation is discarded whereas for an adiabatic equation of state one has

E =
p

Γ− 1
+

1

2
ρv2 , (87)

where Γ = 5/3 is assumed.
The initial condition consists of a self-similar radial outflow with spatially varying density, a linear

velocity profile and a constant pressure:

ρ(ξ, 0) = ρ0(ξ) ; v(ξ, 0) = α0ξ ; p(ξ, 0) =
1

Γ
, (88)

where ρ0(ξ) is an arbitrary function and α0 is a constant. This problem has an exact analytical solution
which can be written as

ρref(ξ, t) =

(

α(t)

α0

)1+m

ρ0

(

ξ
α(t)

α0

)

; vref(ξ, t) = α(t)ξ ; pref(ξ, t) =
1

Γ

(

α(t)

α0

)Γ(m+1)

, (89)

while α(t) = α0/(1 + α0t).
Computations are carried out on the interval 0 ≤ ξ ≤ 2 using N equally-spaced zones using a Courant

number Ca = 0.9. A five-point Gaussian quadrature rule is used to assign the initial volume averages for
density, momentum and energy density. At ξ = 0 axisymmetric boundary conditions apply while at the
outer edge density, pressure and v/ξ have zero gradient.

As a first benchmark, Eqs. (86) are solved in cylindrical and spherical coordinates with N = 100,
α0 = 100, ρ0(ξ) = 1 and an isothermal Equation of state for a direct comparison with the results of
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[17]. The spatial profiles of v/ξ̄ are plotted in Fig. 8 after one integration step ∆t = 7× 10−5 using the
traditional PPM0 and the PPM5 schemes (here ξ̄ is the centroid of volume defined by Eq. 17). For the
sake of clarity, only the first computational zones are shown while the results produced with the other
schemes are identical to PPM5 and have been omitted. Since density is constant and velocity remains
linear at all times (see Eq. 89) the error should be set only by the temporal accuracy of the scheme and
not by the spatial reconstruction for second- or higher-order methods. This expectation is indeed fulfilled
by the proposed geometrically corrected methods whereas the original PPM scheme shows significant
deviations close to the origin. The same conclusions have been drawn in [17].

Figure 10: L1 error measurements for the radial wind test problem in cylindrical coordinates (top panels) and spherical co-
ordinates (bottom panels) as function of the resolution. Left and right panels refer, respectively, to computations performed
with a = 10, b = 0 (left) and a = 16, b = 1/2 (right).

As a second benchmark, the Euler equations are evolved with the adiabatic Equation of state (87) and
initial condition given by α0 = 5 and ρ0(ξ) = 1+exp[−a2(ξ−b)2] where a and b are constants. In analogy
to Section 5.1.1, computations are carried out using {a = 10, b = 0} corresponding to a monotonically
decreasing profile and {a = 16, b = 1/2} corresponding to a Gaussian profile with a maximum at r = b.
The density profiles obtained with the different schemes in the two cases are plotted, together with the
exact solution, in Fig. 9 at t = 0.4 on 64 equidistant zones. Fig. 10 shows the L1 norm errors for density
at different resolutions for the selected reconstruction schemes in cylindrical and spherical coordinates at
t = 0.4. The corresponding numerical values and the order of convergence are listed in Table 4.

In the monotonic profile case, PPM5 and PPM4 achieve the best accuracy in both cylindrical and
spherical coordinates with ǫ1 . 10−10 (at the largest resolution) and order of convergence between 3
and 4, followed by PPM3 and WENO3 with 10−10 . ǫ1 . 10−9 and OL1 ∼ 3 and, lastly, by linear
interpolation (ǫ ≈ 6 × 10−8). On the contrary, the uncorrected PPM0 scheme performs very poorly for
this particular configuration and converges linearly in analogy with the findings of Section 5.1.1.

In the non-monotonic profile case, WENO3 converges with the expected third-order accuracy yielding
the smallest errors at the largest resolution, that is, ǫ1 ≈ 3×10−7 and ǫ1 ≈ 10−7 in cylindrical and spher-
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ical coordinates, respectively. Third- and fifth-order PPM schemes have order of convergence between
2 and 3 with very similar errors, ǫ ≈ 10−6 and ǫ1 ≈ 4 × 10−7 in the two coordinate systems. Finally,
the original PPM0 and PPM4 do not show strong difference for this configuration as already observed in
section 5.1.1.

These results lead to the conclusion that geometrical corrections in the reconstruction algorithm are
particularly important in regions of large curvature and strengthen the behavior already settled in Section
5.1.1 for a scalar conservation law.

It is worth mentioning that several numerical experiments (not shown here) have evidenced that
straightforward application of the proposed reconstruction schemes to conservative variables (rather than
primitive as done here) leads to considerable numerical oscillations for this particular test problem.

Table 4: Errors and orders of convergence (in L1 norm) for the radial wind problem in cylindrical (column 3-6) and spherical
(columns 7-10) coordinates at t = 0.4 for selected reconstruction schemes. Errors are given for different sets of the constants
{a, b} used to define the initial density profile.

Cylindrical Spherical
{a = 10, b = 0} {a = 16, b = 1/2} {a = 10, b = 0} {a = 16, b = 1/2}

Method Nr ǫ1 (Q) OL1
ǫ1 (Q) OL1

ǫ1 (Q) OL1
ǫ1 (Q) OL1

PLM 32 4.73E-004 - 1.47E-002 - 4.01E-005 - 5.51E-003 -

64 1.56E-004 1.61 6.35E-003 1.21 1.65E-005 1.29 2.38E-003 1.21

128 2.77E-005 2.49 2.36E-003 1.43 3.05E-006 2.43 9.25E-004 1.36

256 5.31E-006 2.38 6.44E-004 1.87 5.96E-007 2.36 2.51E-004 1.88

512 1.13E-006 2.23 1.82E-004 1.83 1.29E-007 2.21 6.97E-005 1.85

1024 2.60E-007 2.12 4.90E-005 1.89 2.99E-008 2.11 1.86E-005 1.90

2048 6.22E-008 2.06 1.27E-005 1.95 7.17E-009 2.06 4.80E-006 1.96

WENO3 32 4.03E-004 - 1.29E-002 - 4.31E-005 - 4.66E-003 -

64 7.64E-005 2.40 5.12E-003 1.33 7.59E-006 2.50 1.82E-003 1.35

128 1.06E-005 2.85 1.14E-003 2.16 1.02E-006 2.89 4.15E-004 2.14

256 1.35E-006 2.98 1.65E-004 2.79 1.28E-007 2.99 5.99E-005 2.79

512 1.69E-007 3.00 2.10E-005 2.97 1.60E-008 3.00 7.65E-006 2.97

1024 2.10E-008 3.00 2.64E-006 3.00 2.00E-009 3.00 9.58E-007 3.00

2048 2.63E-009 3.00 3.30E-007 3.00 2.50E-010 3.00 1.20E-007 3.00

PPM3 32 3.73E-004 - 1.31E-002 - 2.65E-005 - 4.79E-003 -

64 8.39E-005 2.15 5.28E-003 1.31 7.96E-006 1.73 1.90E-003 1.33

128 1.05E-005 3.00 1.52E-003 1.80 1.02E-006 2.97 5.52E-004 1.78

256 1.40E-006 2.90 2.27E-004 2.74 1.28E-007 2.99 8.32E-005 2.73

512 1.80E-007 2.95 3.50E-005 2.70 1.60E-008 3.00 1.31E-005 2.67

1024 2.26E-008 2.99 6.33E-006 2.47 2.00E-009 3.00 2.37E-006 2.47

2048 2.80E-009 3.01 1.12E-006 2.50 2.50E-010 3.00 4.17E-007 2.50

PPM4 32 1.77E-004 - 1.10E-002 - 1.30E-005 - 3.94E-003 -

64 2.30E-005 2.94 3.90E-003 1.50 1.49E-006 3.13 1.39E-003 1.50

128 2.28E-006 3.33 1.03E-003 1.93 1.25E-007 3.58 3.67E-004 1.92

256 1.88E-007 3.60 2.40E-004 2.10 8.86E-009 3.81 8.57E-005 2.10

512 1.58E-008 3.58 5.27E-005 2.18 6.96E-010 3.67 1.89E-005 2.18

1024 1.29E-009 3.61 1.16E-005 2.18 6.21E-011 3.49 4.18E-006 2.18

2048 1.01E-010 3.68 2.58E-006 2.17 6.33E-012 3.29 9.30E-007 2.17

PPM5 32 3.15E-004 - 1.09E-002 - 2.01E-005 - 3.95E-003 -

64 2.50E-005 3.65 3.93E-003 1.47 1.13E-006 4.15 1.44E-003 1.45

128 2.37E-006 3.40 7.50E-004 2.39 6.92E-008 4.03 2.80E-004 2.36

256 2.17E-007 3.45 1.40E-004 2.42 4.89E-009 3.82 5.23E-005 2.42

512 2.06E-008 3.39 2.66E-005 2.39 4.81E-010 3.35 9.92E-006 2.40

1024 1.98E-009 3.38 5.43E-006 2.30 5.18E-011 3.22 2.01E-006 2.30

2048 1.90E-010 3.38 1.17E-006 2.22 5.96E-012 3.12 4.32E-007 2.22
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5.2.3. Magnetic confinement of a cylindrical plasma column

Figure 11: Errors in L1 norm for the MHD plasma column test case as function of the resolutions. Left panel: comparison
between selected reconstruction schemes using Simpson quadrature rule to approximate the source term. Right panel: errors
obtained using the trapezoidal rule (dotted lines) and Simpson rule (dashed lines) for WENO3 and PPM4.

An equilibrium configuration describing a magnetically-confined hot plasma column is considered
to evaluate the performance of the reconstruction methods in cylindrical coordinates. The governing
conservation laws are given by the ideal magnetohydrodynamics (MHD) equations in one dimension:
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, (90)

where, besides the usual gas-dynamical quantities, the magnetic field vector B = (BR, Bφ, Bz) has been
introduced. Owing to the solenoidal condition of B, the radial component of magnetic field is constant
BR = 0 and does not need to be evolved. The total energy density E and total pressure pt are defined,
respectively, by

E =
p

Γ− 1
+

1

2
ρv2 +

1

2
B2 ; pt = p+

B2

2
, (91)

where Γ = 5/3 is the specific heat ratio.
The equilibrium configuration consists of a static (v = 0), uniform density (ρ = 1) hot plasma column

with pressure and azimuthal magnetic field radial profiles given by

p =
p0

(1 +R2/R2
0)

2
; Bφ =

R

R0

√
2p0

1 +R2/R2
0

, (92)

where p0 = 1 is the thermal pressure at the axis and R0 = 1 is a fiducial radius. The equilibrium is thus
determined by the mutual balance between gradient and source terms describing the combined action of
pressure and Lorentz forces.

Eqs. (90) are solved on the computational domain 0 ≤ R ≤ 10 with axisymmetric boundary conditions
at R = 0 and fixed values in the ghost zones beyond R = 10. Fluid variables are initialized using a five-
point Gaussian rule to obtain the correct volume averages over the cell. The MHD equations are evolved
using a Courant number 0.8 until t = 10.

The left panel in Fig (11) shows the errors obtained with selected reconstruction schemes by doubling
the resolution from N = 32 up to N = 1024. The fourth- and fifth-order PPM schemes present the
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smallest errors while the uncorrected original scheme (PPM0) yields, at large resolutions, errors which
are more than two orders of magnitude larger than PPM4 and a poor convergence rate. WENO3 and
PPM3 show very similar errors. Here the source terms in Eq. (90) are integrated using the second of
Simpson rules in Eq. (65) with weights given by Eq. (67) with m = 1.

For comparison, errors obtained by approximating the integral of the source term with the trapezoidal
rule Eq. (64 with m = 1) are plotted and compared to the previous ones in the right panel of Fig (11) for
WENO3 and PPM4. The plot indicates that Simpson quadrature yields considerably smaller errors and
third- or higher-order convergence rate when the underlying discretization scheme has the same order of
accuracy. For linear reconstruction (not shown), the two integrations yields substantially the same errors.

5.2.4. Spherical wind in 2D cylindrical coordinates

As a final test, the propagation of a spherically symmetric radial wind into a static ambient medium is
investigated by solving the Euler equations of gas dynamics in 2D cylindrical coordinates (R, z). Denoting
with ρ, vR, vz, p and E the density, radial velocity, vertical velocity, pressure and total energy of the
flow, respectively, the gas-dynamical equations can be written as
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. (93)

where E is the total energy of the fluid given by Eq. (91) with B = 0. The initial condition consists of a
static ambient medium with constant density and pressure values,

ρ =
1

4
; vR = vz = 0 ; p = c2s,a

ρ

Γ
. (94)

where cs,a = 4× 10−3 is the ambient sound speed. Eqs. (93) are solved everywhere in the domain with
the exception of the spherical region r =

√
R2 + z2 ≤ 1 where a radial spherically symmetric wind is

prescribed by keeping fluid variables constant in time. The wind is characterized by a constant mass
outflow rate, radial velocity and pressure:

ρvrr
2 = 1 ; v = tanh (5r)

(

R

r
,
z

r

)

; p =
ρΓc2s,w

Γ
, (95)

where cs,w = 3×10−2 is the wind terminal sound speed. In Eq. (95), density and velocity are conveniently
normalized to the physical properties of the wind in the sense that ρ ∼ 1 and vr ∼ 1 at r = 1.

The computational domain is defined by 0 ≤ R ≤ 10, −10 ≤ z ≤ 10 with outflow boundary conditions
applied on all sides except at the symmetry axis where density, pressure and vertical velocity have
symmetric profiles while the radial velocity is anti-symmetric. Computations are carried out using the
HLL Riemann solver [35] on 256 × 512 zones and a Courant number of Ca = 0.4. Reconstruction is
applied directly to primitive variables.

Fig. 12 compares the density maps obtained with selected reconstruction schemes with the uncorrected
version of linear (PLM0 using the standard van Leer, Eq. 36) and PPM (PPM0) at t = 20. The expansion
pattern is made of an outermost shock wave enclosing a contact discontinuity and then an innermost shock
front where the cold supersonic wind is suddenly heated and brought to subsonic speeds. The initial
spherical symmetry should be preserved throughout the evolution except at the contact wave where
grid noise triggers Rayleigh-Taylor finger-like instabilities. This behavior is correctly reproduced for
our geometrically-corrected schemes while a spurious numerical trail appears on the symmetry axis when
geometrical constraints are not considered in the underlying reconstruction algorithm (PLM0 and PPM0).
This feature persists at larger resolution and we found it to be a typical signature of an inconsistent
formulation at the symmetry axis. For increasing order of accuracy the amount of numerical diffusion
reduces going from PLM to WENO3 and then to PPM4 and PPM5.

29



Figure 12: Log density maps for the stellar wind problem at t = 20 using uncorrected (left panel, PLM0 and PPM0) and
corrected (middle and right panels) schemes. Notice the spurious numerical trails present at R = 0 in the uncorrected
schemes.

6. Summary

In this paper, I have revised some among the most widespread reconstruction schemes for high-order
finite volume discretizations of hyperbolic conservation laws in curvilinear coordinates. Both scalar and
nonlinear systems of conservation laws have been considered. The problem of reconstruction from volume
averages has been formulated in terms of a piecewise polynomial approximation to the solution values
by demanding the method to be locally conservative in the neighborhood of a computational zone. The
interface states have been obtained as a linear combination of cell-averages with reconstruction weights
that are no longer constant (as in the Cartesian case) but depends on the geometry, most appreciably
close to the coordinate origin. The reconstruction weights can be obtained by inverting a linear system
of equations with a Vandermonde matrix whose coefficients depend on the moments of the Jacobian.
The formulation is general enough to be employed on uniform or irregular grids and the coefficients can
be computed and stored only once at the beginning of the computation for efficiency purposes. Explicit
analytical expressions for 2nd- up to 5th-order accuracy have been derived for uniform radial grids in
cylindrical and spherical coordinates and the reconstruction weights have been shown to depend only on
the grid index but not on the physical location of the cell.

Although the reconstruction process should be rigorously carried out starting from the volume averages
of the conservative variables it has been found, in the case of nonlinear systems, a more robust and
equally accurate approach to perform the reconstruction on primitive variables (such density, velocity
and pressure) insofar their volume averages are preliminarily computed to the sought order of accuracy.

In order to suppress unwanted oscillation, conventional limiting techniques such as linear Total Varia-
tion Diminishing (TVD), Weighted Essentially non-Oscillatory (WENO) and Piecewise Parabolic Method
(PPM) have been consistently reforumlated to fulfill with geometrical constraints.

In addition, the numerical integration of curvilinear source terms has been addressed by introducing
area-weighted trapezoidal and Simpson quadrature rules that make the computed integral exact for
polynomials of degree 2 and 3.

Extensive numerical testing in one and two dimensions has demonstrated that geometrical corrections
to the reconstruction algorithm are crucial in order to converge to the desired order of accuracy besides
decreasing the truncation error. Neglecting such corrections can seriously degrade the accuracy of the
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method and generate spurious numerical artifacts which tend to become particularly pronounced close
to the coordinate origin even for simple problems.

Finally, it is pointed out that the reconstruction methods presented in this work have been derived
in a rather general way and, being one-dimensional, can be employed with little additional cost in other
systems of orthogonal curvilinear coordinates as well. The extension requires the knowledge of the scale
factors and the computation of the moments of the (one-dimensional) Jacobian that can be carried
out either analytically or numerically. Multidimensional reconstruction and higher than second-order
quadrature rules, on the other hand, will be investigated in forthcoming studies.

Acknowledgements. The author wishes to thank J. Mackey and D. Meyer for fostering the initial
discussion of the subjects developed in this work.
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Appendix A. Derivation of the interpolation weights equations

In section 2.2 it has been shown (Eq. 19) that the left and right interface values can be computed as
the limits from within the zone of the polynomial distribution (Eq. 13) approximating the cell averages,

Q±
i ≡ Qi(ξi± 1

2
) =

p−1
∑

n=0

ai,n(ξi± 1
2
− ξci )

n . (A.1)

The coefficients {ai,n} are the solution of the linear system (15) which, in compact notations, we rewrite
as

p−1
∑

n=0

Bsnai,n = 〈Q〉i+s , (A.2)

where B is the p × p square matrix appearing on the left hand side of Eq. (15) with s = −iL, ..., iR
spanning the rows and n = 0, .., p− 1 ranging across the columns. The formal solution of Eq. (A.2) is

ai,n =

iR
∑

s=−iL

Cns 〈Q〉i+s , (A.3)

where C = B
−1 is the inverse matrix of B.

Written in this form Eq. (A.1) has the disadvantage of depending, through the definition of ai,n, on
a linear combination of the solution values and must therefore be recomputed at each time step and in
each zone. However, by inserting Eq. (A.3) into (A.1) one obtains

Q±
i =

p−1
∑

n=0

(

iR
∑

s=−iL

Cns 〈Q〉i+s

)

(ξi± 1
2
− ξci )

n =

iR
∑

s=−iL

〈Q〉i+s

(

p−1
∑

n=0

Cns(ξi± 1
2
− ξci )

n

)

(A.4)

showing that the interface values can indeed be written as a linear combination of the average values as
in Eq. (20) with coefficients

w±
i,s =

∑

n

Cns(ξi± 1
2
− ξci )

n . (A.5)

Furthermore, since Cns = (CT )sn = ((BT )−1)sn, Eq. (A.5) represents the solution of the linear system

iR
∑

s=−iL

(BT )nsw
±
i,s = (ξi± 1

2
− ξci )

n (A.6)

which is precisely Eq. (21).

Appendix B. Interpolation weights in the radial direction

In the following, the reconstruction weights w±
i,s used to compute the leftmost and rightmost interface

values defined by Eq. (20) are given for a uniform grid. Keeping the same notations as in §2.2, the
stencil spans iL zones to the left of cell i and iR zones to the right. The order of accuracy is given by
p = iL+ iR+1. When the order of the reconstruction is even, left and right adjacent interface values are
the same and only the coefficients w+

i,s are needed.
In the following the index i will be used to label the computational zones and can be defined as

i =
ξi+ 1

2

∆ξ
. (B.1)

For completeness, interpolation weights are given not only for cylindrical and spherical coordinates but
also for Cartesian geometry.
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Appendix B.1. Cartesian Coordinates

Cartesian reconstruction weights are simply obtained by solving Eq. (21) using ∂V/∂ξ = 1 in Eq.
(16).

• Reconstruction weights for p = 3 , (iL = 1, iR = 1):

(w+
i,−1, w

+
i,0, w

+
i,1) =

(

−1

6
,
5

6
,
1

3

)

(w−
i,−1, w

−
i,0, w

−
i,1) =

(

1

3
,
5

6
, −1

6

)
(B.2)

• Reconstruction weights for p = 4 , (iL = 1, iR = 2):

(
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i,−1, w

+
i,0, w

+
i,1, w

+
i,2

)

=

(

− 1

12
,
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12
,
7

12
, − 1

12

)

(B.3)

• Reconstruction weights for p = 5 , (iL = 2, iR = 2):

(
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+
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+
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+
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+
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)
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30
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,
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30

)
(B.4)

Appendix B.2. Cylindrical Coordinates

Reconstruction weights for the cylindrical radial coordinate are obtained by inverting the linear system
in Eq. (21) with ∂V/∂ξ = ξ in Eq. (16). In the vanishing curvature limit (i → ∞) the weights tend to
the corresponding Cartesian expressions given in Appendix B.1.

• Reconstruction weights for p = 3 , (iL = 1, iR = 1):
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where ∆ = 12
(

i2 − i− 1
)

(2 i− 1).

• Reconstruction weights for p = 4 , (iL = 1, iR = 2):
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where ∆ = 120 i4 − 360 i2 + 96.

• Reconstruction weights for p = 5 , (iL = 2, iR = 2):
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where ∆ = 120 (2 i− 1)
(

3 i4 − 6 i3 − 13 i2 + 16 i+ 12
)

.

Appendix B.3. Spherical Coordinates

Reconstruction weights for the spherical radial coordinate are computed by solving the linear system
in Eq. (21) with ∂V/∂ξ = ξ2 in Eq. (16). Note again that the vanishing curvature limit (i → ∞) yields
the corresponding Cartesian expressions given in Appendix B.1.

• Reconstruction weights for p = 3 , (iL = 1, iR = 1):
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i,−1 =

−
(

3 i2 − 9 i+ 7
) (

10 i4 − 9 i2 + 3
)

∆

w+
i,0 =

(

3 i2 − 3 i+ 1
) (

50 i4 − 90 i3 − 63 i2 + 96 i+ 69
)

∆

w+
i,1 =

2
(

3 i2 + 3 i+ 1
) (

10 i4 − 45 i3 + 72 i2 − 48 i+ 12
)

∆

(B.9)
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w−
i,−1 =

2
(

3 i2 − 9 i+ 7
) (

10 i4 + 5 i3 − 3 i2 − i+ 1
)

∆

w−
i,0 =

(

3 i2 − 3 i+ 1
) (

50 i4 − 110 i3 − 33 i2 + 100 i+ 62
)

∆

w−
i,1 =

−
(

3 i2 + 3 i+ 1
) (

10 i4 − 40 i3 + 51 i2 − 22 i+ 4
)

∆

(B.10)

where ∆ = 18
(

10 i6 − 30 i5 + 15 i4 + 20 i3 − 9 i2 − 6 i+ 4
)

.

• Reconstruction weights for p = 4 , (iL = 1, iR = 2):



































































w+
i,−1 =

−
(

3 i2 − 9 i+ 7
) (

15 i6 + 48 i5 + 23 i4 − 48 i3 − 30 i2 + 16 i+ 12
)

∆

w+
i,0 =

(

3 i2 − 3 i+ 1
) (

105 i6 + 144 i5 − 487 i4 − 720 i3 + 510 i2 + 1008 i+ 372
)

∆

w+
i,1 =

(

3 i2 + 3 i+ 1
) (

105 i6 − 144 i5 − 487 i4 + 720 i3 + 510 i2 − 1008 i+ 372
)

∆

w+
i,2 =

−
(

3 i2 + 9 i+ 7
) (

15 i6 − 48 i5 + 23 i4 + 48 i3 − 30 i2 − 16 i+ 12
)

∆

(B.11)

where ∆ = 36
(

15 i8 − 85 i6 + 150 i4 − 60 i2 + 16
)

.

• Reconstruction weights for p = 5 , (iL = 2, iR = 2):







































































w+
i,−2 =

2 (3 i2−15 i+19)(7 i8−45 i6+94 i4−60 i2+16)
∆

w+
i,−1 =

−(3 i2−9 i+7)(91 i8−175 i7−780 i6+930 i5+2417 i4−795 i3−1740 i2+240 i+508)
∆

w+
i,0 =

(3 i2−3 i+1)(329 i8−1225 i7−1800 i6+8670 i5+3863 i4−20325 i3−5700 i2+15120 i+8132)
∆

w+
i,1 =

(3 i2+3 i+1)(189 i8−1225 i7+1620 i6+4350 i5−11517 i4+1275 i3+16560 i2−15120 i+4212)
∆

w+
i,2 =

−(3 i2+9 i+7)(21 i8−175 i7+510 i6−510 i5−223 i4+645 i3−120 i2−240 i+108)
∆

(B.12)







































































w−
i,−2 =

−(3 i2−15 i+19)(21 i8+7 i7−127 i6−51 i5+222 i4+96 i3−60 i2−16 i+16)
∆

w−
i,−1 =

(3 i2−9 i+7)(189 i8−287 i7−1663 i6+1071 i5+4888 i4+1184 i3−1350 i2−164 i+344)
∆

w−
i,0 =

(3 i2−3 i+1)(329 i8−1407 i7−1163 i6+9431 i5+368 i4−21376 i3−310 i2+15196 i+7064)
∆

w−
i,1 =

−(3 i2+3 i+1)(91 i8−553 i7+543 i6+2329 i5−4388 i4−1544 i3+6850 i2−3516 i+696)
∆

w−
i,2 =

2 (3 i2+9 i+7)(7 i8−56 i7+151 i6−122 i5−91 i4+132 i3+25 i2−42 i+12)
∆

(B.13)

where ∆ = 180
(

7 i10 − 35 i9 + 210 i7 − 161 i6 − 399 i5 + 390 i4 + 200 i3 − 164 i2 − 48 i+ 48
)

.
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