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Abstract: The aim of our study is the development of an automatic tool for the prioritization of
COVID-19 diagnostic workflow in the emergency department by analyzing chest X-rays (CXRs). The
Convolutional Neural Network (CNN)-based method we propose has been tested retrospectively on a
single-center set of 542 CXRs evaluated by experienced radiologists. The SARS-CoV-2 positive dataset
(n = 234) consists of CXRs collected between March and April 2020, with the COVID-19 infection
being confirmed by an RT-PCR test within 24 h. The SARS-CoV-2 negative dataset (n = 308) includes
CXRs from 2019, therefore prior to the pandemic. For each image, the CNN computes COVID-19
risk indicators, identifying COVID-19 cases and prioritizing the urgent ones. After installing the
software into the hospital RIS, a preliminary comparison between local daily COVID-19 cases and
predicted risk indicators for 2918 CXRs in the same period was performed. Significant improvements
were obtained for both prioritization and identification using the proposed method. Mean Average
Precision (MAP) increased (p < 1.21 × 10−21 from 43.79% with random sorting to 71.75% with our
method. CNN sensitivity was 78.23%, higher than radiologists’ 61.1%; specificity was 64.20%. In the
real-life setting, this method had a correlation of 0.873. The proposed CNN-based system effectively
prioritizes CXRs according to COVID-19 risk in an experimental setting; preliminary real-life results
revealed high concordance with local pandemic incidence.

Keywords: artificial intelligence; Convolutional Neural Network (CNN); deep learning; coronavirus
disease 2019 (COVID-19); chest X-ray; prioritization

1. Introduction

In 2020, the whole world was turned upside down by the COVID-19 pandemic. Italy
was one of the first Western countries to be heavily affected and up to now, June 2021, more
than 4,000,000 cases have been recorded, with more than 125,000 deaths [1].

A key factor for the healthcare system response to the COVID-19 pandemic is the
application of a correct diagnostic work up and triage of COVID-19 suspected cases. The
RT-PCR test is the gold standard diagnostic tool for the identification of SARS-CoV-2. It
has a high specificity, but a relatively low sensitivity (54–73%) [2]; furthermore, results can
take hours to come out, creating logistic issues in the emergency departments [3].
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In this setting, radiology plays a crucial role [4]. In particular, chest X-rays (CXRs) are
used during triage due to the large availability of portable units, that are easy to use and fast
to clean. This approach has been endorsed by the main radiological societies worldwide
since the beginning of the pandemic [5,6]. However, CXR limits are well-known. Indeed,
preliminary data suggest that CXRs may not be sufficiently sensitive for the detection
of COVID-19 lung disease, reducing the potential clinical and diagnostic impact of this
exam [7].

In this emergency department scenario, the availability of a tool that can prioritize the
most suspicious CXRs may be of great value in order to promptly identify COVID-19 cases
and to reduce promiscuity in the waiting room.

With the rise of machine and deep learning technologies [8,9], more and more meth-
ods have been proposed to tackle tasks in the analysis of CXRs [10]. The availability of
large public datasets of CXRs [11–13] and the COVID-19 pandemic gave a great stimulus
to research on CNN for early detection of SARS-CoV-2 positive cases, with many new
approaches proposed over the last year. A large majority of the proposed solutions tack-
led disease identification, based on deep learning algorithms [11,14–18], providing some
levels of interpretability [19–21]. Other studies approached different tasks like quantifi-
cation of infection severity [22–24], segmentation of image [22,25], prediction of disease
evolution [26] and image synthesis [27]. The aim of our study was to design a system
for the prioritization, based on COVID-19 infection likelihood, of CXRs to support the
diagnostic workflow [28,29]. However methodological flaws and underlying bias are com-
mon among these papers, as recently highlighted [30]. Being aware of the limitations of the
first AI-based experiences on this topic, the aim of this study was to evaluate, both in an
experimental model as well as in real-life, the feasibility and the efficacy of a CNN-based
prioritizing system, to analyze the capability of identifying suspected CXRs and to put
them upfront in the radiologists’ worklist.

2. Materials and Methods

The study was approved by the IRB in full accordance with the Helsinki declaration
and its later amendments.

The effectiveness of our method was tested in two different settings. Firstly, the
algorithm was applied to a set of retrospectively analyzed CXRs to assess some performance
metrics, comparing system predictions with actual COVID-19 positivity. Secondly, the
system has been integrated in the hospital PACS/RIS to automatically receive and analyze
all the CXRs. The predictions calculated by the system have been compared with COVID-19
local incidence.

2.1. Deep Learning Method

The proposed method, named AIppo, is an AI system designed to exploit the similari-
ties between images and analyze pictures indicating how much they are similar to CXRs of
COVID-19 severe cases or of healthy cases. The system is based on a deep neural network
derived by DenseNet-121 architecture [31], using metric learning to define the similarities
between images. Weights for the deep neural network were transferred from the ones
obtained by training the same architecture on the ImageNet classification task. Fine-tuning
had not been performed, so that the CNN weights used to compute performance were the
ones from ImageNet. An overview of AIppo is illustrated in Figure 1.

In the pre-processing stage, after a proper resize, the U-Net lung segmentation model
crops down CXRs producing a final image that just includes the lungs [32], excluding parts
of the image that can add details unrelated to COVID-19, and is finally normalized by
subtracting its average and dividing by its standard deviation. Figure 2 illustrates these
steps more in detail: the original image (a) is resized limiting the maximum dimension
to 1000 pixels, but maintaining its original aspect ratio (b). The resized picture (c) is then
processed by the U-Net model (d) to extract a binary mask (e) indicating where the lungs are
located. To define the final cut (g), the binary mask (e) is framed by the smallest rectangle
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that contains the lungs (f). The resized picture (c) is normalized by mean and variance (h,i)
and, finally cropped (j) using the computed rectangular cut obtaining the final picture (k).
The final image is then elaborated by a deep neural network to extract the features that
represent the semantic of the picture.
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Figure 1. The tool architecture. The image (a) is pre-processed by algorithm (b) into the new image
(c) which is elaborated by deep neural network (d) to extract features (e). Computer features are
compared by the distance metric (i) with the previously extracted features (g) stored in the database
(f) with their labels (h). The features (g) have been calculated on past known cases. Using the
similarity information elaborated by (i) and labels (h) a COVID-19 score (m) is computed by stage (l).
The set of most similar cases from the past (n), used for the computation of score (m), is returned to
support doctor diagnosis and to provide interpretation of result.
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Figure 2. The pre-processing stage. The original image (a) is properly resized limiting the maximum
dimension to 1000 pixels but maintaining its original aspect ratio (b). The resized picture (c) is then
processed by the U-Net model (d) to extract a binary mask (e) indicating where the lungs are located.
To define the final cut (g), the binary mask (e) is framed by the smallest rectangle that contains
the lungs (f). The resized picture (c) is normalized by mean and variance (h,i) and finally cropped
(j) using the computed rectangular cut to obtain the final picture (k).

The proposed system includes a database, indicated by (f) in Figure 1, that includes
a set of cases from the past about the presence of COVID-19 infection which is known a
priori. This set is referred to as the “reference set” and only the feature vectors extracted
from the images in this set and related ground truth are memorized. When a new picture
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is received by the system and its feature vector is computed by the deep neural network
model, the method calculates the angular similarity between the computed vector and
the ones stored in the database. Then, it retrieves the 10 most similar cases and related
ground truth. To compute the final score, the system counts how many of the retrieved
nearest neighbors belong to the COVID-19 positive set, summing up their contribution by
a weighting function that depends on the similarity value and position in the neighbors’
similarity ranking. This function decays logarithmically with the position and increases
linearly with the similarity, so that the most similar cases account for most of the final score.
A term to scale the score in the range 0 to 1 is also included in the function. In this way, the
resulting COVID-19 risk indicator obtains higher values the more the new picture is similar
to past COVID-19 positive known cases.

As the number of past known cases grows, this methodology is expected to increase
its level of performance taking advantage of the natural accumulation of samples. The
calculated similarity can also be used by the tool to support the physicians during the
diagnostic process, taking out the most similar cases from the past for comparison.

2.2. Phase I Study

A set of CXRs has been provided by Università di Torino for this analysis. In this
phase, we define the metrics to be estimated and the methodology to be adopted to measure
the performance of the proposed solution.

2.2.1. Patients’ Population and Images

A total of 542 CXR images were retrospectively collected at the Department of Radi-
ology of the University of Torino, of which 234 were COVID-19 positive cases collected
during the virus outbreak.

CXRs were considered COVID-19 positive and included in the COVID-19 group in the
case of positive nasopharyngeal swabs within 24 h. The control group included 308 CXRs
performed before the pandemic. Furthermore, negative cases were retrospectively reviewed
by three radiologists (20, 10 and 3 years of experience) to discriminate patients without any
lung disease from those with positive radiological findings (oncological disease, pneumonia
of different origins . . . ). Only postero-anterior views were included in the analysis.

The final set of images includes 542 samples composed as the following:

• 146 completely healthy patients
• 234 COVID-19 positive cases
• 162 subjects affected by other diseases

Figure 3 illustrates data selection and labelling adopted for phase 1.

2.2.2. Performance Metrics and Statistical Analysis

The proposed methodology was designed to analyze each CXR and provide a COVID-
19 risk indicator to prioritize diagnostic workflow. The presence of a high value for
this indicator can also be used to identify cases in need of urgent care. To measure the
effectiveness of our proposed method, we calculated the performance metrics illustrated
in Table 1. All the metric values range from 0% to 100%. Given a set of cases, we can sort
it by the predicted scores and compute the Mean Average Precision (MAP) metric. The
MAP is an evaluation measure for the information retrieval system used to assess how well
the system is performing in providing sorted lists of results to a given set of queries. This
metric assumes values in the range between 0 and 1; it considers the order in which the
returned results are presented. It assumes value equals to 1 when all the relevant results
are placed on top. In our case, the order of returned results was obtained sorting the cases
by the predicted COVID-19 risk indicator and relevant cases were the ones belonging to
the COVID-19 positive class. Given the score of each analyzed case, we could identify
the more critical ones if they were higher than a threshold and estimated sensitivity and
specificity as measures of classification performance, by comparison with actual COVID-19
positivity. Sensitivity and specificity are evaluation metrics for classification tasks to assess
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how well the model is identifying the class membership of a given query image; these
metrics indicate, respectively, the portion of actual COVID-19 positive and negative cases
correctly identified. They assume values in the range between 0 and 1, where 1 indicates
all the cases were assigned to the correct class.
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Table 1. Metrics estimated for performance analysis.

Metric Description Interpretation

Mean Average
Precision—MAP

Given the sorting induced by the
COVID-19 indicator, this metric

indicates, on average, the portion of
positive cases placed before another

positive one

Higher values indicate the
positive cases are placed on
top of the diagnostic queue

Sensitivity

Portion of COVID-19 positive
individuals correctly identified by

the system (COVID-19 risk
indicator higher than a threshold)

Higher values indicate the
method can identify a larger

majority of positive cases

Specificity

Portion of COVID-19 negative
individuals correctly identified by

the system (COVID-19 risk
indicator lower than a threshold)

Higher values indicate the
method can identify a larger

majority of negative cases

To estimate each metric, we iterated 5-fold stratified cross validation by 6 times. At
each iteration, samples were randomly shuffled, and 5 folds were extracted. Four folds out
of five were used as the reference set, while the remaining one was used for testing. This
procedure resulted in 30 different evaluations for each metric from which the average and
95% confidence interval were computed based on the Gaussian distribution hypothesis
(Shapiro test p-value > 0.05). To further investigate the prediction power of the proposed
method, we divided data by age group and gender to highlight significant differences.



Diagnostics 2022, 12, 570 6 of 15

2.2.3. COVID-19 Risk Indicator Statistical Analysis

In literature, different approaches have been proposed to provide a semi-quantitative
assessment of infection severity when analyzing CXRs. In 2015, a simple 5-level-rating was
proposed in [33] to facilitate the management of clinical workflows for patients with severe
acute respiratory infection. A more specific semi-quantitative COVID-19 severity rating has
been proposed in [34]; this score is based on the presence on CXR of radiological findings
to support the identification of biomarkers discriminatory for COVID-19. The resulting
index is defined in a range from 0 to 18, where 18 represents the highest level of severity.
In a similar way, our method predicted a COVID-19 risk indicator, but it was designed to
represent the likelihood of infection rather than the level of infection.

In [35,36], the relationship between the severity score from [34] and patient age and
gender has been analyzed, reporting the same results for age and different ones for gender.
In [35], significantly higher scores were determined for male patients in the range between
50 and 80 years old, but this finding has not been confirmed in [36]. In both papers, a low
positive correlation with age was found.

To compare our results with the ones from previously introduced works, we computed
the Spearman correlation coefficient between patient age and COVID-19 risk indicator, the
latter being computed by the proposed algorithm for SARS-CoV-2 positive patients. We
made this calculation on both the whole dataset and divided by gender group.

It is important to underline that the cases’ selection criteria in the referenced studies
include, apart from the RT-PCR test result, also the presence in the CXR picture of radio-
logical findings to support the identification of biomarkers discriminatory for COVID-19.
In our case, this selection was not performed. Finally, the datasets differ for sample size:
in the referenced works, 734 and 1000 positive patients were provided, while 236 positive
cases were available for our study.

2.2.4. Reference Values

To understand if the proposed method can bring the targeted benefits, we defined
reference values per each of the selected metrics. Currently, apart for particular cases
identified during triage and access to the hospital, diagnostic workflow is mostly managed
by first-in-first-out (FIFO) policy so that CXRs are examined by a radiologist in chronological
order. To obtain reference values, we modelled this approach by a random sorting policy,
resulting in MAP = 47.79% (40–48%). Radiologist diagnostic sensitivity = 61% (55–67%) has
been measured according to literature data [37]. Radiologist specificity = 63% (40–89%) has
been determined according to literature data [38–40].

2.3. Real-Life Preliminary Evaluation

The proposed system has been installed at the local hospital to automatically analyze
CXRs. In this phase, we define how we compare prediction values with public data about
local incidence of COVID-19. Figure 4 depicts the data selection and elaboration process
used in phase 2.

2.3.1. System Integration and Installation

In April 2021, at AOU San Luigi Gonzaga a machine running a prototype version of
AIppo was installed in the hospital network. Figure 5 illustrates the system at a high level.

Three portable X-ray units, from two different vendors, adopted in the hospital during
the COVID-19 pandemic have been configured to send all the produced samples to both
hospital PACS and the AIppo machine. A local PACS service, running on the latter,
manages the inbound stream of samples according to the communication protocol and
stores the received X-rays. When new samples are received, the system excludes the ones
that do not satisfy the criteria for the body part (CHEST) and position (AP/PA); images
are then elaborated by the system to produce COVID-19 indicators, as described in the
previous section. When the prediction is ready, this is automatically sent to the RIS, where
a likelihood value appears in the radiology diagnostic queue dashboard with an associated
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color to provide an immediate and easy to read feedback to the radiologist (red for high-
risk patients, yellow and green for medium and low risk). This visualization has been
defined together with the radiologists to minimize the cognitive overhead introduced by
the introduction of the AIppo prediction score in the workflow.
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2.3.2. Reference Data

We compared the COVID-19 scores predicted by the system with local COVID-19
incidence to check if the tool follows the trend. To do so, we analyzed the machine internal
database in the period between 9 April 2021 and 4 June 2021 with public available and daily
updated data of the same period from Ministero della Salute on COVID-19 incidence in
Provincia di Torino [41], the local district where the AOU San Luigi Gonzaga of Orbassano
is situated. Figure 6 illustrates the new cases per day in the period of interest.



Diagnostics 2022, 12, 570 8 of 15
Diagnostics 2022, 12, x FOR PEER REVIEW 9 of 17 
 

 

 

Figure 6. Daily new cases of COVID-19 in Provincia di Torino. Vertical axis: daily new cases, hori-

zontal axis: date. 

2.3.3. Performance Metrics and Methodology 

To measure the ability of the tool to follow the pandemic trend, we calculated the 

correlation by means of the Pearson correlation coefficient between the 7 day rolling av-

erages of the COVID-19 AIppo score and local pandemic incidence. Significance of corre-

lation was evaluated according to the Two-Tailed or Nondirectional Test with alpha = 

0.05. 

3. Results 

3.1. Baseline Characteristics 

The age distribution of subjects in the positive and negative groups is illustrated in 

Figure 7. None of the two exhibited normality for age distribution (Shapiro–Wilk test p-

values: 0.0012 and <1 × 10−7, alpha: 0.05). The two cohorts did not differ significantly in age 

average (positive: 67.2, negative: 66.7, Kruskal–Wallis test p-value: 0.792, alpha: 0.05), var-

iance (positive: 253.7, negative: 281.6, Bartlett test p-value: 0.153, alpha: 0.05) and distribu-

tion (Mann–Whitney test p-value: 0.389, alpha: 0.05). They did not differ significantly also 

in gender distribution (Fisher exact test p-value: 0.539, alpha: 0.05). To analyze the varia-

bility of class membership (COVID-19, Other, No Finding) and age we divided the sam-

ples into homogeneous groups. When grouping by gender, the differences between dis-

tributions were not significant for class membership (Chi-square test p-value: 0.986, alpha: 

0.05), and age, (Mann–Whitney U test p-value: 0.178, alpha: 0.05). Finally, we divided sam-

ples by age groups, evaluating the differences in COVID-19 positive case prevalence be-

tween males and females; this difference was significant for every age group apart from 

patients in the 80–89 years old range. These results are summarized in Tables 2 and 3. 

Figure 6. Daily new cases of COVID-19 in Provincia di Torino. Vertical axis: daily new cases,
horizontal axis: date.

2.3.3. Performance Metrics and Methodology

To measure the ability of the tool to follow the pandemic trend, we calculated the cor-
relation by means of the Pearson correlation coefficient between the 7 day rolling averages
of the COVID-19 AIppo score and local pandemic incidence. Significance of correlation
was evaluated according to the Two-Tailed or Nondirectional Test with alpha = 0.05.

3. Results
3.1. Baseline Characteristics

The age distribution of subjects in the positive and negative groups is illustrated in
Figure 7. None of the two exhibited normality for age distribution (Shapiro–Wilk test
p-values: 0.0012 and <1 × 10−7, alpha: 0.05). The two cohorts did not differ significantly in
age average (positive: 67.2, negative: 66.7, Kruskal–Wallis test p-value: 0.792, alpha: 0.05),
variance (positive: 253.7, negative: 281.6, Bartlett test p-value: 0.153, alpha: 0.05) and distri-
bution (Mann–Whitney test p-value: 0.389, alpha: 0.05). They did not differ significantly
also in gender distribution (Fisher exact test p-value: 0.539, alpha: 0.05). To analyze the
variability of class membership (COVID-19, Other, No Finding) and age we divided the
samples into homogeneous groups. When grouping by gender, the differences between
distributions were not significant for class membership (Chi-square test p-value: 0.986, al-
pha: 0.05), and age, (Mann–Whitney U test p-value: 0.178, alpha: 0.05). Finally, we divided
samples by age groups, evaluating the differences in COVID-19 positive case prevalence
between males and females; this difference was significant for every age group apart from
patients in the 80–89 years old range. These results are summarized in Tables 2 and 3.
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Table 2. Age statistics of the positive and negative groups. Except for p-values, all figures are in years.

Age Group COVID-19
Prevalence Female

COVID-19
Prevalence Male

Chi-Square Test
p-Value

<50 years 47.50% 31.71% 0.0335

50–59 years 45.45% 69.09% 0.0002

60–69 years 19.44% 42.62% 0.0001

70–79 years 44.07% 40.00% 0.0041

80–89 years 42.55% 43.75% 0.8273

≥90 years 68.75% 40.00% 0.0148

Table 3. Gender statistics of the positive and negative groups.

Gender Total COVID-19 Other No Finding Median Age Age IQR

Female 231 41.64% 27.71% 30.65% 71 56–82

Male 305 44.67% 31.81% 23.52% 68 56–78

3.2. Phase I Study

Given the provided set of images, metrics have been estimated and compared with ref-
erence values. The estimated values, with confidence intervals, are summarized in Table 4.
Each one of the metrics showed a significant increase compared with the reference values.

Table 4. Performance measured for AIppo system in phase 1.

Metric Reference AIPPO

MAP 43.79% (40–48%) 71.75% (63–81%)

Sensitivity 61.1% (55–67%) 78.23% (65–92%)

Specificity 63% (40–89%) 64.20% (63–66%)

To investigate how performance can be influenced by age and gender, we compared
distributions of MAP for different age groups, as illustrated in Table 5, by means of the
Kruskal–Wallis statistical test (alpha = 0.05) and between gender groups, as illustrated in
Table 6, by means of the Mann–Whitney U statistical test (alpha = 0.05). In both cases,
the differences were significant, with p-value < 1.12 × 10−12 and p-value < 1.60 × 10−4,
respectively. This difference suggests a possible gap in performance between the groups.
Considering age groups, we can notice a higher-than-average performance for younger
patients. For gender grouping, the relative gap in MAP performance, 10.72%, is partially
compatible with the difference in COVID-19 positive shares, 6.25%. The gap can also
be interpreted by the effect of the imbalance in the starting dataset with 305 males and
231 females.

COVID-19 Risk Indicator Statistical Analysis

We analyzed how the predicted COVID-19 risk indicator was influenced by the age
and gender of the patient. Figures 8 and 9 illustrate the distribution of predicted COVID-19
risk indicators for cases in the three labeled classes (COVID-19, Other and No Finding)
for the whole and gender-grouped datasets, respectively. In the first picture, the shift in
distribution for the COVID-19 positive class with respect to the others can be appreciated:
No Finding is placed in the lower part of the range, while Other samples are spread in
the middle. When grouping by gender, the structure is maintained with some shifts, in
particular scores for No Finding and COVID-19 classes appear to be higher in the male
group, with a large gap in mean value for the COVID-19 class. The abovementioned
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different class balance between the two genders can be a possible interpretation for this
change of behavior: since the final score is computed exploiting the similarity with other
cases, having a different number of available samples from one class in the reference set
can impact the performance for that specific class.

Table 5. MAP performance calculated for each age group.

Age Group N COVID-19 Positive Prevalence Median MAP

<50 years 81 39.51% 0.8304

50–59 years 88 60.23% 0.9289

60–69 years 97 34.02% 0.8546

70–79 years 144 41.67% 0.6704

80–89 years 95 43.16% 0.6784

≥90 years 31 54.84% 0.7331

Table 6. MAP performance calculated for each gender.

Gender N COVID-19 Positive Prevalence Median MAP

Female 231 42.42% 0.6679

Male 305 45.25% 0.7481
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Figure 8. Distribution of the predicted COVID-19 risk indicator for cases belonging to the
three classes.

We computed the Spearman correlation coefficient [Rs] between patient age and
COVID-19 risk indicator computed by the proposed algorithm for patients positive for
COVID-19, on both the whole dataset and divided by gender group. The results are
summarized in Table 7. For the whole dataset, there was almost no correlation with age,
Rs = −0.004, p-value = 0.884; in [35], a low positive correlation was obtained, but it was not
statistically significant. Grouped by gender, the correlation result was low and positive in
both cases, but not significant, Rs = 0.167 p-value < 5.52 × 10−10 for the female group, and
Rs = 0.065 p-value < 5.13 × 10−4 for the male one, confirming the results in [35].
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Figure 9. Distribution of the predicted COVID-19 risk indicator for cases belonging to the three
classes, divided by gender. Blue boxes are referring to female, while orange ones are to male.

Table 7. COVID-19 risk indicator grouped by age group and gender for COVID-19 positive patients.
In bold, significant p-values.

Age Group Females Median
Prediction Prediction IQR Males Median

Prediction Prediction IQR p-Value

<50 years 19 0.4670 (0.3929, 0.726) 13 0.7446 (0.3988, 0.9081) 0.00172

50–59 years 15 0.5557 (0.1367, 0.8058) 38 0.7903 (0.4072, 0.9401) 0.00000

60–69 years 7 0.8181 (0.5145, 0.9475) 26 0.8249 (0.5152, 0.917) 0.29681

70–79 years 26 0.6990 (0.1836, 0.9179) 34 0.7873 (0.5518, 0.9157) 0.04494

80–89 years 20 0.5214 (0.2658, 0.879) 21 0.6652 (0.4248, 0.875) 0.03575

≥90 years 11 0.5654 (0.3055, 0.7996) 6 0.5450 (0.4761, 0.6407) 0.28172

We divided the cases by age groups, and, for each age group, we studied the score
distribution testing the differences between genders with the Mann–Whitney U test
(alpha = 0.05). The difference was significant for four out of six age groups, highlight-
ing a possible gender bias in model scoring. With the given class labelling we could
not prove this is caused by the algorithm itself or by the underlying COVID-19 severity
distribution in the data.

3.3. Phase 2: Real-Life Setting

In the period of interest, 2942 CXRs from the three X-rays units have been analyzed by
the proposed method, providing the COVID-19 risk indication for each of the CXRs. The
correlation index between the 7 day rolling averages of the AIppo score and local pandemic
trend was 0.873, p-value < 1 × 10−5. Figure 10 plots the values for both pandemic trend
and AIppo prediction in the considered period for Provincia di Torino.
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rolling average for local new cases, horizontal axis: days.

4. Discussion

Our findings demonstrate the feasibility of the application of a CNN model in order to
turn a FIFO workflow model into a smart prioritized workflow for the early identification
of COVID-19 lung disease in the emergency department. The findings demonstrate an
excellent result of the CNN-based system in the experimental setting with the MAP index
moving from 43.79% to 71.75%.

A detailed analysis of results highlighted that a large part of the mispredictions
comes from patients affected by diseases other than COVID-19, which can mimic SARS
CoV2-positive images. Accordingly, we recomputed the MAP index excluding these cases
and we obtained a MAP index of 90.37%, higher than the 61.58% measured with FIFO
policy sorting.

In our preliminary analysis, we also set an alert threshold to measure the ability of
the tool to identify the most critical cases. To tune this value, a specificity equal or higher
than radiologists’ specificity reported in literature [38–40] has been targeted. By doing this,
the sensitivity of 78.23% (65–92%) and specificity of 64.20% (63–66%) were obtained, in
both cases higher than the defined reference values, 61.1% (55–67%) and 63% (40–89%),
respectively. These results demonstrate the possibility to properly trigger alerts, enabling
prompt care of critical subjects and fast application of infection containment actions.

Furthermore, in the preliminary real-life analysis based on 2942 CXRs, COVID-19
incidence curve and average day risk score calculated by the AIppo system decreased
concurrently during the evaluation period.

Immediately after the COVID-19 outbreak, several experiences have been published
concerning AI-based models applied to CXRs for the detection of COVID-19 lung infection
with a broad range of methodologies (type of datasets, labelling, machine learning vs. deep
learning approach) and aims (diagnosis vs. prognosis). As recently highlighted [30], a vast
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majority (72%) of AI-proposed solutions suffer from a high risk of bias coming from the
dataset used in the study. The potential threats were primarily due to the following reasons:

1. usage of public datasets with scarce control over label and image quality
2. arbitrary methods used to select a subset of the original dataset
3. a large difference in characteristics of participants between COVID-19 positive and

negative groups
4. large imbalance between groups

A relevant portion of proposed articles put together a dataset by merging different
datasets in the attempt to have a good number of positive, negative and total cases. This
approach exposes to the risk of high bias the abovementioned (1) and (3). Moreover, the
usage of different sources for positive and negative cases can induce the CNN models to
discriminate between data sources instead of disease-related features.

To minimize the risk of introducing bias, we analyzed each of the abovementioned
criteria for the provided dataset, in order to overcome limitations. As for participants’
selection, no public datasets were used and SARS-CoV-2 positive and negative CXRs have
been produced in the same institution from three machines by two different vendors.
Furthermore, patients included in the experimental setting tested positive for SARS-CoV-2
according to a RT-PCR test performed within 24 h from the CXR. Of note is that all CXRs
were retrospectively revised by three independent radiologists and, as for data analysis
and groups balance, no significant differences in statistical distributions of age and gender
have been found.

To the best of our knowledge, this is the first report that includes in the analysis a
preliminary real-life application. As mentioned, the proposed system can improve its
performance over time because more experience is accumulated in its internal database
to provide a larger base of knowledge for a more precise case comparison. This aspect
is particularly favorable in the hospital setting, where a large amount of CXRs can be
produced in a reasonable time making it faster to converge at higher levels of performance.

The comparative analysis between the system prediction and local COVID-19 inci-
dence trend highlighted how the tool average prediction is consistently following the
decreasing pandemic wave, providing one more element to convince us that the approach
is promising.

The creation of a smart worklist that reduces the report turnaround time for critical
patients using AI tools has been recently proposed in a paper by Baltruschat et al. [28]. Here,
we propose a specific model for COVID-19 suspicious CXRs; the authors believe that a spe-
cific COVID-19 CXR prioritizing tool might be of great value in order to promptly identify the
infected cases and to reduce promiscuity in the waiting rooms of the emergency department [42].

Our paper has some limitations. Firstly, despite being a supervised classified dataset,
the number of available CXRs is limited (only 542 samples). Secondly, the data collection
involved only one center. To partly mitigate the effect of the latter, the dataset is produced
with different machines from different vendors, homogeneously between classes.

5. Conclusions

In conclusion, our study confirms the AI capability of identifying COVID-19 suspicious
cases, limiting potential biases of previous series. The real-life preliminary analysis on al-
most 3000 CXRs suggests a promising concordance with local incidence of COVID-19 cases.
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