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Abstract

Image texture analysis (radiomics) uses radiographic images to quantify characteris-

tics that may identify tumour heterogeneity and associated patient outcomes. Using

fluoro-deoxy-glucose positron emission tomography/computed tomography (FDG-

PET/CT)-derived data, including quantitativemetrics, image texture analysis and other

clinical risk factors, we aimed to develop a prognostic model that predicts survival in

patients with previously untreated diffuse large B-cell lymphoma (DLBCL) fromGOYA

(NCT01287741). Image texture features and clinical risk factors were combined into

a random forest model and compared with the international prognostic index (IPI) for

DLBCL based on progression-free survival (PFS) and overall survival (OS) predictions.

Baseline FDG-PET scans were available for 1263 patients, 832 patients of these were

cell-of-origin (COO)-evaluable. Patients were stratified by IPI or radiomics features

plus clinical risk factors into low-, intermediate- and high-risk groups. The random for-

est model with COO subgroups identified a clearer high-risk population (45% 2-year

PFS [95% confidence interval (CI) 40%–52%]; 65%2-yearOS [95%CI 59%–71%]) than

the IPI (58% 2-year PFS [95% CI 50%–67%]; 69% 2-year OS [95% CI 62%–77%]). This

study confirms that standard clinical risk factors can be combined with PET-derived

image texture features to provide an improved prognostic model predicting survival in

untreated DLBCL.
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1 INTRODUCTION

Most patients with diffuse large B-cell lymphoma (DLBCL) respond

to current standard-of care therapy with rituximab plus cyclophos-

phamide, doxorubicin, vincristine and prednisone (R-CHOP)-based

regimens; however, approximately 20%–30% of patients relapse after

initial response to first-line therapy [1,2]. The international prognostic

index (IPI/R-IPI) [3–5] and National Comprehensive Cancer Network-

IPI [6], which utilise only clinical factors, are routinely used to deter-

mine the prognosis of patients with DLBCL. However, advanced pre-

diction models that include disease heterogeneity as a risk factor may

provide enhanced patient risk stratification and improve patient out-

comes.

The heterogeneous nature ofDLBCL is reflected in transcriptionally

defined tumour subtypes that can be classified based on cell-of-origin

(COO). Previous studies have shown that molecular signatures

can predict patient outcomes independent of the clinical IPI score

and could help to identify patients suitable for targeted therapies

[7–9]. The use of robust baseline biomarkers that predict response

to immunochemotherapy is an important step towards improving

baseline risk stratification and developing more efficacious treatment

strategies for patients unlikely to benefit from R-CHOP. Molecular

imaging may also help separate patients into different prognostic

groups that could lead to improved risk stratification.

Previous studies have demonstrated that baseline total metabolic

tumour volume (TMTV) derived from fluoro-deoxy-glucose positron

emission tomography/computed tomography (FDG-PET/CT), is a useful

prognostic indicator inDLBCL [10–12]. Although promising, the lack of

methodological standardisation of TMTV measurements may limit its

implementation as a prognostication tool in clinical practice [12].

While TMTV analysis enables determination of tumour burden,

there is potential for extracting more substantial information from

image data sets to improve evaluation of tumour heterogenicity and

risk stratification in patients with DLBCL. Recently, radiographic

image texture analysis, which can be defined as the interpretation of

variations in image intensities, has become increasingly popular as a

measure of tumour heterogeneity for predicting treatment response

assessment and survival outcome. This strategy is in line with the

hypothesis that the evaluation of tumour heterogeneity may be a

noninvasive measure for determining biological characteristics of

tumours [13]. Although image texture features analysis requires

complex mathematical algorithms, this aspect should not constitute a

barrier to accessing these techniques, as available advanced computer

software programs can be employed to utilise these functions.

Image texture features can non-invasively quantify tumour

attributes, such as shape, intensity and heterogeneity that may

be associated with clinical outcomes [14,15]. While image texture

features extracted using radiomics have the potential to be used

as prognostic biomarkers, some methodological challenges remain,

hindering the translation of this advanced methodology to clinical

practice until a validated automated tool is developed [16]. Although

radiomics have been studied in solid tumours [17], there are few

studies investigating the use of radiomics in lymphoma [18,19].

The objective of our study was to develop a prognostic model

combining PET-derived metrics, image texture features and clinical

risk factors and determine whether this model could improve risk

stratification compared with clinical factors alone, to predict

progression-free survival (PFS) and overall survival (OS) in patients

with previously untreated DLBCL from the phase 3 GOYA trial

(NCT01287741) [20].

2 METHODS

2.1 Patients

GOYA (NCT01287741) was an open-label, multicentre, randomised,

phase 3 trial designed to investigate the use of R-CHOP or obin-

utuzumab plus cyclophosphamide, doxorubicin, vincristine and

prednisone (G-CHOP) in patients with previously untreated DLBCL.

Details of the study design have been published in full previously [20].

In brief, patients were randomly assigned (1:1) to receive either eight

21-day cycles of G or R, with six or eight cycles of CHOP. The GOYA

trial (N = 1418) reported no significant treatment effect between the

two arms [20], thus, the armswere combined for the present radiomics

analysis. Data were included from patients with available baseline PET

scans and detectable lesions within 1–35 days prior to randomisation.

GOYAwas conducted in accordancewith theDeclarationofHelsinki

and the International Conference on Harmonization guidelines for

Good Clinical Practice.

2.2 COO analysis

COO classification (germinal centre B-cell [GCB], activated B-cell

[ABC], or unclassified) was determined for biomarker-evaluable

patients (those with available tissue) using the research-use-only

version of the NanoString Lymphoma Subtyping assay (NanoString

Technologies, Inc., Seattle,WA, USA) [21,22].

2.3 Clinical risk factors

The clinical parameters used as survival predictors included the IPI

score, Ann Arbor stage, serum lactose dehydrogenase (LDH) level,

extranodal involvement, EasternCooperativeOncologyGroup (ECOG)

performance status, bulky disease status (lesion diameter≥7.5 cm) and

COO (Table 1). Ann Arbor stage was included both dichotomously and

categorically. LDH level was included both dichotomously and continu-

ously, for which the LDH level was divided by the upper limit of normal.

Extranodal involvement andECOGperformance statuswere usedwith

two different cut-offs (extranodal involvement: ≥1 or >1 site, ECOG

performance status: >1 or >2). For two patients whose performance

status was missing, these values were imputed as ECOG performance

status 0 for the IPI score. For the IPI prediction model, patients were

divided into three prognostic IPI subgroups.
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TABLE 1 Demographics and baseline characteristics of all
patients and the COO subgroup

Characteristic n, (%)

All patients

(n= 1263)

COO subgroup

(n= 832)

Mean age (SD), y 59.4 (13.3) 60.6 (13.1)

Male 671 (53.1) 439 (52.8)

ECOGPS (>2) 161 (12.7) 105 (12.6)

Ann Arbor stage III/IV 1059 (83.8) 624 (75.0)

IPI score

Low-intermediate 701 (55.5) 448 (53.8)

High-intermediate 367 (29.1) 252 (30.3)

High 195 (15.4) 132 (15.9)

Elevated serum LDH 728 (57.6) 493 (59.2)

Extranodal involvement

(>1 site)

852 (67.4) 569 (68.4)

Bulky disease (≥7.5 cm) 462 (36.6) 322 (38.7)

COO

ABC – 213 (25.6)

GCB – 481 (57.8)

Unclassified – 138 (16.6)

Abbreviations: ABC, activated B-cell like; COO, cell-of-origin; ECOG PS,

Eastern Cooperative Oncology Group performance status; GCB, germi-

nal centre B-cell like; IPI, International Prognostic Index; LDH, lactate

dehydrogenase; SD, standard deviation.

2.4 FDG-PET/CT quality control and quantitative
analysis

Baseline FDG-PET/CT imaging was performed 1–35 days prior to

randomisation (R-CHOP or G-CHOP) at study sites where a PET/CT

scanner was available. All PET/CT scans were performed according

to a standardised protocol, which has been described previously

[20]. All imaging data were centrally collected with a quality control

process in place, and only those scans with complete DICOM image

sets were analysed. The quantitative PET analyses, including TMTV,

were performed by an independent central review panel, and images

were segmented using an adaptive method with a threshold equal to

1.5 times the mean standardized uptake value (SUVmean) of the liver,

plus two standard deviations, using PET Encore workstation (MIM

software Inc. Cleveland, Ohio). TMTVs were calculated as the sum of

all theMTVs of the individual lesions.

2.5 Image feature extraction for radiomics
analysis

Image texture features that represent tumour heterogeneity, as

determined by mathematical modelling, were extracted from the

FDG-PET images. Using these features, tumour characteristics were

analysed with the open-source and validated PORTS radiomics toolkit

as described in detail in the Supplemental Methods (Tables SI and

SII). The radiomics analysis followed the framework of the Image

Biomarkers Standardization Initiative [23].

2.6 Statistical analysis

Three prognostic models were used; two of these models were used

to combine image texture features (radiomics), clinical risk variables

and TMTV for survival analysis. The three prognostic models included:

(1) IPI alone (2) random forest plot model [24] for survival analysis

used on all variables and (3) Cox model applied to a subset of variables

selected by random forest plot model. A bootstrap with a replacement

validation approach was used [25]. The details of the Cox-proportional

model for survival analysis, and further rationale for the testing and

validation approach, variable selection, patient risk stratification, and

prognostic method comparison, are provided in the Supplemental

Methods.

3 RESULTS

3.1 Patients

For the image texture analysis, 1263 patients had evaluable base-

line PET scans, and COO data were available in a subgroup of 832

patients. Patient demographic and baseline characteristics were sim-

ilar between the total GOYA patient population (data not shown) [20],

the subgrouppopulation in thepresent analysis and theCOOsubgroup

(Table 1). ThemedianPFS follow-up timewas44.5months (range, 1–74

months), and the median OS follow-up time was 48.2 months (range,

1–74 months) for all patients. The median TMTV was 357 cm3 for all

patients and 350 cm3 for the COO subgroup.

3.2 Selection of the prognostic variables and
validation of the prognostic model

The random forest plot method identified the 10 most significant

variables associated with patient survival (Table SI). Association with

PFS and OS was subsequently confirmed using a multivariate Cox

regression analysis (Supplemental Section). Hazard ratios (HRs) from

the multivariate analysis of risk factors for PFS and OS in the total

population and COO subgroup are shown in Tables SI and SII. The

nomograms obtained using Cox regression analysis for PFS in the total

population and COO subgroup are shown in Figure S2.

In the entire patient population, for the constructed prognostic

model, the bootstrapped Brier score and c-index were 0.32 and 0.60

for PFS, and 0.44 and 0.62 for OS, respectively. In the COO subgroup,

the bootstrapped Brier score and c-index were 0.39 and 0.64 for PFS

and 0.22 and 0.66 for OS, respectively.

All the clinical and radiomics variables and TMTV were inserted

into a random forest model for survival, regression and classifica-

tion. In the entire cohort, the percentage error in describing PFS and

OS was 44.0% and 45.2%, respectively; in the COO subgroup, the
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TABLE 2 Survival probabilities at 2 years for IPI and random
forest model. Stratification into risk groups was carried out separately
for all patients and for the subgroup of patients with COOdata

IPI,

% (95%CI)

Random forest,

% (95%CI)

All patients (N= 1263)

PFS

Low risk 79 (76–82) 94 (91–96)

Intermediate risk 70 (65–75) 72 (67–76)

High risk 59 (52–67) 54 (50–60)

OS

Low risk 89 (86–91) 100 (100–100)

Intermediate risk 82 (78–86) 100 (100–100)

High risk 72 (65–78) 51 (46–56)

COO subgroup analysis (n= 832)

PFS

Low risk 80 (77–84) 88 (84–92)

Intermediate risk 70 (64–76) 86 (82–91)

High risk 58 (50–67) 45 (40–52)

OS

Low risk 88 (85–92) 91 (88–95)

Intermediate risk 81 (76–86) 93 (90–96)

High risk 69 (62–77) 65 (59–71)

Abbreviations: CI, confidence interval; COO, cell-of-origin; IPI,

International Prognostic Index; OS, overall survival; PFS, progression-free

survival.

percentage error in describing PFS and OS was 42.9% and 42.8%,

respectively.

3.3 Identification of risk groups and probability
of survival

The probability of survival at 2 years for the entire cohort and theCOO

subgroup was determined based on the three IPI risk groups (high,

high-intermediate and low/low-intermediate) alone and also using a

random forest model combining IPI, TMTV, all image texture features

and COO, by dividing the patients into three prognostic subgroups for

treatment-failure risk: low, intermediate and high (Table 2). Notably,

adding COO to the createdmodel trumped the prognostic value of IPI,

with respect to the prediction of PFS (Table SI).

The 2-year survival probability of the three predictive models (as

described in themethods section), stratified by IPI risk groups is shown

in Table SIII. Generally, probabilities predicted by the Cox regression

analysis with variable selection were similar to those predicted by the

IPI. However, survival probability in the low-risk group as predicted by

the random forest model was consistently higher than that by other

models (e.g., 2-year PFS of 94% [95% confidence interval [CI] 91–96]

vs. 79% [95% CI 76–82] for the IPI and 80% [95% CI 77–84] for the

Cox analysis). Additionally, the random forest model with COO sub-

F IGURE 1 Kaplan–Meier PFS curves for the three risk groups as
defined by (A) IPI and (B) random forest predictionmodel in all
patients. IPI, international prognostic index; PFS, progression-free
survival. Note: Dashed lines indicate the 95% confidence intervals

groups identified a more clearly defined high-risk population (45%

2-year PFS [95% CI 40%–52%]; 65% 2-year OS [95% CI 59%–71%])

than the IPI (58% 2-year PFS [95%CI 50%–67%]; 69% 2-year OS [95%

CI 62%–77%]). Kaplan–Meier curves for PFS and OS are shown in

Figures 1 and 2 for all patients stratified by low, intermediate and high

risk of treatment failure, predicted by IPI risk classification and random

forest model for all variables. Predictions for the COO subgroup are

shown in Figures 3 and 4. Kaplan–Meier curves for PFS and OS for the

corresponding Cox regression analyses are shown in the Supplemental

Section (Figures S3–S6).
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F IGURE 2 Kaplan–Meier OS curves for the three risk groups as
defined by (A) IPI and (B) random forest predictionmodel in all
patients. IPI, international prognostic index; OS, overall survival. Note:
Dashed lines indicate the 95% confidence intervals

3.4 Comparison of different prognostic models

The receiver operator characteristics (ROCs) analysis was applied to

the three distinct prognostic models. The calculated area under the

curve (AUCs) for PFS and OS are shown in Table 3. The results of the

AUC analysis were superior for the random forest model compared

with the Cox regression analysis and IPI risk classification. Notably, a

model based on TMTV alone demonstrated comparable results to the

F IGURE 3 Kaplan–Meier PFS curves for the three risk groups as
defined by (A) IPI and (B) random forest predictionmodel for the COO
subgroup. COO, cell-of-origin; IPI, international prognostic index; PFS,
progression-free survival. Note: Dashed lines indicate the 95%
confidence intervals

Cox model and IPI model but was inferior to the random forest model

(data not shown).

4 DISCUSSION

In this study, we developed a prognostic model for PFS and OS,

combining intratumour heterogeneity features and PET-derived

metrics, alongside other clinical risk factors, in previously untreated
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TABLE 3 AUC fromROC analysis using IPI, Cox, and random forest for PFS andOS

IPI,

% (95%CI)

Cox,

% (95%CI)

Random forest,

% (95%CI)

All patients (N= 1263)

PFS 0.55 (0.53–0.58) 0.63 (0.60–0.66) 0.74 (0.76–0.99)

OS 0.57 (0.54–0.60) 0.63 (0.59–0.66) 0.92 (0.91–0.94)

COO subgroup analysis (n= 832)

PFS 0.57 (0.55–0.60) 0.66 (0.61–0.69) 0.86 (0.83–0.88)

OS 0.58 (0.54–0.61) 0.71 (0.67–0.75) 0.89 (0.87–0.91)

Abbreviations: AUC, area under the curve; CI, confidence interval; COO, cell of origin; IPI, international prognostic index; OS, overall survival; PFS,

progression-free survival; ROC, receiver operator characteristics.

patients with DLBCL. Image texture features may reflect tumour

heterogeneity, allowing for identification of tumour subregions with

different phenotypes that may be associated with varying treatment

outcomes.Hence, this advancedmethodology potentially offers a pow-

erful tool for the extraction of clinically relevant prognostic informa-

tion, otherwise not readily detectable for DLBCL, which is renowned

for its phenotypical heterogeneity. We found that radiomic features,

more specifically image texture features, extracted from FDG-PET

data, predicted PFS, and in combination with other known risk factors,

improved the predictive value for PFS, when comparedwith traditional

clinical risk factors alone, in previously untreated patients with DLBCL

who received immunochemotherapy. However, individual image fea-

tures remain elusive as they do not directly correlate with biological

features that can be translated to a clinical decision-making process.

To our knowledge, this is the first study to analyse radiomics data from

a large cohort of patients with DLBCL participating in a prospective

study.

Regarding other PET-based quantitative parameters, previous

studies have investigated the utility of TMTV as a predictor of survival

in patients with DLBCL treated with R-CHOP [26]. While data are

mainly retrospective and utilised variable segmentation thresholds,

one of the radiomic features, TMTV, has been consistently reported

to have prognostic value; patients with a high TMTV are expected

to have lower PFS and OS compared with those with a low TMTV.

The present analysis indicated a similar effect of TMTV. A review of

seven retrospective studies in patients with DLBCL (n= 703) [27] also

revealed a significant prognostic value of TMTV for PFS (HR = 2.18;

p= 0.000); 3-year OS was unfavourably impacted by high TMTV (odds

ratio, 5.40). Different risk scoring systems impacted the homogeneity

of the analysis; moreover, each study varied widely in the optimal

cut-off values for survival prediction, with cut-off values ranging from

11 to 30 forΔSUVmax, and 220ml to 550ml forMTV. The small sample

size may have influenced the reliability of these results.

In a previous analysis of the GOYA trial, baseline TMTV was shown

to be an independent predictor of PFS (HR = 2.21, p < 0.0001);

however, SUVmax was not a reliable predictor of PFS (p = 0.38)

[28]. Our findings are consistent with this previous analysis, having

demonstrated that standard PET-derived metrics are prognostic for

survival. The previous analysis of the GOYA trial also investigated

patients with available COO data (n = 880) [28]. TMTV was identified

as beingmore prognostic in patients with ABC and unclassified DLBCL

subtypes (HR = 3.08, p = 0.0012) versus those with GCB DLBCL

(HR = 2.30, p = 0.0176). This suggests that within this population,

there is differentiation in outcomes, even in the higher-risk group,

that can be identified through prognostic markers such as TMTV.

Interestingly, in our study, adding COO to this model overcame the

prognostic value of IPI with respect to prediction of PFS. Such insights

could be used as a factor for improvedpatientmanagement algorithms.

In this study, we prioritised the investigation of the predictive value

of image texture features as a measure of tumour heterogeneity.

Previous studies have indicated an association between radiomics

features and genetics in lymphoma, and it has been hypothesized

that tumour heterogeneity, as described at the cellular level, can be

partly captured through radiomics analysis, particularly, PET-based

image textural analysis [29–31]. One of the first works investigating

the prognostic value of radiomics was conducted in a small, mixed

population of 57 patients with Hodgkin and Non-Hodgkin lymphoma

[32]. The study found that the addition of radiomics features to TMTV

and histology increased AUC in the early response evaluation. In

another study of patients with primary mediastinal B-cell lymphoma

(n = 103) enrolled in a prospective multicentre clinical trial (IELSG26),

AUC cumulative SUV-volume histograms discriminated between two

groups of patients with different prognoses [33]. In the present study,

the use of several image texture features was found to be prognostic

for PFS andOS in patients with DLBCL.

While studies in patients with DLBCL are scarce and often

retrospective, baseline FDG-PET heterogeneity evaluated by

radiomics features has been found to be a promising predictor of

objective response at end-of-treatment with PET evaluated using the

Lugano classification [34], to provide a detailed assessment of bone

marrow involvement [35], and to increase the predictive power of

TMTV [36]. More recently, a retrospective cohort of 132 patients

with DLBCL found that multivariable analysis, including IPI and TMTV,

image texture features (long-zone high-grey level emphasis) was

the only independent predictor of 2-year event-free survival [19].

Similarly, a radiomics-based model integrating baseline FDG-PET

radiomics signatures and clinical factors yielded good predictive

values for survival of 110 patients with nasal-type extranodal natural
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F IGURE 4 Kaplan–Meier OS curves for the three risk groups as
defined by (A) IPI and (B) random forest predictionmodel for the COO
subgroup. COO, cell-of-origin; IPI, International Prognostic Index; OS,
overall survival. Note: Dashed lines indicate the 95% confidence
intervals

killer/T-cell lymphoma [37]. Nonetheless, superiority for the radiomics

model could not be demonstrated when compared with traditional

semi-quantitative imaging features including TMTV and SUVs.

The quality of published radiomics studies in lymphoma has been

variable, which was also confirmed in a recent systematic review [38].

Most studies to date have had insufficient samples for analysis [35,36],

patients undergoing mixed treatments, limited statistical analysis [35]

and othermethodological shortcomings [36] that limit the applicability

of results. In a study by Cotterau et al [18]. Four dissemination features

were investigated in 95 patients enrolled in the LNH073B trial with

DLBCL, two groups with better PFS and OS separation with respect

to TMTV were discerned using one of the radiomics features, Dmax

(the maximum distance among lesions). Combining TMTV and Dmax

enabled patients with a poor prognosis to be identified by physicians

so that they may consider changes to their treatment. Indeed, patients

with high baseline MTV (>394 cm3) and high Dmax (>58 cm) had a

poor prognosis. In the present study, survival predicted using the Cox

regression analysis generally appeared similar to that predicted by

IPI scores. However, survival rates in the high-risk group predicted by

random forest model were consistently lower than those predicted by

IPI. Survival probabilities generated using IPI appear more similar to

those predicted using the Cox regression analysis compared with the

random forest model.

In summary, in the present study we generated a prognostic model

for PFS and OS in previously untreated patients with DLBCL using

intratumour heterogeneity features derived from radiomics analy-

ses of PET scans, as well as PET-derived metrics and other clinical

risk factors. For both the full cohort and COO subgroups, the Cox

model using random survival forest models for variable selection was

significantly more prognostic than IPI for PFS and OS. PET-derived

image texture features, in combination with more common clinical risk

factors, were able to predict survival probability for untreated DLBCL

patients with good precision. The results of this study strongly suggest

that a PET-based prognostic model, with further validation, may help

to identify patients at diagnosis who are at greater risk of treatment

failures with standard therapy (R-CHOP). The individual treatment

strategy for these patients could utilise this prognostic model for per-

sonalised, novel treatment approaches. A variety of challenges remain

to be addressed in the field of radiomics, including facilitation and

standardisation of all stages of the workflow, development of a more

comprehensible algorithm to provide an improved clinical model, and

in commonwith all quantitative metrics, labour intensity. In the future,

it would seem likely that artificial intelligence and machine-learning

methodswill play a larger part in strengthening radiomics research and

accelerating clinical translation, providing more robust and practical

workflows that support the use of radiomics as a clinical endpoint.
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