
11 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Key norisoprenoid compounds in wines from early-harvested grapes in view of climate change

Published version:

DOI:10.1016/j.foodchem.2018.06.069

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1670924 since 2022-04-04T16:49:35Z



1 

Aroma evaluation of wines from early-harvested grapes in view of climate change 1 

Andriani Asproudi a, Alessandra Ferrandinob, Federica Bonelloa, Enrico Vaudanoa, Matteo Pollonb, Maurizio 2 

Petrozziello*a 3 

aConsiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (Italy) – Centro di ricerca Viticoltura 4 

ed Enologia - CREA – VE, via P. Micca 35, Asti, Italy. 5 

bDipartimento di Scienze Agrarie, Forestali e Alimentari – Università di Torino, Largo Braccini 2, 10095 6 

Grugliasco (TO), Italy  7 

*Corresponding Author 8 

Email: maurizio.petrozziello@crea.gov.it 9 

Phone:+39 0141433811 10 

 11 

Abstract 12 

In view of climate change, the scheduling of an early harvest may be an agronomic option to limit wine alcohol 13 

provided that, a satisfactory content of secondary metabolites is ensured in grapes. In order to better understand 14 

the link between grape ripening, seasonal trend and wine aroma, the aromatic expression of Barbera and Pinot 15 

Noir wines produced with early-harvested grapes was assessed. Major attention was focused on norisoprenoids 16 

during both alcoholic fermentation and after three months of storage. At the end of fermentation, the highest 17 

-damascenone content was detected in wines obtained from less ripe grapes, then its content increased 18 

significantly after 3 months of storage. Inversely, the levels of -ionone decreased significantly during the 19 

same period. The reduction of wine alcohol assessed by harvesting earlier especially for Barbera, was 20 

associated to optimal aromatic levels as well as to good technological parameters.  21 
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1.  Introduction 24 

Global warming and related climate change, mainly linked to anthropogenic factors, represent one of the most 25 

important world issue. The consequences of these changes involve agriculture and have considerable 26 

consequences both from a social and economic point of view (Barros, V. R., Field, C. B., Dokke, D. J., 27 

Mastrandrea, M. D., Mach, K. J., Bilir, T. E. et al., 2014). Viticulture is one of the agricultural sector more 28 

susceptible to these changes mainly due to its strict interaction with environment, soil, human choices 29 

addressed to drive viticultural techniques, and tradition. If global change could exert its influence on, for 30 

instance, cultivar distribution, the well-known and well-established combination variety-environment could 31 

fail and many other aspects, such as cultivar distribution, phenological phases, vine productivity, vine 32 

pathologies could be influenced (Palliotti et al 2014; Sacchelli, Fabbrizzi, & Menghini, 2016).  33 

Numerous studies have pointed out that during the last decades there has been an advance of the phenological 34 

phases (Webb et al., 2012; Webb, Whetton, & Barlow, 2007), in particular flowering and veraison, compared 35 

to what was considered "normal" for the vine and for a specific area (van Leeuwen & Darriet, 2016). The 36 

increase in average temperatures of summer months as major consequence of climate change, as well as the 37 

different distribution of rainfall during the ripening phase, led both to a higher concentration of sugar and to a 38 

general change of the acidic profile of grapes, due, in particular, to the reduction of malic acid concentration. 39 

Microbiologically, the must pH increase can facilitate the development of bacterial contamination in wine, 40 

whereas the high sugar content may induce stuck fermentations or high production of unwanted by-products 41 

such as acetic acid and glycerol (De Orduna, 2010).  42 

Furthermore, in several viticulture areas, ripening occurs during the hottest part of the season, when both color 43 

and aroma profile can be adversely affected (Mori et al., 2007, Asproudi et. al., 2016). At high temperatures, 44 

vine metabolism is inhibited, leading to a lower accumulation of polyphenols and a lack of synchrony among 45 

the timing of sugar/acid balance and polyphenolic optimum, especially in Mediterranean conditions (Mori et 46 

al 2007; Tomasi, Jones, Giust, Lovat, & Gaiotti, 2011). Moreover, the improvement of vineyard management 47 
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(clonal choice, rootstocks, agronomic practices) together with the viticulturists' and political choices, oriented 48 

to reduce yield per vine and to increase quality (sugars and polyphenols), combined with the series of 49 

anomalous and warm summers, further contributed to increase the sugar content in grapes.  50 

The excessive alcohol content of wines, resulting from exceptionally sugary grapes, has become an unwelcome 51 

feature for the consumers. Nowadays the consumer orientation is directed to drinks with a moderate level of 52 

alcohol, as a result both of health concerns and of significant changes in people preferences, mainly addressed 53 

to more fresh and fruity wines (Caballero & Segura, 2017). From the sensorial point of view, the high alcohol 54 

wine content has numerous organoleptic consequences such as the decrease in freshness and a change in the 55 

perception of the aromatic bouquet. In fact, ethanol may enhance the perception of sweetness and bitterness 56 

while reducing that of acid, saltiness and sourness. Moreover, ethanol influences headspace partitioning of 57 

volatiles (Robinson et al., 2009) decreasing volatility of the aromatic compounds (Le Berre, Atanasova, 58 

Langlois, Etiévant, & Thomas-Danguin, 2007). Thus, climate-change related variations of grape ripeness can 59 

cause modification in the aromatic perception of wines, directly, with the formation of compounds 60 

characterized by overripe fruit notes, the reduction of vegetal, fresh and flowery notes (Pons et al., 2017) or 61 

indirectly, through the sensitive modification of their aromatic profile, due to the increase in alcohol content.  62 

Nowadays, one of the major challenges in oenology and viticulture is how to mitigate and respond to the effects 63 

of climate change (Mozell & Thach, 2014), in order to preserve the specific and distinctive olfactory and 64 

gustatory notes that link wines to their territory of origin. In this regard, the early harvest of grapes to limit 65 

wine alcohol level may be an alternative to the use of subtractive cellar technologies, often invasive and which 66 

may cause compositional alterations, penalizing the aromatic quality of the product. Previous studies have 67 

doubted that, from the aromatic point of view, wines produced with early-harvested grapes could be endowed 68 

with a high acidity and an excessive content of C6 compounds (six carbon atom aldehydes and alcohols, known 69 

as leaf alcohols), to which vegetal notes are attributed (Longo et al., 2017). Nevertheless, the high sugar content 70 

of the grapes recorded during the last vintages has made early-harvest of renewed interest, especially for the 71 

warmer areas, provided that early-harvested grapes show an optimal balance between the different qualitative 72 

components of the berry, especially volatile and polyphenol concentrations and profiles.  73 
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To the authors’ knowledge, little investigation on key aroma compounds such as norisoprenoids and their 74 

content in wines produced from sequential grape harvests has been reported and only some research linked 75 

technological and aromatic maturity of the grapes to the aroma of finished wines. Norisoprenoids derive from 76 

carotenoid degradation through both non-specific and enzymatic mechanisms, involving Carotenoid Cleavage 77 

Dioxygenases (CCDs) whose expression is strictly correlated to climatic and agronomic parameters (Chen et 78 

al., 2017). The most interesting norisoprenoids from the aromatic point of view are megastigmane, notably -79 

ionone with typical violet notes and -damascenone, characterized by notes of quince and flowers (Mendes-80 

Pinto, 2009). Especially -damascenone is a strong flavor found in many foods and beverages (Pineau, Barbe, 81 

Van Leeuwen, & Dubourdieu, 2007). It has a complex aroma, reminiscent of honey, tropical fruit, quince, 82 

apple that is differently expressed depending on matrix and concentration. Some researchers suggested that -83 

damascenone also has an indirect impact on wine aroma by enhancing fruity notes of ethyl esters (Escudero, 84 

Campo, Fariña, Cacho, & Ferreira, 2007). Clarifying the relationship between aromatic precursors in grapes 85 

(carotenoids) and norisoprenoids in wines, could be relevant to understand the phenomena that can influence 86 

wine quality as the complexity of the transformations that control these phenomena has provided no clear 87 

answers, yet. Authors' previous research showed that in wines obtained from grapes with high total acidity, the 88 

concentration of -damascenone was higher than that of wines produced with grapes harvested when fully ripe 89 

(Petrozziello M., 2012). More information is needed to define the optimum harvest time coupling together 90 

strategies able to enhance the wine aroma and meeting contemporarily the demand for wines with both reduced 91 

alcohol content and balanced organoleptic properties. 92 

To this purpose, the effect of different grape ripening levels on the aroma of wines made under the same 93 

fermentation conditions was investigated, using two non-floral varieties, the international Pinot noir, and 94 

Barbera an important Italian variety grown in the same vineyard in Piedmont.  95 

Pinot noir is a non-floral international grape variety widely planted around the world mostly in cool climate 96 

areas. Berries generally accumulate low amounts of phenolic compounds, including anthocyanins whose 97 

profile is characterized by the total absence of acylated-derivatives. When young, wines made from Pinot Noir 98 

tend to have red-fruit aromas, such as cherries, raspberries and strawberries and overall Pinot noir wine 99 
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characteristics significantly vary with grape maturity (Fang & Qian, 2005, 2006; Miranda-Lopez, Libbey, 100 

Watson, & Mc Daniel, 1992). Barbera is an Italian cultivar producing berries with high titratable acidity that, 101 

in the past, made its cultivation a valued planting in warm climate regions where acidification was usually 102 

needed. Traditionally, some viticulturists used to delay harvest, if the seasonal climatic conditions were 103 

favorable, to increase sugar levels to balance Barbera wine acidity, despite a natural predisposition to a high 104 

sugar accumulation. From the aromatic point of view previous studies pointed out that Barbera grapes were 105 

characterized by important amounts of volatiles, including terpenes and -ionone (Carlomagno et al., 2012).  106 

In this work main technological parameters of Pinot noir and Barbera grapes harvested at three different 107 

ripening stages (-15d, -7d and 0d, indicating the days before full-ripeness) were assessed, together with 108 

important key aromas of must and wines. Attention was focused on -damascenone, -ionone and -ionone 109 

which were quantified by stable isotope dilution assay (SIDA) and HS-SPME-GCMS quantification, whereas 110 

the most important free fermentative aromatic compounds were extracted and quantified respectively by Solid 111 

phase Extraction Gas chromatography coupled with mass spectrometry (SPE/GC-MS).  112 

2. Materials and methods 113 

2.1 Vineyard site 114 

 Grape samples of cv Pinot noir and Barbera were collected at the DISAFA (Università degli Studi di Torino) 115 

experimental vineyard located in Grugliasco (45°03’N, 7°35’E; in Piedmont, Italy), in 2015. Vine density was 116 

4400 vines/ha (0.90 m x 2.50 m), vines were vertical shoot positioned (VSP) and trained to the Guyot pruning 117 

system. The vineyard is located at 293 m above s.l.in a plain area and vines were planted in 2008; Pinot noir 118 

plants were grafted onto 1103P while Barbera plants onto SO4. The vineyard was organized into randomized 119 

blocks of 10 plants each. Three blocks for each variety were used as biological replicates (namely: A, B and 120 

C). Starting from bud-burst, the main phenological phases of the plant were observed (flowering, veraison and 121 

ripening). The first sampling of Pinot Noir was carried out at veraison (50 % of colored berries) and grapes 122 

were then sampled again on the 13th, 19th and 25th of August 2015. Barbera was firstly sampled at veraison and 123 

then harvested sequentially on the 25th, 31st of August and on the 7th September 2015. 124 
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2.2 Grape sampling 125 

Approximately 30 clusters for each biological replicate (A, B and C). were harvested manually at each 126 

sampling date (veraison, and 3 ripening levels). For each replicate, 500 berries were sampled for the analysis 127 

of the main chemico-physical parameters namely, berry weight, pH, titratable acidity (TA), total soluble solids 128 

(TSS). Remaining berries were opportunely prepared to obtain grape extracts for polyphenol, anthocyanin and 129 

total flavonoid measurements; two further replicates of 50 g of grapes were stored in the dark at -80°C for 130 

carotenoid compound assessment.  131 

2.3 Microvinifications 132 

Vinification trials at laboratory scale were carried out in triplicate for each maturation point for a total of 9 133 

fermentations per variety. Grapes (about 2 Kg per replica) were manually destemmed, crushed and placed into 134 

three liters Erlenmeyer flask. Inoculum (5 x 106 cells g-1) was done using Saccharomyces cerevisiae yeast 135 

strain ISE 167 belonging to CREA-VE culture collection after a preventive growth in YPG (Yeast Peptone 136 

Glucose) medium. Fermentations were performed at 25 °C, and two punching per day were carried out to 137 

simulate a standard red vinification. Fermentations were followed by daily monitoring of the flasks weight 138 

loss, indirectly calculating the consumed sugar. Sampling was carried out at crushing (day 0), 50% of 139 

fermented sugars (approximately day 3 for all trials) and at the end of fermentation (day 8). pH, AT, TSS and 140 

polyphenolic index measurements were assessed at crushing, at half time and at the end of the fermentation. 141 

Final alcohol content was determined for each wine. The measurement of TSS, total acidity, pH, of grape 142 

musts as well as the analysis of reducing sugars at the end of alcoholic fermentation, density, total dry extract 143 

and ethanol in wines were carried out according to official EC methods (Commission Regulation No. 2676/90 144 

determining Community methods for the analysis of wines, 1990) .The evolution of norisoprenoid compounds 145 

was thoroughly investigated during fermentation, namely the determination of -ionone -ionone and -146 

damascenone has been carried out at crushing, at mid-fermentation, at the end of alcoholic fermentation (FFA) 147 

and finally after 3 months of wine storage in cellar at 4°C. All analysis were carried out twice. 148 

2.4  Meteorological assessments 149 
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The vineyard had meterological station equipped with a thermohygrometer and a rain gauge, managed by the 150 

Agrometerological Serivice of the Piedmont Region. Part of the data were found on-line from the database of 151 

the Department of Physics of the University of Turin-DF station (45° 03′ N , 7°40 E, 254 above s.l, Turin). 152 

2.5 Grape, must and wine determinations 153 

2.5.1 Extraction and determination of polyphenols in grapes, musts and wines 154 

Extraction of the polyphenolic fraction from the grapes was performed according to Di Stefano (Di Stefano & 155 

Cravero, 1991). Briefly, 20 frozen berries were peeled, and the skins were placed in 50 mL of tartaric buffer 156 

at pH 3.20 (5 g of tartaric acid, 22 mL of 1N NaOH, 120 mL of ethanol and 2 g of sodium metabisulphite 157 

brought up to 1L with distilled water). After 4 hours, the skins were homogenized and collected in a centrifuge 158 

tube. After centrifugation (4000 rpm for 15 min), the supernatant was collected in a 100 mL flask. The pellet 159 

was added of few mL of buffer and centrifuged for a second time, the supernatant collected in the same flask. 160 

Then the volume was adjusted up to 100 mL using the tartaric buffer; samples were stored in -20°C until 161 

analysis were carried out.  162 

2.5.2 Total polyphenols index (TPI)  163 

Total polyphenol content was determined using the Folin-Ciocalteau reagent (Di Stefano, Cravero, & Gentilini, 164 

1989). Briefly, must or grape extract obtained as described above, were previously acidified with H2SO4 and 165 

passed through a 500 mg C18 cartridge to retain the compounds of interest that were successively eluted with 166 

3 mL of methanol in a 20 mL flask. As to wines, due to the lower SO2 content respect to berry extracts, no 167 

cartridge passage was required. Total polyphenols were determined by measuring the absorbance of the extract 168 

at 700 nm and expressed as mg equivalent of (+)-cathechin per kg of berries as to grapes and per L of wine. 169 

2.5.3 Total antocyanin and flavonoid indexes (TAI and TFI)  170 

Determination of flavonoids and anthocyanins was carried out spectrophotometrically as described by Di 171 

Stefano and coworkers (Di Stefano et al., 1989). The grape extracts or musts were filtered onto 0.45 μm 172 

polypropylene membrane, then opportunely diluted with “hydrochloric ethanol” a mixture of ethanol/H2O/HCl 173 

37% (70: 30: 1). Subsequently, the sample absorbance spectrum was acquired from 230 to 700 nm, using a 10 174 
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mm path step cuvette. Total flavonoid index was determined through graphical correction applied to UV peak 175 

with a maximum of 280 nm and expressed as mg equivalent of (+)-cathechin per kg of berries. Total 176 

anthocyanin index was determined by measuring the absorbance of the extract at 540 nm and expressed as mg 177 

equivalent of malvidin-3-O-glucoside chloride per kg of berries. 178 

2.5.4 Extraction and determination of grape carotenoids 179 

Carotenoid extraction procedure was adapted from Crupi and coworkers (Crupi, Milella, & Antonacci, 2010). 180 

Approximately 50 g of berries, without seeds, added of BHA (Butylated hydroxyanisole) were homogenized 181 

for 2 min in the presence of magnesium carbonate basic. The homogenate was spiked with 200 L of 180 mg 182 

L-1 of β-apo-8-carotenal (Fluka, Porto, Portugal, ref. 10810) as internal standard and diluted with 40 mL of 183 

ultrapure (UP) water obtained from a MilliQ purification system (Millipore Bedford, MA, USA). A liquid-184 

liquid extraction was carried out with ether/hexane (1:1, v/v), repeated three times for 30 min each. The 185 

resulting upper layer was separated each time, thus the final combined extract was concentrated to dryness at 186 

20° C (Laborota 4001, Heidolph instruments) and resuspended in 1 mL of acetone/hexane (1:1, v/v) for HPLC 187 

determination. Each sample was injected in duplicate. Sample handling, homogenization and extraction were 188 

carried out on ice under dim yellow light to minimize light-induced isomerization and oxidation of carotenoids. 189 

An Agilent Model 1200 quaternary solvent system, equipped with a quaternary pump solvent delivery and an 190 

UV-visible photodiode array detector was used (Agilent Technologies, Santa Clara, CA, US). The absorption 191 

spectra were recorded at 447 nm and the sample injection volume was 20L. The column was an YMC30, 250 192 

x 4,6 mm, with a pre-column YMC pack C30 (3 x 20mm, 5 m). Mobile phase was performed with three 193 

different solvents as described by Crupi and coworkers (Crupi et. al 2010). The flow was set at 0.35 mL min-194 

1. The analytical gradient started with 40%A, 60%B, and 0%C and then linear gradients as follows: to 20% A, 195 

80% B, 0%C in 5 min; to 4%A, 81%B, 15%C in 10 min; to 45%A, 11%B, 85%C in 60 min. Acquisition time 196 

was 70 min and equilibration time was 10 min.  197 

The most relevant carotenoids were identified by comparison of spectra with those of commercially available 198 

standards, violaxanthin, lutein epoxide, neoxanthin from CaroteNature (Lupsingen, Switzerland) and -199 
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carotene and lutein from Extrasynthèses (Lyon, Genay, France), matching also different information such as 200 

position of absorption maxima (max) and the degree of vibration fine structure (% III/II) (Crupi et al., 2010). 201 

Quantification of individual compounds was done by calibration curves using the respective standards. The 202 

results were expressed as mg per kilogram of grape berries.  203 

2.5.5 Determination of -damascenone, -ionone and -ionone  204 

The chemical standards for this analysis were obtained from Sigma (Sigma-Aldrich, St. Louis, MO, USA) at 205 

the maximum purity grade available, except β-damascenone, which was generously supplied by Firmenich 206 

(Genève, Switzerland). -damascenone -ionone and -ionone were quantified in musts and wines using a 207 

sTable isotope dilution assay (SIDA)_HS-SPME/GC-MS method as described by Petrozziello and co-workers 208 

(Petrozziello, Borsa, Guaita, Gerbi, & Bosso, 2012). Briefly, a SPME fibre (CAR/PDMS/DVB da 30/50 μm, 209 

Supelco, Bellefonte, PA, USA). was conditioned daily before use for 30’ at 270 °C. For each analysis, 10 mL 210 

of sample (must or wine) was placed into a 20 mL vial, added of 3 g of ammonium sulfate. Four µL of internal 211 

standard containing [2H4]-β-damascenone (final concentration: 2.36 µg L-1), [2H3]-β-ionone (final 212 

concentration: 11.8 µg L-1) and [2H3]-α-ionone (final concentration: 24.3 µg L-1). The vial was capped with a 213 

crimp seal with a PTFE/silicone septum and the sample was left to equilibrate in agitation for at least 15 min 214 

at 40 °C before the analysis. The extraction time was 1h at 40°C and then the compounds were thermo-desorbed 215 

from the fiber for 3 min into the GC injector held at 250 °C. The analyses were performed in splitless mode, 216 

and the purge valve was opened after 3 min. Finally, to eliminate the carryover phenomena, the fiber was 217 

cleaned at 250 °C in the needle heater device for 10 min after each analysis and for an additional 3 min time 218 

before the following injection. All the operations were automated by a multipurpose sampler MPS 2XL 219 

(Gerstel Applications, Brielle, The Netherlands).  220 

GC-MS analyses were performed with a 6980 Agilent gas chromatograph interfaced to a mass selective 221 

detector 5973N (Agilent Technologies, Palo Alto, CA,USA). A HP-Innowax column, polyethylene glycol, 30 222 

m x 0.25 mm x 0.25 µm (J&W Scientific, Folsom, CA, USA) was used. Helium was the carrier gas and the 223 

column flow was maintained at 1.2 mL min -1. Transfer line was set at 230 °C. The oven temperature was held 224 
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at 45 °C for 2 min, raised to 80°C at a rate of 30 °C min -1, then raised from 80 to 230 °C at a rate of 5 °C min 225 

-1 and, finally was held at 230 °C for 17 min. The ionization voltage was at 70 eV, the quadrupole was set at 226 

230 °C and the source at 250 °C. Mass spectra were acquired in Selective Ion Monitoring (SIM) mode using 227 

a dwell time of 100 µs. Identification of these megastigmane compounds was performed by comparing 228 

recorded mass spectra and retention time with those of authentic standards. β-damascenone standard was 229 

kindly offered by Firmenich, (Swizerland). Quantifying ions were 190 and 194 m/z for β-damascenone and 230 

[2H4]-β-damascenone respectively; 136 and 139 m/z for α-ionone and [2H3]-α-ionone, respectively and 177 231 

and 180 m/z for β-ionone and [2H3]-β-ionone, respectively, using a calibration curve for each compound. 232 

2.5.6 Extraction and determination of free volatiles in wines:  233 

150 mL of wine, added of 150 µL of internal standard (1-heptanol, 73.43 mg L-1), were passed through a 5 g 234 

C18-RP cartridge (Biotage AB, Uppsala, Sweden), previously activated with 20 mL of methanol and 235 

equilibrated with 50 mL of UP water. After washing the cartridge with 50 mL of water, free varietal compounds 236 

and fermentative compounds were recovered with 30 mL of dichloromethane. Glycoside compounds were 237 

recovered with 25 mL of methanol (Sigma Aldrich Co., St. Louis, MO, USA). Dicloromethane was dried using 238 

anhydrous Na2SO4 and evaporated to about 200L under a gentle stream of nitrogen; an aliquot of 1 µL was 239 

injected into the GC-MS.  240 

The hydrolysis of glycosides by exogenous enzyme was carried out accordingly to Cabrita and collaborators 241 

(Cabrita, Costa Freitas, Laureano, Borsa, & Di Stefano, 2007). Briefly, the methanolic phase was evaporated 242 

to dryness under vacuum and the residue dissolved in 5 mL of citrate-phosphate buffer (pH 5.0, 51.5 % v/v of 243 

0.2 M sodium phosphate and 48.5 % v/v of 0.1 M citric acid). 100 mg of polyvinylpolypyrrolidone (PVPP) 244 

was added and then the enzymatic hydrolysis was carried out with 0.2 mL of Pectinol (Genencor, Palo Alto , 245 

CA, USA) with glycosidase-side activities at 40 °C for 24 h. After hydrolysis, 0.1 mL of 1-octanol as internal 246 

standard was added and the hydrolyzed extract was passed through a 1 g C18-RP cartridge (Biotage AB, 247 

Uppsala, Sweden) to isolate the aglycons. The free-released compounds were eluted with 12 mL of 248 

dichloromethane. The organic layer was dried using anhydrous Na2SO4, and reduced to a small volume (about 249 
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500 µL) under a gentle stream of nitrogen at room temperature. The analysis of the aglycons was carried out 250 

by GC-MS. Two replicates of all samples were analyzed. 251 

All compounds were analyzed by GC-MS using an Agilent 7890A GC, equipped with an Agilent 5975C Mass 252 

Selective triple Axis Detector. The samples (1μL) were manually injected at 250 °C, in splitless mode. The 253 

column was a Zebron ZB-WAX column (30 m, 0.25 mm i.d., 0.25 μm film thickness; Phenomenex, Torrance, 254 

Calif., U.S.A.). The oven temperature was set at 45 °C for 2 min, then raised to 60 °C at a rate of 30 °C min-1, 255 

from 60 to 230 °C at a rate of 2 °C min-1, and held at 230 °C for 20 min. The carrier gas was helium with a 256 

constant flow of 1 mL min-1. The transfer line was set at 230 °C. The ionization voltage was 70 eV, the 257 

quadrupole was set at 230 °C and the source at 250 °C. The acquisition of mass spectra for the analysis of 258 

compounds was carried out in total ion current mode (TIC) and a 29-300 m/z range was recorded. Identification 259 

of volatile compounds was performed by comparing recorded mass spectra with those of the WILEY275 260 

database and retention index with those of authentic standards, if available, or by comparison with the gas 261 

chromatographic retention index LRI (Bianchi, Careri, Mangia, & Musci, 2007) and with the mass 262 

spectrometric data reported in literature. The semi-quantitative analysis was carried out by comparing the areas 263 

of individual chromatographic peaks with that of the internal standard. 264 

 265 

 266 

2.6 Statistical analysis 267 

Data from chemico-physical analyses were statistically elaborated using the software SPSS Windows version 268 

15.0 (SPSS Inc., Chicago, IL, USA), and XLstat (XLSTAT 2017: Data Analysis and Statistical Solution for 269 

Microsoft Excel. Addinsoft, Paris, France, 2017). Both for Barbera and Pinot noir, the evolution study of C13-270 

norisoprenoids during the grape maturation, the fermentation process and the interaction between these two 271 

factors were treated with a linear mixed effect regression model (lme) performed with R 3.4.3 (R Foundation 272 

for Statistical Computing, Vienna, Austria). Linear mixed effects model was choice in order to manage the 273 

random factors of the analytical design and the fermentation repeated measures. Each of the three vineyard 274 
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rows (A, B, C) and the three fermentation replications were included in the model as random factors. In case 275 

of lme ANOVA (p-value < 0.05) was calculated and significant differences among means were analyzed with 276 

least mean square with Bonferroni’s correction. 277 

3. Results and Discussion 278 

3.1 Climatic trend 2015 vintage 279 

Main meteorological conditions of 2015 are shown in Table 1. A mild winter characterized the season; this 280 

led, early in the season, to the sum of temperatures necessary to the vine to bud-burst and to a general advance 281 

of the phenological phases that was maintained throughout the entire season. The month of June was 282 

particularly rainy either as frequency of rainy days and as mm of rainfalls. Because of these peculiar climatic 283 

conditions (mild winter and water availability in June), veraison was much anticipated and it happened on July 284 

the 23rd and the 27th in Pinot noir and Barbera, respectively. Grape technological ripening was set to about 21 285 

°Brix for Pinot noir and to about 24 °Brix for Barbera, on the basis of average ripening level used for the two 286 

varieties in the cultivation area (Piedmont, North-West Italy). As a consequence, the sampling carried on the 287 

13th of August corresponded to 15 days before full ripening for Pinot noir (early-ripening grapevine cultivar), 288 

whereas for Barbera the sampling carried on the 25th of August corresponded to 15 days before full ripening. 289 

Samplings performed on the 19th and 31st of August, represented harvests at seven days (-7d) before full 290 

ripeness, respectively for Pinot noir and Barbera grapes.  291 

Table 1 292 

3.2 Chemical-physical characteristics of grapes  293 

A relevant increase of berry weight for both varieties was noticed from veraison until the first sampling of the 294 

ripening period. Berry weight of Pinot Noir grapes increased constantly until the last sampling date (August, 295 

the 25th), vice versa Barbera berry weights increased earlier and since the 25th of August (15 days prior to full 296 

ripeness) they did not vary anymore. At full ripeness, as expected, Pinot noir grapes were about 60% lighter 297 

berries than Barbera ones. (Table 2). 298 
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Pinot noir grape TSS did not vary from the first to the second sampling and it increased slightly at full ripeness. 299 

Pinot noir TA decreased since the second sampling and it was almost half respect to that measured in Barbera 300 

berries. Berry pH was consequently higher in Pinot noir respect to Barbera but no major differences were 301 

detected among harvest dates, regardless the cultivar. The constant and linear increase of TSS during the last 302 

stage of ripening in Barbera allowed to obtain grapes that differed of about 2 degrees °Brix at each sampling 303 

date (-15 d, -7 d and full ripeness). TA values above 13.1 g L-1 were reached in the first sampling (-15 d) and 304 

slowly decreased afterwards, maintaining, however, high levels until full ripeness (Table 2).  305 

Table 2 306 

3.3 Trend of the polyphenolic component during the last stages of ripening 307 

Table 2 also reports the changes in the main parameters related to the polyphenolic composition of Pinot and 308 

Barbera grapes during maturation. The accumulation of polyphenols in the berries followed a different trend 309 

in the two varieties: in Pinot noir grapes a progressive decrease in the total polyphenol index and an increase 310 

in the colored fraction was observed from veraison to the first sampling (-15 d) with a substantial constant 311 

trend of the total flavonoid index. As to all measured indices, no relevant differences were noticed during the 312 

last stages of ripening (-15d, -7d, and full ripeness) in Pinot noir grapes. In Barbera grapes there was a 313 

progressive increase of total polyphenols and anthocyanins and the total anthocyanin index (TAI) reached 314 

satisfactory values already 7 days before the theoretical and scheduled harvest (full ripeness). On average, the 315 

total polyphenol index of Barbera grapes was lower than that of Pinot for the first two samplings. 316 

The same spectrophotometric indices, but referred to the single berry (data not reported), showed for Barbera, 317 

a peak of accumulation coinciding with the second sampling followed by a plateau phase thereafter. For Pinot 318 

noir, when expressing data on a per berry basis, the highest values of total anthocyanin and flavonoid indices 319 

were observed at the third sampling date while the total polyphenol index remained almost constant all along 320 

the considered harvesting period.  321 

3.4 Trend of carotenoids during the last stages of ripening 322 
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Pinot noir. According to literature, -carotene and lutein contents in Pinot noir grapes tended to decrease 323 

markedly within veraison, whereas violaxanthin showed a short period of accumulation before veraison Lutein, 324 

β-carotene, and neoxanthin continued to decrease during berry development until harvest. Small differences 325 

as regards neoxanthin in the last day of ripening were highlighted (Yuan and Qian, 2016). Our results showed 326 

an important degradation of lutein from veraison to the first harvest (-15d) without any differences afterwards. 327 

Similar levels of carotene were observed during ripening and a slight decrease at the last sampling. As 328 

regards violaxanthin and neoxanthin a decrease from veraison until the first sampling time was noticed, but no 329 

notable differences were detected, afterwards. The lutein/ßcarotene ratio in Pinot noir grapes was found to 330 

be higher than one (Table 2).  331 

Barbera. A previous research, concerning the content in carotenoid compounds of Barbera during berry 332 

development (Giovanelli and Brenna 2007), showed that lutein concentration followed a discontinuous and 333 

fluctuating trend, whereas the content in -carotene tended to decrease gradually. The data reported here (Table 334 

2) showed for Barbera grapes a lutein concentration decrease from veraison until the first sampling (-15 d) and 335 

a slight reduction afterwards; no variations over the considered period were noticed for -carotene. The ratio 336 

lutein/-carotene in Barbera grapes was lower than 1 at full ripeness similarly to Giovannelli and Brenna 337 

(2007). However, this ratio was found to be dependent on the variety: in fact, it was found to be higher than 1 338 

in Pinot Noir, whereas in other varieties these two carotenoids showed similar concentrations or, vice versa, 339 

-carotene concentration was higher than that of lutein, resulting in ratio lower than 1 (Bunea et al., 2012).  340 

The concentration of minor xanthophylls, determined for the first time in Barbera grapes, had heterogeneous 341 

behaviors depending on the compound. Violaxanthin and lutein-5,6-epoxide followed a similar trend, that 342 

agreed with what reported in literature for other varieties (Razungles, Babic, Sapis, & Bayonove, 1996; 343 

Winterhalter & Ebeler, 2013) and that highlighted a content increase from veraison until the first sampling (-344 

15 d) and almost constant concentrations afterwards. On the contrary, neoxanthin concentrations decreased 345 

constantly from the first (-15 d) to the last sampling date (full ripeness).  346 

3.5 Chemical-physical characteristics of musts 347 
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In Pinot noir musts, no major differences were detected as to TSS, pH and TA during the three-consecutive 348 

samplings (Table 2). Pinot noir grapes reached a ripening degree correspondent to a satisfactory technological 349 

harvest, already on August the 13th, fifteen days before the scheduled harvest and the last days of ripening did 350 

not contribute to modify significantly the main technological parameters. Moreover, this ripening trend was 351 

also favored by the lowering of the temperatures and the rainy conditions that characterized that period. As to 352 

Barbera musts, the differences between the three different harvest dates were relevant; TSS increased and TA 353 

decreased from the first (-15 d) to the third grape sampling date (full ripeness). 354 

3.6 Norisoprenoids in musts and wines during and at the end of fermentation 355 

Pinot Noir wines. The linear mixed effect model applied to the entire Pinot dataset showed significant changes 356 

in norisoprenoid concentrations in wines obtained from different harvests. The comparison among modelized 357 

means of the three norisoprenoids highlighted that the concentrations of β-damascenone and β-ionone 358 

decreased on average in dependence of the ripening level of grapes while, α-ionone was less influenced by the 359 

grape ripening level (Table 3).  360 

Table 3 361 

Fig. 1 shows the trends of free norisoprenoids during fermentation in Pinot noir. -ionone average content of 362 

90 ng/L was measured at crushing (day 1) then its concentration increased linearly throughout fermentation 363 

reaching final average values of more than 1.417 μg L-1 corresponding to what reported in literature (Oliveira 364 

et al., 2006; Yuan & Qian, 2016). It is worth mentioning that this concentration of -ionone is well above its 365 

perception threshold in aqueous medium (Tempere et al., 2011). Comparing -ionone content in wines at the 366 

end of fermentation (Fig. 2), it emerged that those obtained with more mature grapes reached slightly lower 367 

concentrations of -ionone (-15 d = 1.521a µgL-1; -7 days = 1.467a µgL-1; full ripeness = 1.263b µgL-1). These 368 

results show a trend in contrast to previous researches (Fang & Qian, 2006), likely linked to the fact that, in 369 

the present study, the ripening of Pinot Noir grapes was already accomplished at the first sampling (-15 d), due 370 

to the net anticipation of the phenological phases detected in the studied season.  371 

Fig.1 372 
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-ionone tended to accumulate during fermentation rather quickly, following a trend similar to -ionone (Fig. 373 

1). At mid-fermentation, the average concentrations recorded for this compound were similar to those 374 

measured at the end of fermentation. The ripening level did not display any significant impact on -ionone 375 

concentration at the end of alcoholic fermentation (Fig. 2).  376 

-damascenone increased differently depending on time of harvest during fermentation; in the case of musts 377 

from less mature grapes (-15 days) there was a rapid increase, whereas in musts from more mature grapes the 378 

trend was more linear and less rapid during fermentation (Fig. 1). The average values measured at the end of 379 

fermentation were very similar between treatments reflecting the small ripening differences already 380 

highlighted in the grapes of origin. (Fig. 2). 381 

Barbera wines. Considering all the data collected for Barbera, the linear mixed effect model showed statistical 382 

significance for each factor considered. Also, the interaction between time of harvest and fermentation step 383 

was significant. As regards “time of harvest” levels (-15 days, -7 days and full ripeness or 0 days), a statistically 384 

significant decreasing trend for β-damascenone in dependence of time of harvest was found in finished wines 385 

(Table 3). The same trend was visible comparing exclusively the average values at the end of fermentation, 386 

namely the last two sampling dates (Fig. 2). -damascenone content resulted 15% higher in the wines at end 387 

of fermentation from early harvested grapes (-7 days) than in the wine from fully ripe grapes. Also for α-ionone 388 

it was possible to observe a decrease in concentration from -7 to zero point, finally resulting in a significantly 389 

lower concentration in wines from fully-ripe berries (Fig. 1). No differences at end of fermentation were 390 

observed for β-ionone from -7d and 0d (Table 3, Fig. 2). 391 

Unlike what observed in Pinot noir, -ionone did not increase during Barbera fermentation. After the mid of 392 

process, the concentrations of this compound remained constant on values between 1.915 μg L-1 for the wine 393 

obtained from -15 d-grapes and 1.629 μgL-1 for wine from fully-ripe grapes. Similarly to Pinot noir, -394 

damascenone increased rapidly in the first stage of fermentation in musts obtained from less mature grapes (-395 

15 d), whereas a slow increase was observed in those from fully ripe grapes (Fig. 1). 396 

Fig.2 397 



17 

3.7 Aroma profile of wines after three month of storage 398 

After three months of storage both free and glycoside compounds were quantified (supplementary material 399 

Tables 1S-4S). As to Barbera free volatiles, ethyl ester concentration increased with the berry ripening level 400 

and C6 alcohol concentration decreased correspondently. This trend could be correlated with the level of 401 

nitrogen readily assimilable of the musts, equal to 176 mg L-1 for -15 d point sampling, 213 mg L-1 for -7 d 402 

point sampling and 211 mg L-1 for 0 d point sampling. As to Pinot noir, we observed a reduction of medium 403 

chain fatty acid ethylic esters, and a more marked reduction of C6 alcohols, that was probably correlated to 404 

berry over-ripening and to a slight decrease in assimilable nitrogen from the first to the last sampling (data not 405 

reported). Overall Barbera wines glycosylated compounds, tended to decrease while increasing the grape 406 

maturity grade, this fact was particularly evident for terpene and norisoprenoid forms (supplementary material 407 

Tables 1S-4S).  408 

 409 

 410 

3.7.1 Norisoprenoids in wines after three months of storage 411 

A clear difference in free norisoprenoid profile between Barbera and Pinot noir.wines was detected (Fig. 2). 412 

Pinot noir wines were characterized by a higher concentration in -damascenone, consistently with the highest 413 

average neoxanthin concentration at veraison (Table 1). -ionone and -ionone measured in all wines were 414 

much lower than those reported at the end of alcoholic fermentation (Fig. 2). According to literature, -ionone 415 

tends to degrade in the presence of oxygen (Silva Ferreira & Guedes de Pinho, 2004), whereas sulfur dioxide 416 

could protect this compound from phenomena of oxidative degradation. Conceivably, the significant decrease 417 

observed in our case for both - ionone and - ionone may be due to the conservation conditions that did not 418 

provide a strict oxidation protection (Fig. 2). Differently, -damascenone content, after 3 months, resulted 419 

higher than that recorded at the end of alcoholic fermentation. The presence of some glycosilate precursors, 420 

extracted during the alcoholic fermentation and that can undergo acid catalyzed degradation during wine 421 

conservation could have been the responsible of -damascenone concentration increase. Actually, previous 422 
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studies have shown that wine acidity, more than other variables, plays a fundamental role in determining the 423 

increase of -damascenone concentration during wine storage from its glycosylate precursors (Silva Ferreira 424 

& Guedes de Pinho, 2004).  425 

4. Conclusions 426 

This research work focused on the investigation of key aroma compounds such as megastigmane C13 427 

norisoprenoids (-ionone, -ionone and -damascenone) and their resulting content in wines produced from 428 

the vinification of sequential grape harvests. Meteorologically, 2015 was characterized by a very mild winter 429 

and a large amount of rain in June, which led to a significant advance of the vine phenological phases. Under 430 

these climatic conditions, a rapid accumulation of sugars was highlighted during ripening for Barbera whereas 431 

in Pinot noir no differences were observed during ripening. We observed that carotenoid degradation in grapes 432 

was not linked to an increase of key-norisoprenoids in respective wines, but these compounds decreased in 433 

wines concordantly with grape ripeness; namely β-damascenone and β-ionone decreased in dependence of 434 

grape maturity while, α-ionone was less influenced by the grape ripening level. This was particularly evident 435 

in wines from Barbera grapes. Actually, Barbera grapes collected 7 days earlier respect to full ripeness allowed 436 

to obtain wines with a lower alcohol of 2% v/v and a higher content of β-damascenone of about 15%. The 437 

reduction in alcohol content, obtained by harvesting grapes earlier was associated, especially in Barbera, to an 438 

optimal composition in terms of acidity and of polyphenolic content.  439 

After 3 months of storage -damascenone content, resulted higher than that measured at the end of 440 

fermentation, probably due to the presence of some glycosylate precursors extracted during vinification. 441 

Generally, Pinot noir wines were characterized by a higher concentration in -damascenone than Barbera 442 

wines, consistently with the higher levels of neoxanthin at veraison. 443 

β-damascenone, besides being per-se, an important wine-flavour, is also an aromatic enhancer of fruity notes 444 

thus, especially for Barbera, early-harvesting can indirectly impact on wine quality having a positive sensorial 445 

impact on the final wine aroma.  446 
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Figure 1 – Concentration of megastigmane norisoprenoids during fermentation of Pinot noir and Barbera 572 

wines obtained from grapes and collected at different ripening levels (-15 and -7 days before full-ripeness, 573 

0). All concentrations are expressed in µg L-1. Bold line represents the average values; light colored lines are 574 

referred to different harvest time. Different means are indicate with different letters, Sign.= ANOVA on 575 

linear mixed effects model significativity; *= p-value <  0.05, **= p-value < 0,01, *** = p-value < 0.001. 576 

Figure 2 - Average concentrations (µg L-1) of α-ionone, β-ionone and β-damascenone in wines, obtained 577 

from grapes at different ripening levels, at the end of alcoholic fermentation and after a three-month 578 

period storage. Averages ± standard deviation (n=3). 579 

 580 

  581 
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Table 1: Main meteorological conditions of 2015 and of ten years before (2005-2014). 582 

 583 
 

GDD 10 
°C 

HI  Rain RD ≥ 1 

January 4.5 20.8 21.0 4 
February 0.0 4.9 103.6 10 
March 43.8 106.4 126.6 7 
April 138.8 231.0 81.0 6 
May 274.2 367.7 46.8 5 
June 386.7 489.5 141.6 10 
July 542.3 654.8 27.4 4 
August 425.9 529.6 132.2 10 
September 264.4 353.3 66.4 5 
October 108.1 183.5 197.2 13 
November 47.7 108.9 2.6 0 
December 0.0 3.6 2.8 0 
     

Period April/September for GDD and HI  
Whole year for rain and RD ≥ 1 

2032.3 2625.9 949.2 74 

Averages of years 2005-2014  
(period April – September for GDD and HI; 
whole year for rain and RD ≥ 1)  

1889.0 2436.7 1026.0 82 

 584 

Monthly Growing Degree Days (GDD, base 10 °C), Huglin Index (HI), rain (mm) and number of rainy days with rainfall > 1 mm (RD≥1) 585 
measured in Grugliasco in 2015. GDD and HI were calculated from the 1st of April to the 30th of September. Average values of the 586 
period 2005-2014 measured in the same weather station (Grugliasco, node 144, Regione Piemonte). Meteorological data were kindly 587 
provided by Dott. Spanna, Servizio Agrometereologico Regione Piemonte. 588 

 589 

  590 
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 591 

 592 

  593 

 Pinot noir grapes Barbera grapes 
Sampling date 23-Jul 13-Aug 19-Aug 25-Aug 27-Jul 25-Aug 31-Aug 07-Sept 

 
véraison -15d -7d 

Full 
ripeness 

véraison -15d -7d 
Full 

ripeness 

berry weight (g) 
1.17 ± 0.06 

1.54 ± 
0.24 

1.59 ± 
0.23 

1.80 ± 0.27 
1.63 ± 
0.15 

2.66 ± 
0.18 

2.66 ± 
0.34 

2.66 ± 0.27 

TSS (°Bx) 10.1 ± 0.6 19.5 ± 1.2 19.6 ± 0.8 20.4 ± 0.3 8.1 ± 2.8 19.8 ± 1.5 21.8 ± 1.5 23.8 ± 1.1 

pH 
2.91 ± 0.11 

3.15 ± 
0.16 

3.50 ± 
0.07 

3.21 ± 0.02 
2.58 ± 
0.13 

2.82 ± 
0.11 

3.01 ± 
0.05 

3.02 ± 0.03 

TA (g L-1) 25.3 ± 3.8 8.8 ± 0.8 6.4 ± 0.2 6.9 ± 0.1 36.6 ± 0.7 13.1 ± 1.9 11.9 ± 1.4 11.2 ± 1.4 

TPI (mg kg-1) 
1895 ± 399 

1451 ± 
333 

1147 ± 
229 

1145 ± 150 
1073 ± 

130 
1196 ± 

156 
1341 ± 

124 
1349 ± 107 

TAI (mg kg-1) 
157 ± 94 510 ± 182 461 ± 137 616 ± 92 56 ± 37 908 ± 148 

1132 ± 
165 

1163 ± 41 

TFI (mg kg-1) 
1647 ± 404 

1576 ± 
392 

1323 ± 
226 

1446 ± 360 652 ± 23 
1524 ± 

243 
1863 ± 

250 
1951 ± 68 

Lutein (mg kg-1) 
10.02 
±1.03 

3.94 ± 
0.28 

3.64 ± 
0.54 3.50 ± 0.48 

4.17 ± 
0.49 

2.53 ± 
0.10 

2.55 ± 
0.30 

1.91 ± 0.28 

-carotene (mg kg-1) 4.13 ± 0.56 
3.91 ± 
0.39 

3.63 ± 
0.53 2.81 ± 0.68 

2.56 ± 
0.15 

2.91 ± 
0.26 

3.27 ± 
0.29 

2.87 ± 0.32 

Violaxanthin (mg kg-1) 1.67 ± 0.28 
0.76 ± 
0.05 

0.83 ± 
0.13 0.93 ± 0.13 

0.60 ± 
0.09 

1.33 ± 
0.12 

1.06 ± 
0.14 

1.08 ± 0.15 

Neoxanthin (mg kg-1) 1.33 ± 0.17 
0.60 ± 
0.07 

0.54 ± 
0.07 0.62 ± 0.09 

0.74 ± 
0.09 

0.79 ± 
0.11 

0.50 ± 
0.05 

0.43 ± 0.07 

Lutein epox. (mg kg-1) 0.71 ± 0.10 
0.69 ± 
0.09 

0.71 ± 
0.11 0.85 ± 0.08 

0.04 ± 
0.02 

0.22 ± 
0.02 

0.24 ± 
0.02 

0.24 ± 0.04 

Total carotenoids (mg kg-

1) 
17.84 
±2.14 

9.89 ± 
0.88 

9.35 ± 
1.38 

8.70 ± 1.46 
8.12 ± 
0.84 

7.79 ±0.61 
7.64 ± 
0.80 

6.52 ± 0.86 

  Pinot noir musts  Barbera musts 

 
 -15d -7d 

Full 
ripeness 

 -15d -7d 
Full 

ripeness 

TSS (°Bx) - 19.7 ± 0.3 20.8 ± 1.2 20.5 ± 0.5 - 19.8 ± 0.8 20.9 ± 2.1 24.0 ± 0.3 

pH 
- 

3.41 ± 
0.10 

3.48 ± 
0.09 

3.39 ± 0.09 - 
2.94 ± 
0.08 

3.02 ± 
0.09 

3.09 ± 0.06 

TA (g L-1) - 4.8 ± 0.4 5.5 ± 0.7 5.0 ± 0.3 - 11.5 ± 1.2 10.5 ± 1.8 9.1 ± 1.0 

potential alcohol (% v/v) 
- 10.8 ± 0.2 11.4 ± 0.6 11.3 ± 0.3 - 

10.9 ± 0.4 
11.50 ± 

1.1 13.2 ± 0.2 

  Pinot noir wines  Barbera wines 

  -15d -7d 
Full 

ripeness 
 -15d -7d 

Full 
ripeness 

density - 0.99593 0.99469 0.99459 - 0.99732 0.99526 0.99291 
alcohol (% v/v) - 10.9 ± 0.4 11.3 ± 0.4 11.4 ± 0.4 - 10.6 ± 0.8 12.1 ± 1.3 13.8 ± 0.6 
extract (g L-1) - 29.4 ± 1.4 27.6 ± 0.8 27.6 ± 1.1 - 32.1 ± 0.9 31.9 ± 0.1 31.4 ± 0.8 

TPI (mg L-1) - 
1820 ± 

367 
1310 ± 

390 
1581 ± 168 - 

1154 ± 
206 

1192 ± 
210 

1449 ± 219 

TAI (mg L-1) - 160 ± 31 170 ± 45 191 ± 59 - 331 ± 105 357 ± 130 461 ± 145 

TFI (mg L-1) - 
1977 ± 

481 
1221 ± 

422 
1561 ± 239 - 

1009 ± 
218 

1121 ± 
281 

1360 ± 327 
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 594 

Table 3: Average concentration (µg L-1) and calculated on the whole database of ß-damascenone, α- and ß-ionone produced with 595 
grapes harvested at different ripening levels 596 

 597 

 598 

 599 

 600 

 601 

 602 

fully ripe = 0 d; seven and fifteen days before full ripening, -15 d and – 7 d, respectively. Values are. Sign.= ANOVA on linear mixed 603 
effects model significance; *= P value <  0.05, **= P value < 0.01, *** = P-value < 0.001. 604 

 605 

 606 

  Time of harvest  

  -15 d -7 d 0 d Sign. 

Pinot noir 
β-damascenone 0.60 a 0.57 a 0.47 b ** 

α-ionone 0.14 a 0.16 a  0.13 a ns 

β-ionone 0.75 a 0.73 a 0.54 b ** 

Barbera 
β-damascenone 0.84 a 0.71 b 0.56 c *** 

α-ionone 0.12 ab 0.15 a 0.09 b ** 

β-ionone 1.41 ab 1.28 b 1.45 a * 


