
11 August 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Comparative analysis of the sedimentary cover units of the jurassic western tethys ophiolites in
the northern apennines and western alps (Italy): Processes of the formation of mass-transport
and chaotic deposits during seafloor spreading and subduction zone tectonics

Published version:

DOI:10.1086/716498

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1845227 since 2022-03-02T20:11:42Z



iris-AperTO 

University of Turin’s Institutional Research Information System and Open Access Institutional 

Repository 

 
 
 
 
 
This is the author's final version of the contribution published as: 

 

[Festa, A., Meneghini, F., Balestro, G., Pandolfi, L., Tartarotti, P., Dilek, Y., Marroni, M. (2021) – 

Comparative Analysis of the Sedimentary Cover Units of the Jurassic Western Tethys Ophiolites 
in the Northern Apennines and Western Alps (Italy): Processes of the Formation of Mass-
Transport and Chaotic Deposits during Seafloor Spreading and Subduction Zone Tectonics. 
Journal of Geology, 129 (5), 533-561. https://doi.org/10.1086/716498] 
 
 
The publisher's version is available at: 

 [https://www.journals.uchicago.edu/toc/jg/current] 
 
 
When citing, please refer to the published version. 
 
 
Link to this full text:  
[https://doi.org/10.1086/716498] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This full text was downloaded from iris-Aperto: https://iris.unito.it/  

https://iris.unito.it/


1 
 

Comparative analysis of the sedimentary cover units of the Jurassic 
Western Tethys ophiolites in the Northern Apennines and Western Alps 
(Italy): Processes of the formation of mass transport and chaotic deposits 

during seafloor spreading and subduction zone tectonics  
 
 
Andrea Festa1*, Francesca Meneghini2, Gianni Balestro1, Luca Pandolfi2,3, Paola Tartarotti4, 
Yildirim Dilek5, Michele Marroni2,3 
 
 
1. Dipartimento di Scienze della Terra, Università di Torino, Torino (Italy); ORCID #: AF, 
0000-0001-5325-0263; GB, 0000-0001-5215-4659  
2. Dipartimento di Scienze della Terra, Università di Pisa, Pisa (Italy); ORCID #: FM, 0000-
0002-6809-6112; LP, 0000-0002-6129-647X; MM, 0000-0002-2947-3739 
3. Istituto di Geoscienze e Georisorse, IGG-CNR, Pisa (Italy) 
4. Dipartimento di Scienze della Terra, Università degli Studi di Milano, Milano (Italy); 
ORCID #: PT, 0000-0002-2236-2702 
5. Department of Geology and Environmental Earth Science, Miami University, Oxford, 
(USA); ORCID#: YD, 0000-0003-2387-9575 
 
 
*Corresponding author: 
 
Professor Andrea Festa  
Street address: Via Valperga Caluso, 35 
10125, Torino, Italy 
E-mail address: andrea.festa@unito.it 
Phone: +39-011-670.51.86 
 
 
 
Submitted to: The Journal of Geology 
Special Issue on the Plate Tectonics Anniversary 
  



2 
 

ABSTRACT  
The Jurassic ophiolites in the Northern Apennines and the Western Alps represent fossil mid–ocean 
ridge (MOR) oceanic lithosphere that formed in the Mesozoic Ligurian–Piedmont Ocean Basin 
(LPOB). Their sedimentary covers include chaotic rock units containing ophiolite–derived material. 
The processes of formation and the lithostratigraphic position of these chaotic units in the Western 
Alps remain a matter of debate, unlike their counterparts in the Northern Apennines. This is because 
of pervasive tectonic deformation and high-pressure metamorphism that affected their internal 
structure during collisional tectonics. A comparative analysis of these chaotic units in both mountain 
belts reveals the nature of processes involved in their formation. Chaotic deposits of gravitational 
origin occur both below and above the extrusive sequences in the ophiolites. They represent syn-
extensional, hyper-concentrated deposits associated with the seafloor spreading evolution of the 
LPOB lithosphere during Middle and Late Jurassic time. Mass transport deposits (MTDs) occur as 
intercalations within turbiditic sequences above the ophiolites. They represent syn–contractional 
submarine slides that occurred on frontal accretionary prism slopes during the Late Cretaceous–
Paleocene closure of the LPOB. The results of our comparative analysis imply that: (1) the structure–
stratigraphy of the chaotic deposits and MTDs of the Northern Apennines can be used as a proxy to 
better identify their metamorphosed and highly deformed counterparts in the Western Alps; (2) 
sedimentological processes associated with slow–spreading MOR tectonics and with accretionary 
prism development in convergent margin tectonics contributed to the sediment budgets of the cover 
sequences; and, (3) magmatic, tectonic and sedimentological processes that occurred during the 
formation of the Jurassic oceanic lithosphere and its sedimentary cover in the LPOB were remarkably 
uniform and synchronous.  
 
Keywords: Mesozoic Ligurian–Piedmont Ocean; submarine chaotic rock units; submarine mass 
transport deposits; sedimentary cover of ophiolites; Western Alps; Internal Ligurian Units – Northern 
Apennines.   
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INTRODUCTION  
 
Chaotic rock units (i.e., tectonic, sedimentary and diapiric mélanges, broken formations and 
polygenetic mélanges, see Festa et al., 2019b) containing fragments of an ophiolite represent the most 
significant component of the ocean-derived units preserved in Archean to Cenozoic collisional belts 
(e.g. Sample and Moore 1987; Orange 1990; Polat and Kerrich, 1999; Fitzherbert et al., 2005; Dilek, 
2006; Yamamoto et al.2007; Federico et al., 2007; Festa et al., 2010, 2020c; Malatesta et al., 2012; 
Dilek et al., 2012; Balestro et al., 2015a, 2020; Ogawa et al., 2015; Ernst, 2016; Scarsi et al., 2018; 
Raymond, 2019; Roda et al., 2019; Wakabayashi, 2011; Hajná et al., 2019; Gao and Santosh, 2020; 
Palin et al., 2020; Žak et al., 2020; Barbero et al., 2021). Understanding the formation and 
emplacement of these chaotic deposits in space and time is significant for better constraining the 
nature, tempo and order of the magmatic, tectonic and sedimentological processes, which operated 
during the formation of ancient oceanic lithosphere and its sedimentary cover. Related data and 
observations can provide additional constraints for redefining the plate tectonic paradigm and fro 
developing a better understanding of the Earth systems. 

In the Piedmont Zone of the Western Alps and in the Internal Ligurian Units of the Northern 
Apennines in Italy (Fig. 1), these types of chaotic rock units were derived from the deformation of 
the northern and southern parts of the Jurassic Ligurian-Piedmont oceanic rocks (Western Tethys), 
respectively (Marroni et al., 2017; Dilek and Furnes, 2019). In the Northern Apennines, the chaotic 
rock deposits show a very low–grade metamorphic overprint, allowing documentation in detail of 
their preserved diagnostic sedimentological features and their lithostratigraphic position. In turn, this 
knowledge allows interpretation of the chaotic rock masses as the products of different mass transport 
processes, which occurred during the Middle-Late Jurassic seafloor spreading of the Ligurian-
Piedmont Ocean Basin (LPOB) lithosphere and the Late Cretaceous – Paleocene tectonic 
convergence between Europe and Adria (e.g., Fierro and Terranova 1963; Elter 1975; Abbate et al., 
1970, 1980; Cortesogno et al., 1987; Marroni and Pandolfi, 2001; Bortolotti and Principi, 2003; 
Principi et al., 2004; Lamarche et al., 2008; Festa et al., 2018; Meneghini et al., 2020). 

Conversely, in the Western Alps, the chaotic rock units containing ophiolite–derived material 
were affected by pervasive subduction- and exhumation-related deformation and high–pressure 
metamorphism. As a result, primary sedimentological features in these rock units are partially 
obscured or obliterated; lithostratigraphic position and evidence of tectonic versus sedimentary 
formational processes in their development, thus, remain matters of debate (see e.g., Balestro et al., 
2015a, Tartarotti et al., 2017a; Roda et al., 2019 and references therein). This phenomenon 
complicates the detailed reconstruction of the syn-spreading to convergent stages of tectono-
sedimentary evolution of the northern portion of the LPOB, as exposed in the Western Alps. 

In this paper we define the original, oceanic sedimentary cover of the Jurassic ophiolites 
exposed in the Northern Apennines and the Western Alps (Italy), and document various chaotic rocks 
units preserved in these cover sequences. We compare and correlate both lithologically and 
chronologically these chaotic rock units and their stratigraphic positions in the Northern Apennines 
and the Western Alps (Fig. 1). We show that the well-known sedimentological-stratigraphical 
features of the chaotic deposits in the Northern Apennines can be used as a proxy allowing us to 
refine the tectonostratigraphy of their highly deformed and metamorphosed counterparts in the 
Western Alps. Our results indicate that the LPOB lithosphere underwent similar tectonic processes 
during the Jurassic seafloor spreading and Late Cretaceous–Early Paleocene closure phases of the 
ocean basin history throughout its entire length.  
 
Nomenclature and terminology of chaotic rock units 

In this paper we use the term chaotic rock unit as a general and descriptive, but not a genetic 
term, to describe different types of block-in-matrix rock assemblages. This term includes the entire 
range of chaotic rock mass occurrences, in which mélanges and broken formations represent two end 
members (see Festa et al., 2019b for details). Hence, chaotic rock units may represent a rock mass 

https://www.sciencedirect.com/science/article/abs/pii/S1342937X18302776?via%3Dihub#!
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that can be formed by: (1) tectonic, sedimentary and/or diapiric processes; (2) both stratal disruption 
and/or mixing processes, and (3) superposition of exotic, native or mixed exotic – native blocks 
embedded in a matrix of various possible compositions. Chaotic rock units formed by sedimentary 
(gravitational) processes represent ancient submarine mass transport deposits (MTDs; see, e.g., 
Lucente and Pini, 2008; Ogata et al., 2012, 2020; Festa et al., 2016; Pini et al., 2020), commonly 
described as olistostromes (Flores, 1955; Elter and Trevisan, 1973; Pini, 1999) or sedimentary 
mélanges (e.g., Raymond, 1984; Bettelli and Panini, 1985, Bettelli et al., 2004; Festa et al., 2016) in 
orogenic belts and exhumed subduction – accretion  complexes. We use the terms “mass transport 
deposit (MTD)” and “chaotic deposit” to denote two sedimentary (gravitational) chaotic rock unit 
types, which differ from each other in their matrix types. Chaotic deposits are characterized by a 
matrix- to clast-supported texture with a predominantly basic to ultrabasic sandy matrix, and more 
rarely by a hematitic to carbonaceous matrix, whereas MTDs have a shaly matrix. Note also that 
some of the described examples of chaotic deposits and MTDs consist of single layers. This prevents 
us from using the terms sedimentary mélange and olistostrome, as these occurrences are not 
mappable at 1:25,000, as required by the definition of the mélange term (e.g., Berkland et al., 1972; 
Wood, 1974; Silver and Beutner, 1980; Raymond, 1984; Cowan, 1985; Festa et al., 2019b). 
 
GEODYNAMIC HISTORY OF THE LIGURIAN – PIEDMONT OCEAN BASIN (LPOB) 
 

The Ligurian – Piedmont Ocean Basin (LPOB), which evolved between Europe and Adria, 
was a restricted, Red Sea – type ocean basin in the Mesozoic paleogeography of the Western Tethys 
(Fig. 2a; see, e.g., Dilek and Furnes, 2019 and references therein). It was connected with the Central 
Atlantic Ocean Basins to the west via a NW–SE–oriented transform fault system (Fig. 2a; Dercourt 
et al., 2000; Stampfli and Borel, 2002; Stampfli et al., 2002; Golonka, 2007; Schettino and Turco, 
2011; Berra and Angiolini, 2014; Hosseinpour et al., 2016 and Dilek and Furnes, 2019). The opening 
of the LPOB is generally regarded as the result of rift–drift and seafloor spreading during Middle 
Triassic through Middle Jurassic time (Marroni et al., 1998; Müntener and Hermann, 2001; 
Whitmarsh et al., 2001; Capitanio and Goes, 2006; Montanini et al., 2006; Marroni and Pandolfi, 
2007; Piccardo et al., 2014; Festa et al., 2020a). Initial lithospheric stretching and distributed 
extension was followed by strain localization and hyper-extension, which led to continental rifting 
and seafloor spreading (Lavier and Manatschal 2006; Péron-Pinvidic and Manatschal 2009; Mohn et 
al., 2012; Ribes et al., 2019). The resulting conjugate margins were asymmetric in their structural 
architecture with the European margin showing a narrow ocean-continent transition zone (OCTZ) 
marked by high-angle normal faults and the Adria margin characterized by a wider OCTZ (Fig. 2a), 
along which the subcontinental mantle and the lower continental crust were exhumed (Marroni and 
Pandolfi 2007; Saccani et al., 2015). 

The oceanic lithosphere of the LPOB was unlike a typical Penrose–type oceanic lithosphere 
with a complete crustal pseudostratigraphy (or ocean plate stratigraphy, sensu Wakita, 2015) of a 
modern fast–spreading oceanic lithosphere (Anonymous, 1972; Dilek et al., 1998), rather it 
resembled a Hess–type oceanic lithosphere (Dilek and Furnes, 2011) that commonly develops at 
slow– to ultra slow–spreading mid–ocean ridge settings (Pognante et al., 1986; Lemoine et al., 1987, 
Lagabrielle and Cannat, 1990, Treves and Harper, 1994; Cannat, 1996, Cannat et al., 1997, Michard 
et al. 1996; Magde et al., 2000, Rabain et al., 2001; Balestro et al., 2015b; Rampone e al., 2020). The 
available paleontological data from chert deposits in the Ligurian ophiolites (Bill et al., 2001; Principi 
et al., 2004), as well as the radiometric dating results (Li et al., 2013; Tribuzio et al., 2016), indicate 
that seafloor spreading within the LPOB lasted for ~25 m.y. from Bajocian to Tithonian time. The 
seafloor spreading phased out and stopped at the beginning of the Early Cretaceous Epoch when the 
basin was about 600 to 700 km–wide (Abbate et al., 1980; Marroni and Pandolfi, 2007; Balestro et 
al., 2019). Throughout much of the Cretaceous Period the LPOB experienced deep-sea pelagic 
deposition without any tectonic or volcanic event interrupting this depositional record. 
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During Campanian time, the mode of sedimentation changed abruptly with the onset of deep-
sea clastic sedimentation, which involved the deposition of a vast amount of siliciclastic and 
carbonate turbidites, whose sediments were derived from the European margin (Marroni and Perilli, 
1990; Marroni et al., 1992; Principi et al., 2004). The onset of this extensive turbidite deposition 
episode is considered to be the beginning of a contractional deformation phase in the evolutionary 
history of the LPOB that led to its closure in the Cenozoic Era. The early Campanian time of the 
turbidite deposition coincides with the age of high–pressure metamorphism in the internal sectors of 
Western Alps (see, e.g., Manzotti et al., 2014 and reference therein) and in Corsica (e.g., Lahondère 
and Guerrot, 1997).  

The initial stages of basin closure were facilitated by an intraoceanic subduction event, which 
resulted in the development of a subduction–accretion system (Fig. 2b). The position of this 
intraoceanic subduction within the LPOB is still a matter of debate. Recent geodynamic models place 
this subduction–accretion system close to or within the OCTZ along the Adria continental margin, 
with subduction beginning, in the Late Cretaceous Epoch (Manzotti et al., 2014; Marroni et al., 2017; 
Barbero et al., 2020; Festa et al., 2020a).  

The accretionary wedge experienced slope instability due to subduction of an oceanic crust 
characterized by seamounts and a rough topography, probably inherited from the spreading phase 
(Marroni and Pandolfi, 2001; Marroni et al., 2017; Meneghini et al., 2020). The slope instability 
resulted in large submarine slides recorded as debris flows and slide deposits that were emplaced 
within or at the top of the trench turbidites (e.g., Pini, 1999; Festa et al., 2018; 2020b; Ogata et al., 
2019; Meneghini et al., 2020 and references therein). 

During the convergence, the LPOB lithosphere was subducted largely into the mantle or was 
locally accreted at the base or in front of an accretionary wedge (Fig. 2b). Thus, several segments of 
the LPOB that were accreted at different depths are found today as tectonic thrust sheets of ophiolites 
in the Western Alps and the Northern Apennines. These units were affected by pervasive deformation 
associated with subduction-related metamorphism ranging from very low-grade to blueschist and 
eclogite facies (Goffè et al., 2003), similar to that typically described in many exhumed, sediment-
dominated accretionary prisms (Ernst, 1970, 1971, 2015; Miyashiro, 1973; Raymond, 1973; More 
and Sample, 1986; Meneghini et al., 2009; Plunder et al., 2015). In the Northern Apennines the 
ophiolite units were subducted to shallow levels (maximum of 25 km depth; Marroni et al., 2017), 
whereas in the Western Alps they were subducted to depths ranging from 30 km to 90 km (e.g. Handy 
et al., 2010; Roda et al., 2020 and reference therein) and were metamorphosed under peak P-T 
conditions during latest Cretaceous(?) to middle Eocene time (e.g. Rosenbaum and Lister 2005; 
Zanoni et al., 2016; Rebay et al., 2018; Luoni et al., 2020 and references therein).  

The deformation characteristics of these units indicate an accretion by coherent underplating 
during east–dipping and low–rate subduction dominated by a high sediment budget. The deformation 
history and the related metamorphism testify not only to the accretion phases, but also to the 
exhumation history of these units (Polino et al. 1990; Butler et al. 2013; Roda et al., 2020; Luoni et 
al., 2020). Ophiolite units detached from the subducting slab were uplifted to shallow crustal levels 
and rapidly exhumed before the early Oligocene. This inference is supported by the occurrence of 
continental conglomerates in the Tertiary Piedmont Basin (Fig. 1), which represents a wide episutural 
basin overlying the metamorphosed ophiolites both in the Western Alps and in the Northern 
Apennines (Federico et al., 2015; Barbero et al., 2020; Festa et al., 2013, 2020b). During and after 
middle Eocene time, the Jurassic ophiolites underwent continental collision tectonics and 
deformation both in the Western Alps and the Northern Apennines and were involved in nappe and 
overthrust development and large–scale isoclinal and recumbent folding.  

In summary, the LPOB developed during three main stages. The first stage involved 
continental rifting and seafloor spreading in Middle to Late Jurassic time (Fig. 2a). During the second 
stage, between the Berriasian and the Santonian ages, it experienced tectonic quiescence and 
extensive pelagic deposition. During the third stage, starting in the Campanian age, the LPOB 
underwent intraoceanic subduction, basin closure, and continental collision. 
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OPHIOLITE AND SEDIMENTARY COVER RECORD IN THE NORTHERN APENNINES 
 

In the Internal Ligurian Units (Fig. 1), a series of tectonostratigraphic units occurs in thrust 
sheets. These thrust sheets extend from southern Tuscany to the city of Genova, in the north, where 
they are in contact with eclogitic oceanic rocks of the Voltri Group, assigned to the Western Alps 
(Fig. 1). These tectonostratigraphic units show pervasive deformation structures that are spatially and 
temporally associated with a metamorphic overprint, decreasing in grade from the structurally 
lowermost units to those lying on top of the tectonic pile (Leoni et al. 1996; Ellero et al. 2001). The 
lowermost units (Cravasco-Voltaggio and Mt. Figogna Units) are affected by low-grade blueschist 
facies metamorphism, whereas the uppermost ones (Gottero, Bracco-Val Graveglia, Colli-Tavarone, 
Portello, Vermallo and Due Ponti units) display mineral phases and textures suggesting very low-
grade metamorphic conditions, ranging from upper anchizone to epizone conditions (Leoni et al. 
1996; Crispini and Capponi 2001; Ellero et al. 2001). 

The Internal Ligurian Units, regardless of the degree of metamorphism or deformation, 
display a stratigraphic succession that reflects the inferred three stages of development of the LPOB. 
This succession includes a ~1–km–thick ophiolite sequence and a ~4–km–thick sedimentary cover, 
which includes two lithologically and compositionally different parts with different geodynamic 
significance (Decandia and Elter, 1972, Abbate et al., 1980; Treves 1984; Marroni and Perilli 1990; 
Marroni et al. 1992; Abbate et al. 1994).  
 
First Stage: Formation of the oceanic lithosphere and its oldest sedimentary cover  

The Middle to Late Jurassic ophiolite sequence formed during the first stage in a slow- to 
ultraslow-spreading ridge environment, where magma supply was limited and tectonic (amagmatic) 
extension processes, producing high– to low–angle normal faults, were dominant (e.g., Lagabrielle 
and Cannat, 1990, Treves and Harper, 1994; Marroni and Pandolfi, 2007; Rampone et al., 2020). 
Tectonic extension in the absence of a steady–state magma supply resulted in the exhumation of 
upper mantle peridotites, which underwent widespread serpentinization, and in the formation of sags 
and structural highs, creating a rugged seafloor bathymetry (e.g., Principi et al., 2004; and reference 
therein).  

Exhumed serpentinized peridotites were intruded by gabbroic stocks and plutons and were 
covered by volcanic and sedimentary rocks, composed of basaltic pillow-lavas and sills, radiolarian 
cherts and ophiolitic breccias. Basaltic lavas and sills have MORB-type geochemical signatures (e.g., 
Renna et al., 2018). Ophiolitic breccias represent chaotic deposits accumulated in half-grabens and 
tectonic sags developed in the hanging walls of normal faults (e.g., Elter 1975; Bortolotti and 
Principi, 2003; Principi et al., 2004). They are subdivided into several types according to their clast 
compositions, which reflect the source lithology and their lithostratigraphic position below or above 
the basaltic carapace of the ophiolite (Elter 1975; Cortesogno et al., 1987; Bortolotti and Principi, 
2003; Principi et al., 2004).  

 
Second Stage: Formation of deep-sea pelagic sedimentary cover 

The ophiolite sequence is overlain by Callovian-Santonian deep-sea pelagic sedimentary 
rocks deposited during the second stage, which lasted nearly 80 m.y. The pelagic deposits include 
Middle Callovian to Early Berriasian cherts and fine-grained, carbonaceous turbidites that are 
composed of the Late Berriasian-Valanginian Calpionella Limestone and the Valanginian-Santonian 
Palombini Shale. All these deposits were the products of a low sedimentation rate in a deep–marine 
environment (Marroni and Perilli, 1990; Marroni et al., 2004).  
 
Third Stage: Deposition of turbidites in a closing ocean basin 

The deep–marine pelagic rocks are conformably overlain by a Lower Campanian–Lower 
Paleocene, thick turbidite sequence, the deposition of which started contemporaneously with the 
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onset of subduction within the LPOB. The lower part of this sequence consists of carbonaceous and 
siliciclastic turbidites (i.e., the Val Lavagna Shale Group, which includes the lower Campanian 
Manganesiferi Shale, the lower to upper Campanian Monte Verzi Marl, and the lower Campanian to 
lower Maastrichtian Zonati Shale). These fine–grained rocks reflect a high sedimentation rate within 
a shrinking basin following the onset of intra–basin subduction. They grade stratigraphically upwards 
into the lower Maastrichtian to lower Paleocene sandstone (i.e., the Gottero Sandstone). Arenites in 
siliciclastic turbidites represent arkosic–subarkosic rocks, whose clast compositions are compatible 
with lithologies constituting the upper part of the rifted European margin. Hence, it is widely accepted 
that the provenance of the turbiditic sequence above the ophiolite was the passive continental margin 
of Europe (Valloni and Zuffa, 1984; Van de Kamp and Leake, 1995; Pandolfi, 1997; Marroni and 
Pandolfi, 2001). These turbiditic sequences (i.e., Zonati Shale and the Gottero Sandstone) were 
deposited in submarine fans adjacent to the European passive continental margin (Abbate and Sagri, 
1982; Nielsen and Abbate, 1983; Fonnesu and Felletti, 2019). The stratigraphically upper parts of 
this submarine fan sequence contain MTDs consisting of debris flow deposits, which include 
reworked clasts derived from an oceanic lithosphere and its sedimentary cover. 

The youngest deposit of the Internal Ligurian Units consists of an MTD, represented by the 
Lower Paleocene Bocco Shale, also known as the Colli-Tavarone and Lavagnola Formations 
(Marroni et al., 2017). The Bocco Shale rests unconformably on top of all the older formations and 
consists of thin-bedded turbidites, and slide and debris flow deposits. Clasts and materials of these 
deposits were derived from an oceanic mantle and its sedimentary cover (Marroni and Pandolfi, 2001; 
Marroni et al., 2017; Meneghini et al., 2020).  
 
DIAGNOSTIC FEATURES AND DEPOSITIONAL MECHANISMS OF CHAOTIC 
DEPOSITS AND MTDs IN THE NORTHERN APENNINES 
 

The sedimentary cover units of the Internal Ligurian ophiolites in the Northern Apennines 
include two distinctive chaotic rock unit types of gravitational origin with specific age spans 
corresponding to different phases in the evolutionary history of the LPOB. The oldest (Middle to 
Upper Jurassic) chaotic rock units developed during the seafloor spreading and hence the opening 
phase of the LPOB. We refer to these deposits as syn–extensional chaotic deposits in the rest of the 
paper. The youngest, Upper Cretaceous–Lower Paleocene chaotic rock units formed during the 
convergence and closure phase of the LPOB. We refer to these deposits as syn–contractional mass–
transport deposits (MTDs) in the rest of the paper. In both the opening and the closing phases, 
accumulation of chaotic deposits and MTDs over a recently formed oceanic lithosphere was a 
tectonically induced depositional event. 

 
Syn–Extensional Chaotic Deposits 

The syn-extensional sedimentary chaotic rocks are well exposed in the Val Graveglia and the 
Bracco Massif (see 11 and 12 of Fig. 1, also see Fig. 3), both of which are located in the eastern 
Liguria region, between the cities of Genova and La Spezia. These chaotic deposits are designated 
as the lower and upper ophiolitic breccias on the basis of their stratigraphic position below or above 
the basaltic lava flows, respectively (Figs. 3A and 3E; Principi et al., 2004); their clasts were sourced 
from an entirely local provenance. These ophiolitic breccias represent one specific type of a syn-
extensional chaotic deposit. The lower ophiolitic breccias rest directly on serpentinized peridotites 
or gabbros, and they are overlain by basaltic flows or cherts. The upper ophiolitic breccias occur 
between the base of the basaltic lava flows and on top of the cherts. The ages of the lower and upper 
breccias are poorly constrained due to the low resolution of radiolarian assemblages in their matrix 
material. The available biostratigraphic data indicate an age of the ophiolitic breccias and the 
associated basaltic flows spanning from Upper Bajocian to Lower Callovian (Chiari et al., 2000, and 
reference therein).  
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Syn-extensional lower ophiolitic breccias. The lower ophiolitic breccias include the Levanto, 
Framura, Casa Boeno and Monte Capra Breccias (Principi et al., 2004, and references therein). The 
first three overlie the serpentinized peridotites, whereas the last breccia covers the gabbro. The 
lithological composition of these breccias reflects the substrate on which they rest. The Levanto 
Breccia (ophicalcites s.s.) is a tectonic-hydrothermal breccia, which occurs above the serpentinized 
upper mantle rocks (Figs. 3E and 3F). It marks a cataclastic shear zone composed of fragmented 
serpentinites crosscut by a network of veins, filled with sparry calcite, talc and locally by smaller 
serpentinite fragments. This cataclastic shear zone marks an oceanic detachment fault zone, which 
was exposed on the LPOB seafloor (Treves and Harper, 1994). 

The overlying Framura Breccia consists mainly of reworked Levanto Breccia material 
(Abbate et al., 1980; Cortesogno et al., 1987), and is composed of a coarse-grained breccia containing 
mostly serpentinite and rare gabbro clasts in a hematitic matrix (Fig. 3G and H). The Case Boeno 
Breccia (Cortesogno et al., 1987; Principi et al., 2004) is a monogenic breccia consisting of 
serpentinite clasts in a scarce, serpentinite–sand matrix. The Case Boeno Breccia locally includes 
large serpentinite blocks, up to several metres wide. As with the Framura Breccia, the Case Boeno 
Breccia also lies stratigraphically on top of the serpentinized peridotites. Overlying the gabbro 
intrusions, the Monte Capra Breccia represents a clast-supported polymictic breccia (Fig. 3B) with 
clasts of Fe-gabbro, Fe-basalt, plagiogranite, and serpentinite in a scarce sandy matrix (Bortolotti and 
Principi, 2003; Principi et al., 2004). The existence of Fe-basalt and Fe-gabbro clasts is unique to the 
lower ophiolitic breccias. 
 

Syn-extensional upper ophiolitic breccias. The syn-extensional upper ophiolite breccias (Figs. 3A 
and 3E) include the Movea, Mt. Zenone, and Mt. Bianco Breccias (Principi et al., 2004, and 
references therein). The Movea Breccia is a polymictic breccia mainly containing clasts of foliated 
gabbro with minor amounts of pillow basalt, gabbro, and serpentinite clasts within a chloritized sandy 
matrix (Bortolotti and Principi, 2003; Principi et al., 2004). The Movea Breccia grades upward into 
the Mt. Zenone Breccia (Figs. 3C and 3F), which is a monomictic breccia showing only clasts of 
foliated gabbro in a sandy matrix composed of gabbro fragments. In contrast, the Mt. Bianco Breccia 
consists of serpentinite and ophicalcite clasts within an abundant sparry calcite matrix (Bortolotti and 
Principi, 2003; Principi et al., 2004).  

Both the syn-extensional lower and upper ophiolitic breccias are characterized by 
comparable sedimentological features: they all have a clast-supported texture with angular or sub-
angular clasts. The matrix has the same lithological composition as the main clast types. The 
maximum clast-size ranges from gravel to boulder. Beds are lenticular in shape, and their thicknesses 
range from 1 m up to 20 m. Bed bottoms display planar to erosive surfaces. The erosional nature of 
the basal contact is suggested by common bottom bedset scours and diffuse, amalgamated beds. A 
faint internal organization is locally present, and grading is roughly developed. Bed–cap, if not 
eroded, is characterized by a cm- to dm-thick, coarse-grained and laminated sandstone and siltstone 
beds composed of ophiolitic material. The downcurrent evolution of the turbidity current depositional 
events can produce poorly developed ophiolitic sandstones characterized by F5-F6 turbidite facies of 
Mutti (1992), capped by F9b siltstone beds. These beds are commonly preserved in the lower part of 
the chert layers. The clastic sediments can be interpreted to have been formed either as 
hyperconcentrated flow-derived deposits (Costa, 1988) or, alternatively, as the downcurrent 
evolutionary products of cohesive debris flows that trasformed into hyperconcentrated flows (F2 and 
F3 facies of Mutti, 1992). 

Clasts of the lower ophiolitic breccias were mainly derived from reworking of the lower and 
upper crustal sections of the Jurassic oceanic lithosphere within the basin that had undergone ocean 
floor metamorphism. Stratigraphically higher up into the upper ophiolitic breccias, debris deposits 
derived from the upper oceanic crustal subunits and even from oceanic siliceous sedimentary rocks 
become predominant. We summarize the thickness and other sedimentological features of these syn-
extensional chaotic deposits in Figs. 3A and 3E. 
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Syn-Contractional Mass Transport Deposits (MTDs) 
Syn-contractional MTDs, which are well exposed in the eastern Liguria region between the 

cities of Genova and La Spezia (see 9 and 10 of Fig. 1, also see Fig. 3), developed by submarine mass 
transport mechanisms and are subdivided on the basis of their spatial relationships with the turbiditic 
deposits (Figs. 4A, B). Some of these MTDs occur as intercalations in the turbiditic deposits of the 
Val Lavagna Shale Group, whereas others overlie this lithostratigraphic unit and contain minor 
siliciclastic turbidites (Fig. 4C). All clastic materials for these turbiditic deposits were derived from 
the continental margin of Europe (Marroni and Pandolfi, 2001; Prinicipi et al., 2004; Marroni et al., 
2017; Fonnesu and Felletti, 2019; Meneghini et al., 2020). 

The MTDs intercalated within the turbiditic deposits of the Val Lavagna Shale Group consist 
of several mappable bodies of predominantly monomictic, pebbly-mudstones and, locally of 
varicolored mudflow-derived deposits. Their ages range from Lower Maastrichtian to Lower 
Paleocene. The predominantly monomictic pebbly-mudstones also include gravel to boulder-sized 
clasts embedded in a muddy–silty matrix (Fig. 4D). The clast composition is dominated by 
calcilutites derived from the Palombini Shale, but clasts of fine-grained arenites also exist. The matrix 
is composed of arenitic to rudistic clasts of carbonate-free mudrock, mainly derived from 
hemipelagic shales (Fig. 4D). The thickness of beds ranges from a few centimeters to several meters 
(cf. Olistostroma di Passo della Forcella, Fierro and Terranova 1963). The bed shape is lenticular, 
and erosional features are present at the bases of beds. The internal organization in the beds is faint 
to absent. The pebbly mudstone deposits represent cohesive debris flows (cf. olistostrome of Abbate 
et al., 1970 and F1and F2 facies of Mutti, 1992).  

Varicolored shale beds also occur in the upper stratigraphic levels of the Gottero Sandstone 

(see Fig. 4). Their bed thickness ranges from a few meters to more than 20 meters. Bed shape in shale 
is lenticular and no erosional features are present at bed bases. These deposits were derived from 
mud flow processes probably related to submarine landslides originated from a steep slope draped 
by fine-grained sediments. 

The MTDs overlying the turbiditic sequences are represented by the lower Paleocene Bocco 
Shale (Cf. Colli/Tavarone Formation, Giaiette Shale, Lavagnola Formation) (Figs. 4B, 4C, 4E-G). 
The Bocco Shale unconformably rests on the underlying formations of the Internal Ligurian Units, 
mainly the Palombini Shale and the Gottero Sandstone (Decandia and Elter, 1972; Marroni and 
Pandolfi, 2001; Marroni et al., 2017; Meneghini et al., 2020). Clasts within the Bocco Shale were 
derived from two main facies groups (Marroni and Pandolfi, 2001). The first group is composed of 
various rock blocks in a matrix of pebbly-mudstone, mudstone, clast-supported breccias, and very 
coarse- to coarse-grained turbidites. The second group consists of fine-grained, thinly bedded 
siliciclastic turbidite clasts. We summarize the thicknesses and stratigraphic features of these MTDs 
in Figure 4C. 

Deposits containing the first facies group include MTDs that originated from reworking of 
an ophiolite sequence and its sedimentary cover (Lamarche et al. 2008; Festa et al. 2016). The block-
in-matrix character is displayed by blocks of different sizes (ranging from 1 to 50 m) embedded in a 
shale–dominated matrix. Blocks are surrounded by syn-sedimentary deformation structures and by 
slide-block-derived, monomictic pebbly mudstone and pebbly sandstone. Locally, blocks are missing 
from the beds and such interbeds are mud-flow-derived mudstone. Pebble-bearing beds range from 
pebbly mudstones to mud- to clast-supported conglomerates and/or breccias (pebbly mudstone, 
pebbly sandstone and orthoconglomerate), all interpreted as cohesive debris flow-derived deposits 
(sensu Mutti 1992). Blocks were derived entirely from reworked ophiolitic subunits (serpentinized 
peridotites, basaltic lavas, and rare gabbros) and from the Upper Jurassic–Lower Paleocene 
sedimentary cover of the ophiolite (chert, Calpionella Limestone, Palombini Shale, Val Lavagna 
Shale, and Gottero Sandstone). The matrix also includes arenitic to ruditic clasts, originated from 
reworked hemipelagic pelites of the Palombini and Val Lavagna Shales.  
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Deposits containing the first facies group are associated with dm- to m-thick beds of 
polymictic, clast-supported and poorly sorted conglomerates. These conglomerates, which show the 
same clast composition as the pebbly mudstones, represent the down-current evolution of cohesive 
debris flows into hyperconcentrated flows (F2 and F3 facies of Mutti 1992). Cohesive debris flow- 
and hyperconcentrated flow-derived deposits are associated with subordinate, coarse-grained high-
density turbidity current deposits. These facies are locally associated with thin Bouma base-missing 
beds (F5 + F9 facies of Mutti 1992). Arenite framework composition analyses performed on three 
samples from F5 beds, collected from the Bocco Shale in the Gottero Sandstone indicate a litharenitic 
composition. This framework is characterized by fragments of basalt, serpentinite, chert and 
Calpionella-bearing limestone (Meneghini et al., 2020). Similarly, pebbles in F1, F2 and F3 beds 
show the same composition as recognized in the slide-blocks and arenites. These data and 
observations collectively point to a source area characterized by reworking of ophiolites and related 
sedimentary cover within the Internal Ligurian tectonostratigraphy (Marroni and Pandolfi, 2001; 
Meneghini et al., 2020).  

Clasts of the second facies group consist of thinly bedded turbidites and mudstones, the most 
common facies association recognized in the Bocco Shale. The thinly bedded turbidites consists of 
alternations of fine- to medium-grained siliciclastic arenites with carbonate-free mudstones. Sand to 
shale ratio in this facies group is generally >1. Arenite beds show moderate lateral continuity. 
Stratigraphic and sedimentological features of deposits of the second facies group point to low-
density turbidity currents as the main depositional agent. Thick packages of thinly bedded turbidites 
were affected by widespread syn-sedimentary deformation due to slumping and submarine mass-
wasting. These processes were responsible for the formation of meso-scale angular unconformities 
(more than 30°) among different packages of beds. The inferred processes and their manifestations 
suggest their development on a steep and unstable submarine slope. Thin–bedded turbidites grade 
into thick packages of varicolored carbonate-free mudstones, which are intensively bioturbated. 
These mudstones are also characterized by the presence of lenticular, thin beds of siltstones and fine–
grained arenites. Bioturbation affected both the arenites and mudstones. The Bocco Shale likely 
originated from multiple submarine – slide events developed on an accretionary wedge slope (Figs. 
4A, 4B), which was covered with thinly bedded turbidites near a lower–trench environment (Marroni 
and Pandolfi 2001; Meneghini et al., 2020).  
 
OPHIOLITE AND SEDIMENTARY COVER RECORD IN THE WESTERN ALPS 
 

Several examples of chaotic rock units composed of reworked ophiolitic material are 
preserved in the sedimentary cover of the Jurassic ophiolites (i.e., the Zermatt-Saas Zone, Monviso 
and Queyras Complexes) in the Piedmont Zone of the Western Alps (Elter, 1971; Tartarotti et al., 
1998, 2017a; Dal Piaz et al., 2003; Balestro et al., 2015a; Corno et al., 2021). These ophiolites display 
strong deformation fabrics and variable, high to ultrahigh–pressure metamorphic overprints (i.e., 
eclogite- to blueschist-facies; Fig. 1). Prior to their emplacement and during their subduction, these 
ophiolites were stretched and sheared but not significantly dismembered, at least locally. They were 
further deformed during their exhumation, although they mostly remained as coherent slices of a 
metamorphosed oceanic lithosphere. This exhumation-related deformation produced NW- to W-
vergent folding and shearing, coeval with greenschist-facies metamorphism of all ophiolitic subunits.  

The Zermatt-Saas ophiolite (Fig. 1) is a large remnant of the Jurassic oceanic lithosphere, 
extending for about 60 km along-strike. It was metamorphosed under eclogite- and coesite-eclogite 
facies conditions as a result of its subduction (e.g., Groppo et al., 2009; Frezzotti et al., 2011; Luoni 
et al., 2018). The Zermatt-Saas ophiolite consists of serpentinized metaperidotites (Li et al., 2004; 
Rebay et al., 2012; Fontana et al., 2008) with Middle to Late Jurassic metagabbros intruded into the 
metaperidotites (Bearth, 1967; Rubatto et al., 1998; Zanoni et al., 2016). Peridotite host rocks and 
their gabbroic intrusive bodies were exhumed on the seafloor as a result of amagmatic extensional 
tectonics during the opening of the LPOB. Ophicalcite and ultramafic breccia deposits formed during 



11 
 

this phase, directly overlying the exhumed peridotite and gabbro bodies on the seafloor (Driesner, 
1993; Tartarotti et al., 1998, 2021). The upper part of the Zermatt-Saas ophiolite includes 
discontinuous metabasaltic lava flows that locally show well preserved pillow structures (Bucher et 
al., 2005) and a thin metasedimentary cover made of Mn-rich chert, marble and calcschist (Dal Piaz 
and Ernst, 1978; Bearth and Schwander, 1981; Tartarotti et al., 2017b, 2021).  

The Monviso ophiolite (Fig. 1), which is several–km–thick, extends for about 35 km from N 
to S, and tectonically overlies the Dora-Maira continental margin unit (Groppo et al., 2019; Balestro 
et al., 2020). Similar to the Zermatt-Saas ophiolite, it was metamorphosed under eclogite facies 
conditions (Lombardo et al. 1978; Schwartz et al., 2000; Groppo and Castelli, 2010; Angiboust et 
al., 2012; Balestro et al., 2014, 2018). The Monviso ophiolite contains a major shear zone (i.e., 
Baracun Shear Zone of Festa et al., 2015) that separates massive serpentinite and metagabbro 
outcrops in its footwall from pillow metabasalts and metasedimentary rocks within its hanging wall. 
This shear zone has been interpreted as a fossil intraoceanic detachment fault with a Late Jurassic 
oceanic core complex developed in its footwall (Balestro et al., 2015b). Protoliths of the serpentinite 
are lherzolite and harzburgite, which were intruded by numerous stocks and dikes of Middle Jurassic 
gabbro (Rubatto and Hermann, 2003) and some Late Jurassic plagiogranite (Lombardo et al., 2002). 

Metasedimentary rocks in the cover of the Monviso ophiolite make up two different 
sequences. The structurally and stratigraphically lower sequence rests below or is intercalated with 
metabasaltic lava flows that display relict pillow lava structures and volcanic breccia textures. This 
lower sedimentary sequence includes calcschist interbedded with metasandstone and metabreccia 
units, whose clasts are gabbroic rocks (Balestro et al., 2011). The upper sedimentary sequence 
unconformably overlies serpentinite, metagabbro, metabasalt and ophiolitic metabreccias, and 
consists of thin metaquartzite, white marble and calcschist. These rocks in the upper sequence lack 
any ophiolite-derived material (Balestro et al., 2019). 

The Queyras ophiolite tectonically overlies the Monviso ophiolite along an N-striking fault 
(Fig. 1). Its subunits display blueschist-facies metamorphic overprint (e.g., Vitale Brovarone et al., 
2014), the degree of which decreases structurally up-section throughout the ophiolite (Lagabrielle 
and Polino, 1988). Similar to the Monviso ophiolite, the Queyras ophiolite also includes a fossil 
intraoceanic detachment fault with an oceanic core complex in its footwall (Lagabrielle et al., 2015). 
The sedimentary cover consists of calcschist characterized by the occurrence of blocks of 
serpentinized metaperidotite, metagabbro, metabasalt and mafic-ultramafic metabreccias (Tricart and 
Lemoine, 1991) ranging in thickness from a few metres to a few km (Schistes Lustrés Auct.; Lemoine 
and Tricart, 1986; Tricart and Schwartz, 2006). Larger blocks locally preserve a mantle-cover 
succession with mantle rocks overlain by metachert, up to a few meters thick, locally containing 
Middle Bathonian to Late Oxfordian radiolarians (Cordey et al., 2012, and reference therein), and by 
several meters of white marble, which has been correlated with the Calpionella limestone of the 
Northern Apennines (Principi et al., 2004). The calcschist sequence includes a lower member 
(Replatte Formation of Lemoine 1971), mainly consisting of carbonate-rich calcschist, a middle 
member (Roche Noire Formation of Tricart, 1973) composed of black micaschist, and an upper 
member (Gondran Flysch of Lemoine, 1971), consisting of alternating layers of calcschist and 
metasandstone. The sedimentological features of the Gondran Flysch and the black shales at its base 
are correlative with the turbiditic deposits of the Val Lavagna Group–Gottero Sandstone in the 
Internal Ligurian Units.  
 
METAMORPHOSED CHAOTIC ROCK UNITS IN THE WESTERN ALPS 
 

Notable examples of chaotic rock units with fragments of ophiolitic material occur in the 
metasedimentary covers of the Jurassic ophiolites in the Western Alps. These ophiolites and related 
metasedimentary covers were deformed during two main tectono-metamorphic phases (named D1 
and D2), which are correlated to subduction and continental collision-related tectonics, respectively. 
The D1 developed an early foliation (S1) coeval with high-pressure metamorphism. The D2 was the 
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main phase of folding and thrusting and developed a new foliation (S2) coeval with greenschist-
facies metamorphic re-equilibration. Although these sedimentary cover units experienced alpine 
tectonic deformation and metamorphic recrystallization, they locally preserve lithostratigraphic and 
sedimentological features (Fig. 5B) that are well preserved in low – strain domains, where primary 
textures are deformed and overprinted by metamorphic foliation but not transposed and obscured 
(see also Balestro et al., 2015a; Tartarotti et al., 2017a for details). Here we discuss such rocks in the 
eclogite-facies (Zermatt-Saas and Monviso) and blueschist–facies (Queyras) cover rocks of the 
ophiolites and, we categorize them as syn-extensional chaotic deposits and syn-contractional MTDs 
of the Western Alps.  
 
Syn–Extensional Chaotic Deposits 

Below, we subdivide and categorize the Western Alpine metamorphosed counterparts of the 
Northern Apennine syn-extensional chaotic deposits. The metabreccias are divided into lower and 
upper ophiolitic metabreccias on the basis of their lithostratigraphic position below or above the base 
of basaltic lava flows, respectively.  
 

Syn-extensional lower ophiolitic metabreccias. In both the eclogite-facies and blueschist-facies 
metaophiolites in the Western Alps, the structurally uppermost part of the exposed serpentinized 
metaperidotites contains a dense network of meters– to several tens of meters–thick carbonate–rich 
veins, forming metaophicarbonates (metaophicalcite Auct., see OC1 of Lemoine et al., 1987) (e.g., 
Lagabrielle and Polino, 1985; Lemoine et al., 1987; Tricart and Lamoine, 1991; Driesner, 1993; 
Lagabrielle, 1994; Tartarotti et al., 1998, 2017a; Dal Piaz, 1999; Balestro et al., 2019, and reference 
therein). Similar to the Levanto Breccia in the Northern Apennines, the Western Alpine 
metaophicarbonates are characterized by a complex network of veins filled with carbonate minerals, 
antigorite, and/or talc (e.g., Lemoine et al., 1987; Tricart and Lemoine, 1991; Dresnier, 1993; Lafay 
et al., 2017; Tartarotti et al., 2017a). These veins surround dm- to m-sized, angular to rounded 
fragments of massive serpentinite. Complex crosscutting relationships between different generations 
of carbonate veins, the infilling and episodic growth of calcite fibers, and the pervasive replacement 
of serpentinite by carbonate minerals indicate repeated episodes of cracking–fracturing of peridotites 
and fluid–peridotite interactions during their development. These metaophicarbonate veins were the 
manifestations of both brittle failure and hydrothermal fluid circulation within the upper mantle 
peridotites, as these rocks were undergoing exhumation and extensional faulting in Middle to Late 
Jurassic time.  

As is the case in the Northern Apennines, the top of the metaophicarbonate unit in the 
Western Alps is extensively reworked, forming discontinuous layers of a clast-supported 
metabreccia. For example, in the Lake Miserin area (see 3 of Fig. 1, also see Figs. 3 and 5A) in the 
Zermatt-Saas ophiolite (see Tartarotti et al., 2017a, 2019), the metaophicarbonate is overlain by a 
predominantly clast–supported metabreccia (“BrFm1” and “BrFm2” of Tartarotti et al., 2017a). 
Clasts are angular- to sub-angular in shape, made of serpentinite and metaophicarbonate, and range 
in size from cm to dm (Fig. 5C). The scarce matrix in this metabreccia consists of a coarse-grained 
metasandstone, including serpentinite and metaophicarbonate derived sediments.  

The bottom of this clast-supported metabreccia corresponds to an erosional surface, marked 
by a dm-thick layer of coarse- to medium-grained metasandstone composed of peridotite-derived 
sediments. The whole metabreccia unit shows a lenticular shape at a scale of hundreds of meters and 
a maximum thickness of about 15 m (Fig. 5A; see Tartarotti et al., 2017a for details). This 
metabreccia gradually passes upward into a chaotic rock unit (“sedimentary mélange” of Tartarotti 
et al., 2017a), which consists of serpentinite and ophicarbonate blocks in a carbonate (now marble) 
matrix (see the section on Syn-extensional upper ophiolitic metabreccias below). This marble is 
unconformably overlain by a post-extensional calcschist unit (Fig. 5A), which is devoid of any 
ophiolite-derived material. In terms of its stratigraphic–structural position above the ophiolite and its 
compositional makeup and sedimentological characteristics, this calcschist unit correlates with the 
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Lower Cretaceous post-extensional deposits in the Northern Apennines (see Tartarotti et al., 2017a, 
2019). 

In the Mt. Avic ultramafic massif of the Zermatt-Saas ophiolite in the Western Alps (see 2 
of Fig. 1, see Fontana et al., 2008, 2015; Panseri et al., 2008), prevalently monomictic clast-supported 
metabreccias with poorly sorted angular clasts of serpentinite are embedded in a carbonate matrix 
(Figs. 5A, 5F; see Tartarotti et al., 1998). Locally, mm– to cm–long mafic clasts derived from a 
gabbro source also occur, forming a polymictic-type metabreccia. Structurally, these metabreccias 
generally occur on top of the serpentinite and Mg-Al metagabbro units, and below a metabasaltic 
lava sequence.  

In the Queyras ophiolite in the Western Alps, different types of poorly-sorted, clast-
supported metabreccia (i.e., the OC2 of Lemoine et al., 1987) range from monomictic–type with cm–
long, sub-angular clasts made only of serpentinite (e.g., Pic Cascavelier section, see Tricart and 
Lemoine, 1983, 1991; Caby et al., 1987; Lemoine and Tricart, 1986) or metagabbro (e.g., Crete 
Mouloun section, Le Mer et al., 1986), to polymictic–type metabreccia (see 6, 7 and 8 of Figs. 1 and 
5I, 5G) with clasts of both serpentinite and metagabbro (see Le Mer et al., 1986; Lemoine et al., 
1987; Balestro et al., 2019, and reference therein). These metabreccias are laterally discontinuous in 
exposure and range from a few cm to several tens of meters in thickness. Large blocks (olistoliths), 
up to tens of meters wide, locally occur (Tricart and Lemoine, 1983) in a sandy matrix with grains 
of mixed mafic rock and carbonate composition. The structural position of both monomictic and 
polymictic metabreccias (Fig. 5I) is commonly above the exhumed serpentinite and metagabbro and 
below the metabasaltic lava sequence (metapillow lavas and basaltic metabreccias).  

In the Monviso ophiolite in the Western Alps (see 5 of Fig. 1), a sedimentary sequence, 
consisting of calcschist interbedded with mafic metasandstone and matrix-supported metabreccia 
layers, onlaps a fossil detachment fault and its footwall units (Fig. 6A). The footwall of this 
detachment fault zone is made of serpentinized metaperidotites, intruded by Mg-Al and Fe-Ti gabbro 
plutons and stocks. The mafic–ultramafic part of the Monviso ophiolite has been interpreted as an 
exhumed oceanic core complex (OCC; see Balestro et al., 2015a, 2019; Festa et al., 2015). The 
matrix-supported metabreccia includes poorly sorted sub-angular to angular clasts of metagabbro 
(Figs. 6B-D) and laterally grades, at a scale of tens of meters, into coarse-grained metasandstone of 
the same composition, locally with a fining-upward texture (Fig. 6E). The thickness of these syn-
extensional metasedimentary rocks shows significant lateral variations, ranging from several 
centimeters to about 70 meters, and generally tapers out toward an association of talcschist and 
serpentine–schist containing blocks of highly sheared metagabbro. These intensely foliated talcschist 
and serpentine–schist units correspond to an intra-oceanic detachment fault zone (i.e., the Baracun 
Shear Zone of Festa et al., 2015). The shear zone is unconformably overlain by post-extensional 
white marble and carbonate-rich calcschist (Fig. 6A), devoid of any ophiolite-derived material. The 
white marble and calcschist correspond to the Upper Jurassic-Lower Cretaceous Calpionella 
Limestone and the Early Cretaceous Palombini Shale of the Internal Ligurian Units in the Northern 
Apennines, respectively (see Balestro et al., 2015a, 2019; Festa et al., 2015). 
 

Syn-extensional upper ophiolitic metabreccias. The most notable examples of monomictic basaltic 
metabreccia and polymictic-metabreccia, correlating lithologically and stratigraphically with the 
upper ophiolitic breccias in the Northern Apennines, are best preserved in the Queyras ophiolite (e.g., 
Caby et al., 1971, 1987; Tricart and Lemoine, 1983, 1991; Le Mer et al., 1986; Saby, 1986; Pinet et 
al., 1989). The metabreccias in the Queyras ophiolite are stratigraphically situated between the base 
of the pillow metabasalt sequence and the first post-extensional sedimentary units (i.e., metachert 
and white marble; see Fig. 5I).  

The monomictic metabreccia consists only of angular to sub-angular clasts, up to 30 cm–
long, of metabasalt that are embedded within a sandy matrix composed of fragments of metabasalt 
and/or metahyaloclastite (see, e.g., the Crete Mouloun and Pic Marcel sections in Le Mer et al., 1986 
and Tricart and Lemoine, 1983, respectively. See 6 and 7 of Fig. 1). Although this monomictic 
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metabreccia commonly overlies the metabasaltic pillow lava sequence (e.g, Crete Mouloun), it 
locally occurs both at the base of (e.g., Pic Marcel) and/or interfingered with these metabasaltic lava 
flows (e.g., Tricart and Lemoine, 1983). 

Polymictic metabreccia with cm- to dm-long clasts of massive and variolitic metabasaltic 
lavas, metagabbro, and quartzo-feldspathic rocks (plagiogranite) occur both at the base (e.g., Pic 
Marcel, see Tricart and Lemoine, 1983) and at the top (e.g., Crete Mouloun, see Le Mer et al., 1986) 
of the metamorphosed pillow lava sequence. The matrix of this metabreccia is sandstone, which is 
composed of fragments of the same compositions as the clasts.  

All these different types of metabreccias have a poorly sorted, clast-supported texture with 
angular to sub-angular clasts. Stratigraphically upward, they grade into a matrix-supported 
metabreccia and coarse-grained metasandstone with well–preserved incipient layers of different 
compositions (see also Tricart and Lemoine, 1983). The bottoms of these metabreccia layers are 
commonly lenticular and erosional.  

The occurrence of metabreccias in a stratigraphic position comparable to the one of the upper 
ophiolitic metabreccias of the Appennines is rare in the Monviso and Zermatt Saas ophiolites in the 
Western Alps. There are, however, two examples of possible upper ophiolitic metabreccias in the 
Zermatt-Saas ophiolite. The first one is part of the Garten Formation (i.e., the Rifelberg-Garten 
mélange or Palon de Resey mélange; see Dal Piaz, 1965, 1992; 2004; Bearth, 1967; Dal Piaz and 
Ernst, 1978; Campari et al., 2004; Dal Piaz et al., 2015; Gusmeo et al., 2018), which crops out 
discontinuously from the Cime Bianche ridge to the highest Ayas Valley (see 1 of Fig. 1; see Dal 
Piaz, 1992; Dal Piaz et al., 2015 for details). The Garten Formation consists of a chaotic rock unit, 
meters– to tens of meters–thick, with rounded to elongated clasts (cm to dm in size) of fine-grained 
metabasalt (metamorphosed to eclogite and glaucophanite), serpentinite and marble (Gusmeo et al., 
2018), embedded in a matrix of alternating layers of micaschist and calcschist (Figs. 6F-H). This 
formation represents the superposition of different individual deposits, each a few decimeters to 
nearly one meter in thickness (Fig. 6F). The largest clasts occur in the lower part of the beds and 
“float” in a fully mixed and crudely graded matrix, made of calcschist (Figs. 6G, 6H). The 
stratigraphic position of this formation is at the base of metabasaltic lava flows with locally well – 
preserved pillow structures (Fig. 6I; see Dal Piaz, 1965, 2004). It is, however, important not to 
confuse the above-described chaotic deposit with the larger part of the Garten Formation that 
corresponds to a typical “broken formation” (sensu Hsü, 1968), resulting from layer-parallel tectonic 
extension of alternating micaschist and metabasite layers and boudinage formation. 

In the Lake Miserin sedimentary cover sequence of the Zermatt-Saas ophiolite (Fig. 1), the 
lower ophiolitic metabreccia is overlain by a chaotic rock unit characterized by a block-in-matrix 
fabric with rounded to irregular–shaped blocks (dm- to a meter-wide) of massive to veined 
serpentinite and metaophicarbonate embedded in a white marble matrix (Figs. 5A, 5E). Blocks are 
randomly distributed within the matrix, except where elongated and deformed blocks are aligned 
with the regional tectonic foliation (Tartarotti et al., 2019). The matrix is commonly interbedded with 
cm- to dm-thick layers of metabreccia, with clasts angular to sub-angular clasts of serpentinite (Fig. 
5E).  

 
Syn-contractional mass–transport deposits (MTDs)  

The identification of possible counterparts of the syn-contractional mass–transport deposits 
of the Northern Apennines in the metasedimentary cover of the ophiolites in the Western Alps is not 
easy. The gravity-induced MTDs, composed of material derived from both a continental margin and 
the ophiolites, are lacking in the Zermatt-Saas and Monviso ophiolites, but they occur in the Lago 
Nero Unit of the Queyras ophiolite (see 4 of Fig. 1). The Lago Nero Unit includes a thick 
metasedimentary sequence, starting at the bottom with a radiolarite member, topped by a limestone 
member and the Replatte Formation (Lemoine et al., 1970; Polino, 1984; Barfety et al., 1995; Burroni 
et al., 2003). The Replatte Formation contains alternating layers of thick calcschist and thin marble. 
It grades stratigraphically upwards into both a thin unit of grey to black schists and to the Gondran 
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Flysch, composed of alternating layers of calcschist and metasandstone (Fig. 5I). The Gondran 
Flysch represents thinly bedded turbidites with minor occurrences of thick and coarse–grained, 
terrigenous metasandstone. Petrographic analysis of the terrigenous metasandstone indicates an 
arkosic composition, made predominantly of quartz, feldspar and minor lithic fragments. The 
metasedimentary cover sequence of the Lago Nero Unit stratigraphically is capped by the Rocher 
Renard Complex (Fig. 5I; Barfety et al., 1995; Burroni et al., 2003). The Rocher Renard Complex 
consists of homogeneous dark schists, locally containing metre- to decametre-size blocks composed 
mainly of limestone and chert, with local occurrences of metabasalt, metaophicalcite, serpentinite 
and metagabbro (Figs. 5H, 5I).  
 
DISCUSSION: THE CHAOTIC DEPOSITS AND MTDs OF THE NORTHERN APENNINES 
AS A PROXY FOR METAMORPHOSED COUNTERPARTS IN THE WESTERN ALPS  
 

Our detailed description of chaotic rock units and MTDs indicates that different ophiolite 
units in the Northern Apennines and the Western Alps correlate well, both chronologically and 
stratigraphically (Table 1). These correlations suggest that the diagnostic features of the chaotic 
deposits and MTDs in the Internal Ligurian Units can be used as a proxy for better definition of the 
tectonostratigraphy of their highly deformed and metamorphosed counterparts in the Western Alps. 
The strong similarities between these chaotic deposits and MTDs within the epi–ophiolitic sequences 
in both orogenic belts, allows reconstructing: (i) the pre-orogenic primary lithostratigraphy and 
sedimentological features of the Western Alpine occurrences, (ii) the processes and mechansims of 
Western Alpine rock formation and, (iii) the characteristics of the depositional or geodynamic 
settings of rock body origins. Our findings also indicate that the LPOB lithosphere underwent similar 
tectonic processes during the Jurassic seafloor spreading and Late Cretaceous – Early Paleocene 
closure phases of the ocean basin throughout its entire length (Fig. 7).  

 
Processes of formation of chaotic deposits and MTDs in the Western Alps from seafloor 
spreading to subduction 

Although they experienced severe tectonic deformation and metamorphic recrystallization, 
the described examples of chaotic rock units in the Western Alps locally preserve lithostratigraphic 
and sedimentological features (see also Balestro et al., 2015a; Tartarotti et al., 2017a for details) that 
are comparable with those of the little metamorphosed Internal Ligurian Units in the Northern 
Apennines. The oldest syn-extensional chaotic deposits (the lower ophiolitic metabreccias) of the 
Western Alps preserve remnants of sedimentological features and internal organization that are 
diagnostic of different products formed by the downcurrent transformation of cohesive flows through 
progressive mixing with ambient fluids (F2 facies of Mutti, 1992). In different sections of the 
Queyras (see Pic Cascavelier and Crete Mouloun) and Zermatt-Saas (see Lake Miserin and Mt. Avic) 
ophiolites, the faint internal structure of the clast-supported breccia, such as the lack of a well-defined 
grading, the scarcity of lamination, and the absence of any pelagic interbeds, suggest rapid deposition 
through cohesive debris flows or hyperconcentrated flows. In these processes, the larger clasts float 
in a mixed and crudely graded matrix, which was probably composed of mud and mafic and/or 
ultramafic sand and gravel, with largest clasts occurring in the lower part of the bed. In some cases, 
such as for the lower ophiolitic metabreccia unit in the Monviso ophiolite, the occurrence of a poorly 
sorted, coarse-grained sandstone, grading laterally into a coarse-grained sandstone with a fining-
upward texture, suggests that these deposits represent the products of downslope transformation of a 
hyperconcentrated flow into a high-density and supercritical turbidity current, and locally a low-
density one, possibly corresponding to a gravity transformation from F4-F5 to F7 facies of Mutti 
(1992). 

The characteristics of the matrix-supported metabreccia and coarse-grained metasandstone 
of the youngest syn-extensional upper ophiolitic metabreccias of Pic Marcel and Crete Mouloun in 
the Queyras suggest that they represent the products of hyperconcentrated flows. These products 
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result from downslope transformation of cohesive-flow (F2 and F3 facies of Mutti, 1992), which 
changes laterally and upward into gravelly, high-to low-density turbidity currents (F4-F5 and F7 
facies of Mutti, 1992). This is similar to the examples interpreted for the Monviso ophiolite. 

Our documented sedimentological features of part of the Garten Formation and of the upper 
ophiolitic metabreccias of the Lake Miserin in the Zermatt-Saas ophiolites confirm that they represent 
the products of submarine mass transport processes, as suggested by Bearth (1963) and Dal Piaz 
(1965), and by Tartarotti et al (2017a, 2019), respectively. We have observed that the sedimentary 
fabric elements of these metabreccias are consistent with the deposition from either 
hyperconcentrated flows (F2 of Mutti et al.,1992) or generally high–density turbidity currents (F4-
F5 of Mutti et al., 1992) that resulted from downslope transformation of closure flows through 
progressive mixing with ambient fluids.  

The sedimentological features of the syn-contractional MTD of the Lago Nero Unit (i.e., the 
Rocher Renard Complex) in the Western Alps (i.e., prevailing shaly matrix and the occurrence of 
angular blocks of ophiolitic material and sedimentary rocks) and its stratigraphic position correlate 
well with the Bocco Shale in the Northern Apennines (Table 1; Burroni et al., 2003). Similarly, its 
sedimentological features fit well with those of the product of multiple submarine cohesive debris 
flows evolving down-current to hyperconcentrated turbidity deposits that were emplaced on an 
accretionary wedge slope. 

 
Comparison between chaotic deposits and MTDs in the Northern Apennines and the Western 
Alps 

The documented similarities of the sedimentological features and internal organization of the 
syn-extensional chaotic deposits in both the orogenic belts is consistent with their formation through 
deposition of small volumes of poorly consolidated material accumulated in the hanging walls of 
submarine normal faults and fault escarpments. These deposits formed above detachment faults and 
oceanic core complexes (Fig. 7A) during the Jurassic seafloor spreading (e.g., Tricart and Lemoine, 
1983, 1991; Caby et al., 1987; Lemoine and Tricart, 1986; Dilek and Eddy, 1992; Tartarotti et al., 
1998, 2017a; Dilek and Thy, 1998; Principi et al., 2004; Lagabrielle, 2009; Balestro et al., 2015a, 
2019 and reference therein). The occurrence of these deposits in two different specific 
tectonostratigraphic positions (below or above the basaltic pillow lava flows; Figs. 3, 5, 6) in both 
the Northern Apennines and the Western Alps, suggests that their formation occurred in two distinct 
events of extensional tectonics during a continuum of syn-spreading deformation. Moreover, the 
chaotic deposits in the different sectors of the Jurassic LPOB (i.e., Western Alps and Northern 
Apennine) show the same features and the same lithological composition of clasts (Table 1), strongly 
indicating that the oceanic basin developed with the same features and in a similar basin floor 
architecture during its entire history and along its entire length (Fig. 7a). It is, however, necessary to 
use caution in the attempt to correlate the chaotic deposits related to syn-spreading extensional 
tectonics, and to discriminate between the lower and upper ophiolitic metabreccias in the 
metamorphosed Western Alps. This is because their correlation is hampered where the oceanic crust 
stratigraphy is incomplete such that extrusive rocks are missing, or when a diagnostic clast 
composition is not recognizable within gravitationally induced chaotic deposits.  

Independent of the type of breccia (lower or upper), the composition of clasts depends on the 
nature of the source area and its location with respect to the site of deposition. In these cases, our 
findings show that the diagnostic sedimentological features of the non- to poorly metamorphosed 
syn-extensional ophiolitic breccias of the Northern Apennines may represent a proxy of comparison, 
providing useful constraints for the interpretation of the metamorphosed Alpine breccias. For 
example, although basalt flows are not observed and basalt clasts are lacking, the upper ophiolitic 
metabreccias of the Lake Miserin (i.e., the “Sedimentary mélange” of Tartatotti et al., 2017a) are 
comparable with the syn-extensional upper ophiolitic Monte Bianco breccias of the Northern 
Apennines, whose stratigraphic position is well defined. They show the same sedimentological 
features and composition of both clasts and the matrix (see Table 1). This correlation is further 
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supported by field-evidence, showing that the Lake Miserin upper breccia is deposited above the 
lower ophiolitic metabreccia of the same sequence and it is covered by mixed siliciclastic-
carbonaceous sediments, corresponding to the Lower Cretaceous post-spreading deposits in the 
Northern Apennines (see Tartarotti et al., 2017a for details). Therefore, although caution is necessary 
in interpreting chaotic deposits in the highly deformed and metamorphosed Western Alpine units, 
the use of the Northern Apennines examples may represent a useful proxy for better interpretation of 
their metamorphosed counterparts, which were deposited during the Jurassic syn-spreading tectonics 
of the LPOB. 

The syn-contractional MTDs with ophiolitic material that are widespread in the Internal 
Ligurian Units of the Northern Apennines have been also identified in the Western Alps, as detected 
in the Lago Nero Unit of the Queyras ophiolite. In both orogenic belts, the sedimentological features 
and internal organization of these deposits suggest they originated by several events of tectonic 
erosion at the front of the accretionary wedge (Fig. 7b), which developed in the Late Cretaceous in 
response to the development of an east-dipping subduction of the LPOB lithosphere close to or within 
the thinned Adria margin (Marroni et al., 2017 and reference therein). These events of frontal tectonic 
erosion were induced by underthrusting of the seafloor morphological relief inherited from the 
previous Jurassic syn-spreading tectonics (Fig. 7b; Marroni and Pandolfi, 2001; Burroni et al., 2003; 
Meneghini et al., 2020). The subduction of morphological relief commonly produces the uplift of the 
lower slope of the frontal wedge, its collapse and the subsequent downslope mobility of wide MTDs 
and their emplacement in the lower plate and/or in the trench (Fig. 7b; e.g., von Huene and 
Lallemand, 1990; von Huene et al., 2004; Kawamura et al., 2009; Remitti et al., 2011; Festa et al., 
2018; Geersen et al., 2020; Meneghini et al., 2020; Ogata et al., 2020). 

During the Late Cretaceous – Early Paleocene convergent stage of the LPOB, these ophiolitic 
MTDs, mainly consisting of pebbly mudstones and slides (Lamarche et al. 2008; Festa et al. 2016), 
interfingered with thin bedded, siliciclastic turbidites supplied by the European continental margin, 
as was the case in the Rocher Renard Complex in the Lago Nero Unit (Queyras ophiolite; see also 
Burroni et al., 2003) and the Bocco Shale in the Northern Apennines (see also Marroni and Pandolfi, 
2001; Meneghini et al., 2020). Therefore, syn-contractional MTDs in both transects of the 
convergence system can be regarded as formed by similar processes widespread along the entire 
width of the oceanic basin. In the Western Alps, however, the occurrence of syn-contractional MTDs 
are restricted to the units subducted at moderate depths (i.e., those affected by blueschist-facies P-T 
metamorphic peak), and they are not observed in the deeper eclogite-facies units. It is hard to 
discriminate whether the absence of these deposits in higher grade units is simply due to failure to 
recognize them in the field, if these deposits were not preserved, or they did not form at all. An 
explanation for the occurrence of syn-contractional MTDs only in the units accreted at shallow to 
moderate depths could be that frontal tectonic erosion was active in a restricted time span, probably 
in the Late Maastrichtian-Early Paleocene, when most of the eclogite facies units were already 
underthrust at depth in the subduction zone. On the other hand, underplating at shallow to moderate 
depths, especially in sediment-dominated systems, generally involves preferential removal of the 
sedimentary cover from the upper part of an oceanic lithosphere (Meneghini et al., 2009 and reference 
therein). This phenomenon occurs when the downgoing plate reaches a depth consistent with the 
development of eclogite-facies metamorphism (Moore and Sample, 1986). In this framework, the 
lack of syn-contractional ophiolitic MTDs in the eclogite-facies units of the Western Alps could be 
also explained by selective removal of these deposits during progressive subduction underthrusting.  
 
CONCLUDING REMARKS 
 

In this comparative analysis, we have examined the occurrence and the internal structure 
of different types of chaotic rock units with ophiolitic material in the Internal Ligurian Units of the 
Northern Apennines and in the Piedmont Zone of the Western Alps. Our findings document that the 
internal structure-stratigraphy and sedimentological characteristics of the chaotic deposits and MTDs 
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in the Northern Apennines can be used as a proxy to identify the nature and processes of formation 
of their highly deformed and metamorphosed counterparts in the Western Alps. The chaotic deposits 
and MTDs in the Western Alps are commonly confused with tectonically produced rocks asemblages 
and tectonic mélanges. We have shown in this study that the MTDs in the Western Alps consist of 
two different types of chaotic deposits of gravitational origin, formed by different submarine 
mechanisms, and that they occur in different tectonostratigraphic positions within the epi-ophiolitic 
sedimentary cover. The oldest chaotic deposits occur both below and above the extrusive sequences 
in the ophiolites, representing syn-extensional, hyper-concentrated deposits associated with the 
seafloor spreading evolution of the LPOB lithosphere during the Middle-Late Jurassic. The youngest 
chaotic deposits consist of MTDs, which occur as intercalations within turbiditic sequences above 
the ophiolites, representing syn–contractional submarine slides. The slides occurred on frontal 
accretionary prism slopes during the Late Cretaceous–Paleocene closure of the LPOB. 

This comparative study provides important clues for the contextual framework of the 
definition of magmatic, tectonic, and sedimentary processes, which occurred throughout the 
formation of the Jurassic oceanic lithosphere and its sedimentary cover in the LPOB (Western 
Tethys), and during the subsequent Late Cretaceous–Paleocene convergent margin tectonics. These 
processes were remarkably uniform and synchronous as shown by the occurrence of comparable 
chaotic deposits and MTDs characterized by the same features and the same lithological 
compositions of clasts. Our data and observations indicate that the LPOB developed with the same 
features and in a similar basin floor architecture during its entire history and along its entire length. 

The results and the geological implications of this comparative study are not limited only to 
the Western Alpine orogenic belt. The diagnostic features of the different types of chaotic rock units 
described in this study can also help in distinguishing among those similar units that extensively 
occur in many Precambrian to Cenozoic orogenic belts, where the overprint of tectonic and 
metamorphic processes obscured their primary features and the modes of formation. Their detailed 
lithological, structural and chronological correlations along and across the orogenic belts should 
provide additional constraints for reconstruction of the magmatic, tectonic and sedimentary evolution 
of ocean basins, and for the subsequent convergent margin evolution. Therefore, detailed, 
multidisciplinary studies of chaotic rock units are an integral part of systematic investigations of the 
temporal evolution of different stages of orogenic buildup, from continental rifting and seafloor 
spreading to subduction, and crustal exhumation. Such studies and their results have contributed 
significantly to further refining the plate tectonics paradigm since the mid-1960s.  
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FIGURE AND TABLE CAPTIONS  
 
Figure 1. A- Tectonic map of the Western Alps and the Northern Apennines, showing the distribution 
of different lithospheric plates and ocean basins that were involved in the evolution of the orogenic 
belts in this region (modified from Balestro et al., 2015). Locations of the major chaotic rock units 
and MTDs discussed in the text are also shown in red circles and numbers. B- Index map, showing 
the Alps and the Apennines in their Mediterranean context. 
 
Figure 2. Paleogeographic reconstruction of the Western Tethyan realm (Ligurian-Piedmont Ocean 
Basin) in the (A) Middle Jurassic (modified from Sampfli and Kozur, 2006; Schettino and Turco, 
2011) and (B) late Maastrichtian (modified from Michard et al., 2002; Sampfli and Kozur, 2006; 
Schettino and Turco, 2011; Marroni et al., 2017; Festa et al., 2020). 
 
Figure 3. Stratigraphic columnar sections and outcrop photos showing the sedimentary and structural 
features of the syn-extensional, lower and upper ophiolitic breccias of the Internal Ligurian Units in 
the Graveglia (A) and Bracco (E) sections (Northern Apennines). (B) Polymictic clasts composed of 
Fe-gabbro, Fe-basalt, plagiogranite, and serpentinite units in a scarce sandy matrix of the Monte 
Capra Breccia (lower ophiolitic breccia). Hammer for scale; (C) Close-up view of subrounded clasts 
of Mg-gabbros in the Monte Zenone Breccia (upper ophiolitic breccias) and their stratigraphic 
relationships (D) with Radiolarian cherts. Hammer for scale; (F) close-up view of the ophicalcite 
texture of the Levanto Breccia; (G) close-up view of the Framura Breccia (lower ophiolitic breccia) 
showing serpentinite clasts in a serpentinite-derived matrix. Coin for scale; (H) Panoramic view 
displaying the relationships between the lower ophiolitic breccia (Levanto Breccia) and massive 
basalts. The stratigraphic relationships are highlighted by ophiolitic sandstones.  
 
Figure 4. Inferred tectonic settings for the emplacement of the syn-contractional MTDs in the 
Northern Apennines: (A) General; (B) In detail. (C) Representative stratigraphic columnar sections 
(with scale). (D) Close-up view of the cohesive debris flows in the Val Lavagna Shale Group (i.e., 
"Olistostroma del Passo della Forcella”, showing angular to subangular clasts of calcilutites 
embedded in a muddy-silty matrix. Coin for scale; (E) stratigraphic contact (white arrows) between 
the Bocco Shale (BS) and the Val Lavagna Shale (VLS) in the Portello Unit. Coin for scale; (F) 
Panoramic, and (G) Detail view of the Bocco Shale (early Paleocene), showing angular to subangular 
clasts of calcilutite in muddy-silty, foliated matrix. Hammer for scale. 
 
Figure 5. (A) Representative stratigraphic sections, depicting the distribution of the lower and upper 
syn-extensional ophiolitic metabreccias within the Zermatt-Saas ophiolites in the sector between the 
Lake Miserin (modified from Tartarotti et al., 2017) and Mt. Avic. (B) Field evidence of the 
superposition of two tectono-metamorphic stages (D1 and D2) of the Alpine deformation onto the 
eclogite-facies ophiolite metabreccias of the Lake Miserin (Zermatt-Saas ophiolites). Note that the 
orientation of irregularly shaped clasts, centimeter in size, marks the relict of S1 foliation (dashed 
yellow line) which is deformed by D2 folds (dashed white lines indicate S2 foliation and D2 fold 
axial plane; see Tartarotti et al., 2017a for details). (C) Field occurrence of lower ophiolite 
metabreccias (Zermatt-Saas ophiolites) in the Lake Miserin area, showing alternating layers of 
different sized clast-supported metabreccias, made of angular clasts of serpentinized metaperidotite 
and metaophicarbonate. Field book for scale; (D and E) Different close-up views of the Lake Miserin 
Sedimentary mélange (syn-extensional upper ophiolitic metabreccias; Zermatt-Saas ophiolites), 
showing angular to sub-rounded clasts of serpentinized metaperidotite in a carbonate-rich (marble) 
matrix. Dashed white line indicates the S2 foliation. Pencil for scale; (F) Close-up view of the Mt. 
Avic lower ophiolitic metabreccias (Zermatt-Saas ophiolites), showing angular shaped clasts of 
serpentinized metaperidotite and metaophicarbonate in a mixed carbonate-ultramafic metasandstone 
matrix. (G) Close-up view of the polymictic syn-extensional upper ophiolitic metabreccias 
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(blueschist facies) of the Queyras ophiolite, showing angular clasts of serpentinized metaperidotite 
and metagabbros in a calcschist matrix; (H) Close-up view of the syn-contractional MTDs of the 
Rocher Renard Complex (Lower Paleocene?), showing rounded clasts of serpentinized 
metaperidotite and marble in a metapelite matrix. Camera cap for scale; (I) Stratigraphic columnar 
section of the Queyras ophiolite (modified from Balestro et al., 2019), depicting the stratigraphic 
position of the lower and upper syn-extensional ophiolitic metabreccias, and syn-contractional 
MTDs.  
 
Figure 6. (A) Stratigraphic columnar section of the Monviso ophiolite (modified from Balestro et 
al., 2019), depicting the lateral and vertical relations between the syn-extensional chaotic deposits, 
the exhumed upper mantle rocks and the sedimentary succession. (B, C and D) Various close-up 
views of angular to irregular – shaped clasts of gabbro in a coarse-grained matrix of mafic-
metasandstone (lower syn-extensional ophiolitic metabreccias), and line drawing (E) of the 
overturned peridotite – cover succession relationship, cropping out at Colle del Baracun (Monviso 
ophiolite); notice the stratigraphic position of mafic metabreccias and metasandstones within the 
calcschist sequence (modified from Balestro et al., 2015a) (F) Panoramic view of the Garten 
Formation (syn-extensional upper ophiolitic metabreccias) to the East of Cime Bianche (Aosta 
Valley), showing intercalations of hyperconcentrated deposits (dashed white lines), decimeters to 
one meters thick, in a calcschist matrix. Dashed black line indicates the S2 foliation. Backpack for 
scale. (G and H) Close-up views of the internal arrangement of the Garten Formation, showing 
rounded to elongated shaped clasts of metabasalt in a coarse-grained calcschist matrix. (I) Interpreted 
stratigraphic sections, depicting the distribution of the syn-extensional upper ophiolitic metabreccias 
of the Garten Formation in the Zermatt-Saas ophiolite sequence of the Cime Bianche sector. 
 
Table 1. Comparison among syn-extensional lower and upper ophiolitic breccias and syn-
contractional MTDs of the Internal Ligurian Units of Northern Apennines and Western Alps.  
 
Figure 7. Interpretative block diagrams depicting the geodynamic and tectono-stratigraphic 
depositional setting for syn-extensional, lower and upper ophiolitic breccias and syn-contractional 
MTDs during: (A) The Middle–Late Jurassic seafloor spreading, and (B) Late Cretaceous – 
Paleocene convergence tectonic stages of the evolution of the Western Tethyan realm (Ligurian – 
Piemont Ocean Basin), respectively. 
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 Name Texture Matrix Clasts (in abundance order) Clasts 
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Levanto Breccia 
(ophicalcite) cataclastic no-matrix serpentinized peridotite, 

gabbro, foliated gabbro cm-m 
- Bottom: mantle peridotite 
- Top: ophiolite-bearing sandstones 
and basalt 

Middle to Late 
Jurassic 

Framura Breccia clast-
supported hematitic ophicalcite, serpentinized 

peridotite, gabbro dm-m - Bottom: Framura Breccia 
- Top: Basalt flow/Cherts(?) 

Middle to Late 
Jurassic 

Case Boeno 
Breccia 

clast-
supported sandy serpentinized peridotite, 

ophicalcite, gabbro cm-m 
- Bottom: mantle peridotite and 
gabbro 
- Top: pillow lava basalt 

Middle to Late 
Jurassic 

Monte Capra 
Breccia 

clast-
supported sandy 

Fe-gabbro, Fe-basalt, 
plagiogranite, serpentinite, 

ophicalcite 
cm-m 

- Bottom: mantle peridotite and 
gabbro  
- Top: pillow lava basalt 

Middle to Late 
Jurassic 

U
pp

er
 

br
ec

ci
as

 Movea Breccia clast-
supported sandy Mg-gabbro, Mg-basalt, 

serpentinite, ophicalcite, cm-m - Bottom: pillow lava basalt 
- Top: Monte Zenone Breccia Late Jurassic 

Monte Zenone clast-
supported sandy Mg-gabbro cm-m - Bottom: pillow lava basalt 

- Top: chert Late Jurassic 

Monte Bianco clast-
supported sparry ophicalcite,  

serpentinized peridotite cm-m - Bottom: mantle peridotite 
- Top: Chert Late Jurassic 

M
T

D
s 

Forcella Breccia matrix-
supported shaly limestone, marl,  

fine-grained arenite cm-m Inside the Zonati Shale and  
Gottero Sandstone 

Maastrichtian to 
Early Paleocene 

Bocco Shale matrix-
supported shaly 

limestone, arenite, marl, 
basalt, gabbro,  

serpentinite, chert 
cm-dam 

Unconformbly on: Palombini 
Shale, Manganesiferous Shale, 
Verzi Marl, Zonati Shale and 
Gottero Sandstone 

Early Paleocene 

W
E

ST
E

R
N

 A
LP

S 

L
ow

er
 b

re
cc

ia
s 

Meta-
ophicarbonate  

cataclastic 
to 

hydrofract, 
no-matrix serpentinite cm-m 

- Bottom: mantle peridotite 
- Top: ophiolite-bearing 
metabreccia and metasandstone 

Middle to Late(?) 
Jurassic 

Lake Miserin 
and Mt. Avic 
metabreccia 

clast- to 
matrix-

supported 

mixed 
ultramafic-
carbonate 

(calcschist) to 
carbonate 
(marble)  

meta-ophicarbonate,  
serpentinite cm-dm 

- Bottom: ophicarbonate and 
peridotite 
- Top: sedimentary mélange (Lake 
Miserin) and basalt (Mt. Avic) 

Middle to Late 
Jurassic 

Queyras lower 
mono- and 
polymictic- 
metabreccia  

clast-
supported 

mixed mafic-
carbonate 

(calcschist)  

- Monomictic: serpentinite, 
meta-ophicarbonate or 
metagabbro 
- Polymictic: serpentinite 
and metagabbro  

cm-dm 
(rarely m) 

- Bottom: mantle peridotite or 
gabbro or shear zones 
- Top: basalt sequence or calcschist 

Middle to Late 
Jurassic 

Monviso 
metabreccia and 
metasandstone 

matrix-
supported 

mafic 
metasandstone  metagabbro cm-dm 

- Bottom: Mg-Al metagabbro in the 
footwall of an extensional 
detachment fault 
- Top: post-extensional carbonate-
rich metasediment 

Middle to Late 
Jurassic 

U
pp

er
 b

re
cc

ia
s 

Lake Miserin 
sedimentary 

mélange 

matrix-
supported 

carbonate 
(marble) 

massive serpentinite and 
veined serpentinite (meta-

ophicarbonate) 
dm-m 

- Bottom: Lake Miserin lower 
metabreccia 
- Top: post-extensional calcschist 

Middle(?) to Late 
Jurassic 

Queyras upper 
mono- and 
polymicitic 
metabreccia  

clast- to 
matrix-

supported 

metasandstone 
(same 

composition of 
clasts) 

- Monomictic: metabasalt 
- Polymictic: metabasalt, 
metagabbro, ingneous 
quartz-feldspatic rocks 
(plagiogranite?) 

cm-dm 

- Bottom (or inside to): metabasalt 
and meta-pillow lava basalt 
- Top: post-extensional 
metasediment (metaradiolarite or 
marble) 

Late Jurassic 

Garten 
Formation  

clast- to 
matrix-

supported 

micaschist and 
calcschist 

Metabasalt, serpentinite and 
marble cm-dm Inside the base of metabasite or 

(locally) within calcschist  Late(?) Jurassic 

M
T

D
s 

Rocher Renard 
Complex 

matrix-
supported shaly 

metabasalt, meta-
ophicarbonate, serpentinite, 
metagabbro, metalimestone, 

metachert)  

cm-dam - Bottom: Gondrand Flysch 
- Top: ? 

Maastrichtian to 
Early Paleocene 

 
Table 1 – Festa et al. 


