
Liang et al. BMC Genomics           (2022) 23:87 
https://doi.org/10.1186/s12864-021-08246-1

RESEARCH ARTICLE Open Access

Context dependency of nucleotide
probabilities and variants in human DNA
Yuhu Liang1,5, Christian Grønbæk2, Piero Fariselli3 and Anders Krogh1,4,5*

Abstract
Background: Genomic DNA has been shaped by mutational processes through evolution. The cellular machinery for
error correction and repair has left its marks in the nucleotide composition along with structural and functional
constraints. Therefore, the probability of observing a base in a certain position in the human genome is highly
context-dependent.
Results: Here we develop context-dependent nucleotide models. We first investigate models of nucleotides
conditioned on sequence context. We develop a bidirectional Markov model that use an average of the probability
from a Markov model applied to both strands of the sequence and thus depends on up to 14 bases to each side of
the nucleotide. We show how the genome predictability varies across different types of genomic regions. Surprisingly,
this model can predict a base from its context with an average of more than 50% accuracy. For somatic variants we
show a tendency towards higher probability for the variant base than for the reference base. Inspired by DNA
substitution models, we develop a model of mutability that estimates a mutation matrix (called the alpha matrix) on
top of the nucleotide distribution. The alpha matrix can be estimated from a much smaller context than the
nucleotide model, but the final model will still depend on the full context of the nucleotide model. With the
bidirectional Markov model of order 14 and an alpha matrix dependent on just one base to each side, we obtain a
model that compares well with a model of mutability that estimates mutation probabilities directly conditioned on
three nucleotides to each side. For somatic variants in particular, our model fits better than the simpler model.
Interestingly, the model is not very sensitive to the size of the context for the alpha matrix.
Conclusions: Our study found strong context dependencies of nucleotides in the human genome. The best model
uses a context of 14 nucleotides to each side. Based on these models, a substitution model was constructed that
separates into the context model and a matrix dependent on a small context. The model fit somatic variants
particularly well.
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Background
The evolution of species can be followed in chromosomal
DNA, which has undergone mutations and selection, and
mutational processes have been essential for the develop-
ment of life on earth. On the other hand mutations need
to be controlled, because if an essential gene is mutated
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it may result in severe disease or loss of viability. This
balance between plasticity and stability is important for
sustaining stable life forms [1]. The question we ask in this
study is, how this balance is reflected in the local sequence
properties of human DNA and how the sequence context
affects mutations. More precisely, we consider models of
mutability that depend on the sequence context of e.g. k
bases on each side of the position in question.
It is well known that the sequence context influences

mutational processes. For instance, the mutation of C to T
ismuchmore common in CpG dinucleotides than in other
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contexts in the human genome [2, 3], and previous stud-
ies have reported that the immediate neighbouring bases
(up to a 7 base context) influence mutation rates [4–7].
Another study showed point mutations can be affected by
sequencemotifs [8]. The cellularmachinery includes com-
ponents for maintaining genome integrity, such as DNA
repair mechanisms, which result in mutational biases [9,
10] and other processes may lead to other biases. These
mechanisms together govern the intrinsic mutability. Fol-
lowing [11], we use the term mutability rather than muta-
tion rate, because we are not considering the detailed
evolutionary process and there is no time in our models,
although the same ideas are easily applicable to estimation
of context sensitive mutation rates.
Models of mutability can be estimated from observed

variants by simply estimating the probability of a muta-
tion given a context. However, such models are estimated
from fairly small and biased sets of variants without uti-
lizing the mutability foot-print in the genome. Here we
propose to split the context dependent mutability into a
nucleotide distribution and a variant part. The nucleotide
distribution can be estimated from the whole genome and
the variant part from variants, thereby allowing the two
parts to have different context sizes. Due to the size of the
human genome, the context dependent nucleotide distri-
bution can be estimated from a much larger context than
the variant part. The variant part can depend on a smaller
context and can thus be estimated from a small number of
variants.
In the first part of the paper, we focus on estimation of

the probability of observing a base in the genome, given a
context. One measure to quantify the context sensitivity is
predictability. In a random sequence of nucleotides with
no context sensitivity, we would only be able to predict a
given base with an accuracy of 25% (random guessing), so
this is the lower boundary of predictability. However, due
to the mutational biasses discussed above and the repeti-
tive nature of genomes, we would expect that a genome is
more predictable than a random sequence. We show that
a human genomic base can be predicted with an average
of 51% using our most sophisticated model.
In the second part of the paper, we estimate a mutability

model based on the context dependent nucleotide distri-
bution found. For a fixed context dependent nucleotide
distribution model, we show that the mutability is not
very sensitive to the context size of the variant part. We
compare to a simple mutability model conditioned on a 7
base context as in [5] and show that they differ between
different types of mutations.
Knowledge of the background probability is important

for a lot of models and the models described in this work
can form a basis for other modelling efforts in the future.
It has been shown, for instance, that a high-order Markov
model can improve motif discovery over a simple back-

ground model [12]. Similarly our models of mutability can
be useful in future studies of mutations in disease, where
the mutability can be used to e.g. identify unexpected
mutations.

Results
Context modeling of the human genome
In our first model, the Central model, (Fig. 1), we simply
estimate the conditional probability of a nucleotide given
k bases to each side. For base xi at a genomic position i
these probabilities are written as

P(xi|xi−k , . . . , xi−1, xi+1, . . . , xi+k).

They are estimated from the genomic frequencies of the 4
possible (2k+1)-mers of the given context. A k = 3model
corresponds to a neighbourhood of 7 as used in [5], and
we use this model as our baseline. Since we are estimating
frequencies from all positions on both strands, they are
automatically strand symmetric.
One can use other values of k as long as a model can be

reliably estimated. As the 4 probabilities sum to one, there
are 3 ∗ 42k free parameters in the model, so the k = 3
model has around 12,000 free parameters, which can eas-
ily be estimated from the 6 billion sites of the two strands
of the human genome. A k = 7 model has approximately
0.8 billion free parameters, and is thus the upper limit of
what we can hope to reliably estimate for a genome like
the human. Even with k = 7 there are many contexts that
occur only once or very rarely. To avoid over-fitting, we
have used an interpolated Central model in which a model
of order k is used to regularize a model of order k + 1 and
so on (see Methods). For our second model, we have used
a central model with k = 7 and interpolated from k = 4.
A Markov model of order k yields probabilities of the

four bases conditional on the k previous bases. A Markov
model also can be used to estimate from both strands, as
above, which means that for base i, it can give two differ-
ent probabilities: P(xi|xi−1, . . . , xi−k) on the direct strand
and P(x̂i|x̂i+1, . . . , x̂i+k) on the opposite strand, where x̂i
means the complementary base to base xi. Note that these
models are estimated from both strands as the central
models, which means that a model estimated using a 5’
context is identical to the complementary of a model esti-
mated using a 3’ context and therefore, without loss of
generality, we always assume 5’ models.
Our third model is a bidrectional Markov model (Fig. 1)

of order k = 14, interpolated from k = 8. It is called
bidirectional, because we use the average between the
probability of xi from one strand and the probability of
x̂i from the opposite strand as explained above. Note that
this model with k = 14 has the same number of free
parameters (3 ∗ 1014) as the central model with k = 7
described above, because both use 14 bases as context.
However, the bidirectional Markov model actually uses a
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Fig. 1 Illustration of the three models used. A DNA sequence is shown with the complement sequence below. The blue histograms illustrate
nucleotide probabilities. The central model with k = 7 (upper left) predicts the base in the middle from the adjacent nucleotides in the boxes to the
left and right. For this illustration, C has highest probability, which happens to coincide with the correct nucleotide at the position. The Markov
model (top right) of order k = 14 predicts a nucleotide from the previous 14. In this example A has highest probability although G is the actual
reference probability. The bidirectional model (bottom right) use the same model on the reverse complement strand. In this example C has the
highest probability, which coincides with the complement base at the position. The probabilities are translated to the direct strand and averaged
with the forward model

context of 28 bases for prediction, because of the averag-
ing over the two directions. This model is called BM14 in
the following.
We have developed a program written in C that imple-

ments these different models. Instead of saving counts for
each context, it dynamically calculates the count based on
a Burrows-Wheeler encoded genome [13] to save mem-
ory. The performance of our models can be evaluated by
the accuracy, which is the fraction of positions, where the
most probable base given the context equals the actual
base in the reference genome. The accuracy on the human
genome is shown in Fig. 2 for the different models men-
tioned above (Supplementary Table S1, S2).
For the baseline model there is a strong correlation

between the GC content and the accuracy on each chro-
mosome. In Supplementary Table S3, we show GC con-
tent [14] with the accuracy and find a Pearson correlation
of 0.90 for the baseline model with the lowest accuracy of
around 38% for Chromosome 2–6 that has GC content of
38–40% and the highest accuracy of around 42% for chro-
mosome 19, which has the highest GC content of 48%. For
the k = 7 central model and BM14, the picture is less clear.
Although they have correlations of 0.70 and 0.53 with GC
content, the two chromosomes with the best prediction
accuracy are chromosome 19 (GC 48%) and chromosome
Y (GC 40%) at opposite ends of the GC scale.
For estimating the performance shown in Fig. 2, we

have used leave-one-out cross-validation at the nucleotide
level. It means that when estimating the probabilities for
a given site in the genome, that site is excluded in the

counts for model estimation. Because the k-mers overlap,
one may argue that it is not proper cross-validation, but
more fulfilling a minimum requirement that the site itself
should not be used for estimating the model. Therefore
we have also done a chromosome-based cross-validation
for comparison and calculated the overall accuracies for
each chromosome using a model estimated from the other
chromosomes. The difference between nucleotide-based
and chromosome-based cross validation is only 0.5 per-
centage points (p.p.) on average, but for the Y chromo-
some, it is more than 3 p.p. (Supplementary Table S1, S2
and Supplementary Fig. S1). Chromosome Y is known
to differ from other chromosomes by being more hete-
rochromatic and contain mostly repetitive regions [15],
and therefore the model performs poorly on this chromo-
some when estimated only from other chromosomes.
With interpolation it is in principle possible to go

beyond k = 14, because for contexts with zero counts,
the probabilities are equal to a lower order estimate, so it
should adapt without over-fitting. We have not explored
higher k so much, but in Supplementary Fig. S2, we have
run the bi-directional Markov model from k = 10 to
k = 20 for different values of the interpolation constant
described in Methods. The figure shows results for chro-
mosome 20 and the model estimated from all the other
chromosomes. Up to k � 14 the models steeply improve
and are almost insensitive to the interpolation constant.
Above k = 14 we still see a monotonous improvement
that seems to level off at around 52% for the best model.
Chromosome 20 was chosen for this experiment, because
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Fig. 2 Prediction accuracy for the three models. Baseline with k = 3, Central model with k = 7 and the bidirectional Markov model with k = 14
(BM14). The bar-plot shows accuracy for each chromosome and average accuracy on the whole genome. Results using nucleotide-based
cross-validation

it is small and has a prediction accuracy similar to the
average for the BM14model. It clearly shows that interpo-
lation improves the model although not by a great deal for
k < 14. Importantly, interpolation at any strength ensures
that zero counts do not occur, which would otherwise
result in undefined probabilities.
The predictive performance of BM14 on different

regions in the human genome is shown in Fig. 3. As
expected, the model predicts repetitive sequences very
well with an overall accuracy of 64%, but there are quite
large differences between different types of repeats. The
most common type of repeat in the human genome,
the ALU sequences, is 87% correctly predicted, whereas
LINE1 for instance is only at 63% (Supplementary Table
S4). These differences are most likely due to differences in
conservation of the different types of repeats.
The probability of the nucleotide in the reference

genome given its context varies throughout the genome.
The density of this probability, which we call the refer-
ence probability, is shown for different genomic regions
in Fig. 4. For each feature except for CDS there are two
peaks of which one is due to repeats. However, in posi-
tions where the reference probability is above 0.4, repeats
account for a large proportion compared to other features.
(Supplementary Table S5).

To further elucidate the predictability across different
regions, we show in Fig. 5 the reference probabilities
across human 3’ and 5’ splice sites that averaged over all
introns annotated in Chromosome 1 (Chr1). The proba-
bility shows a large jump from a level of almost random
prediction (∼ 0.28) in the coding region to a fairly high
value (∼ 0.36) in the intron. The conservation plot in the
same figure presents an opposite trend.
To test whether the model can be improved for non-

repeat regions, we estimated a restricted model from
everything outside coding regions and repeats. There is
little difference between the restricted model and the full
one in terms of prediction accuracy or reference proba-
bility as seen in (Supplementary Fig. S3) and we did not
analyze this model further.
We briefly examined the performance of a bidirectional

Markov model on some other species. Because of the
smaller genome sizes, we used an interpolated bidirec-
tional Markov model of order k = 10 in this analysis. The
density plot of the reference probabilities (Supplementary
Fig. S4A) shows that a single main peak occurs for human
and E.coli genomes. A. thaliana, C. elegans and S. cere-
visiae have two peaks. The peak towards low probability is
enriched in coding sequence as can be seen from Supple-
mentary Fig. S4B, where the density is plotted separately
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Fig. 3 Prediction accuracies for BM14 in different regions across all chromosomes. The accuracy for different features on the chromosome 1 to Y, is
indicated by colored dots. The line shows the overall accuracy for each chromosome

for CDS regions and other regions. In positions where
the reference probability is above ∼ 0.55, the density of
human is higher than that of other species, which is most
likely caused by repeats in human genome.
In the other eukaryotic genomes the prediction accu-

racy of the models were 45% for C. elegans, 40% for A.
thaliana, and 38% for S. cerevisiae.

Variants
We next evaluated BM14 on variant datasets. We assume
that our models are valid for all genomes, and variants
found in population studies, such as the 1000 Genomes
Project (1KGP) [16], should be predicted with the same
accuracy as the corresponding positions in the refer-
ence genome. We identified ∼ 73 million bi-allelic single
nucleotide polymorphisms (SNPs) in the 1KGP. The prob-
ability of the reference (Pref ) was plotted against the
probability of the alternative (Palt) shown in Fig. 6 for the

k = 7 central model and BM14. The latter shows a larger
concentration of sites in the middle of the plot. Note the
unexpected asymmetry between the corners at Pref� 1
and Palt� 1 for both models.
This asymmetry is also reflected in the fact that the ref-

erence allele had the highest probability in 38.82% of cases
and the alternative allele in only 24.20% for BM14. The
density plot of Pref-Palt in Fig. 7A also shows a peak near
1 when all SNPs are used. However, when rare SNPs are
ignored, the right peak decreases in size and a peak in the
left side of the plot appears and the density becomes sym-
metric when only including SNPs with allele frequency
above 20%. The far majority of SNPs with a reference
probability higher than 0.875 in the 1KGP dataset belong
to repeats.
We also compared Pref and Palt for different types

of single nucleotide variants (SNVs) in coding (Fig. 7B)
and non-coding regions (Supplementary Fig. S5). Clin-



Liang et al. BMC Genomics           (2022) 23:87 Page 6 of 15

Fig. 4 Density profile of reference probabilities in different genomic regions obtained with BM14

ically relevant mutations from the Clinvar database are
almost indistinguishable from 1KGP in coding regions
and indeed a Kolmogorov–Smirnov (KS) test gives a p-
value of 0.18 showing an insignificant difference (see Sup-
plementary Table S6). On the contrary, somatic mutations
have a clear tendency to mutate towards a more proba-
ble base (Palt > Pref ) supported by a p< 10−15 in the
KS test. In non-coding regions, the somatic mutations are
also shifted towards a higher probability for the alterna-
tive and have the same peak at high reference probability
as 1KGP.
To see if there is a difference between damaging and

benign SNPs, we show the same densities for Polyphen2
predictions [17] on Chr1 in Fig. 7C. On Chr1 there is a
total of 32,841 SNPs classified as benign and 15,299 SNPs
classified as damaging. There is a small, but significant (KS
test (p< 10−15, see Supplementary Table S6)), shift of the
damaging SNPs towards higher probability of the alterna-
tive allele. We saw that for only 21% of damaging SNPs
the reference allele had the highest probability whereas for
29% the alternative allele had the highest probability. For
benign SNPs, these numbers are 26.5% and 24%. This dif-
ference is highly significant (Chi-squared test p� 10−9,
see Supplementary Table S7).

Context-dependent models of substitutions
It is possible to estimate context dependent models of sin-
gle nucleotide substitutions from a set of known variants.
Since SNV sampling is very biased and variants are not
fully observed, the context size needs to be much smaller
than for the nucleotide distribution models described
above. In the previously mentioned work [5] a seven
nucleotide context is used. Here we want to explore the
possibility of using our genome models to obtain mod-
els of substitutions. The rationale is that to maintain the
context dependent nucleotide probabilities, they must be
reflected in the mutability.
We assume the genome has reached approximate equi-

librium. To keep this state, the mutability towards a
nucleotide should be higher, the higher the probability of
that nucleotide is in the given context. Therefore we set
the probability of a mutation from a to b to be propor-
tional to the probability of nucleotide b (in that context)
with a constant that depends on the nucleotides andwhich
can also depend on the context. This model is inspired by
the general time-reversible stationary Markov model [18,
19], in which the off-diagonal rates are μab = αabπb with
symmetric αab for nucleotides a �= b and the equilibrium
distribution P(a) = πa. Themathematical theory does not
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Fig. 5 Probabilities (top) and conservation score (bottom) of reference bases across 3’ and 5’ splice sites. The probabilities of the reference bases by
BM14 were averaged for each position for the first/last 100 nt in coding sequence and 500 nt in introns. The conservation score is PhastCons100Way
from the UCSC browser

apply directly here, because reversibility is too restrictive,
so we do not require the α matrix to be symmetric, but we
can still estimate an α matrix that best fits a set of variants.
For lack of a better term, we call α the “alpha matrix”.
Whereas the nucleotide distribution can be estimated

from the whole genome using large contexts, the αs must
be estimated from observed mutations. We hypothesize
that the αs are less context dependent, and thus can
be estimated from a smaller context than the nucleotide

distributions. Details of the estimation procedure is
described in Methods.
We estimated αs from all chromosomes except Chr1 for

symmetrical contexts of size 0, 3, 5, and 7 (k = 0, 1, 2, and
3) using SNPs from the 1KGP and the BM14 model for
the nucleotide distribution. The alpha matrix is shown in
Table 1 (left) for k = 0. Notice that it is essentially strand-
symmetric, but not symmetric in normal matrix-sense, so
it violates reversibility. Similarly, we estimated a simple
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Fig. 6 Triangle plot for probabilities of Ref-Alt alleles. Probabilities of reference and alternative alleles were estimated by the k = 7 central model
(upper right triangle) and the k = 14 bidirectional Markov model (BM14, lower left triangle) on SNPs from the 1000 Genomes Project

conditional model with a 7-mer context (k = 3) from the
same data, which is called the simple model in the follow-
ing. The simple model is similar to one of the models in
[5], but the variants used for estimation are slightly dif-
ferent. The models were then applied to Chr1 where we
calculated the probability of a mutation given the context
for all positions with an observed SNP. The total fraction
of sites with probability above 0.25 is very small for all
models, see Fig. 8A. In Fig. 8B the fraction of sites with

a certain mutability that has an observed SNP is plotted
against mutability for some of the models. Ideally these
should be linear, but we see a significant deviation from
linear for the simple model and for the α models with
k > 0. The models with k = 1–3 behave almost the same,
and up to a substitution probability of∼ 0.25 they are very
close to the simple model.
Above a mutability of 0.25, our models with k > 0 devi-

ate significantly from the diagonal line. It turns out that

Fig. 7 Density profiles of Pref - Palt for SNPs on Chromosome 1. A SNPs from 1KGP. The different lines represent SNPs with allele frequencies greater
than 0, 0.01, 0.1 and 0.2, respectively. SNP counts are shown in the legend after the dash. B Density profiles show variants of ClinVar, somatic
mutations (COSMIC) and 1KGP database in coding regions. C Densities of damaging and benign variants predicted by Polyphen-2 based on
HumanVar database and annotated on 1KGP database by ANNOVAR software
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Table 1 α matrixes for k = 0 and k = 1 estimated by
substitution model

A C G T

a α matrix, k = 0

A – 0.019 0.066 0.012

C 0.025 – 0.034 0.096

G 0.096 0.033 – 0.025

T 0.012 0.065 0.019 –

b α matrix, k = 1, CG sites only

ACG 0.041 – 0.041 0.717

CCG 0.035 – 0.066 0.555

GCG 0.062 – 0.035 0.566

TCG 0.043 – 0.048 0.483

a: The α matrix for k = 0 estimated from all chromosomes except Chr1. b: The part
of the α matrix for k = 1 corresponding to contexts with CG preceded by one base,
so they correspond to mutations of C in these contexts

these rare reference genome sites with high substitution
probability are mainly CpG sites. The alpha matrix for
k = 1 is shown in Table 1 for the CG contexts, where
it is evident that the C to T values are very large, rang-
ing from 0.48 to 0.72, which should be compared to the
largest α of 0.22 that is not a CG context, see (Supple-
mentary Table S8). For contexts where the T has high
probability according to the nucleotide distribution, the
substitution probabilities will become large, because it is
the product of α and the nucleotide probability. It suggests
– as expected – that these substitutions are very likely at
unselected positions.
We applied the model also to SNVs from Clinvar and

COSMIC as shown in Fig. 8C for k = 1 and for the sim-
ple model. The number of variants with mutability values

above 0.3 for the k = 1 model is relatively small. For Clin-
var only 296 SNVs out of 42000 have a mutability larger
than 0.3 and for COSMIC this number is 2760 out of
120000. It means that the data are noisy as seen in Fig. 8C,
but it is evident that the somatic SNVs from COSMIC fol-
low the model more closely than germline SNPs in this
domain.

Discussion
We developed context dependent models of the
nucleotide distribution in the human genome. The most
advanced one, a bi-directional Markov model with a
context of 14 nucleotides to each side, can predict a
nucleotide with 51% accuracy. We use interpolation from
lower orders, so it is in principle possible to go above
k = 14, but we saw that this did not change the model
very much, and the predictability of just above 50% is
close to an upper limit for this type of model.
In this work our objective has been to apply simple

interpretable models to the problem. Previous studies
have applied neural networks to the human genome by
sequence context to obtain DNA representations for other
tasks. This has been used for prediction of the effect
of non-coding variants [20] and the regulatory code of
the accessible genome [21], for instance. The DNAbert
model [22] is more related to the present work. It is a
transformer neural network, which in the pre-training
is trained to predict k-mers (k=3-6) from the surround-
ing sequence context. However, the focus is on using it
for other prediction tasks, and direct comparison to our
models is not possible. We have used neural networks
ourselves for the same task for prediction of bases from

Fig. 8 Substitution model. Model substitution probabilities shown for the models with context-insensitive α (k=0), the ones with α depending on 1,
2, and 3 bases to each side (k=1, 2, 3), and the simple model conditioned on the 3 bases to each side. The model substitution probability for a site is
the sum of the probabilities for the three possible substitutions. A The cumulative distribution of model substitution probabilities for all sites (solid
lines) and for SNPs (dashed) on Chr1 shown for the five models. Note that for all models there are very few sites with substitution probability above
0.3. B The fraction of sites on Chr1 with an observed variant in the 1000 Genomes project (1KGP) plotted against p. The y values are SNP counts in
small probability intervals (10−4) divided by total counts. The curves are smoothed with splines. Estimates are noisy for larger probabilities due to
low counts. C As B for SNPs in 1KGP, Clinvar and COSMIC for the k = 1 model and simple only. For latter two, counts are scaled so they sum to the
number of SNPs in the 1KGP set for Chr1. For high mutability values there are few SNPs, so the curves are very noisy especially for Clinvar
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the context [23]. Using a larger context in the neural net-
work leads to marginally better prediction accuracy, but
more importantly differences in performance depending
on context.
The high predictability of our model is, to a large extent,

due to repeats. It is interesting that approximately half
the human genome is said to be repetitive [24], which
superficially coincides with the predictability, but an exact
definition of repetitive regions is a challenge and some
report a higher repetitive fraction (see e.g. [25]). For A.
thaliana andC. elegans the predicability was 40% and 45%,
respectively, and they both have 12-13% repeats [26], and
although the model was of lower order, it suggests that
predictability could be used as a measure of the repeti-
tiveness of a genome. This, however, would require more
extensive analyses.
Not surprisingly, the predictability is highly dependent

on the type of the genomic region. Coding regions can
be predicted with only 36% accuracy, whereas Alu repeat
regions are at 87% and simple repeats even higher (Fig. 3).
When looking more closely at splice sites we see – as
expected – a negative correlation between conservation
and the probability of the reference base (Fig. 5), although
such a correlation is weak, when looked at genome wide
due to the lack of conservation of repeats. There are also
differences between chromosomes, where especially the
Y chromosome and Chr19 stand out with higher pre-
dictability than others, which is likely due to their high
repeat content.
The model was applied to the genomes of Arabidop-

sis thaliana, Caenorhabditis elegans, Escherichia coli, and
Saccharomyces cerevisiae. Due to the smaller genome
sizes a bidirectional Markov model with k = 10 was
used. The large differences between species observed is
an indication of quite different composition of genomes.
Interestingly some species have two peaks in the density
of the reference probability, which is partly explained by
differences between coding regions and non-coding.
We compared the probability of the reference allele to

the alternative allele on single nucleotide variants from
the 1000 Genomes Project. There is a peak with SNPs
that have a reference probability close to one, which skews
the distribution away from symmetry (Fig. 7A). Almost all
SNPs in this peak (with reference probabilities over 0.875)
fall in repeat regions and one possibility is that some of
them are mapping artefacts. They also have relatively low
allele frequencies, and when considering only SNPs with
high allele frequency, the plot becomes symmetric. There-
fore, another factor thatmay explain the asymmetry is that
the reference genome, which is not a genome of a single
individual, contains very few rare alleles.
The difference between the probability of the refer-

ence allele and the alternative allele for coding SNVs
in the 1000 Genomes Project was compared to SNVs

from somatic mutations and clinically relevant SNPs
from Clinvar (Fig. 7B). Here we see a statistically sig-
nificant shift of somatic SNVs towards higher probabil-
ity for the alternative allele, which suggest that somatic
mutations tend to favor more probable bases. Simi-
larly, we see a significant difference between damaging
and benign SNPs (as classified by ANNOVAR) as seen
in Fig. 7C. Surprisingly, the damaging SNPs seem to
have a higher probability according to our model than
benign ones.
The sequence models presented here estimate distribu-

tions of the bases for a given context and reflect inherent
properties of the cellular machinery responsible for repli-
cation, error correction, and so on, as well as the physical
properties of DNA, such as curvature and bendability.
A mutation that moves a base closer to this distribu-
tion is likely to be more probable than one that moves it
away, at least if selection is ignored. To explore this, we
have derived a model that takes the context dependent
nucleotide distribution into account.
In our model, we are assuming that the variation of a

site in the human DNA can be described by a context sen-
sitive continuous Markov model with a rate matrix that
is a product between the nucleotide distribution and an
“alpha matrix”. The alpha matrix can be estimated from
known variants and it can depend on a smaller context
than the model for the nucleotide distribution and can
be estimated from a relatively small number of SNVs. It
means that our model for mutability have a very large con-
text due to the context dependent nucleotide distribution
even if the alpha matrix uses a smaller context.
The model does not depend strongly on the context size

for the alpha matrix for contexts of the two neighbours or
larger (k ≥ 1). Our models behave very similarly to a sim-
ple mutability model, which is estimated from SNPs alone
and a context of three nucleotides to each side except in a
regime of very high mutability (Fig. 8B). Our models seem
to over-estimate the SNP mutability from 1KGP when the
values are larger than about 0.25. However, this is not the
case for somatic mutations, and the mutations seem to be
well-described by these models (Fig. 8C).
The model is inspired by the general time-reversible

model from evolutionary theory, which has six free
parameters corresponding to a symmetric alpha matrix,
and with rates depending on the equilibrium distribution.
However, although time-reversibility would be desirable,
it is not likely that the context dependent nucleotide dis-
tribution we estimate is an equilibrium distribution for
the entire genome. In fact, when inspecting the estimated
alpha matrix for zero context (Table 1) and a context of
one nucleotide to each side (Supplementary Table S8), it
is evident that it is not symmetric. For the latter there
are very large deviations from symmetry for contexts with
NCG, where N can be any base. In these contexts, αCT is
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consistently 10-20 times larger than αTC corresponding to
a strong tendency to mutate from CG to TG.
Even if the α matrix depends on a small context, the sub-

stitution still depends on the full context of the nucleotide
distribution. This construction is very attractive, because
substitutionmodels estimated from variants alone need to
have small contexts due to the limited number of variants
and the strong sampling biases.

Conclusions
There are strong context dependencies of nucleotides in
genomes. We have shown how one can estimate a model
of the nucleotide probabilities depending on contexts up
to 14 nucleotides to each side. Building on these models, it
was shown how it is possible to make models of mutations
that combine the context dependent nucleotide probabil-
ities with a mutation matrix, called the alpha matrix, to
givemutation probabilities (“mutabilities”) that depend on
the same large context. It was shown that these models
fit observed mutations very well and especially somatic
ones. Importantly, the alphamatrix can depend on amuch
smaller context of just one to three bases to each side and
does not depend strongly on this parameter.
These models can form the basis for a better under-

standing of human mutations and we believe it will be
possible to use them in a wide range of applications from
GWAS studies to analysis of somatic mutations.

Methods
Conditional probability models for the central base
The base at position i (chromosome, coordinate) in the
reference genome is called xi and the symmetric sequence
context around it is called

si(k) = xi−k , xi−k+1, . . . , xi−1, xi+1, xi+2, . . . , xi+k . (1)

If it is clear from the context which k, we call it si to ease
notation. To estimate the conditional probability of base b
at position i, we use the counts n(b|si) of the occurrences
in the same context throughout the reference genome (on
both strands):

P(b|si) = n(b|si) − δb,xi
N(si) − 1

, (2)

where

N(si) =
∑

b
n(b|si).

We use the Kronecker δb,xi , which is 1 if xi = b and other-
wise 0, to ensure that we only count other contexts, when
estimating probabilities at position i. This is leave-one-out
cross-validation and is discussed further below.
For large contexts, the counts become small and thus the

probabilities cannot be reliably estimated. To interpolate
between different orders of the model, we use regulariza-

tion by pseudo-counts obtained from the k − 1 model.
Specifically, for order k, we define pseudo-counts

r(b|si(k)) = γP(b|si(k − 1)),

where γ is the strength of pseudo-counts. Now the model
of order k is estimated as before, but using the actual
counts plus pseudo-counts,

P(b|si(k)) = n(b|si(k)) − δb,xi + r(b|si(k))
N(si(k)) − 1 + γ

.

The advantage of pseudo-counts is that they have minor
influence, when there is plenty of data (actual counts are
high), but have strong effect at low counts. With k = 4
counts are on average 6 ∗ 109/49 � 23000, so we assume
that psudo-counts are not needed. Therefore, our interpo-
lated model starts with unregularized estimates for k = 4,
and then use the pseudo-counts iteratively for k = 5 to
k = 7 for the interpolated model. We used a strength
of γ = 100 for the pseudo-counts (a few experiments
showed that the model is relatively robust to changes in γ ,
see below).

Markov models
In a Markov model of order k, the probability of a base
is conditioned on the k previous bases. If we redefine the
k-context in (1) to be the k previous bases,

si(k) = xi−k , xi−k+1, . . . , xi−1,

we can use exactly the same formulation as above. In this
case however, the context size is not 2k letters as above,
but only k letters. Therefore, one can estimate Markov
models up to sizes around k = 14 for the human genome,
and we used a model interpolated from k = 8 to k = 14
analogously to the central interpolated model described
above.
Due to the interpolation, larger k are possible, and we

performed a small experiment with k ranging from 10 to
20 and with four different values of the interpolation con-
stant γ resulting in Supplementary Fig. S2. These tests
were done only on chromosome 20 with a model esti-
mated from all chromosomes except 20. Although small
gains can be obtained with larger k values and different
γ , we decided to stick to our initial choice of k = 14 and
γ = 100.
Estimating a “forward” Markov model from both

strands of the human genome will automatically make it
strand-symmetric. For a given position in the genome, the
model can therefore give two sets of base probabilities:
one for the forward strand and one for the reverse strand.
Our final Markov probabilities are the average between
the two as described in the main text and referred to as
bidirectional.
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Cross-validation
Our way of estimating the conditional probability of see-
ing one of the four bases given the surrounding context
can be seen as a leave-one-out procedure. In particular,
the estimate depends on the reference base at the consid-
ered position as well as the context. To obtain an estimate
that is independent of the reference base at the position,
a natural way to proceed is to consider the average of the
four base-dependent estimates over all occurrences of the
given context. This average turns out to be equal to the
estimate that includes all positions. To see this, average (2)
over all sites (skipping the k dependence for clarity) gives
the probability of a base b:

P̄(b|s) = 1
N(s)

∑

b′
n(b′|s)n(b|s) − δb,b′

N(s) − 1
.

Here the base we are summing over is called b′
to distinguish it from the base b in question. Since∑

s n(b′|s)δb,b′ = n(b|s), we get

P̄(b|s) = 1
N(s)(N(s) − 1)

(N(s)n(b|s) − n(b|s)) = n(b|s)
N(s)

.

We also assessed our models by cross-validation by
chromosomes. One chromosome was used as test data,
and the remaining chromosomes as training data. We
repeated this step 24 times to calculate the fraction correct
predictions for each chromosome.

Substitution models
A simple model estimates mutability as the fraction of
all sites with context ŝ having a specific mutation. More
specifically,

PSimple(a → b|ŝ) = n(a → b|ŝ)
n(a|ŝ) . (3)

Here n(a → b|ŝ) is the number of observed mutations
a → b in context ŝ and n(a|ŝ) is the number of times we
see reference base a in context ŝ (as above). We use ŝ to
indicate that the context may be different from the con-
text s for the genome model above. We have used this
model with a symmetric context of three bases to each
side, which we call the simple model.
We will now derive a continuous time Markov model

with context dependent substitution rates μab|s that takes
the nucleotide distribution into account.We also assume a
constant evolutionary time, which is infinitesimally small
compared to the rates, so we can approximate the sub-
stitution probability by the first-order term in the Taylor
expansion of an exponential

P(a → b|s) � δa,b + μab|s,

where time is set to 1. The diagonal rates are
− ∑

b�=a μab|s, so in the following we will not write the
diagonal terms. For a stationary, reversible Markov model

with P(a|s) as equilibrium probabilities the rates can be
written as

P(a → b|s) � μab|s = αab|sP(b|s) (a �= b).

with a symmetric matrix αab. This is the general time-
reversible six-parameter model (see e.g. [19]). Inspired
by this model, we assume that mutability is given by the
same equation, but without requiring that the nucleotide
distribution is the equilibrium distribution and without
requiring that α is symmetric.
The above expression factorizes the rates into the

nucleotide distribution and the α-term that encapsulates
themutations. Nowwe assume the αs depend on a smaller
context ŝ than the context s for the genome model P(a|s),
so the above can be written as

P(a → b|s) � μab|s = αab|ŝP(b|s) (a �= b) (4)

In analogy with (3), P(a → b|s) = n(a → b|s)/n(a|s) with
s instead of ŝ, so combining with the above

n(a → b|s) � n(a|s)αab|ŝP(b|s) (a �= b)

To estimate the αs we sum over all contexts that contains
ŝ, which we write as s|ŝ ⊆ s, so

n(a → b|ŝ) =
∑

s|ŝ⊆s

n(a → b|s) � αab|ŝ
∑

s|ŝ⊆s

n(a|s)P(b|s)

The last sum depends only on the nucleotide distribu-
tion. It can be rewritten as a sum over all positions in the
genome, where the reference base, ri, equals a and where
the context is ŝ. We call this term Zab|ŝ,

Zab|ŝ= 1
n(a|ŝ)

∑

s|ŝ⊆s

n(a|s)P(b|s) = 1
n(a|ŝ)

∑

i|ri=a∧ŝ⊆si

P(b|si),

For convenience, it is normalized by n(a|ŝ), so it is the
average probability of base b over all positions with ref-
erence base a and context ŝ. As an estimate of α we then
have

αab|ŝ = 1
Zab|ŝ

n(a → b|ŝ)
n(a|ŝ) = PSimple(a → b|ŝ)

Zab|ŝ
Note that we can rewrite the original probability (4) in
terms of the simple model as

P(a → b|s) � P(b|s)
Zab|ŝ

PSimple(a → b|ŝ)

for ŝ ⊆ s. The factor is 1 when ŝ = s, so the models are
identical as they should be when they use the same con-
text. The equation directly shows how the wider context
from the genome model can modulate the simpler esti-
mate. If the probability of base b in context s is larger than
the mean Zab|ŝ, the mutability becomes larger than in the
simple model, and if it is smaller, the mutability becomes
smaller.
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The first order approximation assumes the rates are
small. When calculating the total mutability of a site, we
therefore use the approximation 1 − P(a → a|s) � 1 −
eμaa|s . For small α’s it makes little difference whether it is
the exponentiated form or not.

Data
The human reference genome, GRCh38.p13, was down-
loaded from NCBI (released March 2019 by Genome
Reference Consortium). We considered only primary
assemblies of chromosomes 1 to 22 and X, Y. Genomic
annotation bed files were downloaded from UCSC Table
Browser. These are 3’-UTR, 5’-UTR, CDS, Introns, Genes,
and Repeats. Conservation scores file (PhastCons100way)
was downloaded from the UCSC as well.
Variants were downloaded from the 1000 Genomes

project (released March 2019, phased 20190312_bial-
lelic_SNV_and_INDEL) in VCF format. The INDELs were
filtered from 1KGP dataset.
ClinVar (clinvar_20200310.vcf ) [27, 28] and somatic

mutations (CosmicCodingMuts.vcf and CosmicNonCod-
ingVariants.vcf ) [29] data were obtained from NCBI and
COSMIC, respectively.
The genomes and GFF files of Arabidopsis thaliana

(TAIR10.1), Caenorhabditis elegans (WBcel235),
Escherichia coli (str. K-12 substr. MG1655), Sac-
charomyces cerevisiae (R64) were downloaded from
NCBI.

Data analysis
Model implementation Counting of k-mers and estima-
tion of probabilities is implemented in the C programming
language. The program counts the contexts for each site
using a Burrows-Wheeler transform (BWT) [30] rather
than storing the k-mers, because it is much more efficient
for the interpolated models. The program is called pre-
dictDNA and relies on an index built with the program
makeabwt.
One program, called makeabwt, is used for construc-

tion of an index from a fasta file containing the genome
sequences. If there are multiple sequences, they are con-
catenated with termination symbols in between and the
suffixes are sorted. The BWT is constructed from the
sorted suffixes and saved. An FM index [31] is constructed
to ease the search of the BWT. To limit memory usage, the
values are stored in first-level checkpoints for every 216
positions as long integers (8 byte) and for every 256 posi-
tions the difference from the nearest first-level checkpoint
is stored as a short integer (two bytes). We used an index
containing both the forward and reverse complements
strands of the genome.
Another program, called predictDNA, use the index to

look up k-mers. This is done using the standard backward
search of the BWT/FM-index [31]. The size of the result-

ing suffix interval equals the number of the k-mers in the
genome and these are used for calculating the conditional
probabilities.
The advantage of using a BWT is that the index can be

used with any k and thus facilitates the interpolated mod-
els. An naive approach using table-lookup would require
a new table for each value of k and a table of 415 � 109
integers for k = 14, which corresponds to 4GB of memory
and this would become 16GB for k = 15, etc. The index
used for this work use around 8GB of memory.

Model Performance We calculated the probabilities of
the four bases for every position in the human genome
using the software predictDNA we developed. We tested
different k’s, but used the same interpolation constant,
γ = 100 , for all models. We counted the correct sites for
which the reference alleles gave the highest probabilities
of the four bases, to calculate the fraction correct for each
chromosome.
Furthermore, we overlapped the bed files with models’

outputs via bedtools [32, 33] to get the feature-specific
fraction correct and predicted probabilities. These were
used to obtain the performance of ourmodels for different
regions of human genome.
Based on CDS bed file and human genome fasta

file, we calculated average probabilities for the positions
around the human 3’ and 5’ splice sites. We included 500
nucleotides beforer and 100 after the 3’ splice site and,
similarly, 500 before and 100 after the 5’ splice. Besides, we
extracted the conservation scores of PhastCons100Way
for the same regions [34]. Those results were shown in
Fig. 5.

SNP Variants Analysis We kept only single nucleotide
bi-allelic variants in 1KGP, ClinVar and COSMIC
databases for the following analysis, and we filtered
INDELs. Based on central model and BM14 results, refer-
ence and alternative allele probabilities for each SNP sties
in these three databases were extracted. The triangle plots
(Fig. 6) were made by using reference probabilities against
alternative probabilities of all SNPs in 1KGP database.
In order to understand the possible asymmetry shown

by the cluster of many sites in the corners of the triangle
plot, we separated SNPs with allele frequency greater than
0, 0.01, 0.1 and 0.2. To present the different types of SNPs
in coding and non-coding parts, we did the density plots
also by using Pref minus Palt for SNPs in 1KGP, ClinVar
and COSMIC databases. Additionally, we used ANNO-
VAR software [35] to annotate benign and damaging SNPs
on 1KGP, which were predicted by PolyPhen2 [17]. These
are sites associated with single genetic disease.
We developed the subsitution model to estimate the

mutability of SNVs as described above. We estimated the
α matrix for k = 0, 1, 2, 3 for all SNPs 1KGP outside of
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Chr1. The model was applied to chromosome 1, where we
calculated the probability of a mutation from the BM14
and the alpha matrices. These were compared to observed
SNVs in 1KP, ClinVar, and COSMIC on Chr1.

Test Bi-directional Markov Model on Other Species
The bi-directional Markov model with was tested on the
chosen species and also human genome. We used k = 10,
γ = 100, and interpolated from k = 6, instead of using the
same parameters as BM14, that is because of the smaller
genome size of these species. The densities of the refer-
ence base probabilities were plotted (Supplementary Fig.
S4A). We separated the CDS and non-coding regions of
A.thaliana, C. elegans and S. cerevisiae according to the
GFF files andmade a density plot to show the distributions
of CDS and non-coding of these three species.

Software
Our software is open source and available at GiHub:
https://github.com/AndersKrogh/abwt/releases/tag/v1.2.
1a. We wrote several scripts in Perl and Python for data
analysis and these are all available in the GitHub release.
The usage of these scripts is described in README files.
All the figures made in R and this code is also available.
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