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RULED FANO FIVEFOLDS OF INDEX TWO

CARLA NOVELLI AND GIANLUCA OCCHETTA

Abstract. We classify Fano fivefolds of index two which are projectivization of rank two vector

bundles over four dimensional manifolds.

1. Introduction

A smooth complex projective variety X is called Fano if its anticanonical bundle −KX is ample;

the index of X , rX , is the largest natural number m such that −KX = mH for some (ample) divisor

H on X , while the pseudoindex, iX , is the minimum anticanonical degree of rational curves on X .

Since X is smooth, Pic(X) is torsion free, and therefore the divisor L satisfying −KX = rXL is

uniquely determined and called the fundamental divisor of X .

By a theorem of Kobayashi and Ochiai [26], rX ≥ dimX +1 if and only if (X,L) ≃ (PdimX ,OP(1)),

and rX = dimX if and only if (X,L) ≃ (QdimX ,OQ(1)).

Fano manifolds of index dimX − 1 and dimX − 2, which are called del Pezzo and Mukai manifolds,

respectively, have been classified ([23], [32], [30]).

The method used for those cases (i.e. proving that the linear sistem |L| contains a smooth divisor

and constructing a ladder down to the known cases of lower dimensional varieties) does not work for

Fano manifolds of index dimX − 3, since there are no results on the existence of a (smooth) divisor

in the linear system |L| and, most of all, the classification of Fano fourfolds is very far from being

known.

Nevertheless some classification results for Fano manifold of index dimX − 3 and Picard number

greater than one are known: by the classification of Fano manifolds of middle index and Picard

number greater than one obtained by Wísniewski and other authors (see [41] for a survey on these

results) we have the complete classification of Fano manifolds of index dimX − 3, Picard number

greater than one and dimension greater than or equal to six.

Roughly speaking, apart from P2 × P2 × P2, these varieties have Picard number two, and thus

two extremal elementary contractions, and the classification is obtained by a careful study of these

contractions and their interplay.

Actually, by a theorem of Wísniewski [39], there are no Fano manifolds of index dimX − 3 and

dimension greater than eight; this theorem is a particular case of a conjecture of Mukai relating the

pseudoindex, the dimension and the Picard number of a Fano manifolds:

ρX(iX − 1) ≤ dimX.

1991 Mathematics Subject Classification. 14J45, 14E30, 14F05.

Key words and phrases. Fano manifolds, vector bundles, extremal rays, rational curves.

1

http://arxiv.org/abs/math/0511386v1


2 CARLA NOVELLI AND GIANLUCA OCCHETTA

In [4] it was proved that the conjecture holds for Fano manifolds of dimension five (for lower dimen-

sional cases the result was already known).

However, the information on the Picard number when ρX ≥ 3 is not enough to decide the number

and type of the extremal contractions of the variety, i.e. to understand the structure of the cone of

curves NE(X), result that was achieved for Fano fivefolds of pseudoindex greater than one in [18].

The present paper is intended as a first step in going from the table of the cones given in [18] to the

actual classification of Fano fivefolds of index two, and it deals with ruled Fano fivefolds, i.e. with

triples (X,Y, E) constituted by a Fano fivefold X of index two, a smooth variety Y of dimension

four and a rank two vector bundle E over Y such that X = PY (E).

The paper is organized as follows: in section 2 we collect basic material concerning Fano-Mori

contractions, families of rational curves and Fano manifolds; section 3 is dedicated to Pr−1-ruled Fano

manifolds of index r, i.e. triples as above where rk E = rX = r, relating the extremal contractions

of X and Y .

Section 4 contains some criteria to establish if a Pr−1-ruled Fano manifold of index r is a product

of another Fano manifold of index r with a projective space Pr−1.

In section 5 we begin with the classification problem; as already showed by the table of the cones in

[18], the greater is the Picard number, the easier the classification becomes; this allows us to treat

the cases ρX ≥ 4 in a broader context, proving two general results on Fano manifolds with large

Picard number and only (or almost only) fiber type contractions (propositions 5.1 and 5.2).

The following two sections are dedicated to the case ρX = 3, and we prove the following

Theorem 1.1. Let (X,Y, E) be a ruled Fano fivefold of index two with ρX ≥ 3; then either X is

a product P1 × Y , with Y a Fano fourfold of index two and ρY = 2 (for a classification of these

manifolds see [38]) or X is one of the following:

(1) X ≃ Blp(P
4)×P3 Blp(P

4);

(2) X ≃ BlS(Blp(P
5)) with S the strict trasform of a plane ∋ p;

(3) the blow up of P5 in two non meeting planes;

(4) the blow up of a cone in P9 over the Segre embedding P2 × P2 ⊂ P8 along its vertex;

(5) the blow up of a general member of O(1, 1) ⊂ P2 × P4 along a two dimensional fiber of the

second projection.

In these cases the corresponding pairs (Y, E) are, respectively,

(1) (Blp(P
4), 2H + E ⊕ 3H + E), E exceptional divisor and H pullback on Y of OP3(1);

(2) (Bll(P
4), 2H − E ⊕ 3H − E), E exceptional divisor and H pullback on Y of OP4(1);

(3) (P2 × P2,O(1, 2)⊕O(2, 1));

(4) (P2 × P2,O(1, 1)⊕O(2, 2));

(5) (PP2(TP2(−1)⊕OP2) ⊂ P2 × P3,O(1, 1)⊕O(1, 2)).

The last section contains the case ρX = 2, in which we have the following



RULED FANO FIVEFOLDS OF INDEX TWO 3

Theorem 1.2. Let (X,Y, E) be a ruled Fano fivefold of index two with ρX = 2; then either X is a

product P1 ×Q4, or P1 × Y with Y a Mukai fourfold of Picard number one (see [32]) or X is one of

the following:

(1) PP4(OP4 ⊕OP4(a)), with a = 1 or a = 3;

(2) PQ4(OQ4 ⊕OQ4(2));

(3) PVd
(OVd

⊕OVd
(1)), with Vd a del Pezzo fourfold of degree d = 1, . . . , 5;

(4) a general divisor in the linear system |2ξ| in PP3(ΩP3(3)⊕O(1));

(5) in G(1, 4) × P4, the intersection of two divisors in the linear system |O(1, 0)| with the flag

variety of point and lines in P4;

(6) a P1-bundle over a Fano fourfold of index one and pseudoindex two or three.

Our classification is effective, apart from case (6) of theorem 1.2; we point out that it is not known

whether a Fano fourfold as in case (6) (i.e. a Fano fourfold of Picard number one without a line)

exists or not, and its existence (or non existence) constitutes a very hard problem.

2. Background material

2.1. Extremal contractions. Let X be a smooth complex Fano variety of dimension n and let KX

be its canonical divisor. By Mori’s Cone Theorem the cone of effective 1-cycles, which is contained

in the R-vector space of 1-cyles modulo numerical equivalence, NE(X) ⊂ N1(X), is polyhedral; a

face of NE(X) is called an extremal face and an extremal face of dimension one is called an extremal

ray.

To an extremal face σ ⊂ NE(X) is associated a morphism with connected fibers ϕσ : X → Z onto a

normal variety, morphism which contracts the curves whose numerical class is in σ; ϕσ is called an

extremal contraction or a Fano-Mori contraction, while a Cartier divisor H such that H = ϕ∗
σA for an

ample divisor A on Z is called a supporting divisor of the map ϕσ (or of the face σ).

An extremal contraction associated to an extremal ray is called an elementary contraction; an extremal

ray R is called numerically effective, and the associated contraction is said to be of fiber type, if

dimZ < dimX ; otherwise the ray is called non nef and the contraction is birational; the terminology

is due to the fact that, if R is a non nef ray, there exists an irreducible divisor which has negative

intersection number with curves in R.

We usually denote with Exc(ϕσ) := {x ∈ X | dimϕ−1
σ (ϕσ(x)) > 0} the exceptional locus of ϕσ; if

ϕσ is of fiber type then, of course, Exc(ϕσ) = X .

If the codimension of the exceptional locus of an elementary birational contraction is equal to one,

the ray and the contraction are called divisorial, otherwise they are called small.

Definition 2.1. An elementary fiber type extremal contraction ϕ : X → Z is called a scroll (respec-

tively a quadric fibration) if there exists a ϕ-ample line bundle L ∈ Pic(X) such that KX +(dimX−

dimZ + 1)L (respectively KX + (dimX − dimZ)L) is a supporting divisor of ϕ; we will call conic

fibration a quadric fibration such that dimX − dimZ = 1.

An elementary fiber type extremal contraction ϕ : X → Z onto a smooth variety Z is called a
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P-bundle (respectively quadric bundle) if there exists a vector bundle E of rank dimX − dimZ + 1

(respectively of rank dimX − dimZ + 2) on Z such that X ≃ P(E) (respectively there exists an

embedding of X over Z as a divisor of P(E) of relative degree 2); we will call conic bundle a quadric

bundle such that dimX − dimZ = 1.

An equidimensional scroll is a projective bundle by [22, Lemma 2.12], while an equidimensional

quadric fibration is a quadric bundle by [3, Theorem B].

Some special scroll contractions arise from projectivization of Bǎnicǎ sheaves (cfr. [13]); in particu-

lar, if ϕ : X → Z is a scroll such that every fiber has dimension ≤ dimX − dimZ + 1, then Z is

smooth and X is the projectivization of a Bǎnicǎ sheaf on Z (cfr. [13, Proposition 2.5]); we will call

these contractions special Bǎnicǎ scrolls.

2.2. Families of rational curves. For this subsection our main reference is [27], with which our

notation is coherent. Let X be a normal projective variety and let Hom(P1, X) be the scheme

parametrizing morphisms f : P1 → X ; let Hombir(P
1, X) ⊂ Hom(P1, X) be the open subscheme

corresponding to those morphisms which are birational onto their image, and let Homn
bir(P

1, X) be

its normalization; the group Aut(P1) acts on Homn
bir(P

1, X) and the quotient exists.

Definition 2.2. The space Ratcurvesn(X) is the quotient of Homn
bir(P

1, X) by Aut(P1), and the

space Univ(X) is the quotient of the product action of Aut(P1) on Homn
bir(P

1, X)× P1.

Definition 2.3. A family of rational curves is an irreducible component V ⊂ Ratcurvesn(X).

Given a rational curve f : P1 → X , we will call a family of deformations of f any irreducible

component V ⊂ Ratcurvesn(X) containing the equivalence class of f .

Given a family V of rational curves, we have the following basic diagram

p−1(V ) =: U
i //

p

��

X

V

where i is the map induced by the evaluation ev : Homn
bir(P

1, X)× P1 → X and p is the P1-bundle

induced by the projection Homn
bir(P

1, X) × P1 → Homn
bir(P

1, X). We define Locus(V ) to be the

image of U in X ; we say that V is a covering family if Locus(V ) = X .

If L ∈ Pic(X) is a line bundle, we will denote by L · V the intersection number of L and a general

member of the family V . Finally, given a family V ⊆ Ratcurvesn(X), we denote by Vx the subscheme

of V parametrizing rational curves passing through x.

Definition 2.4. Let V be a family of rational curves on X . Then V is unsplit if it is proper.

Example 2.5. Let Ri be an extremal ray and Ci a curve whose numerical class belongs to Ri and

whose anticanonical degree is minimal among curves whose class is in Ri; Ci is often called a minimal

extremal rational curve.

Denote by Ri an irreducible component of Ratcurvesn(X) containing Ci; then the family Ri is unsplit:

indeed, if Ci degenerates into a reducible cycle, its components must belong to the ray Ri, since Ri is
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extremal; but in Ri the curve Ci has the minimal intersection with the anticanonical bundle, hence

this is impossible.

Proposition 2.6. [27, IV.2.6] Let X be a smooth projective variety and V a family of rational

curves. Assume that V is unsplit and x is any point in Locus(V ). Then

(a) dimX −KX · V ≤ dimLocus(V ) + dimLocus(Vx) + 1;

(b) −KX · V ≤ dimLocus(Vx) + 1.

This last proposition, in case V is the unsplit family of deformations of a minimal extremal

rational curve, gives the fiber locus inequality:

Proposition 2.7. Let ϕ be a Fano-Mori contraction of X and let E = Exc(ϕ) be its exceptional

locus; let S be an irreducible component of a (non trivial) fiber of ϕ. Then

dimE + dimS ≥ dimX + l − 1,

where

l = min{−KX · C | C is a rational curve in S}.

If ϕ is the contraction of a ray R, then l(R) := l is called the length of the ray.

Let X be a smooth variety, V 1, . . . , V k unsplit families of rational curves on X and Z ⊂ X .

Definition 2.8. We denote by Locus(V 1, . . . , V k)Z the set of points that can be joined to Z by a

connected chain of k cycles belonging respectively to the families V 1, . . . , V k.

We denote by ChLocusm(V 1, . . . , V k)Z the set of points that can be joined to Z by a connected

chain of at most m cycles belonging to the families V 1, . . . , V k.

Definition 2.9. We define a relation of rational connectedness with respect to V 1, . . . , V k on X in

the following way: x and y are in rc(V 1, . . . , V k)-relation if there exists a chain of rational curves in

V 1, . . . , V k which joins x and y, i.e. if y ∈ ChLocusm(V 1, . . . , V k)x for some m.

To the rc(V 1, . . . , V k)-relation we can associate a fibration, at least on an open subset.

Theorem 2.10. [17],[27, IV.4.16] There exist an open subvariety X0 ⊂ X and a proper morphism

with connected fibers π : X0 → T 0 such that

(a) the rc(V 1, . . . , V k)-relation restricts to an equivalence relation on X0;

(b) the fibers of π are equivalence classes for the rc(V 1, . . . , V k)-relation;

(c) for every t ∈ T 0 any two points in π−1(t) can be connected by a chain of at most

2dimX−dimT 0

− 1 cycles in V 1, . . . , V k.

Definition 2.11. In the above assumptions, if π is the constant map, we will say that X is

rc(V 1, . . . , V k)-connected.

For other properties of Locus(V 1, . . . , V k)Z and ChLocusm(V 1, . . . , V k)Z we refer to [4] and [18].
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2.3. Fano manifolds and projective bundles.

Lemma 2.12. Let X be a Fano manifold and p : X → Y an elementary contraction onto a smooth

variety such that every fiber of p is a projective space of dimension r. Denote by RE the extremal

ray of NE(X) corresponding to p. Then

(a) Y is a Fano manifold with pseudoindex iY ≥ iX ;

(b) if iY = iX and f : P1 → Y is a rational curve of degree iY , then f
∗E ≃ OP1(a)⊕r+1;

(c) if NE(X) = 〈RE , R1, . . . , Rk〉, then NE(Y ) = 〈p(R1), . . . , p(Rk)〉.

Proof. Y is a Fano manifold by [28, Corollary 2.9]; the assertion on the pseudoindex and part

(b) are proved in [16, Lemma 2.5], while part (c) is contained in the proof of [40, Lemma 3.1]. �

Lemma 2.13. Let X be a Fano manifold of pseudoindex iX ≥ 2 and let ϕ : X → Y be an elementary

contraction which is equidimensional with one dimensional fibers. Then there exists a rank two vector

bundle E on Y such that X = PY (E).

Proof. By [2, Theorem 3.1 (ii)] Y is smooth and ϕ : X → Y is a conic bundle. It follows that

−KX · f = 2 for every fiber f of ϕ, therefore f can not be reducible or nonreduced, being iX ≥ 2.

By lemma 2.12 (a) Y is a Fano manifold; in particular its Brauer group is trivial, hence there exists

a rank two vector bundle E on Y such that X = PY (E). �

The fact that cone of curves of a Fano manifold is polyhedral and generated by a finite number

of extremal rays easily leads to the following

Lemma 2.14. [15, Lemme 2.1] Let X be a Fano manifold and D an effective divisor on X. Then

there exists an extremal ray R ⊂ NE(X) such that D ·R > 0.

which, combined with lemma 2.13, gives

Corollary 2.15. Let X be a Fano manifold of pseudoindex iX ≥ 2, R ⊂ NE(X) an extremal ray

and D an effective divisor on X such that no curve in D has numerical class belonging to R. If

D · R > 0, then the contraction associated to R, ϕR : X → Y is a P1-bundle.

Proof. Let F be any fiber of ϕR; the intersection D∩F has to be zero dimensional, otherwise

D would contain a curve whose numerical class is in R. It follows that ϕR is equidimensional with

one dimensional fibers and we can apply lemma 2.13. �

The following lemma will be of frequent use in our proofs:

Lemma 2.16. Let T be a smooth threefold of Picard number one, F a rank two vector bundle on

T and Y = PT (F); assume that Y is a Fano manifold of pseudoindex iY ≥ 2. Then, if Y is not a

product Y = P1 × T , we have either T ≃ P3 or T ≃ Q3.

Proof. By lemma 2.12 (a), T is a Fano threefold of pseudoindex iT ≥ iY ≥ 2; in particular,

by the classification of Fano threefolds, T admits an unsplit covering family VT of rational curves of

degree iT .
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If iY = iT , then, by lemma 2.12 (b), the restriction of F to any curve of VT splits as OP1(a)⊕OP1(a),

so, by [12, Proposition 1.2], F is decomposable and Y ≃ P1 × T .

Otherwise iT ≥ 3 and, by the classification of Fano threefolds, either T ≃ Q3, or T ≃ P3. �

Finally we prove two lemmata which ensure that, in some cases, a fibration in projective spaces

is a projective bundle.

Lemma 2.17. Let p : Y → B be a morphism from a smooth variety to a smooth curve, such that

ρ(Y/B) = 1 and the general fiber of p is a projective space; then there exists a vector bundle F of

rank = dimY on B such that Y = PB(F) and p is the natural projection.

Proof. Over an open Zariski subset U of B the morphism p is a projective bundle; indeed

over a curve C a fibration in projective spaces is a projective bundle, since the obstruction lies in

H2(C,O∗) = 0 (see [20]). By taking the closure in Y of a hyperplane section of p defined over the

open set U we get a global relative hyperplane section divisor (we use ρ(Y/B) = 1) hence p is a

projective bundle globally by [22, Lemma 2.12]. �

Lemma 2.18. Let X be a Fano manifold and p : X → S be an elementary contraction associated

to an extremal ray of length dimX − 1 onto a surface S. Then S is smooth and there exists a rank

dimX − 1 vector bundle F over S such that X = PS(F).

Proof. Since p is elementary and dimS = 2 then p is equidimensional; by [11, Corollary 1.4] S

is smooth.

By adjunction the general fiber of p is a projective space of dimension dimX − 2; over a general

hyperplane section of S, ϕ is a projective bundle by lemma 2.17, whence the locus over which the

fiber is not a projective space is discrete in S. We can apply [5, Lemma 3.3] and [22, Lemma 2.12] to

obtain that every fiber of ϕ is a projective space. The surface S is dominated by a Fano manifold,

hence is rationally connected; therefore H2(S,O∗) = 0 and the Brauer group of S is trivial. This

implies the existence of a rank dimX − 1 vector bundle F over S such that X = PS(F). �

3. Pr−1-ruled Fano manifolds: general properties

Definition 3.1. Let Y be a smooth variety of dimension n, let E be a vector bundle of rank r on

Y and let X = PY (E) be the projectivization of E ; assume moreover that X is a Fano manifold.

We will call a triple (X,Y, E) as above a Pr−1-ruled Fano manifold; if r = 2, we will call for short

(X,Y, E) a ruled Fano manifold.

Definition 3.2. Let (X,Y, E) be a Pr−1-ruled Fano manifold verifying one of the following

1) X has index r;

2) KY + det E ′ = OY , with E ′ an ample twist of E .

We will call such a triple a Pr−1-ruled Fano manifold of index r; if r = 2, we will call for short (X,Y, E)

a ruled Fano manifold of index two.

From now on, unless otherwise stated, we will assume that Pr−1-ruled Fano manifold of index r

(X,Y, E) are normalized, i.e. E is ample and KY + det E = OY .
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Remark 3.3. The assumptions 1) and 2) are equivalent.

Proof. Let us show first that 1) ⇒ 2); let H ∈ Pic(X) be the (unique) line bundle such

that −KX = rH ; by adjunction, if l is a line in a fiber of the projection p : X → Y , then

r = −KX · l = rH · l, so H restricts to OPr−1(1) on the fibers of p. Therefore p∗H is an ample

vector bundle of rank r, E ′, which differs from E by a twist with a line bundle in Pic(Y ) and, by the

canonical bundle formula

OX = KX + rH = p∗(KY + det E ′),

hence KY + det E ′ = OY .

Assume now that 2) holds; for a suitable ample twist E ′ = E ⊗ L, we have KY + det E ′ = OY ,

therefore, by the canonical bundle formula,

KX + rξE′ = p∗(KY + det E ′) = OX ,

whence −KX = rξE′ and X is a Fano manifold of index r. �

Proposition 3.4. Let (X,Y, E) be a Pr−1-ruled Fano manifold and denote by RE the extremal ray

in NE(X) associated to the bundle projection p : X → Y . There is a one-to-one correspondence

{
Extremal rays of NE(X) spanning
a two dimensional face with RE

} αX

((

αY

hh

{
Extremal rays of NE(Y )

}
.

If θ ⊂ NE(Y ) and ϑ ⊂ NE(X) are corresponding rays, then we will call them fellow rays.

Proof. Let θ be an extremal ray of NE(Y ) and denote by ϕθ : Y → W the associated

elementary contraction; then ρ(X/W ) = 2 and −KX is (ϕθ ◦ p)-ample, so ϕθ ◦ p : X → W is the

contraction of a two dimensional extremal face σ ⊂ NE(X) containing RE . Let ϑ be the extremal

ray in σ different from RE ; we set αY (θ) = ϑ.

On the other hand, if ϑ is an extremal ray of NE(X) such that σ = 〈RE , ϑ〉 is an extremal face,

then the contraction ψσ : X → W factors both through the contraction p of RE and through the

contraction ψϑ : X → Z of ϑ, hence we have a commutative diagram

(3.4.1) X

ψσ

  A
AA

AA
AA

AA
AA

A

ψϑ //

p

��

Z

p′

��
Y ϕθ

// W

Since Y is a Fano manifold and ϕθ is a surjective morphism with connected fibers, we have that

ϕθ is an extremal contraction; moreover, being ρ(Y/W ) = 1, the contraction is elementary, thus it

corresponds to an extremal ray θ. Setting αX(ϑ) = θ we have the desired bijection. �
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Lemma 3.5. Let (X,Y, E) be a Pr−1-ruled Fano manifold and let θ ⊂ NE(Y ) and ϑ ⊂ NE(X) be

two fellow rays with associated extremal contractions ϕθ : Y →W and ψϑ : X → Z, with exceptional

loci Exc(ϕθ) and Exc(ψϑ) respectively. Then

(3.5.1) p(Exc(ψϑ)) ⊂ Exc(ϕθ).

Moreover, if x is a point in Exc(ψϑ), (Fψ)x is the fiber of ψϑ through x and (Fϕ)p(x) is the fiber of

ϕθ through p(x), we have

(3.5.2) dim(Fψ)x = dim p((Fψ)x) ≤ dim(Fϕ)p(x).

Finally, if x1 is a point in p−1(p(x)) ∩ Exc(ψϑ) and (Fψ)x1 is the fiber of ψϑ through x1, then

(3.5.3) p(Fψ)x1 ⊂ (Fϕ)p(x).

Proof. The statements follows from the commutativity of diagram 3.4.1 and the fact that the

projection p, being the contraction of an extremal ray different from ϑ, is finite to one on the fibers

of ψϑ. �

Corollary 3.6. Under the assumptions of lemma 3.5, if ψϑ is of fiber type then also ϕθ is of fiber

type, while if ϕθ is birational then also ψϑ is birational.

Lemma 3.7. Let (X,Y, E) be a Pr−1-ruled Fano manifold of index r and let θ ⊂ NE(Y ) and

ϑ ⊂ NE(X) be two fellow rays with associated extremal contractions ϕθ : Y → W and ψϑ : X → Z.

Then there exist an ample vector bundle EΘ on Y and an ample line bundle L ∈ Pic(X) such that

ϕθ is supported by KY + det EΘ and ψϑ is supported by KX + rL.

Proof. Pick two ample line bundles A ∈ Pic(W ) and B ∈ Pic(Z). Set EΘ = E ⊗ ϕ∗
θA; we have

KY + det EΘ = rϕ∗
θA, so we have only to prove the ampleness of EΘ.

The tautological line bundle associated to EΘ on P(EΘ) = P(E) = X is

ξΘ = ξE + p∗(ϕ∗
θA),

hence it is ample, being the sum of an ample line bundle and a nef one.

To prove the second statement observe thatKX+rξΘ = p∗(KY +detEΘ) = r(p∗(ϕ∗
θA)); therefore,

if L := ξΘ + ψ∗
ϑB, we have

KX + rL = r(p∗(ϕ∗
θA) + ψ∗

ϑB) = rψ∗
ϑ(p

′∗A+B).

Moreover L is ample, being the sum of an ample line bundle and a nef one. �

We now analyze some cases in which ϕθ is a special contraction (projective bundle, smooth

blow-up, special Bǎnicǎ scroll), describing the structure of the corresponding contraction ψϑ.

Proposition 3.8. Let (X,Y, E) be a Pr−1-ruled Fano manifold of index r; let θ ⊂ NE(Y ) and ϑ ⊂

NE(X) be two fellow rays and let ϕθ : Y →W and ψϑ : X → Z be the associated contractions. Then

(a) if ϕθ is a Pr−1-bundle, then ψϑ is a Pr−1-bundle;
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(b) if ϕθ is the blow up of a smooth subvariety of W of codimension r + 1, then ψϑ is the blow

up of a smooth subvariety of Z of codimension r + 1.

In both cases, if H ∈ Pic(Y ) is a line bundle which restricts to OP(1) on the fibers of ϕθ, then

E ⊗H−1 = ϕ∗
θE

′, where E ′ is a rank r vector bundle on W , and Z = PW (E ′).

Proof. Denote by l(ϑ) the length of the extremal ray ϑ; since X is a Fano manifold of index

r we have l(ϑ) ≥ r.

In case (a), if x ∈ X is any point in Exc(ϑ), (Fψ)x is the fiber of ψϑ through x and (Fϕ)p(x) is the

fiber of ϕθ through p(x), by proposition 2.7 and formula 3.5.2 we have

r − 1 ≤ l(ϑ)− 1 ≤ dim(Fψ)x ≤ dim(Fϕ)p(x) = r − 1,

so ψϑ is an equidimensional contraction with (r − 1)-dimensional fibers (and thereby of fiber type,

by proposition 2.7). By lemma 3.7, there exists an ample L ∈ Pic(X) such that ψϑ is supported by

KX + rL, and we conclude by [22, Lemma 2.12].

In case (b), by corollary 3.6, since ϕθ is birational, also ψϑ is birational. Then, if x ∈ X is any

point in Exc(ϑ), (Fψ)x is the fiber of ψϑ through x and (Fϕ)p(x) is the fiber of ϕθ through p(x), by

proposition 2.7 and formula 3.5.2 we have

r ≤ l(ϑ) ≤ dim(Fψ)x ≤ dim(Fϕ)p(x) = r,

thus ψϑ is equidimensional with fibers of dimension r and, by lemma 3.7, it is supported by KX+rL,

for some ample L ∈ Pic(X); therefore we can apply [10, Theorem 4.1] to conclude.

In both cases the extremal ray θ has length r, hence r ≥ iY ; by lemma 2.12 (a) we have iY ≥ iX

and, recalling that the pseudoindex iX is greater or equal than the index rX = r, we have iX ≥ r.

We conclude that iY = iX = r.

By lemma 2.12 (b), for every line l in every fiber of ϕθ we have El ≃ OP1(1)⊕r, hence, if H ∈ Pic(Y )

is a line bundle which restricts to OP(1) on the fibers of ϕθ, the vector bundle E ⊗H−1 is trivial on

every fiber, so it is the pullback of a rank r vector bundle E ′ on W . It is now easy to prove that the

induced map PY (ϕ
∗
θE

′) = X → PW (E ′) is just ψϑ, whence Z = PW (E ′). �

Proposition 3.9. Let (X,Y, E) be a Pr−1-ruled Fano manifold of index r; let θ ⊂ NE(Y ) and

ϑ ⊂ NE(X) be two fellow rays and let ϕθ : Y →W , ψϑ : X → Z be the associated contractions. Then

(a) if ϕθ is a Pr-bundle and ψϑ is of fiber type, then ψϑ is a Pr−1-bundle;

(b) if ϕθ is a Pr-bundle and ψϑ is birational, then ψϑ is the blow up of a codimension r + 1

subvariety of Z.

Moreover, in case (a), if H ∈ Pic(Y ) is a line bundle which restricts to OPr(1) on the fibers of

ϕθ, then p∗H restricts to OPr−1(1) on the fibers of ψϑ; in case (b), the divisor Exc(ψϑ) restricts to

OPr−1(1) on the fibers of p.

Proof. Let σ = 〈RE , ϑ〉 ⊂ NE(X) and let ψσ : X → W be the contraction associated to the

face σ, which can be factored both as ϕθ ◦ p and as p′ ◦ ψϑ:
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X

ψσ

  A
AA

AA
AA

AA
AA

A

ψϑ //

p

��

Z

p′

��
Y ϕθ

// W

A fiber Fσ of ψσ can thus be viewed as the inverse image via p of a fiber Fθ ≃ Pr of ϕθ,

Fσ ≃ PFθ
(E|Fθ

).

The ampleness of the vector bundle E together with the fact that

det(E|Fθ
) = (det E)|Fθ

= (−KY )|Fθ
= OPr(r + 1)

yields that the splitting type of E on lines of Fθ is constantly OP1(1)⊕r−1 ⊕ OP1(2); by [21], either

E|Fθ
≃ OPr(1)⊕r−1 ⊕OPr(2), or E|Fθ

≃ TPr.

In case (a) ψϑ is of fiber type, so also its restriction to Fσ = ψ−1
ϑ (ψϑ(Fσ)) is a fiber type contrac-

tion, therefore E|Fθ
≃ TPr; it follows that ψϑ is equidimensional and each of its fibers is Pr−1. By

lemma 3.7, there exists an ample L ∈ Pic(X) such that ψϑ is supported by KX + rL, hence, by [22,

Lemma 2.12], ψϑ is a Pr−1-bundle over Z.

From this description it is clear that, if H ∈ Pic(Y ) is a line bundle which restricts to OPr(1) on the

fibers of ϕθ, then p
∗H restricts to OPr−1(1) on the fibers of ψϑ.

In case (b), if x ∈ X is any point in Exc(ϑ), (Fψ)x is the fiber of ψϑ through x and (Fϕ)p(x) is

the fiber of ϕθ through p(x), by proposition 2.7 and formula 3.5.2 we have

r ≤ l(ϑ) ≤ dim(Fψ)x ≤ dim(Fϕ)p(x) = r,

thus ψϑ is equidimensional with fibers of dimension r and, by lemma 3.7, it is supported by KX+rL,

for some ample L ∈ Pic(X); therefore, by [10, Theorem 4.1] ψϑ is the blow up of a codimension r+1

subvariety of Z.

Let Fϑ be a fiber of ψϑ and let Fσ be the fiber of ψσ containing Fϑ; the restriction of ψσ to this

fiber has a non trivial fiber of dimension r, therefore E|Fθ
≃ OPr (1)⊕r−1 ⊕OPr(2).

It follows that Fσ is the blow up of P2r−1 along Pr−1 and Exc(ψϑ)|Fσ
is the exceptional divisor of

this blow up, hence it restricts to OPr−1(1) on the fibers of p. �

Proposition 3.10. Let (X,Y, E) be a Pr−1-ruled Fano manifold of index r; let θ ⊂ NE(Y ) and

ϑ ⊂ NE(X) be two fellow rays and let ϕθ : Y →W and ψϑ : X → Z be the associated contractions.

If ϕθ is a special Bǎnicǎ scroll with general fiber of dimension r − 1, then also ψϑ is a special

Bǎnicǎ scroll with general fiber of dimension r − 1. Moreover, if J is a jumping fiber of ϕθ (i.e. a

fiber of dimension r), then there is an isomorphism f : Pr−1× J → p−1(J) and, for every x ∈ Pr−1,

f({x× J}) is a jumping fiber of ψϑ.

Proof. The general fiber of ϕθ is r − 1 dimensional, and every fiber of ϕθ has dimension ≤ r;

using formula 3.5.2 , as in the proof of proposition 3.8 we find that the same is true for ψϑ.
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By lemma 3.7, the contraction ψϑ is supported by KX + rL for some ample L ∈ Pic(X); we can

thereby apply [13, Proposition 2.5] to conclude that ψϑ is a special Bǎnicǎ scroll.

Let l be a line in a fiber Fθ of ϕθ; since this contraction has length r we have

det(E|Fθ
) = (det E)|Fθ

= (−KY )|Fθ
= OFθ

(r),

so the splitting type of E on l is constantly OP1(1)⊕r; it follows that E|Fθ
≃ OFθ

(1)⊕r. Therefore

p−1(Fθ) = PFθ
(E|Fθ

) ≃ Pr−1 × Fθ; since p
−1(Fθ) = ψ−1

ϑ (ψϑ(p
−1(Fθ))) the subvarieties {x} × Fθ of

Pr−1 × Fθ correspond to fibers of ψϑ.

In particular, if J ≃ Pr is a jumping fiber of ϕθ, then p
−1(J) = PJ(E|J) ≃ Pr−1 × J ≃ Pr−1 × Pr

and the restriction ψϑ : p−1(J) → ψϑ(p
−1(J)) is a fibration in Pr, hence each fiber is a jumping

fiber. �

4. Recognizing products

In this section we collect some technical results that we are going to use in order to establish

whether a ruled Fano manifold is a product of another Fano manifold with a suitable projective

space.

The idea of the following lemma is taken from [12, Lemma 1.2.2].

Lemma 4.1. Let (X,Y, E) be a Pr−1-ruled Fano manifold, and let RE ⊂ NE(X) be the extremal

ray corresponding to the bundle projection. Suppose that there exist an open subset X0 ⊂ X and a

proper morphism ψ : X0 → Z onto a variety Z of dimension r − 1 which does not contract curves

of RE . Then X ≃ Pr−1 × Y .

Proof. Let F be a general fiber of ψ; the dimension of F is dimF = dimX − dimZ = dimY ,

therefore F dominates Y , since ψ does not contract curves in the fibers of p.

Denote by pF : F → Y the restriction of p to F and consider the pullback EF = p∗FE ; denoted by

XF the projectivization PF (EF ), we have a commutative diagram

XF

p̃F //

p̃

��

X

p

��
F pF

// Y

By the universal property of the fiber product, p̃ has a section s : F → XF such that p̃F ◦ s is the

embedding of F into X . Let F̃ = s(F ) be the image of F in XF ; by the canonical bundle formula

for XF we have

rξEF
− p̃ ∗ det EF = −KXF

+ p̃ ∗KF .

Since p̃ ∗KF = KF̃ = (KXF
)|F̃ , restricting to F̃ we have (rξEF

− p̃ ∗ det EF )|F̃ = OF̃ ; therefore, using

the canonical bundle formula for X ,

OF = (rξE − p∗ det E)|F = (−KX + p∗KY )|F .
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It follows that OF = (KX)|F = p∗FKY , so pF is unramified. As Y , being Fano, is simply connected

pF is an isomorphism, hence F is a section of p. To this section it is associated an exact sequence

of bundles over Y

(4.1.4) 0 −→ E ′ −→ E −→ H −→ 0

such that F ∈ H0(ξE ⊗ p∗E ′∨); in particular the normal bundle of F in X is (ξE ⊗ p∗E ′∨)|F .

Pulling back the sequence 4.1.4 to F we obtain an exact sequence of bundles over F

(4.1.5) 0 −→ p∗FE
′ −→ p∗FE −→ p∗FH −→ 0

Since F is a general fiber of ψ, its normal bundle in X is trivial; thus we have

O⊕r−1
F = NF/X = (ξE ⊗ p∗E ′∨)|F .

It follows that (p∗E ′)|F ≃ (ξE )
⊕r−1
|F ; therefore we can rewrite the sequence 4.1.5 as

(4.1.6) 0 −→ ξ⊕r−1
EF

−→ EF −→ p∗FH −→ 0.

Recalling that (det E)|F = rξE |F = rξEF
, we have p∗FH = ξEF

and the sequence 4.1.6 splits, because

h1(F,OF ) = 0. Thus EF is decomposable as ξ⊕rEF
and, being pF is an isomorphism, also E is

decomposable, as a sum of r copies of H . �

Remark 4.2. In the proof of the lemma, instead of assuming that Y is a Fano manifold, it is enough

to assume that Y is simply connected and that h1(Y,OY ) = 0.

Corollary 4.3. Let (X,Y, E) be a Pr−1-ruled Fano manifold of index r; assume that Y ≃ Pr−1×W

and denote by π1 and π2 the projections of Y onto the factors. Then there exists a vector bundle E ′

over W such that π∗
2E

′ = E ⊗ π∗
1OPr−1(−1) and X = Pr−1 × PW (E ′).

Proof. The projection π2 is the contraction associated to an extremal ray θ ⊂ NE(Y ); let

ϑ ⊂ NE(X) be its fellow ray. By proposition 3.8 the contraction associated to ϑ, ψϑ : X → Z, is a

Pr−1-bundle and Z = PW (E ′), with E ⊗ π∗
1OPr−1(−1) = π∗

2E
′.

In particular there exists a vector bundle F over Z such that (X,Z,F) is a Pr−1-ruled Fano manifold;

we can apply lemma 4.1 to (X,Z,F), taking as ψ the composition π1 ◦ p : X → Pr−1. �

Proposition 4.4. Let (X,Y, E) be a Pr−1-ruled Fano manifold of index r. Suppose that there exist

R1, . . . RρY extremal rays of length r in NE(Y ) such that Y is rationally connected with respect to

curves in the corresponding families R1, . . . , RρY (see example 2.5). Then X ≃ Pr−1 × Y .

Proof. Let Ci be a curve in the family Ri; since E is ample and det E·Ci = −KY ·Ci = l(Ri) = r,

denoting by fi : P
1 → Ci the normalization morphism, we have f∗

i E = OP1(1)⊕r.

Let Xi = P1 ×Y X = PP1(f∗
i E) = P1 × Pr−1 and let Gi be the image of Xi in X .
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We have a commutative diagram

Xi

f̄i //

p̄

��

X

p

��
P1

fi

// Y

Let C̃i be a section of p̄ : Xi → P1, let Γi = f̄i(C̃i) be its image in X and let V i be a family of

deformations of Γi; by the canonical bundle formula we have −KX · Γi = rξE · Γi = r, therefore the

family V i is an unsplit family.

Let x be a point of X and y a point of Y ; as Y is rationally connected with respect to curves in

R1, . . . , RρY , there exists a chain of curves Ci1 , . . . , Cim in R1, . . . , RρY connecting p(x) and y, with

m ≤ 2dimY − 1.

Let y1 be a point in Ci1 ∩ Ci2 and let Γi1 be a curve in V i1 which is mapped to Ci1 and passes

through x. The fiber of p over y1 is contained in Gi2 , so there is a minimal section Γi2 in Gi2

which meets Γi1 ; repeating the argument we construct a chain of curves in V 1, . . . , V ρY which joins

x with a point of the fiber over y. We have thereby proved that, for every x ∈ X and for some m,

ChLocusm(V 1, . . . , V ρY )x dominates Y .

Let ψ : X0 → Z be the rc(V 1, . . . , V ρY )-fibration; a general fiber F of ψ is an equivalence class

for the rc(V 1, . . . , V ρY )-relation, thus it contains ChLocusm(V 1, . . . , V ρY )x for every point x ∈ F

and every m; then we have dimF ≥ dimY and dimZ ≤ dimX − dimF ≤ r − 1.

On the other hand, F cannot contain a curve in a fiber of p, otherwise RE would be contained in

the subvector space of N1(X) generated by the classes of V 1, . . . , V ρY by [4, Corollary 4.2]. Being

Locus(RE)F = X , this, again by [4, Corollary 4.2], would imply that the class of every curve in X

would be contained in the subvector space of N1(X) generated by the classes of V 1, . . . , V ρY , hence

ρX = ρY , a contradiction.

In particular it follows that dimF = dimY ; therefore dimZ = r − 1 and we can apply lemma 4.1

to (X,Y, E) and ψ to conclude. �

5. Fano manifolds with many fiber type contractions

In this section we will prove that a ruled Fano fivefold of index two and Picard number greater

than three is a product. We will derive this conclusion from two more general results concerning

Fano manifolds with many fibrations.

Proposition 5.1. Let X be a Fano manifold of dimension n and pseudoindex iX ≥ 2 which has

only contractions of fiber type. Then ρX ≤ n. Moreover,

(1) if ρX = n, then X = (P1)n;

(2) if ρX = n− 1, then X = (P1)n−2 × P2 or X = (P1)n−3 × PP2(TP2).
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Proof. By [40, Theorem 2.2] we have that a Fano manifold of dimension n admits at most n

fiber type elementary contractions, and the bound on the Picard number follows. More precisely we

have that the cone of curves of X is generated by at most n extremal rays.

We can assume that n ≥ 4, since for lower dimensions the claimed result follows from the classi-

fication of Fano manifolds.

Suppose that ρX = n; by the discussion above we have NE(X) = 〈R1, . . . , Rn〉. Let R1, . . . , Rn be

the corresponding families of rational curves, as in example 2.5; by [4, Lemma 5.4 (c)] we have

n ≥ dimLocus(R1, . . . , Rn)x ≥
n∑

i=1

(−KX · Ri − 1) ≥ n,

forcing −KX ·Ri = 2 for every i (recall that iX ≥ 2) and
∑n
i=1(−KX ·Ri−1) = n. We can therefore

apply [33, Theorem 1] to conclude.

Suppose now that ρX = n − 1; let R1, . . . , Rn−1 be extremal rays of X which span N1(X) and

let R1, . . . , Rn−1 be the corresponding families of rational curves.

Suppose that, among the chosen rays, there exists a ray Ri(1) such that the associated contraction

ϕi(1) has a fiber F of dimension greater than one. We claim that for every ray Ri(j) ∈ {R1, . . . , Rn−1}

different fromRi(1) the contraction associated toRi(j) is equidimensional with one dimensional fibers.

Assume by contradiction that there exists an index i(2) such that the contraction associated to Ri(2)

has a fiber G of dimension ≥ 2.

Consider an irreducible component D of Locus(Ri(3), . . . , Ri(n−1))G, which, by [4, Lemma 5.4 (c)],

has dimension

dimD ≥
n−1∑

j=3

(−KX · Ri(j) − 1) + dimG ≥ n− 1.

By [4, Lemma 5.1], N1(D) = 〈Ri(2), . . . , Ri(n−1)〉, therefore we cannot have D = X , thus D is an

effective divisor in X . We will now derive a contradiction by considering the intersection number of

this divisor with the family Ri(1).

Suppose first that D · Ri(1) > 0; in this case D meets F , which has dimension at least two, whence

the intersection D ∩ F contains a curve, contradicting the fact that curves in Ri(1) are numerically

independent from curves in D.

Suppose now that D · Ri(1) = 0 and let Ci(1) be a curve of Ri(1) meeting D. Since the intersection

number is zero, this curve is contained in D, contradicting again the independence of curves in Ri(1)

from curves in D.

We have thereby proved that X has at least n − 2 extremal rays whose associated contractions

are equidimensional with one dimensional fibers. Let ϕj : X → Yj be one of these contractions; by

lemma 2.13 there exists a rank two vector bundle Ej on Yj such that X = PYj
(Ej).

By lemma 2.12 (a), Yj is a Fano manifold of pseudoindex iYj
≥ iX ≥ 2 and, by part (c) of the same

lemma, has only contractions of fiber type, so, by induction on the dimension, Yj ≃ (P1)n−3 ×P2 or

Yj ≃ (P1)n−4 × PP2(TP2).

It follows that iYj
= 2 = iX , hence, by lemma 2.12 (b), the restriction of Ej to every fiber of a
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P1-bundle contraction of Yj splits as a sum of two line bundles of the same degree.

Up to twist Ej with a suitable line bundle in Pic(Yj), we can now assume that the restriction of Ej

to any fiber of a P1-bundle contraction is OP1(1)⊕OP1(1).

In particular KYj
+det Ej is trivial on all the extremal rays of Yj , hence KYj

+det Ej = OYj
; by the

canonical bundle formula we have −KX = 2ξEj
, consequently (X,Yj , Ej) is a ruled Fano manifold of

index two.

For both possible basis Yj the ruled Fano manifold (X,Yj , Ej) verifies the assumptions of proposition

4.4, so we have X = P1 × Yj . �

Proposition 5.2. Let X be a Fano manifold of dimension n and pseudoindex iX ≥ 2 such that all

its elementary contractions but one are of fiber type. Then ρX ≤ n− 1, equality holding if and only

if X = (P1)n−3 ×Blp(P
3).

Proof. We can assume that n ≥ 4, since for lower dimensions the claimed result follows from

the classification of Fano manifolds.

Let R1 be the birational ray and let R2, . . . , RρX be fiber type rays such that R1, R2, . . . , RρX span

N1(X). Let ϕ1 : X → X ′ be the contraction of R1 and let F be a nontrivial fiber of ϕ1; since ϕ1 is

birational, by proposition 2.7 we have dimF ≥ 2.

For every permutation i(2), . . . , i(ρX) of the integers 2, . . . , ρX , by [4, Lemma 5.4 (c)] we have

dimLocus(Ri(2), . . . , Ri(ρX ))F ≥ dimF + ρX − 1,

forcing ρX ≤ n−1; moreover, if equality holds, we have dimF = 2 andX = Locus(Ri(2), . . . , Ri(ρX ))F .

In particular we note for later use that, since ϕ1 is birational and all its nontrivial fibers have di-

mension = 2, Exc(ϕ1) is a divisor by proposition 2.7.

Set Ti(2) = Locus(Ri(2))F ; being X = Locus(Ri(3), . . . , Ri(ρX ))Ti(2)
, by [33, Lemma 1] every curve

C ⊂ X is equivalent to a linear combination

αΓi(2) +

ρX∑

k=3

αkR
i(k)

of a curve Γi(2) in Ti(2) and curves in Ri(3), . . . , Ri(ρX ) with α ≥ 0. By [18, Corollary 2.23] every

curve in Ti(2) is numerically equivalent (in X) to a linear combination with positive coefficients of a

curve in F (and so whose numerical class is in R1) and a curve in Ri(2); hence we can write C as a

combination

α1R1 + α2R
i(2) +

ρX∑

k=3

αkR
i(k),

with α1, α2 ≥ 0.

Since this is true for every permutation i(2), . . . , i(ρX), and the decomposition of [C] is unique, we

get that αk ≥ 0 for all k and NE(X) = 〈R1, R2, . . . , RρX 〉.
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Denote again by F a nontrivial fiber of ϕ1 and, for every i = 2, . . . , ρX consider an irreducible

component Di of Locus(R
2, . . . , R̂i, . . . , RρX )F which, by [4, Lemma 5.4 (c)], has dimension

dimDi ≥

ρX∑

j=2

(−KX · Rj − 1) + (KX · Ri + 1) + dimF ≥ n− 1.

By [4, Lemma 5.1] N1(Di) = 〈R1, . . . R̂i, . . . , RρX 〉, therefore we cannot have Di = X , whence Di is

an effective divisor in X .

As in proposition 5.1 we can now prove that the contraction ϕi : X → Yi, associated to the ray

Ri, has one dimensional fibers, since the intersection of this fibers with Di must be 0-dimensional,

hence, by lemma 2.13 there exists a rank two vector bundle Ei on Yi such that X = PYi
(Ei).

By lemma 2.14, for at least one index j ∈ {2, . . . , ρX} we have Exc(ϕ1) ·Rj > 0; let ϕj : X → Yj be

the contraction associated to the ray Rj .

By lemma 2.12, Yj is a Fano manifold of pseudoindex iYj
≥ 2; by lemma 3.5 all the extremal

contractions of Yj are of fiber type and, by the same lemma, one of these contractions has two

dimensional fibers. We can apply proposition 5.1 to Yj to get Yj ≃ (P1)n−3 × P2.

Let p1 : Yj → P1 be the projection onto the first factor; the projection to the other factors is an

extremal elementary contraction ϕθ : Yj → (P1)n−4 × P2, associated to a ray θ ⊂ NE(Yj).

Let ϑ ⊂ NE(X) be the fellow ray of θ; since ϕθ has one dimensional fibers, the same is true for the

contraction associated to ϑ, ψϑ : X → Z. Therefore ϑ 6= R1, and the associated contraction ψϑ is a

P1-bundle over a smooth Fano variety Z, which has pseudoindex iZ ≥ iX ≥ 2.

Consider the following diagram

X

ψϑ

��

ϕj // Yj

ϕθ

��

p1 // P1

Z // // (P1)n−4 × P2

We can apply lemma 4.1 to X and ψ = p1◦ϕj : X → P1 and obtain X ≃ P1×Z. It follows that Z

has a birational contraction, so, by induction Z ≃ (P1)n−4×Blp(P3) and X ≃ (P1)n−3×Blp(P3). �

Corollary 5.3. Let X be a Fano fivefold of index rX ≥ 2 and Picard number ρX ≥ 4. Then

(1) X ≃ (P1)5;

(2) X ≃ (P1)2 × PP2(TP2);

(3) X ≃ (P1)2 ×Blp(P
3).

Proof. Note that, since ρX ≥ 4, we have iX ≤ 2, by [4, Theorem 1.4], hence rX = iX = 2.

By [18, Theorem 1.1], if ρX ≥ 4, then X has at most one birational contraction, and the conclusion

follows from propositions 5.1 and 5.2. Note that (P1)n−2 × P2 has been excluded since its index is

one. �
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6. Proof of theorem 1.1: Classification of the base

In this section we begin the study of ruled Fano fivefolds (X,Y, E) of index two and Picard number

three, which is the most complicated case.

We start by considering the possible bases Y such that there exists a ruled Fano fivefold (X,Y, E)

as above which is not a product. By lemma 2.12 Y is a Fano fourfold of pseudoindex iY ≥ 2,

and ρY = 2, since we are assuming ρX = 3. We will give a complete classification of fourfolds Y

as above which have a birational contraction (Proposition 6.1), and a more rough one of the ones

with two fiber type contractions (Proposition 6.2). Then, using the criteria for recognizing products

previously estabilished, we will show that there are only four possibilities for Y (Proposition 6.3).

Proposition 6.1. Let Y be a Fano fourfold of pseudoindex iY ≥ 2 and Picard number ρY = 2 such

that the contraction ϕθ : Y → Y ′, associated to one extremal ray θ ⊂ NE(Y ), is birational. Then Y

is one of the following:

(1) Blp(P
4) with p a point in P4;

(2) Bll(P
4) with l a line in P4;

(3) Bll(Q
4) with l a line in Q4;

(4) BlΓ(Q
4) with Γ a conic in Q4 not contained in a plane Π ⊂ Q4;

(5) PP3(OP3 ⊕OP3(2));

(6) PQ3(OQ3 ⊕OQ3(1)).

Proof. The cone of curves of Y is generated by two extremal rays: NE(Y ) = 〈θ, θ〉.

The length of every extremal ray on a Fano manifold is clearly greater than or equal to the pseu-

doindex; moreover, for a birational extremal ray, by proposition 2.7, the length is bounded above by

the dimension of the manifold minus one, hence

2 ≤ l(θ) ≤ 3.

If l(θ) = 3, by [8, Theorem 1.1], the associated contraction ϕθ : Y → Y ′ is the blow up at a point

of a smooth variety Y ′; Fano manifolds which are the blow up at a point of a smooth variety are

classified in [15, Theorem 1.1], which gives three possible cases. Among these cases only the blow

up at a point of the projective space has pseudoindex greater than one, hence we are in case (1).

If l(θ) = 2, by [8, Theorem 5.2], either ϕθ is the blow up of a smooth variety along a smooth curve,

or its exceptional locus Exc(ϕθ) is isomorphic to P3 or to a (possibly singular) three dimensional

quadric and ϕθ(Exc(ϕθ)) is a point.

If ϕθ : Y → Y ′ is the blow up of a smooth variety along a smooth curve, we can apply [9, Theorem

1.3] and, recalling that we are assuming ρY = 2, we have cases (2), (3) and (4).

If else ϕθ(Exc(ϕθ)) is a point, we consider the contraction ϕθ : Y → T , associated to the extremal

ray θ; the effective divisor Exc(ϕθ) is positive on θ by lemma 2.14, therefore, by corollary 2.15, ϕθ

makes Y a P1-bundle over T , Y = PT (F). We can thus apply lemma 2.16, obtaining that either Y

is a product, or T is a projective space or a smooth quadric. The first case has to be excluded since

P1×T does not have a birational contraction; in the second case we note that F is a Fano bundle on
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T , whence we can use the classification in [35], looking for bundles such that their projectivization

has pseudoindex ≥ 2 and a birational extremal contraction.

By that classification it turns out that the only possibilities are number (5) and (6) in our list. �

Proposition 6.2. Let Y be a Fano fourfold of pseudoindex iY ≥ 2 and Picard number ρY = 2 with

two fiber type extremal contractions. Then Y is one of the following:

(1) a product P1 ×W ;

(2) a variety whose extremal rays have length 2 and associated contractions with fibers of dimen-

sion ≤ 2;

(3) P2 × P2;

(4) PP2(TP2(−1)⊕OP2).

Proof. The manifold Y is Fano and has Picard number two, so its cone is spanned by two

extremal rays: NE(Y ) = 〈θ, θ〉.

Suppose that the contraction associated to one extremal ray, say θ, has a three dimensional fiber

F θ; then, by lemma 2.14, F θ · θ > 0. By corollary 2.15, the contraction of θ, ϕθ : Y →W , makes Y

into a P1-bundle over a smooth threefold W , Y = PW (F); by lemma 2.16, either Y ≃ P1 ×W , or

W is P3 or Q3.

By the classification given in [35], there are no of Fano bundles over P3 and Q3 such that their

projectivization is not a product and has two fiber type contractions, one of which has a three

dimensional fiber.

Therefore either we are in case (1) or both the contractions of Y have fibers of dimension ≤ 2;

this implies that the lengths of the extremal rays are ≤ 3, by proposition 2.7.

Either we are in case (2) or the length of one extremal ray, say θ, is equal to three; again by

proposition 2.7 we have that ϕθ : Y →W is equidimensional with fibers of dimension two.

By lemma 2.18 W is smooth and so, being a smooth surface of Picard number one dominated by

a Fano manifold, W ≃ P2; moreover, by the same lemma Y = PP2(F) for some rank three vector

bundle on P2. In particular F is a Fano bundle over P2.

From the classification of such bundles given in [36], recalling that, in our case, the other contraction

of Y has length ≥ 2, we are either in case (3) or in case (4). �

Proposition 6.3. Suppose that there exists a ruled Fano fivefold of index two (X,Y, E) with ρX = 3

which is not a product with P1 as a factor. Then Y is one of the following:

(1) Blp(P
4);

(2) Bll(P
4);

(3) P2 × P2;

(4) PP2(TP2(−1)⊕OP2).

Proof. Suppose first that Y has a birational contraction; then Y is one of the manifolds listed

in proposition 6.1. The varieties (3)-(6) are rationally connected with respect to minimal curves in

the extremal rays, which have length two, so, if they are the base of a ruled Fano fivefold (X,Y, E)
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of index two, then X is a product P1 × Y by proposition 4.4. Therefore, if Y has a birational

contraction and X is not a product, Y is either Blp(P
4) or Bll(P

4) (cases (1) and (2) of proposition

6.1).

Suppose now that Y has only fiber type contractions; then, by proposition 6.2, we have four

possible cases. To finish the proof we have to rule out cases (1) and (2) of that proposition.

If Y ≃ P1 ×W , we can apply corollary 4.3 to get that X is a product P1 × PW (E ′).

We are left with the case of a manifold Y whose extremal rays have length 2 and associated

contractions with fibers of dimension ≤ 2. Let θ be one of the rays in NE(Y ), let ϕθ : Y → W be

the associated contraction and let Rθ be the associated family of rational curves; we claim that Rθ

is a covering family.

If the general fiber Fθ of ϕθ has dimension one, this follows from proposition 2.6, since Locus(Rθ)x

is contained in the fiber of ϕθ through x:

dimLocus(Rθ) ≥ dim Y + l(θ)− 1− dimLocus(Rθ)x ≥ 4.

If else Fθ has dimension two, then, by adjunction, it is a smooth quadric and therefore it is covered

by curves in Rθ, which are lines in the quadric.

We can thus consider the rc(Rθ, Rθ)-fibration, whose image has to be a point, being ρY = 2. It

follows that Y is rationally connected with respect to curves in Rθ and Rθ and X is a product P1×Y

by proposition 4.4. �

7. Proof of theorem 1.1

In this section we achieve the classification of ruled fivefolds (X,Y, E) of index two and Picard

number three, proving theorem 1.1.

First we prove that, if X is not a product, one of the contractions of X is birational (proposition

7.1). We then consider separately the case in which also Y has a birational contraction (proposition

7.2) and the case in which both the contractions of Y are of fiber type (proposition 7.3).

Proposition 7.1. Let (X,Y, E) be a ruled Fano fivefold of index two with ρX = 3 such that X has

only fiber type contractions. Then X is a product with P1 as a factor.

Proof. Since X has only fiber type contractions, the same is true also for Y by corollary

3.6, so, by proposition 6.3, if X is not a product with P1 as a factor, then Y is either P2 × P2 or

PP2(TP2(−1)⊕OP2).

Case a) Y ≃ P2 × P2.

The cone of curves of Y is generated by two extremal rays, θ and θ̄, corresponding to the pro-

jections ϕθ, ϕθ : Y → P2 Let ϑ and ϑ be the fellow rays of θ and θ, respectively, and denote by

ψϑ : X → Z and ψϑ : X → Z the associated contractions. By proposition 3.9 the contractions ψϑ

and ψϑ are P1-bundles and p∗OY (1, 1) restricts to OP1(1) on the fibers of ψϑ and ψϑ. Hence there

exist two vector bundles F on Z and F on Z such that (X,Z,F) and (X,Z,F) are ruled Fano
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fivefolds of index two.

Since all the contractions of X are of fiber type, the same is true also for Z and Z, by corollary

3.6. We can apply proposition 6.3 to (X,Z,F) and to (X,Z,F) and we have for Z and Z two

possibilities: P2 × P2 or PP2(TP2(−1)⊕OP2).

In the last case one extremal contraction of Z (Z) is a special Bǎnicǎ scroll onto P3 so, by proposition

3.10, also one contraction of X has to be a special Bǎnicǎ scroll with jumping fibers, but we have

already proved that all the contractions of X are P1-bundles.

It follows that both Z and Z are P2 × P2. All the extremal rays of X have length two, hence ξE

restricts to OP1(1) on the fibers of any contraction of X .

Consider the commutative diagram

P2 Z

��@
@@

@@

Y

ϕθ
``@@@@@

ϕ
θ��~~

~~
~

Xp
oo

ψϑ
??�����

ψ
ϑ

��?
??

??

ψσ // P2

P2 Z

??~~~~~

The line bundle ξE ⊗ p∗OY (−1,−1) is trivial on the face σ spanned by ϑ and ϑ, and restricts to

OP1(1) on the fibers of p, hence ξE(−1,−1) = ξE⊗p
∗OY (−1,−1) = ψ∗

σOP2(1) is spanned. Equivalently

E(−1,−1) is spanned and h0(E(−1,−1)) = 3. We thus have a surjective map O⊕3
Y → E(−1,−1) → 0,

which gives rise to an exact sequence

0 −→ L −→ O⊕3
Y −→ E(−1,−1) −→ 0;

computing the splitting type we find L ≃ OY (−1,−1). The dual bundle L∨ is thereby ample,

therefore, by [24, 12.1.6], the map L → O⊕3
Y must have a non empty degeneracy locus, whence

X = PY (E(−1,−1)) →֒ PY (O
⊕3
Y ) is not a P1-bundle over Y , a contradiction.

Case b) Y ≃ PP2(TP2(−1)⊕OP2).

The cone of curves of Y is generated by two extremal rays: θ, corresponding to the projection

ϕθ : Y → P2, and θ, corresponding to the contraction ϕθ : Y → P3, which is a special Bǎnicǎ scroll

with exactly one jumping fiber J ≃ P2, which is the section corresponding to the trivial summand

of the bundle TP2(−1)⊕OP2 .

Let ϑ and ϑ be the fellow rays of θ and θ, respectively, and denote by ψϑ : X → Z and ψϑ : X → Z

the associated contractions. By proposition 3.9 the contraction ψϑ : X → Z is a P1-bundle, while,

by proposition 3.10, the contraction ψϑ : X → Z is a special Bǎnicǎ scroll with a one parameter

family of jumping fibers which are sections of p over over J .

Since ψϑ : X → Z is a P1-bundle, there exists a vector bundle F on Z such that (X,Z,F) is a ruled

Fano fivefold of index two. All the contractions of Z are of fiber type by corollary 3.6, so proposition

6.3 applied to (X,Z,F) gives us two possibilities: either Z ≃ P2 × P2 or Z ≃ PP2(TP2(−1)⊕OP2).

In the first case we conclude as in case a), replacing (X,Y, E) with (X,Z,F), otherwise we consider
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the following commutative diagram

J
� _

��

p−1(J)
� _

��

P2 Yϕθ

oo

ϕ
θ

��

X
p

oo
ψϑ //

ψϑ

��

Z

��

P3 Z
p′

oo // P3

By proposition 3.10 there is an isomorphism f : P1 × P2 → p−1(J), and the subsets f({x}× P2) are

jumping fibers of ψϑ. In particular the numerical class of every curve in p−1(J) belongs to the face

〈RE , ϑ〉. It follows that ψϑ is finite to one on p−1(J), but this is a contradiction since, by lemma 3.5

every jumping fiber of ψϑ has to be mapped by ψϑ to a jumping fiber of the contraction Z → P3,

but this map has only one jumping fiber. �

Proposition 7.2. Let (X,Y, E) be a ruled Fano fivefold of index two with ρX = 3 such that both

X and Y have a birational contraction. Then, if X is not a product with P1 as a factor, one of the

following happens:

(1) X ≃ Blp(P
4)×P3 Blp(P

4);

(2) X ≃ BlS(Blp(P
5)) with S the strict trasform of a plane ∋ p.

In these cases the corresponding pairs (Y, E) are, respectively,

(1) (Blp(P
4), 2H + E ⊕ 3H + E), E exceptional divisor and H pullback on Y of OP3(1);

(2) (Bll(P
4), 2H − E ⊕ 3H − E), E exceptional divisor and H pullback on Y of OP4(1).

Proof. We assume that X is not a product and that Y has a birational contraction, so, by

corollary 6.3, Y is the blow up of P4 either along a point or along a line.

Case a) Y = Blp(P
4).

Another possible description of Y is PP3(OP3 ⊕ OP3(−1)); let θ ⊂ NE(Y ) be the extremal ray

corresponding to the P1-bundle contraction ϕθ : Y → P3, let E be the exceptional P3 and let H be

the pullback of OP3(1). Let ϑ ⊂ NE(X) be the fellow ray of θ; by proposition 3.8, the contraction

associated to ϑ, ψϑ : X → Z, is a P1-bundle, too. Moreover, by the same proposition, since E

restricts to OP1(1) on the fibers of ϕθ, we have E ⊗ (−E) = ϕ∗
θE

′ and Z = PP3(E ′).

Since E|E ≃ OP3(−1) and E is a section of ϕθ, we have

E|E = (ϕ∗
θE

′ ⊗ E)|E ≃ E ′(−1).

Recalling that (det E)|E = (−KY )|E = OP3(3) and that E is ample, we see that the splitting type of

E on lines of E is constantly OP1(1) ⊕ OP1(2), hence, by [34, Theorem 3.2.3], E|E is decomposable

as E|E ≃ OP3(1)⊕OP3(2). It follows that E ′ ≃ OP3(2)⊕OP3(3), thus E ≃ (2H ⊕ 3H)⊗ E.
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Case b) Y = Bll(P
4).

Let θ ⊂ NE(Y ) be the extremal ray whose associated contraction, ϕθ : Y → P4, is the blow up

of P4 along a line. Denote by E the exceptional locus of ϕθ and by H the pullback of the ample

generator of Pic(P4).

Let ϑ ⊂ NE(X) be the fellow ray of θ; by proposition 3.8, the associated contraction, ψϑ : X → X ′,

is the blow up of a smooth fivefold along a smooth surface.

By the same proposition, since −E restricts to OP2(1) on the fibers of ϕθ, there exists a rank two

vector bundle on X ′ such that E ⊗ E = ϕ∗
θE

′ and X ′ = PW (E ′); by [7, Lemma 2.10] E ′ is ample.

The canonical bundle formula for blow ups, KY = ϕ∗
θKP4 + 2E, combined with the determinant

formula, detϕ∗
θE

′ = det E + 2E, gives

ϕ∗
θ(KP4 + det E ′) = KY + det E = OY ,

whence KP4 + det E ′ = OP4 . It follows that −KX′ = 2ξE′ is ample, therefore X ′ is a Fano manifold

and E ′ is a rank two Fano bundle on P4, which, by [1, Main Theorem], is decomposable as E ′ ≃

OP4(a) ⊕OP4(b). We can thereby write E ≃ (aH − E) ⊕ (bH − E). Now, recalling that E is ample

and that KY + det E = OY , it is easy to prove that (a, b) = (2, 3). �

Proposition 7.3. Let (X,Y, E) be a ruled Fano fivefold of index two with ρX = 3 such that X has

a birational contraction but Y has not. Then one of the following happens:

(1) X is the blow up of a cone in P9 over the Segre embedding P2 × P2 ⊂ P8 along its vertex;

(2) X is the blow up of P5 in two non meeting planes;

(3) X is the blow up of a general member of O(1, 1) ⊂ P2 × P4 along a two dimensional fiber of

the second projection.

In these cases the corresponding pairs (Y, E) are, respectively,

(1) (P2 × P2,O(1, 1)⊕O(2, 2));

(2) (P2 × P2,O(1, 2)⊕O(2, 1));

(3) (PP2(TP2(−1)⊕OP2) ⊂ P2 × P3,O(1, 1)⊕O(1, 2)).

Proof. First of all it is clear that X cannot be a product P1 × Y ; by proposition 6.3, recalling

that Y has not birational contractions, the only possible cases are Y ≃ PP2(TP2(−1) ⊕ OP2) or

Y ≃ P2 × P2.

Let ϑ ⊂ NE(X) be an extremal ray associated to a birational contraction ψϑ : X → X ′ and let

θ ⊂ NE(Y ) be its fellow ray, with associated contraction ϕθ : Y →W .

Denote by E the exceptional locus of ψϑ : X → X ′; if E · RE = 0, then E = p∗EY with EY an

effective divisor on Y . Being E not nef, also EY is not nef, and Y has a birational contraction,

against the assumptions. Therefore E · RE > 0 and E dominates Y .

The fibers of ψϑ have dimension ≥ 2 by proposition 2.7; then, by lemma 3.5, also the fibers of ϕθ

have dimension ≥ 2, hence ϕθ is a P2-bundle contraction onto W ≃ P2. By proposition 3.9, ψϑ is

the blow up of a smooth surface S ⊂ X ′ and, denoted by f a fiber of p, we have E · f = 1.

Let y be a point in Y and let Fy ≃ P2 be the fiber of ϕθ through y; by the proof of proposition 3.9,
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E|Fy
≃ OP2(1) ⊕ OP2(2) and E ∩ p−1(Fy) is the section corresponding to the OP2(1) summand. In

particular the divisor E cannot contain f = p−1(y). It follows that E is a section of p, thus E ≃ Y .

Suppose that X ′ is not a Fano manifold; by [40, Proposition 3.4], E is negative on another

extremal ray ϑ ⊂ NE(X), hence the exceptional locus of the associated contraction ψϑ : X → X ′′ is

contained in E, whence ψϑ is birational.

Arguing as above, ψϑ : X → X ′′ is the blow up of a smooth fivefold along a smooth surface, thus

its exceptional locus is the divisor E; consequently E has two P2-bundle structures over smooth

surfaces and we have E ≃ Y ≃ P2 × P2.

Since E is a section of p, there exists an exact sequence

0 −→ O(a1, a2) −→ E −→ O(b1, b2) −→ 0

such that E ≃ ξE ⊗ p∗O(−a1,−a2); being E · ϑ = E · ϑ = −1, we have a1 = a2 = 2; then

−1 = E · ϑ = (1− a1) = E · ϑ = (1− a2).

Recalling that det E = −KP2×P2 = O(3, 3), we obtain b1 = b2 = 1; since h1(P2 × P2,O(a1 − b1, a2 −

b2)) = h1(P2 × P2,O(1, 1)) = 0, the above sequences splits, the vector bundle E is decomposable:

E ≃ O(1, 1)⊕O(2, 2), and we are in case (1).

We can now assume that X ′ is a Fano manifold; consider the commutative diagram as in 3.4.1

X
ψϑ //

p

��

X ′

p′

��

Y ϕθ

// P2

Let x ∈ P2 be a general point; the fibers G = p′−1(x) and F = ψ−1
ϑ (p′−1(x)) are smooth and, by

the commutativity of the diagram, F = p−1(ϕ−1
θ (x)) = PP2(OP2(1)⊕OP2(2)); therefore G ≃ P3.

By lemma 2.18 there exists a rank four vector bundle F over P2 such that X ′ = PP2(F); in particular

F is a Fano bundle over P2.

By the canonical bundle formula for blow ups we have

−ψ∗
ϑKX′ = −KX + 2E = 2(ξE + E),

whence the index of X ′ is two. Writing KX′ with the canonical bundle formula for projectivizations

KX′ = −4ξF + p′∗(OP2(−3) + c1(F)),

this implies that the first Chern class ofF is odd. By the classification in [36] either F ≃ O⊕3
P2 ⊕OP2(1)

or F ≃ TP2(−1)⊕O⊕2
P2 .

As for every x ∈ P2 the fiber Fx = ψ−1
ϑ (p′−1(x)) is the blow up of P3 at a point and the fiber

Gx = p′−1(x) is a projective space of dimension three, we have that S, the center of the blow-up
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ψϑ, is a section of p′; therefore we have an exact sequence

(7.3.1) 0 −→ G −→ F −→ O(a) −→ 0

such that S is the zero locus of a section of the vector bundle ξF ⊗p′∗G∨; in particular the conormal

bundle N∗
S/X′ of S is (p′∗G ⊗ ξ−1

F )|S . Recall that the exceptional divisor E is the projectivization of

the conormal bundle of S, i.e. E ≃ PS(N
∗
S/X).

If E ≃ Y ≃ P2 × P2, then N∗
S/X , hence G is decomposable. It follows that h1(G(−a)) = 0, thus

the sequence splits and we have G ≃ O⊕3
P2 , F ≃ O⊕3

P2 ⊕OP2(1), i.e. S is the section corresponding to

the surjection F → OP2(1) and it is disjoint from the exceptional divisor of the blow down X ′ → P5.

We thereby conclude that X is the blow up of P5 in two non meeting planes.

Suppose now that E ≃ Y ≃ PP2(TP2(−1)⊕OP2).

Let θ be the extremal ray corresponding to the contraction ϕθ : Y → P3, which is a special Bǎnicǎ

scroll, and let ψϑ : X → Z be the contraction associated to ϑ, the fellow ray of θ; by proposition

3.10 ψϑ is a special Bǎnicǎ scroll.

Let σ ⊂ NE(X) be the face spanned by ϑ and ϑ; the contraction of this face, call it ψσ, factors

through the contraction ψϑ : X → X ′ and we have a commutative diagram

P3 Z

!!B
BB

BB
BB

Y

ϕθ

��

ϕ
θ

OO

X
p

oo
ψσ //

ψ
ϑ

>>}}}}}}}

ψϑ   A
AA

AA
AA

W ′

P2 X ′

p′
oo

π

==|||||||

The morphism π : X ′ → W ′ is the contraction of X ′ different from the projection onto P2; since

dimW ′ ≤ dimZ < dimX , π is a fiber type contraction, so F ≃ TP2(−1)⊕O⊕2
P2 and W ′ ≃ P3.

We claim that E · ϑ = 0; indeed, if this is not true, then, for every x ∈ X , denoting by (Fϑ)x the

fiber of ψϑ containing x, we will have

dimψ−1

ϑ
(ψϑ(ψ

−1
ϑ (ψϑ((Fϑ)x)))) ≥ 3.

Denoting by V ϑ and V ϑ the families of minimal degree rational curves whose numerical class is

in ϑ and ϑ, respectively, and by (Fσ)x the fiber of ψσ containing x we will have

(Fσ)x ⊃ ChLocus(V ϑ, V ϑ)x ⊃ ψ−1

ϑ
(ψϑ(ψ

−1
ϑ (ψϑ((Fϑ)x)))),

a contradiction, since the general fiber of ψσ : X → P3 is two dimensional.

As we have already noticed, E = P(N∗
S/X′) and, since E ≃ Y , N∗

S/X′ ≃ TP2(b − 1)⊕OP2(b) for

some b. The fact that E · ϑ = 0 implies that b = 0, so

G ≃ (p′∗G)|S ≃ (ξF )|S ⊗N∗
S/X′ ≃ (ξF )|S ⊗ (TP2(−1)⊕OP2) ≃ TP2(x− 1)⊕OP2(x)
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with x ≥ 0 since F is nef; by the sequence (7.3.1 ), we have an injection

0 → TP2(x− 1)⊕OP2(x) → OP2(−1)⊕O⊕2
P2 ,

which forces x = 0. It follows that S corresponds to a surjection F → OP2 → 0, so it is a two

dimensional fiber of the special Bǎnicǎ scroll contraction of X ′. �

8. Proof of theorem 1.2

The main idea of the proof of theorem 1.2 is to consider, when possible, a smooth divisor Y ′ in

the linear system of the ample generator of Y , and to study the manifold X ′ = PY ′(E|Y ′); in order

to do that we first establish some relations between the geometry of X and the geometry of X ′.

Lemma 8.1. Let Y be a smooth variety, L ∈ Pic(Y ) an ample line bundle and Y ′ ∈ |L| an effective

divisor. Let E be a rank two vector bundle on Y and denote by EY ′ its restriction to Y ′. Then

a) if EY ′ is spanned, then E is nef;

b) if hi(EY ′(−jL)) = 0 for i = 0, 1 and every j ≥ 1, then H0(Y, E) ≃ H0(Y ′, EY ′).

Proof. By definition, the nefness of E is the nefness of its tautological bundle; let X = PY (E)

and let X ′ = PY ′(EY ′). Since the restriction of ξE to X ′ is spanned, if ξE · C < 0 for some effective

curve C, then C ∩X ′ = ∅. By the ampleness of Y ′ in Y this implies that C is a fiber of the natural

projection p : X → Y , but this is impossible since such curves cover X .

To prove b), by the exact sequence

0 −→ E(−L) −→ E −→ EY ′ −→ 0,

we have to show that h0(E(−L)) = h1(E(−L)) = 0, and this follows from [14, Corollary 4.1.6]. �

Proposition 8.2. Let Y be a smooth variety of Picard number one and dimension ≥ 4, E a rank

two vector bundle on Y , L ∈ Pic(Y ) an ample line bundle and Y ′ ∈ |L| an effective divisor.

Assume that EY ′ = E|Y ′ is spanned and that |ξEY ′
| defines an extremal contraction ϕϑ′ : X ′ =

PY ′(EY ′) → Z associated to an extremal ray ϑ′ ⊂ NE(X ′). Then, under the identification N1(X
′) ≃

N1(X), given by the inclusion i : X ′ → X, we have NE(X ′) = NE(X).

Proof. Since dim Y ≥ 4, by Weak Lefschetz theorem we have ρY ′ = 1, hence the cones of

curves NE(X) and NE(X ′) have dimension two and, under the identification N1(X
′) ≃ N1(X), they

have in common the extremal ray RE corresponding to the bundle projection. We have therefore to

prove ϑ′ is extremal in NE(X), too.

Since (ξE )|X′ = ξEY ′
is zero on ϑ′, if ϑ′ is not extremal in NE(X) we have ξE ·C < 0 for some curve

whose class is in NE(X) \ NE(X ′). This contradicts the fact that, by lemma 8.1 a), E has to be

nef. �

Corollary 8.3. Let (X,Y, E) be a ruled Fano fivefold of index two and Picard number ρX = 2, let

L be the ample generator of Pic(Y ), and assume that there exists an effective divisor Y ′ ∈ |L| such

that EY ′ = E|Y ′ is spanned and that |ξEY ′
| defines an extremal contraction ϕϑ′ : X → Z of fiber type.

Then there exists an extremal contraction ψϑ : X → Z such that (ψϑ)|X′ = ϕϑ′ .
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Proof. This assertion follows from [6, Proposition 3.13]. �

Proof of theorem 1.2. By lemma 2.12, Y is a Fano variety of pseudoindex iY ≥ iX = 2;

moreover, since ρX = 2, we have ρY = 1.

If rY = iY = 2, i.e. Y is a Mukai manifold, then, denoted by OY (1) the ample generator of

Pic(Y ), by [30, Theorem 1] a general section Y ′ in |OY (1)| is smooth, and so it is a Fano threefold

of index one. By adjunction X ′ = PY ′(EY ′) is a Fano manifold, hence we can apply [29, Theorem

8.4] to get X ′ = P1 × Y ′.

Up to a twist, we can assume that EY ′ ≃ OY ′ ⊕ OY ′ ; this bundle verifies the assumptions of

proposition 8.2, so, by corollary 8.3, there exists an extremal contraction ψϑ : X → P1; by lemma

4.1 we have X ≃ P1 × Y .

If rY = iY = 3, i.e. Y is a del Pezzo manifold, we again denote by OY (1) the ample generator of

Pic(Y ) and we take a general divisor Y ′ ∈ |OY (1)|. By adjunction X ′ = PY ′(EY ′) is a Fano manifold;

by [29, Theorem 8.2] and [37, Proposition 4.2] we have the following possibilities for (Y ′, EY ′) (here

the vector bundles are not normalized as in definition 3.2):

(1) (Vd,OVd
⊕OVd

(−1));

(2) (V4, restriction of a spinor bundle on Q4);

(3) (V5, restriction of the universal bundle on G(1, 4)).

Case 1 (Y ′, EY ′) ≃ (Vd,OVd
⊕OVd

(−1)).

By lemma 8.1 b) H0(Y, E) ≃ H0(Y ′, E) ≃ C. It follows that E has a section, s; this section does

not vanish on Y ′, which is ample, whence s can vanish only at points outside Y ′. Let x be one of

these points and let l be a line through x; E(1) is ample and det E(1) ≃ OY (3), so E restricts to l as

OP1 ⊕OP1(−1), and s cannot vanish on l.

We thereby have a short exact sequence

0 −→ O −→ E −→ L −→ 0

where, computing the splitting type, we have L = OY (−1); consequently the sequence splits and

E ≃ OY ⊕OY (1).

Case 2 (Y ′, EY ′) ≃ (V4, restriction of a spinor bundle on Q4).

In case (2), as proved in [37, 4.4], X ′ has a conic bundle structure ϕ : X ′ → P3, and can be

described as a divisor in the flag manifold of lines and points in G(1, 3) × P3. Indeed, ϕ∗ξEY ′ (1) ≃

ΩP3(3) and the flag manifold can be identified with the projectivization PP3(ΩP3(3)); with this

description X ′ is a divisor in |2ξΩP3(3) − 2ϕ∗OP3(1)|.

Since E is spanned on Y ′ and |ξEY ′
| defines a fiber type contraction, by corollary 8.3, there exists a

contraction ψϑ : X → P3 such that its restriction to X ′ is the conic bundle contraction ϕ : X ′ → P3.

In particular, since the restriction of ψϑ to X ′ is equidimensional and X ′ is ψϑ-ample, also ψϑ is

equidimensional and, by adjunction, is a quadric bundle contraction.
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Let F = ψϑ∗ξE(1); F is a vector bundle of rank four and X embeds in PP3(F) as a divisor of

relative degree 2, i.e. X ∈ |2ξE(1) + ψ∗
ϑOP3(x)|.

The vector bundle F has G = ϕ∗ξEY ′(1) ≃ ΩP3(3) as a quotient. Indeed, if x ∈ P3 is a point and

we denote by F and f the fibers of ψϑ and ψϑ|X′ = ϕ over x, we have that Gx = H0((ξE )|f ) is a

quotient of Fx = H0((ξE )|F ).

It follows that there exists an exact sequence on P3:

0 −→ O(a) −→ F −→ ΩP3(3) −→ 0.

Since (ξE(1))|X′ = ξΩP3(3), (ψ∗
ϑO(1))|X′ = ϕ∗

P3OP3(1) and X|P(G) = X ′, we have x = −2 and

X ∈ |2ξE(1) − 2ψ∗OP3(1)| = |2ξE |. By adjunction

−2ξE(1) = KX = (KP
P3(F) +X)X = −2ξE(1) + ψ∗OP3(c1(F)− 6),

hence c1(F) = 6. Computing the degree in the above sequence, we have a = 1. Therefore the

sequence splits and we have F ≃ ΩP3(3)⊕OP3(1).

Case 3 (Y ′, EY ′) ≃ (V5, restriction of the universal bundle on G(1, 4)).

We claim that E is spanned on Y ; to prove the claim we show that ξE is spanned on X = P(E).

Assume that x̄ ∈ X is a base point of |ξE |; since OY (1) is very ample, we can find a smooth section

Y ′′ ∈ |OY (1)| containing p(x). The restriction (ξE)|Y ′′ = ξEY ′′
is spanned, so there exists a section

of (ξE)Y ′′ which does not vanish at x and this section, by lemma 8.1 b), extends to X .

We have thus proved that E is spanned; again by lemma 8.1 b), h0(Y, E) = h0(Y ′′, EY ′′) = 5 so we

have an exact sequence of vector bundles

0 −→ G −→ O⊕5
Y −→ E −→ 0

which gives an injection X → P4 × Y and then an injection X → P4 ×G(1, 4). We claim that X is

the intersection of p−1(Y ) with the flag manifold of lines and points in G(1, 4)× P4. Indeed, given

a point y ∈ Y , denoting by Y ′ a smooth member of OY (1) passing through y, EY ′ is the restriction

of the universal bundle of G(1, 4), thus the fiber of E over y is the line parametrized by y ∈ G(1, 4).

If iY = 4 then, by [31, Theorem 0.1], Y ≃ Q4. We can apply [1, Theorem 2.4] to get that E

is decomposable (the other bundles have odd c1, while, in our case, since det E = −KY = OQ4(4),

c1(E) is even) and we are in case (2) of theorem 1.2.

If iY = 5 then, by [19, Corollary 0.4] or [25, Theorem 1.1], Y ≃ P4. We can apply [1, Theorem

2.4] to get that E is decomposable, hence we are in case (1) of theorem 1.2. Note that only the

bundles whose projectivization gives a Fano manifold of index two are considered. �
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