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Abstract: Background
Increased mortality risk is associated with temperature variability (TV). However, there
is no comprehensive assessment of the TV-related mortality burden across the globe.
Methods
A three-stage meta-analytical approach was applied to assess the global TV-related
mortality burden at a spatial resolution of 0·5° × 0·5° from 2000 to 2019. We firstly
obtained location-specific TV-mortality associations based on daily time series of 750
locations from the Multi-country Multi-city Collaborative Research Network. Then, a
multivariate meta-regression model was built with five predictors to estimate grid-
specific TV-mortality associations. Finally, percentage excess in mortality and excess
mortality rate were calculated to quantify the TV-related mortality burden and to further
explore its temporal trend over two decades.
Findings
An increasing trend of TV was identified at the global level from 2000 to 2019. Globally,
1,490,596 deaths (95% confidence interval [CI]: 1,041,652, 1,945,553) were
associated with TV per year, accounting for 3·3% (95% CI: 2·3, 4·3) of all deaths.  Most
of Asia, Northern Africa, Australia and New Zealand were observed to have higher
percentage excess in mortality than the global average. Globally, the percentage
excess in mortality increased about 1·1% (95% CI: 0·4, 1·7) per decade. Northern
America, Sub-Saharan Africa, Australia and New Zealand, most of Asia, and Europe
had a higher increasing rate in percentage excess in mortality than the global average,
with the largest increase occurred in Australia and New Zealand (6·4%; 95% CI: 3·0,
9·6).
Interpretation
Globally, a substantial mortality burden was associated with TV, showing geographical
heterogeneity and a slightly increasing temporal trend. Our results could contribute to
the development of evidence-based intergovernmental strategies against the health
consequences arising from TV.
Funding
Australian Research Council, Australian National Health & Medical Research Council.
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Summary 

Background  

Increased mortality risk is associated with temperature variability (TV). However, there is no 

comprehensive assessment of the TV-related mortality burden across the globe. 

Methods 

A three-stage meta-analytical approach was applied to assess the global TV-related mortality burden 

at a spatial resolution of 0·5° × 0·5° from 2000 to 2019. We firstly obtained location-specific TV-

mortality associations based on daily time series of 750 locations from the Multi-country Multi-city 

Collaborative Research Network. Then, a multivariate meta-regression model was built with five 

predictors to estimate grid-specific TV-mortality associations. Finally, percentage excess in mortality 

and excess mortality rate were calculated to quantify the TV-related mortality burden and to further 

explore its temporal trend over two decades. 

Findings 

An increasing trend of TV was identified at the global level from 2000 to 2019. Globally, 1,490,596 

deaths (95% confidence interval [CI]: 1,041,652, 1,945,553) were associated with TV per year, 

accounting for 3·3% (95% CI: 2·3, 4·3) of all deaths.  Most of Asia, Northern Africa, Australia and 

New Zealand were observed to have higher percentage excess in mortality than the global average. 

Globally, the percentage excess in mortality increased about 1·1% (95% CI: 0·4, 1·7) per decade. 

Northern America, Sub-Saharan Africa, Australia and New Zealand, most of Asia, and Europe had a 

higher increasing rate in percentage excess in mortality than the global average, with the largest 

increase occurred in Australia and New Zealand (6·4%; 95% CI: 3·0, 9·6). 

Interpretation 

Globally, a substantial mortality burden was associated with TV, showing geographical heterogeneity 

and a slightly increasing temporal trend. Our results could contribute to the development of evidence-

based intergovernmental strategies against the health consequences arising from TV. 
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Research in context 

Evidence before this study 

In the past few years, attention has been increasingly paid to the negative health effects of short-term 

temperature variability (TV), an indicator of unstable weather that causes challenges to human 

adaption. We searched MEDLINE (via PubMed), Web of Science, and Google Scholar from database 

inception until Nov 6, 2021, for articles in English. We used a combination of search terms, including 

exposure terms (“temperature variability”, “temperature change”, “temperature fluctuation”, 

“temperature range”) and health outcome terms (“mortality”, “mortality burden”, “death”, “excess 

death”). Although many studies have reported the association between TV and premature deaths, most 

evidence has been obtained from studies in single cities or countries, the systematic evaluation of the 

results is challenged by differences in modelling, parameterization, and publication bias. One study 

evaluated the mortality risk associated with TV based on data from 12 countries, but did not provide 

the attributable burden of TV-related mortality. The global burden of mortality associated with TV is 

still unknown.  

 

Added value of this study 

To the best of our knowledge, this is the largest and first study, using global gridded observation data 

at a spatial resolution of 0.5° × 0.5°, to systematically estimate the global burden of mortality 

associated with TV and explore its temporal trend over 20 years. This study identified an increasing 

trend of TV at the global level from 2000 to 2019. Globally, 1,490,596 deaths were associated with 

TV per year, accounting for 3.3% of all deaths. The percentage excess in mortality increased about 

1.1% per decade from 2000 to 2019. Disparate geographical variations were also found. 

 

Implications of all the available evidence 
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This study provides robust epidemiological evidence of the impact of TV on mortality globally, and 

across and within countries or regions. Our findings suggest that regions with a higher percentage 

excess in mortality due to TV (e.g., the whole of Asia, Australia and New Zealand, Northern Africa) 

are of great importance to contribute to coordinated actions for health, and more targeted policies 

should be implemented in regions with a higher increasing rate of TV-related mortality burden (e.g., 

Australia and New Zealand, Northern Europe and Western Europe). 
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Introduction 

Climate change is a major public health concern in the 21st century.  It affects both the global mean 

surface temperature and its variability, resulting in more frequent extreme weather events and unstable 

weather 1-3. Globally, non-optimum temperatures have been identified as an important indicator of 

climate change given its largely recognized warming trend, and as one of the leading causes of the 

global burden of diseases 4-6. However, temperature variability (TV), an indicator of short-term 

temperature fluctuations or stability which is also difficult for human beings to adapt to, is lack of 

public awareness and less investigated compared to non-optimum temperatures 7,8. 

 

Some studies have reported the adverse health impacts of TV, showing a significant association 

between TV and mortality risk 9-12. Our previous study based on Multi-Country Multi-City (MCC) 

Collaborative Research Network observed significant but varied associations between TV and 

mortality risk across 12 countries with various climate patterns, indicating that TV can affect the entire 

population but pose a higher risk to particular population groups 9. Although several studies have 

investigated the association between TV and mortality 9-12, few so far have assessed the absolute 

mortality burden associated with TV.  

 

We have seen an increased mortality burden attributable to hot temperatures 13, and it is also of great 

benefit to explore how TV-related mortality burden changes over time. Since the pre-industrial era, 

the global temperature has increased by more than 1 °C 14. However, TV was observed to vary in time 

and space without consistent temporal patterns 15-17. The reason for this temporal-spatial variation can 

be multifaceted. Dynamic temperature changes are highly correlated with long-wave radiation fluxes 

which depend on both natural (e.g., atmospheric circulation, cloud cover, and precipitation) and 

anthropogenic factors (e.g., overexploitation and excessive grazing) different from region to region 18-

21. All of these make it necessary to understand the temporal trend in TV-related mortality burden 
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across the globe and make comparisons between regions at the same time window.  

 

In this study, using data from the MCC Collaborative Research Network, we first explored the TV-

mortality association across 43 countries/regions. Then, to provide a more comprehensive picture of 

the global burden of mortality associated with TV, global gridded temperature data with a resolution 

of 0·5° × 0·5° were used to assess the TV-related mortality burden at the global, regional, and national 

levels. Furthermore, temporal trends in TV-related mortality burden were also explored from 2000 to 

2019. 
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Method 

Data sources 

Location-specific mortality data  

Daily death counts extracted from the MCC Collaborative Research Network database 

(http://mccstudy.lshtm.ac.uk/) were used in this study. A total of 750 cities across 43 countries/regions 

were included, accounting for 46·3% of the world’s population. The International Classification of 

Diseases, 9th and 10th revision (ICD-9 and ICD-10) codes were used to identify causes of death. We 

extracted the data series on non-external causes of death (ICD-9: 0–799; ICD-10: A00–R99) or, if not 

available, all-cause mortality. The descriptive statistics by countries/regions are shown in Table S1. 

Only 0·09% of all-cause death data were missing (Table S2). 

 

Gridded temperature data 

Daily 1-hour maximum temperature (Tmax) and minimum temperature (Tmin) data at 0·5° × 0·5° 

latitude-longitude resolution during 1979–2019 were collected from the Climate Prediction Centre 

(CPC) Global Temperature data provided by the National Oceanic and Atmospheric Administration 

(NOAA) Physical Sciences Laboratory (PSL) 

(https://www.psl.noaa.gov/data/gridded/data.cpc.globaltemp.html). The dataset is originated from The 

Global Telecommunication System (GTS) data covering Tmin and Tmax data from 6,000–7,000 stations 

across the globe and interpolated using the Shepard algorithm with consideration of orographic effects 

to develop gridded data 22. The daily mean temperature was calculated by averaging the daily Tmin and 

Tmax. TV was calculated as the standard deviation (SD) of the daily Tmin and Tmax during several 

exposure days 9.  

 

Gridded GDP and population data 

Data on the global gross domestic product (GDP) and population in 0·5°-degree grid between 1980 
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and 2010 by 10 years were obtained from the Global Carbon Project 23. GDP and population data were 

linearly interpolated over time to generate values for each year. GDP per capita was calculated by 

dividing the GDP by population. All GDP per capita data were adjusted to 2005 US dollars.   

 

Gridded mortality data 

We obtained country-specific mortality rate for 2010 from the World Bank, which was used to 

represent the average mortality rate for the period 2000 to 2019. The average daily deaths for each grid 

cell was computed as the product of grid-specific population and annual mortality rate of the country 

where the grid cell is located, divided by the number of days in a year. The mortality rates were 

assumed to be identical across all grid cells in the same country, which is widely used in the global 

burden diseases study 24-27. 

 

Statistical analysis 

Seasonal-trend decomposition 

Using a seasonal-trend decomposition procedure based on locally weighted smoothing (STL), we 

decomposed time-series data of TV into seasonal, trend, and remainder components 28. We applied the 

STL method to each grid cell to decompose the time-series data of TV and extract the long-term trend. 

The global trend of TV was then obtained by averaging long-term trends across all grid cells. The 

decomposed long-term trends were applied for descriptive purposes only. 

 

TV-related mortality burden 

A three-stage approach established and validated in our previous MCC studies was used to quantify 

the global TV-related mortality burden at a spatial resolution of 0·5° × 0·5° 13,29. To make our results 

easy to follow, we applied the length of exposure of 7 days in the main analyses, which showed the 

highest mortality burden in our preliminary analyses. Results for other lengths of exposure were shown 
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in the sensitivity analyses. 

 

In the first stage, a generalized linear regression with a quasi-Poisson family was applied to perform 

the analysis for each location, to obtain location-specific effect estimates for TV-mortality association. 

The equation was as follows 30: 

𝑌𝑖𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇; 𝜃)  

E(𝑌𝑖𝑡) = exp (𝛼𝑖 + 𝛽𝑖𝑇𝑉𝑖𝑡 + 𝑐𝑏(𝑇𝑒𝑚𝑝𝑖𝑡, 𝑙𝑎𝑔 = 21) + 𝑛𝑠(𝑇𝑖𝑚𝑒𝑖𝑡 , 𝑑𝑓 = 7/𝑦𝑒𝑎𝑟) + 𝛾𝑖𝐷𝑂𝑊𝑖𝑡) 

𝑉𝐴𝑅(𝑌𝑖𝑡) = 𝜃𝜇 

where 𝑌𝑖𝑡 denotes daily deaths count in location 𝑖 on day 𝑡; 𝛼𝑖 is the intercept in location 𝑖; 𝛽𝑖 and 𝛾𝑖 

represent the coefficients in location 𝑖; 𝑇𝑉𝑖𝑡 stands for the linear function of TV, which is commonly 

applied in previous studies 9; 𝑐𝑏(𝑇𝑒𝑚𝑝𝑖𝑡, 𝑙𝑎𝑔 = 21) , built by distributed-lag nonlinear models 

(DLNMs), is a 2-dimensional cross-basis function of daily mean temperature featuring the nonlinear 

and delayed association over 21 days of lag, with a natural cubic spline function with three internal 

knots placed at the 25th, 50th, and 75th percentile of the location-specific temperature distribution and a 

natural cubic spline function with two internal knots placed at equally spaced values in the log scale, 

plus intercept; n𝑠(𝑇𝑖𝑚𝑒𝑖𝑡, 𝑑𝑓 = 7/𝑦𝑒𝑎𝑟) is a natural cubic spline for time with 7 degrees of freedom 

(df) per year, which was applied to control for long-term trends and seasonality; and 𝐷𝑂𝑊𝑖𝑡 stands for 

the day of the week coded as a categorical variable. 𝑉𝐴𝑅(𝑌𝑖𝑡)  and 𝜇  denote the variance and 

expectation of 𝑌𝑖𝑡, and 𝜃 is an overdispersion parameter. The association between TV and mortality 

was presented as the relative risk (RR) with 95% confidence interval (CI) associated with per 1 °C 

increase in TV. Percentage change in mortality with an interquartile increase in TV was also computed. 

 

In the second stage, a multivariate meta-regression model was built to quantify the relationship 

between the location-specific effect estimates obtained from the first stage and a set of independent 

explanatory variables from each location. We identified five explanatory variables that were well 
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documented in previous studies to contribute to the heterogeneity of location-specific effect estimates, 

including continents, five climate groups of Köppen climate classification, GDP per capita, the yearly 

average of daily mean temperature, and the range of daily mean temperature 13,31. Mid-year GDP per 

capita (the middle year of the study period for each location) was calculated to reflect the average 

location-specific GDP per capita. 

 

In the third stage, the fitted meta-regression model obtained in the second stage with five grid-specific 

explanatory variables was used to estimate the TV-mortality association between 2000 and 2019 at the 

grid cell level.  

 

Then, we calculated the daily excess deaths associated with TV in each grid cell using the following 

equation: 

𝑅𝑅𝑖𝑡 = exp (𝛽𝑝𝑒𝑟 1 °C 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 × 𝑇𝑉𝑖𝑡) 

𝐸𝐷𝑖𝑡 = (𝑅𝑅𝑖𝑡 − 1) × 𝐷𝑖 

where 𝑅𝑅𝑖𝑡 is the RR of grid cell 𝑖 on day 𝑡; 𝛽𝑝𝑒𝑟 1 °C 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 is the grid-specific association; 𝑇𝑉𝑖𝑡 is 

the TV of grid cell 𝑖 on day 𝑡; 𝐸𝐷𝑖𝑡 stands for the excess deaths in grid cell 𝑖 on day 𝑡; 𝐷𝑖 is the average 

number of daily deaths in grid cell.  

 

The total number of excess deaths was computed as a sum of daily excess deaths for each year and the 

whole study period at the global, regional, and national levels. The percentage excess in mortality was 

calculated by the ratio of excess deaths to total deaths. The annual average percentage excess over 20 

years was further computed. Annual excess deaths per 100,000 residents (excess death rate) were also 

presented. For each region or continent, we calculated the percentage change per decade in both 

percentage excess in mortality and excess death rate, using a linear regression model considering a 

Gaussian distribution of percentage excess and excess death rate on the log scale. The 95% CI of 
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percentage change per decade was obtained based on 1,000 bootstrap replicates.  

 

Sensitivity analysis 

Several sensitivity analyses were performed to test the robustness of our results: (1) assessing different 

lengths of exposure to TV (from 0–1 to 0–6 days); (2) extending the maximum lag periods of mean 

temperature from 21 days to 24 and 28 days; and (3) using alternative df values for time trend (from 7 

df per year to 6 df and 8 df per year) and lag days (from 4 df to 5 df and 6 df). In addition, as we used 

the counter-factual scenario of no variation in the main analyses, excess deaths represent those that 

would not have occurred if TV never exceeded 0 °C. Considering that TV is less likely to be zero, we 

also calculated the excess deaths under the counterfactual scenario of the grid-specific minimum TV, 

by excluding the excess deaths associated with TV ranging from zero to minimum value, to assess the 

mortality burden in the more stringent criteria. 

 

R software (version 3·6·2) was used to perform all analyses. R package “dlnm” (version 2·4·2), 

“mixmeta” (version 1·0·8), and “stR” were used to perform DLNM model, meta-regression model, 

and seasonal-trend decomposition, respectively. 

 

Results 

Averaged over the last 20-year (2000 to 2019), the annual average TV is shown in Figure 1A. Globally, 

a large variation in TV was observed. Several regions were identified to have higher TV, such as North 

America, Southern Africa, and Northern Africa. For the time trend, the time series of daily global 

average TV is shown in Figure 1B, with the global average TV of 6·1 (±1·3) °C in 2000 and 6·3 

(±1·3) °C in 2019 (Table S3). After seasonal-trend decomposition, a rising long-term trend in TV was 

found across the globe (Figure 1C and Figure S1). Among all regions, Australia and New Zealand had 

the largest increase in annual TV (Table S3). 
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Figure 2 shows a detailed overview of the TV-mortality risk and TV-related mortality burden across 

the globe. Generally, per interquartile increase in TV was associated with an average of 0·7% increases 

in mortality across all grid cells, with a median value of 0·6% (IQR: 0·3, 1·1). The geographical 

variation was observed globally, with South Asia had the highest mortality risk associated with TV 

(Figure 2A). Hotspot areas with the biggest contribution to the excess deaths were recognized in most 

parts of South and East Asia (Figure 2B). A higher percentage excess in mortality was observed in 

most of West Asia, the south of Middle Asia, and the north of South Asia (Figure 2C). The junction 

of Western Africa and Central Africa had the highest excess death rate (per 100,000 residents) (Figure 

2D). The changing nature per decade of the percentage excess is shown in Figure 2E. The percentage 

excess in the southeast coast of Australia increased dramatically, along with separate areas in Western 

Asia. The excess death rates (per 100,000 residents) were shown to increase in the south of Southern 

Africa, Western Africa, southeast coast of Australia and Western Asia (Figure 2F). 

 

From 2000 to 2019, globally, a total of 1,490,596 (95% CI: 1,041,652, 1,945,553) excess deaths was 

associated with TV per year (Table 1), accounting for 3·3% (95% CI: 2·3, 4·3) of the total deaths and 

26 (95% CI: 18, 34) excess deaths per 100,000 residents (Figure 3 and Table S4). Three leading 

continents in terms of percentage excess in mortality were Asia (4·5%), Oceania (3·3%), and Americas 

(2·6%) (Figure 3A and Table S4). Southern Asia had the highest excess death rate (38; 95% CI: 29, 

47 per 100,000 residents), with the lowest value observed for other regions in Oceania (11; 95% CI: -

5, 27 per 100,000 residents) (Figure 3B and Table S4). In addition to the region, climate zones 

contributed to the variation in excess mortality (Table S5). 

 

The global percentage excess in mortality increased from 3·2% (95% CI: 2·3, 4·2) to 3·3% (95% CI: 

2·3, 4·3) between 2000 and 2019, representing an increased rate of 1·1% (95% CI: 0·4, 1·7) per decade 
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(Table 1). Australia and New Zealand generated the largest increase in percentage excess, increasing 

from 3·5% (95% CI: 1·5, 5·6) in 2000 to 4·4 (95% CI: 1·8, 7·0), representing an increased rate of 6·4% 

(95% CI: 3·0, 9·6) per decade. The largest decline occurred in other regions in Oceania, with a 

decreased rate of 8·5% per decade (Table 1). 

 

Figure 4 shows the leading 20 countries ranked by TV-related mortality burden in both 2000 and 2019. 

The top 20 lists in two years included many of the same countries, while the order changed (Figure S2, 

Figure 4). Among the top 10 countries in percentage excess in 2019, 4 of them were listed in the current 

world bank high-income economies, including Saudi Arabia (1st), United Arab Emirates (3rd), Kuwait 

(4th), and Qatar (7th) (Figure 4A). Compared with the percentage excess, excess death rates (per 

100,000 residents) changed slightly despite the changing order. (Figure 4B). 

 

In the sensitivity analyses, the mortality burden associated with TV decreased with shorter exposure 

to TV and became minimal on TV 0–1 (Table S6–S7). After changing the model parameters, our 

results changed slightly (Table S8). When the counterfactual scenario of grid-specific minimum TV 

was applied, the percentage excess was 2·1% (95% CI: 1·5, 2·7), nearly two-thirds of that under the 

counterfactual scenario of zero TV (Table S9). 

 

Discussion 

To the best of our knowledge, this is the largest and first study to date, using global gridded observation 

data at a spatial resolution of 0·5° × 0·5°, to systematically estimate the global burden of mortality 

associated with TV and explore its temporal trend over 20 years. From 2000 to 2019, the daily average 

value of TV increased generally. A total of 1,490,596 deaths were associated with TV per year, 

accounting for 3·3% of all deaths. Globally, the percentage excess in mortality increased from 3·2% 

in 2000 to 3·3% in 2019, with an increased rate of 1·1% per decade. Geographical variations were 
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observed in both TV-related mortality burden and its temporal changes. 

 

Consistent with previous studies 11,12,32-34, we observed an increased mortality risk associated with TV, 

accounting for a substantial mortality burden. The percentage change in mortality associated with an 

interquartile increase in TV ranged from 0 to 2% for most of grid cells, which is comparable to our 

previous MCC study 9. For example, our previous MCC study observed relatively higher mortality 

risk associated with TV for Australia, China, and Moldova, with their percentage change in mortality 

about 1% for per interquartile increase in TV; similar effect estimates were found by this study. The 

physiological mechanisms behind this association may relate to adaptation to temperatures or 

thermoregulation through physiological and behavioural responses, which are impeded by unstable 

weather 8,35. During these processes, multiple organs can be involved (e.g., respiratory, circulatory, 

and immune systems) by affecting heart rate, blood viscosity, fibrinogen, platelet count, arterial blood 

pressure, and oxygen uptake 36-38. Although the biological mechanisms have not been fully elucidated, 

they imply a hard process of adaption to TV. 

 

To protect human health against TV, proactive counter-measures such as warning systems, 

community-level responses, and instructions for self-protection are necessary. Many policies have 

been developed to cope with the threatening of climate-related extreme events, for example, heat 

warning systems for heatwaves 39,40. However, policies and strategies rarely exist to effectively cope 

with the adverse health impacts of TV. Our findings highlight the greater emphasis on the adverse 

effect of TV and the needs to develop early warning systems to reduce its health consequences. Besides, 

development of the guidance on self-protection and related social programs will be of great benefit to 

help people understand what they need to do. In the long run, measures to reduce the impact of climate 

change (e.g., clean energy and emission reduction) should be promoted to fundamentally solve or 

mitigate global warming as well as the increasing trend of TV, even though these measures may take 
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time to implement and have an impact. Regions with a higher percentage excess in mortality due to 

TV (e.g., Asia, Australia and New Zealand, Northern Africa) are of great importance to contribute to 

coordinated actions for health. All should be aware that some countries, especially developing 

countries, will suffer disproportionately more from the adverse effects of global climate change, which 

could be a potential driver for international inequality 41. 

 

In this study, we observed a small but significant increasing trend in both TV and TV-related mortality 

burden globally. Specifically, almost all regions showed an upward trend in mortality burden 

associated with TV, indicating persistent impact in the last two decades. Although few studies focused 

on the temporal trends of TV-related mortality burden, we can still explore clues through the relevant 

assessment of similar indicators. For example, a multi-country study included 20 countries/regions 

projected that a 1·4–10·3% increase in excess deaths attributable to the diurnal temperature range will 

happen by the end of this century, which inferred a more pronounced mortality burden due to unstable 

weather, although there may be an adaptation to climate change benefiting from socio-economic 

development and investment in public health 20,42,43. More targeted policies should be implemented to 

avoid the negative health impacts of TV, especially for regions with a higher increasing rate of TV-

related mortality burden (e.g., Australia and New Zealand, Northern Europe and Western Europe). 

 

This study has several strengths. First, this is the first and largest study to systematically explore the 

mortality burden associated with TV on a global scale. Compared with previous studies restricted to a 

particular area 12,34,44, this study offers a finer spatial view of the mortality burden associated with TV, 

which can provide new clues on geographical variations and allow within country comparisons. 

Second, this study benefits from the global gridded population and climate data. To avoid potential 

exposure bias from aggregating individual exposure to location or country level, we used exposure 

data in 0·5°-degree grid, which produced better country-wide and global estimates. Finally, we 
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simultaneously considered spatiotemporal trends over a 20-year period paralleled with fast climate 

change. Findings in this study provide a better understanding of how TV has affected human health 

amid inevitable warming trends and gradual acclimatization to climate change. 

 

This study also has some limitations. In this study, grid-specific population data, GDP data, and 

mortality data in 2010 were used to represent average levels throughout the study period. By assuming 

these values unchanged, we were able to show the temporal trends of TV-related mortality burden 

associated with changes in TV 13. However, this assumption could also make such estimates 

approximate. Meanwhile, we used country-specific mortality rates rather than grid-specific mortality 

rates due to a lack of data. While assuming identical mortality rates across grid cells within the same 

country is widely used in the global burden of disease study, it still limits our capability to identify 

variation in TV-related mortality burden within countries. Several predictors that could well explain 

the heterogeneity were used to estimate the grid-specific TV-mortality association. But we must 

acknowledge that there should be unexplained heterogeneity contributed from both the paucity of grid-

specific data and indiscernible factors which limits the meta-analytic results. Further studies are 

warranted to provide more precise estimates of this association. Finally, MCC data have little 

information on countries in the Sahara Desert which experience high TV, and may affect the accuracy 

of effect estimates. Although we used Köppen climate classification as one of predictors in the model, 

future studies are needed to explore the association between TV and mortality in the desert area.  

 

Conclusions 

This study highlights the substantial mortality burden associated with TV. This burden had a complex 

pattern of variation globally and slightly increasing temporal trend over two decades. In light of climate 

change, our findings could assist in raising public awareness and improving the understanding of 

health impacts of TV. More coordinated action and greater accountability are needed to implement 
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evidence-based intergovernmental strategies against the health consequences arising from unstable 

weather. 
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Tables 

Table 1. Percentage excess in mortality and excess deaths per 100,000 residents in 2000 and 2019 and percentage change per decade over 2000–2019 by continent and region. 

Region Annual average excess deaths 
Percentage excess in mortality (%) Excess death, per 100,000 residents 

2000 2019 Percentage change per decade (%) 2000 2019 Percentage change per decade (%) 

Global 1,490,596 (1,041,652, 1,945,553) 3.2 (2.3, 4.2) 3.3 (2.3, 4.3) 1.1 (0.4, 1.7) 26 (18, 34) 26 (18, 34) 0.8 (0.1, 1.4) 

        

Americas 133,705 (84,203, 183,993) 2.6 (1.6, 3.5) 2.6 (1.6, 3.5) 1.0 (-0.0, 2.2) 17 (11, 24) 17 (11, 24) 0.9 (-0.2, 2.1) 

Northern America 71,256 (52,825, 89,869) 3.0 (2.2, 3.8) 3.0 (2.2, 3.7) 1.3 (0.1, 2.7) 24 (17, 30) 23 (17, 30) 1.2 (0.0, 2.5) 

Latin America and the Caribbean 62,449 (31,378, 94,124) 2.2 (1.1, 3.4) 2.2 (1.1, 3.3) 0.7 (-0.4, 1.8) 13 (7, 20) 13 (7, 20) 0.5 (-0.6, 1.6) 

        

Europe 106,299 (61,498, 151,476) 1.5 (0.9, 2.1) 1.6 (0.9, 2.3) 2.5 (0.7, 3.6) 17 (10, 25) 19 (11, 27) 2.1 (-0.1, 3.1) 

Northern Europe 11,086 (7,579, 14,614) 1.4 (0.9, 1.8) 1.6 (1.1, 2.1) 3.1 (-0.2, 5.4) 13 (9, 17) 14 (10, 19) 2.1 (-0.9, 4.8) 

Eastern Europe 47,849 (19,056, 76,910) 1.3 (0.5, 2.0) 1.3 (0.5, 2.2) 2.0 (0.3, 3.1) 18 (7, 29) 19 (8, 31) 1.8 (0.0, 2.8) 

Western Europe 24,786 (18,271, 31,340) 1.6 (1.2, 2.1) 1.9 (1.4, 2.4) 3.6 (-1.7, 6.0) 16 (12, 20) 18 (13, 23) 3.5 (-0.9, 6.1) 

Southern Europe 22,578 (16,591, 28,612) 2.2 (1.6, 2.8) 2.2 (1.6, 2.8) 1.9 (-0.5, 4.4) 21 (16, 27) 22 (16, 27) 1.3 (-0.9, 4.3) 

        

Africa 147,757 (46,467, 250,418) 1.8 (0.5, 3.0) 1.8 (0.6, 3.0) 0.5 (-0.1, 1.1) 18 (6, 30) 18 (6, 30) 0.4 (-0.2, 1.0) 

Northern Africa 40,764 (27,427, 54,270) 3.7 (2.5, 5.0) 3.6 (2.4, 4.7) -2.6 (-3.7, -1.2) 23 (16, 31) 22 (15, 29) -2.7 (-3.9, -1.2) 

Sub-Saharan Africa 106,992 (19,040, 196,147) 1.5 (0.2, 2.7) 1.5 (0.3, 2.7) 1.6 (0.8, 2.5) 16 (3, 30) 17 (3, 30) 1.6 (0.9, 2.5) 

        

Asia 1,096,560 (847,399, 1,349,098) 4.4 (3.4, 5.4) 4.5 (3.5, 5.5) 1.0 (0.0, 2.0) 31 (24, 38) 32 (24, 39) 0.8 (-0.2, 1.6) 

South-eastern Asia 89,488 (59,748, 119,547) 2.9 (1.9, 3.8) 3.2 (2.2, 4.3) 2.6 (0.4, 4.8) 19 (13, 25) 21 (14, 28) 2.3 (0.2, 4.3) 

Western Asia 50,915 (41,827, 60,114) 5.8 (4.8, 6.9) 5.9 (4.8, 6.9) 1.2 (-0.2, 3.4) 31 (25, 37) 31 (26, 37) 1.2 (-0.3, 3.4) 

Central Asia 14,205 (10,618, 17,848) 5.1 (3.8, 6.4) 5.1 (3.8, 6.4) 0.2 (-1.0, 1.7) 32 (24, 41) 32 (24, 41) 0.2 (-0.9, 1.7) 

Southern Asia 556,389 (421,244, 693,530) 5.2 (3.9, 6.5) 5.1 (3.9, 6.4) 0.1 (-1.5, 1.4) 38 (28, 47) 37 (28, 46) 0.1 (-1.5, 1.5) 

Eastern Asia 385,563 (313,961, 458,058) 3.8 (3.1, 4.5) 4.1 (3.3, 4.9) 1.9 (0.1, 3.0) 28 (22, 33) 29 (24, 35) 1.3 (-0.3, 2.4) 

        

Oceania 6,276 (2,086, 10,567) 3.1 (0.9, 5.4) 3.6 (1.2, 6.1) 4.5 (1.1, 8.0) 21 (6, 37) 25 (8, 41) 3.5 (0.4, 6.9) 

Australia and New Zealand 5,641 (2,370, 8,992) 3.5 (1.5, 5.6) 4.4 (1.8, 7.0) 6.4 (3.0, 9.6) 23 (10, 36) 28 (12, 45) 5.2 (1.7, 8.2) 

Other regions in Oceania 635 (-284, 1,575) 1.9 (-0.9, 4.8) 1.3 (-0.6, 3.3) -8.5 (-22.3, 4.8) 16 (-7, 40) 11 (-5, 27) -8.9 (-25.9, 4.2) 
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Figure legends 

Figure 1. The annual average temperature variability at a spatial resolution of 0.5° × 0.5° (A), the time series 

of daily mean temperature variability (B), and its long-term trend after seasonal-trend decomposition (C) 

across the globe from 2000 to 2019.  

Figure 2. Percentage change in mortality associated with an interquartile (for each grid cell) increase in 

temperature variability (A), Annual average excess deaths (B), percentage excess in mortality (C), excess 

deaths per 100,000 residents (D), change in percentage excess in mortality per decade (E), and change in 

excess deaths per 100,000 residents per decade (F) due to temperature variability in 2000–19 at a spatial 

resolution of 0.5° × 0.5°. The x-axis in (E) represent change in percentage points, not percentage change. 

Figure 3.  Annual average percentage excess in mortality (A) and excess deaths per 100,000 residents (B) due 

to temperature variability in 2000–19 by continent and region.  

Figure 4. Leading 20 countries of percentage excess in mortality (A) and excess deaths per 100,000 residents 

(B) in 2000 and 2019.  



A) Annual average temperature variability Figure 1
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A) Percentage excess in mortality (%)

Country Percentage excess in 2000 (%) Country Percentage excess in 2019 (%)
1 United Arab Emirates 8.9 (7.2, 10.7) 1 Saudi Arabia 7.9 (6.3, 9.4)
2 Kuwait 8.8 (7.0, 10.6) 2 Iraq 7.7 (6.0, 9.3)
3 Saudi Arabia 8.8 (7.1, 10.5) 3 United Arab Emirates 7.5 (6.0, 9.0)
4 Jordan 7.4 (6.1, 8.7) 4 Kuwait 7.5 (6.0, 9.0)
5 Qatar 7.1 (5.5, 8.6) 5 Jordan 7.4 (6.1, 8.6)
6 Oman 6.8 (5.6, 8.0) 6 Pakistan 6.8 (5.4, 8.2)
7 Yemen, Rep. 6.6 (5.3, 7.9) 7 Qatar 6.5 (5.1, 8.0)
8 Iraq 6.6 (5.2, 8.0) 8 Iran, Islamic Rep. 6.3 (5.1, 7.5)
9 Syrian Arab Republic 6.5 (5.4, 7.6) 9 Yemen, Rep. 6.1 (5.0, 7.3)
10 Turkmenistan 6.2 (4.8, 7.7) 10 Syrian Arab Republic 6.1 (5.1, 7.2)
11 Pakistan 6.0 (4.8, 7.3) 11 Turkmenistan 6.1 (4.7, 7.6)
12 Uzbekistan 5.8 (4.5, 7.0) 12 Oman 5.8 (4.8, 6.9)
13 Iran, Islamic Rep. 5.6 (4.5, 6.6) 13 Cyprus 5.6 (4.9, 6.2)
14 Israel 5.5 (4.7, 6.3) 14 Uzbekistan 5.5 (4.3, 6.7)
15 India 5.3 (4.0, 6.6) 15 Israel 5.5 (4.7, 6.3)
16 Cyprus 5.3 (4.6, 5.9) 16 West Bank and Gaza 5.1 (4.4, 5.8)
17 Tajikistan 5.2 (3.9, 6.4) 17 India 5.1 (3.8, 6.3)
18 Afghanistan 5.1 (3.8, 6.4) 18 Azerbaijan 5.0 (4.1, 5.9)
19 West Bank and Gaza 4.9 (4.3, 5.6) 19 Tajikistan 4.9 (3.7, 6.1)
20 Niger 4.9 (3.3, 6.5) 20 Armenia 4.9 (3.9, 5.9)

33 Azerbaijan 4.0 (3.3, 4.8) 21 21 Niger 4.8 (3.3, 6.4)
34 Armenia 3.9 (3.1, 4.7) 30 Afghanistan 4.6 (3.5, 5.6)

B) Excess deaths per 100,000 residents

Country
Excess deaths per 100,000 

residents  in 2000
Country

Excess deaths per 100,000 
residents in 2019

1 Niger 56 (38, 74) 1 Georgia 56 (47, 65)
2 Georgia 48 (40, 55) 2 Eswatini 55 (38, 72)
3 Namibia 47 (33, 61) 3 Niger 55 (37, 72)
4 Pakistan 46 (36, 55) 4 Namibia 51 (36, 67)
5 Eswatini 45 (31, 59) 5 Pakistan 51 (41, 62)
6 Turkmenistan 45 (34, 55) 6 Armenia 48 (38, 57)
7 Chad 44 (16, 74) 7 Chad 45 (16, 75)
8 Afghanistan 42 (31, 53) 8 Turkmenistan 44 (34, 55)
9 Yemen, Rep. 41 (33, 49) 9 Iraq 42 (33, 52)
10 India 40 (30, 50) 10 Kazakhstan 42 (30, 54)
11 Kazakhstan 39 (28, 51) 11 Botswana 41 (29, 53)
12 Somalia 39 (26, 53) 12 Lesotho 39 (18, 61)
13 Sudan 39 (26, 52) 13 Myanmar 39 (27, 51)
14 Armenia 38 (31, 46) 14 India 38 (29, 47)
15 Botswana 38 (27, 49) 15 Yemen, Rep. 38 (31, 45)
16 Burkina Faso 38 (23, 53) 16 Zimbabwe 38 (25, 51)
17 Iraq 36 (29, 44) 17 South Africa 38 (23, 53)
18 Japan 36 (32, 41) 18 Cyprus 38 (33, 42)
19 Cyprus 36 (31, 40) 19 Afghanistan 37 (27, 46)
20 Lesotho 36 (16, 55) 20 Japan 36 (32, 41)

22 Myanmar 35 (24, 45) 21 Sudan 36 (24, 48)
23 Zimbabwe 34 (22, 45) 23 Burkina Faso 36 (21, 50)
24 South Africa 33 (20, 46) 26 Somalia 31 (20, 41)

Figure 4
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